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Abstract

Methods for highly multiplexed RNA imaging are limited in spatial resolution, and thus in their
ability to localize transcripts to nanoscale and subcellular compartments. We adapt expansion
microscopy, which physically expands biological specimens, for long-read untargeted and targeted
/in situRNA sequencing. We applied untargeted expansion sequencing (ExSeq) to mouse brain,
yielding readout of thousands of genes, including splice variants. Targeted ExSeq yielded
nanoscale-resolution maps of RNAs throughout dendrites and spines in neurons of the mouse
hippocampus, revealing patterns across multiple cell types; layer-specific cell types across mouse
visual cortex; and the organization and position-dependent states of tumor and immune cells in a
human metastatic breast cancer biopsy. Thus ExSeq enables highly multiplexed mapping of RNAs,
from nanoscale to system scale.

One Sentence Summary:

In situsequencing of physically expanded specimens enables multiplexed mapping of RNAs at
nanoscale, subcellular resolution.

Tissues are made of cells of many different types and states that are regulated by, and
contribute to, the cells’ spatial organization. Multiplexed measurements of the locations and
identities of RNA molecules within cells has been useful for exploring these relationships
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(1-13). Furthermore, mapping the subcellular locations of RNAs is important for
understanding diverse biological processes (14, 15), such as how RNAs in dendritic spines
help regulate synaptic function (16-19).

Imaging RNAs within such compartments, and throughout detailed cellular morphologies,
requires nanoscale precision. Such precision is not easily achieved within tissues with
current multiplexed optical methods to image RNA. Indeed, no method can currently
perform multiplexed imaging of RNA within tissues in the context of nanoscale cellular
morphology. Even though seqFISH+ allows high resolution imaging of RNA molecules, it
cannot resolve the detailed cellular and tissue context with nanoscale precision (20).

Ideally one would be able to perform the enzymatic reactions of sequendiggwith high
multiplexing capacity, while providing for fast nanoscale imaging of cellular and tissue
context. We here present a toolbox for the untargeted (i.e., not restricted to a pre-defined list
of gene targets) and targetedsitusequencing of RNAs within intact tissues, in the context

of nanoscale cellular morphology.

Adapting expansion microscopy to improve in situ sequencing

We created an untarget@dsitusequencing technology that enables the sequencing of
arbitrary RNAs within detailed cellular and tissue contexts. Untargeted approaches have the
potential to discover spatially localized sequence variants, such as splice variants and
retained introns (21). Fluorescentsitusequencing (FISSEQ) enables such data to be
acquired from cultured cells (22), but was not fully demonstrated in tissues (22). Therefore,
we adapted the chemistry of expansion microscopy (ExM; (23, 24)) to separate RNAs from
nearby molecules. We reasoned that this may facilitate the chemical access negdeid/for
sequencing within tissues. We also expected that the resolution boost from ExM would
enable high spatial resolution mapping of RNAs and their cellular and tissue context on
conventional microscopes.

In FISSEQ, untargeted s/itusequencing of RNA is performed to amplify RNA into
‘nanoballs’ of cDNA (or ‘amplicons’), containing many copies of an RNA sequence (22,
25). These sequences are interrogatesifuwith standard next-generation sequencing
chemistries on a fluorescence microscope. In ExM (23) we isotropically separate gel-
anchored biomolecules of interest by a ~4x linear expansion factor, which facilitates both
nanoscale imaging with conventional optics, and better chemical access to the separated
biomolecules (24). ExM enables better resolution of normally densely packed RNA
transcripts forn situhybridization imaging (26, 27).

Expanding specimens is expected to benefit FISSEQ by dividing the effective size of the
FISSEQ amplicon (200-400 nm; (22)) by the expansion factor. This reduces the packing
density of amplicons and facilitates their tracking over many rounds of sequencing. We
adapted ExM chemistry to enable FISSEQ in expanded tissues. In particular, the anchoring
(Fig. 1Ai), polymerization (Fig. 1Aii), and expansion (Fig. 1Aiii) steps, which separate
RNAs for nanoscale imaging (26), result in charged carboxylic acid groups throughout the
swellable gel. This suppresses the enzymatic reactions required for FISSEQ (Fig. S1). We
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thus stabilized expanded specimens by re-embedding them in uncharged gels (26), and then
chemically treated samples to result in a neutral charge environment (Fig. S1). We reasoned
that this would allow FISSEQ signal amplification (Fig. 1Aiv) and readout (Figs. 1Av—vi

and 1B) steps to proceed.

/n situsequencing involves many rounds of adding fluorescent oligonucleotides (22).
Accordingly, we established an automated sequencing system (28). Because the resultant
datasets consist of a series of 3D images, one for each successive base sequenced, we
created a software pipeline (Fig. $2ps://doi.org/10.5281/zenodo.40755t&f (93)). This
software can align, across images from many rounds, the puncta for each expressed gene to
within 1 pixel (validated in Fig. S3 and S4). Finally, puncta are segmented and bases called
(Fig. 1Biii).

/n situsequencing has previously been limited to short reads of 5-30 bases (10, 11, 22). This
limitation reflects laser-induced damage during imaging (25) and dependence of the signal
for a given cycle on signals from previous cycles (known as “phasing”), caused by
incomplete enzymatic reactions (29). Alignment of such short reads to the genome is
challenging (30). Moreover, short reads do not easily capture mRNA complexity, such as
alternative splicing.

Accordingly, we added a follow-on round et s/fuclassical “next-gen” sequencing (Fig.
1Ci, (28)). Importantly, the random nature of untargeted sequencing (28) results in the
creation of uniqgue molecular identifiers from thes/fusequenced region of the amplified
cDNA (Fig. S5). This allows us to usx sifuinformation as a dictionary to align and
directly interpret then situreads (Figs. 1Cii and S5A, bottom panel).

92% of all matches, and 97% of the matches aligned against non-rRNA, were strictly
unigue. We removed the handful/ofsitureads that matched to more than ewesitu

library entry (28). Thus, on& s/ifuread matched onex situdibrary entry (Fig. S5C). This
allowed us to explore sequence variations in mMRNA, such as alternative splicing, using the
longer ex situmatched reads (Fig. S6).

Biological validations of ExSeq

Expansion sequencing (ExSeq) produced data from a variety of specimens (Tables S1-S5),
including mouse brain (Fig. 1B), C. elegans (Fig. S7A), Drosophila embryos (Fig. S7B), and
HelLa cells (Fig. S7C). To validate ExSeq, we used the following mouse specimens: cultured
hippocampal neurons (Figs. 2A-B and S8), a 15 micron thick hippocampal slice (Fig. 2C—
D), and a 50 micron thick hippocampal slice (Fig. 2E—F). To improve the efficiency of

cDNA circularization, we restricted the size of cDNA fragments to ~100 bases loayg, so
situlllumina reads typically contained several repeats of a given cDNA fragment that were,
on average, 76 bases long (Fig. S6).

Antibody staining aftefn s/itusequencing, as with previous ExM-related protocols (31),
enabled visualization of specific proteins. This was demonstrated by staining with antibodies
against YFP in a Thyl-YFP mouse (32) to visualizeiftsequencing reads within neural
morphology (Fig. 2F).

ScienceAuthor manuscript; available in PMC 2021 February 23.
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As a validation of ExSeq, we performed RNA sequencing (RNAseq), with random primers,
on a 50 micron thick hippocampal slice adjacent to the 50 micron thick ExSeq specimen
(Fig. 2E—F). As expected for total RNA analysis, most of the RNA detected in both cases
was ribosomal. We observed overall agreement between the RNA types obtained with both
methods (Fig. 2Gi-iii); although ExSeq exhibited a slightly higher percentage of coding
RNA (4-9% with ExSeq vs 2% with RNAseq). Gene ontology analysis revealed expected
functional enrichments for this specimen, including ‘synapse’, ‘neuron projection’ and
‘hippocampus’ (Fig. S9 and Table S6).

In FISSEQ highly abundant genes were underrepresented, for example genes involved in
translation and splicing (22). In contrast, we did not observe this detection bias with ExSeq
(28). The expression levels of well-annotated genes (RefSeq genes) using RNAseq and
ExSeq were highly correlated (Pearson’s r = 0.89) (Fig. 2Giv and Fig. S8C).

The correlation between ExSeq and RNAseq increased with the ExSeq volume imaged. For
instance, 10 microscope volumes (each 350x350x100 microns in size, post-expansion, and
~100x100x28 microns pre-expansion) resulted in a Pearson’s r = 0.47 (Fig. 2Gv; Sttident’s
p-value 9 x 10184 comparable to recent targetedsitsequencing methods (33). Larger
volumes, simulated by sampling (28), yielded higher correlations (Fig. 2Gvi). With 10
volumes, 3,039 genes were detected, comprising ~16% of all the genes detected in the
sample via RNAseq, again increasing with the volume sampled (Fig. 2Gvii). Thus, ExSeq is
able to report on genome-wide expressmsi/fy in an untargeted, highly multiplexed way.

Subcellular pinpointing of transcript locations in neurons

We next sought to utilize the improved spatial resolution of ExSeq to pinpoint RNAs relative
to antibody-stained morphology. We traced 13 hippocampal CA1 pyramidal neurons (28).
We analyzed the locations of RNAs inside identified neurons with a custom 3D viewer (Figs.
3 and S10, (28)). The number of sequencing reads per neuron was 229 + 74 (mean +
standard deviation used throughout) including rRNA, and 30 + 14 for non-ribosomal RNA,
for cell bodies and dendrites imaged up to ~100 microns from the cell body. Not including
rRNAs, 326 RefSeq genes were observed in these imaged volumes. These numbers are
comparable to those obtained by the original FISSEQ protocol (25), applied to cultured cell
lines.

Neurons contain one nucleus vs. thousands of synapses. This raises the question of whether
splicing of MRNAS, such as those that contribute to synaptic function, is regulated in a
spatially dependent manner along dendritic trees (34). We examined reads that corresponded
to intronic regions and observed that, while 70% of such reads were located at the soma,
introns in YFP-containing dendritic projections could be found as far down the dendrite as

we looked, consistent with previous reports (35, 36). For example, glutamate ionotropic
receptor kainate type subunit 2 (Grik2), which encodes a receptor subunit involved in
excitatory glutamatergic neurotransmission, appears in our data in dendrites with a retained
intron (Fig. 3Ai). The Grikl subunit had been identified earlier as a dendritically-targeted
intron-retaining sequence (35, 37). Dendritic splicing of glutamate receptor subunit RNAs

ScienceAuthor manuscript; available in PMC 2021 February 23.
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may contribute to the regulation of the state or plasticity of excitatory synapses. Indeed,
splicing in dendrites has been characterized previously in cultured neurons (38).

The long sequencing reads (Fig. S6) and untargeted nature of ExSeq also allowed for
mapping of alternative splicingg s/ifu We quantified the expression of known alternative
splicing isoforms with ExSeq vs. RNAseq. The two methods were highly correlated
(Pearson’s r = 0.944; Fig. S11A). Using only 10 confocal microscope fields of view, of sizes
described above, we detected 112 sequencing reads that corresponded to known alternative
splicing events. 67% of these sequencing reads revealed the expressed alternative splicing
isoforms, including ribosomal protein S24 (Rps24) and microtubule-associated protein 2
(Map2) (Fig. S11B). We also identified possibly new isoforms, for example for the gene
spectrin beta (Sptbnl) (Fig. S11B).

Importantly, ExSeq provides the ability to locate these alternative splicing events in space.
As an example, isoforms of Map2, a key dendritic protein (39), and the transcription factor
Cux1, which is involved in dendrite and spine formation (40), could be localized to the
neuronal soma, outside of the nucleus (Figs. S10, Neurons 9 and 7, respectively, and S11B).

Many genes may have unappreciated connections to neuronal signaling inside dendritic
trees. MRNAs for specific transcription factors have been identified inside dendrites (41), for
example MAX dimerization protein (Mga; (42); Fig. S10, Neuron 6). However, the full
complement of dendritically localized transcription factors in any neuron type is unknown.

In our hippocampus sample (Table S2), 914 of the known 1675 mouse transcription factors
(RIKEN transcription factor database) were detected by ExSeq. This included 32 reads
localized within YFP-expressing cells, and 11 reads in the dendrites of these cells. These
reads include forkhead box protein G1 (Foxg1l), involved with neural development (43), and
prothymosin alpha (Ptma), involved in learning and memory and neurogenesis (44) (Fig.
3Aiii and 3Aiv). We also found long non-coding RNAs (IncRNAs) and protein coding genes
with unknown function in dendrites (Fig. 3A). For example, BC1 (Fig. 3Aii) is a IncRNA
from an RNA polymerase lll transcript that complexes with proteins to form a
ribonucleoprotein particle. BC1 is dendritically localized (45) and involved with activity-
dependent synaptic regulation (46). Additionally, MALAT1 (Fig. 3Aiv) has roles in neural
growth and synaptogenesis, but its localization had not been determined in hippocampal
tissue (47, 48).

We localized genes that had been found in dendrites of CA1 pyramidal cells at the protein
level, but had not been mapped at the mRNA level; such as gamma-aminobutyric acid
(GABA) type A receptor gammaz2 subunit (Gabrg2; Fig. S10, Neuron 2) (49). Thus, ExSeq
allows us to expand our knowledge of dendritically localized genes of known function,
which may point to new regulatory mechanisms for their gene products. Furthermore, we
identified transcripts encoding genes of unknown function in the hippocampus (e.g, Nob1,
Fig. 3Aii) (50), which may contribute to their functional analysis.

To more systematically understand how the types and identities of transcripts varied with
location along a dendrite, we measured the distance from each read to the centroid of its
corresponding neuron’s cell body (Fig. 3B). These measurements reveal the positions of

ScienceAuthor manuscript; available in PMC 2021 February 23.
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RNAs encoding for transcription factors, intron-containing reads, and IncRNAs up to 100
microns from the soma. To follow up with a more in-depth examination of specific genes,
we next generated a targeted form of ExSeq.

Targeted ExSeq

Untargeted sequencing enables transcriptome-wide exploration of localized RNAs, including
rare variants and those of unknown function. However, the diversity of possible reads
generated by untargeted methods lead to a lower per-gene copy number of detected
molecules, and a larger number of biochemical and imaging cycles to distinguish among
reads. Targeted methods, in contrast, detect a smaller predefined set of genes and are
applicable to mapping cell types and states, their spatial relationigtsfig and visualizing
subcellular gene regulation.

An ideal technology for targeted multiplexed RNA mapping would satisfy the following list

of criteria. First, it should possess sufficient yield (probability of detecting a present
molecule) to detect low copy humber transcripts such as transcription factors or sparse RNA
molecules. Second, the technology should have resolution below the diffraction limit both
laterally and axially to resolve nanoscale morphological features, such as dendritic spines in
neurons. Third, the method should provide the ability to image both RNAs and proteins, and
to work with 3D tissues, to localize RNAs in biological contexts. Finally, the method should
work with various tissue types, including human tissues. We thus developed a targeted
version of ExSeq to match these specifications (Tables S7-S8).

In targeted ExSeq, oligonucleotide padlock probes bearing barcodes hybridize to transcripts
(11, 51). Amplicons are then generated for readout thrgughizsequencing of the

barcodes (Figs. 4A and S12). The inefficient (22) reverse transcription step required by
untargetedn situsequencing (11, 22, 52) is circumvented by the binding and ligation of
padlock probes on each targeted transcript using PBCV-1 DNA ligase (also known as
SplintR ligase). This enzyme can ligate DNA on an RNA template ~100x faster than T4
DNA Ligase (51, 53-56). After circularization and rolling circle amplification, the barcodes
are sequencefh situ As barcodes are sequenced across multiple rounds of imaging, the
number of identifiable molecular targets scales exponentially with the number of imaging
rounds.

We explored the performance of targeted ExSeq in a variety of contexts (Table S5). To
validate the yield, hybridization chain reaction (HCR) v3.0-amplified expansion FISH
(ExFISH) and targeted ExSeq were sequentially performed for the same genes in expanded
Hela cells (26, 57). Targeted ExSeq exhibited an mRNA detection yield of ~62% (Pearson’s
r =0.991) relative to HCRv3.0-ExFISH (Fig. 4B, Tables S9—S11), which has a detection
efficiency of ~70% in tissue (26). For comparison, single-cell RNA sequencing captures
~10% of mRNA (58, 59).

Cell type mapping with spatial context in the visual cortex

We mapped the cell types of the mouse primary visual cortex, for which single cell RNA
sequencing (scRNA-Seq) data-based classification of cell types has been performed (60). We

ScienceAuthor manuscript; available in PMC 2021 February 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuey Joyiny

Alon et al.

Page 8

designed a panel of probes targeting 42 genes (Tables S9-S10) that mark key excitatory and
inhibitory neuron types. We performed targeted ExSeq of these 42 genes across a coronal
section of the primary visual cortex of a Thy1l-YFP mouse over a volume of 0.933 mm x
1.140 mm x 0.02 mm, sequencing 265,347 reads (Fig. 4C, top and Table S12).

The spatial distribution of ExSeq reads recapitulated spatial distributions in therAtién
hybridization (ISH) atlas (Fig. S13). Transcripts known to express in the same cell type
appeared in similar positions -- for example, in parvalbumin-positive (Pvialierneurons

(PV interneurons), parvalbumin (Pvalb), vesicular inhibitory amino acid transporter
(Slc32al), and glutamate decarboxylase 2 (Gad2) transcripts co-localized (Fig. 4C, inset). In
contrast, seizure protein 6 homolog (Sez6) transcripts, associated with excitatory neurons in
deep cortical layers (as well as vasoactive intestinal peptid€)(ififeRrneurons) was not co-
localized with Pvalb, Slc32al, and Gad?2 transcripts (Fig. 4C, inset).

Segmenting cells (Fig. S14, (28)) yielded a total of 1915 cells containing a total of 220,783
reads, out of which 1154 cells with at least 50 reads each (177 + 127 reads/cell) were
analyzed. Wek-means clustered expression profiles, and embedded them into a low-
dimensional space using t-Stochastic Neighbor Embedding (t-SNE) (61) (Fig. 4D). Clusters
were identified with known markers (28), such as those corresponding to excitatory neurons
(“Ex", and sub-annotated by their layer location) and inhibitory neurons (annotated with
relevant cell type markers). Clusters expressed marker genes consistent with prior studies
(60) (Fig. S15).

We compared our results to a previous study of SCRNA-Seq of the mouse primary visual
cortex (28, 60) (Fig. 4E). We observed the canonical layer-by-layer stratification of
excitatory neurons in the visual cortex (Figs. 4F and S16). The 9 ExSeq clusters of
excitatory neurons corresponded, with slightly different groupings, to 7 scRNA-Seq clusters
of excitatory neurons (Fig. 4E). We found inhibitory neuron ExSeq clusters that matched 1-
to-1 to scRNA-Seq clusters. For example, two somatostatin interneuron clusters found
across the layers of the cortex, the SST cluster expressing Unc-13 homolog C (cluster SST
Uncl3c) and the SST cluster expressing Chondrolectin (cluster SST Chodl), appeared
prominently in both datasets (Fig. 4F—G). Some ExSeq clusters of inhibitory neurons
mapped onto multiple sScRNA-Seq clusters. For example, two ExSeq clusters, which we
denoted PV and GABAergic (-PV), mapped onto multiple sScRNA-Seq clusters (Fig. 4E).

Such poolings of scRNA-Seq clusters into ExSeq clusters (and vice versa) are likely due to
the smaller number of cells analyzed with ExSeq vs. sScRNA-seq, the small number of
markers interrogated, and the use of a sirkpteeans algorithm for clustering. Some
substructure is visible in the t-SNE plot for the cluster GABAergic (-PV) (Fig. 4D). This
suggests that alternative clustering approaches, for instance utilizing morphological criteria
or protein markers, could be devised in the future to yield more precise delineations of cell

types.

We varied the parameters used for cell segmentation of the ExSeq dataset and for clustering
of the single-cell dataset, and found the above conclusions to be robust (Figs. S17-S18).

ScienceAuthor manuscript; available in PMC 2021 February 23.
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Non-neuronal cells (e.g., glial cells) did not highly express the interrogated markers, and
were likely non-specifically clustered with other cell types.

As described (60, 62), the layer-specific excitatory neuron transcription factor marker genes
homeobox protein cut-like 2 (Cux2), RAR-related orphan receptor beta (Rorb), fasciculation
and elongation protein zeta-2 (Fezf2) and forkhead box protein P2 (Foxp2) were expressed
in L2/3, L4, L5b, and L6 respectively (Figs. 4E-F and S15). We used the clusters featuring
these markers to segment the cortex into layers (Fig. S14D), so that the cell types within
each layer could be quantified (Fig. 4G; raw counts, Fig. S19). Each cluster of inhibitory
neurons was dispersed across layers (Fig. 4G and S19), consistent with earlier work (60, 62).
Thus, targeted ExSeq enables sensitive RNA detection across circuit-relevant volumes of
tissue, and enables cell types to be analyzed in spatial context.

Nanoscale RNA compartmentalization in mouse hippocampal neurons

We next used targeted ExSeq to explore nanoscale RNA compartmentalization within
neurons of the mouse hippocampus, where dendritic RNAs are implicated in synaptic
plasticity and learning (63—-65). We traced YFP in neurons to identify dendrites and spines,
and targeted for sequencing 34 transcripts previously found in CA1 neuron dendrites (66).
We note that spines were not observed in the untargeted ExSeq hippocampus data because
the antibody staining was performed post-sequencing, resulting in weaker staining, whereas
here antibody staining was performed pre-expansion (28).

We performed four rounds @f situsequencing to localize these transcripts on 170 fields of
view (1.7mm x 1mm x 0.02mm total, Table S5). This sequencing spanned a coronal section
containing subfields of the hippocampus, yielding 1.2 million reads, 90,000 of which
localized within YFP expressing neurons (Fig. 5A and Table S13). The distributions of
expressed genes were similar to those reported in the Allen BrainiA##dshybridization
dataset (Fig. S20).

Using the YFP signal, we segmented the CA1 pyramidal neurons and dentate gyrus granule
cells (although the spines and axons of the latter exhibited low signal-to-noise and were not
analyzed further). We found transcripts within dendrites (CA1, DG), spines (CAl), and to a
much smaller extent, in axons (CA1) (Fig. 5B). In 106,000 spines examined, we found 730
reads in dendritic spines (each spine had one RNA, except for one that had two). Through
simulations (Fig. S21), we concluded that it was unlikely that this sparsity of distribution

was due to chemical artifacts of the ExSeq procedure.

In CA1 neurons, as expected, genes such as the postsynaptic density protein dendrin, the
synaptic plasticity-associated gene Camk2a, and the postsynaptic scaffolding protein SH3
and multiple ankyrin repeat domains 1 (Shank1) were prominent in dendrites. The neuronal
calcium sensor Hpca and the synaptic glutamate receptor Grial were amongst the most
abundant in cell bodies (Fig. 5C). In spines, we found Shankl, Adenylyl cyclase 1 (Adcyl)
and kinesin family member 5a (Kif5a) to be amongst the most abundant transcripts. We
found that the distribution of reads in cell bodies, apical dendrites, basal dendrites, apical
dendritic spines, and basal dendritic spines was each statistically different from the others
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(bootstrapped 2-sample Kolmogorov-Smirnov test p-value < 0.001), except for apical versus
basal spines which were not different from each other (Fig. 5Ciii). This suggests a common
set of spine RNAs and spine RNA trafficking principles throughout these neurons.

We validated these observations through bulk RNA sequencing from hippocampal slices
adjacent (+/- 100 um coronally) to the section used for targeted ExSeq. We observed a high
level of correlation betweei s/ifusequencing results and bulk RNA sequencing results
(Pearson’s r = 0.85, Fig. S22). For the genes studied through both untargeted and targeted
versions of ExSeq, we observed high correlation between the read counts (Pearson’'s r =
0.68, Fig. S22 and Table S13). Using these genes, we estimated the yield of untargeted
ExSeq to be 0.6% vs. targeted ExSeq (Table S13).

Specific genes were significantly (using bootstrapping, p-value <0.001) enriched in specific
CA1 neuronal compartments (Fig. 5C). Transcripts for Shankl, Kif5a, Adcyl, Mapla,

Map2, and Gnai2, were highly enriched in spines, and to a smaller extent in apical and basal
dendrites, compared to cell bodies, perhaps pointing to a process through which these
transcripts are enriched the closer they get to synapses. Many of these genes serve structural
roles in spines and dendrites (67—69). On the other hand, a distinct set of genes, including
Hpca, Grial, ActB, and Maplb, among others, were highly enriched in cell bodies as
compared to dendrites or spines, consistent with an earlier study (66). Interestingly, Arc,
whose RNA is known to be dendritically targeted in plasticity contexts, was enriched in cell
bodies, consistent with the highly regulated nature of its presence in dendrites (70, 71). In
addition, a few genes, such as Camk2a and Ddn, were enriched in dendrites as compared to
both spines and cell bodies, consistent with earlier work (66).

In dentate gyrus dendrites, we found transcripts similar to those found in CA1 apical and
basal dendrites, such as Shankl, Map2, and Pppr1r9b (Fig. 5D). Across the entire 34 gene
set, we observed similar dendritic localizations of RNAs in dentate gyrus granule cells vs.
CA1 pyramidal neurons (Pearson’s r = 0.91, Fig. S23). This similarity raises the possibility
that there may be general rules, applicable to multiple neuron types, governing the dendritic
transport of specific RNAs.

Transcripts exhibit varied distributions along dendrites (66). We found that most transcripts
within dendrites were close (+/- 50 um) to the cell body layer, and their density decayed
rapidly towards distal regions of dendrites, similar to previous observations for these genes
(66) (Figs. 5Ei and S24).

Some transcripts, such as Shankl, Ddn, and Ppp1r9b were present in distal regions of
dendrites. When we quantified the presence of transcripts within spines along dendrites,
however, we observed a markedly different distribution (Figs. 5Eii and S24). For most
transcripts found in spines among those in our probe set, their highest density occurred close
to the cell body layer. However, spine-localized Shankl transcripts exhibited a strong
presence throughput spines in both proximal and distal regions of dendrites in both apical
and basal directions. Kif5a and Adcy1l, to a lesser extent, were also found in the spines of
distal dendrites. Thus, although spines are directly connected to dendritic branches, they can
exhibit strikingly different mRNA distributions.
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ExSeq mapping of cell type relationships in cancer

We next explored how ExSeq might reveal spatial patterns of gene expression in the context
of cancer biology and immunology. One key question is to understand how tumor
microenvironments, including the state of immune cells, govern tumor growth, metastasis,
and treatment resistance (72). Multiplexed spatial mapping of RNA performed in human
tissues to date has not achieved high enough resolution for single cell quantification, let
alone subcellular resolution (33, 73, 74) (Table S7).

A core biopsy was taken from a patient with metastatic breast cancer infiltration into the
liver, and 297 tumor-related genes of interest (28) were profiled. We resolved 1.15 million
reads, including 771,904 reads in 2,395 DAPI-segmented cells (Fig. 6A, counts in Table
S14). The high 3D spatial resolution of ExSeq allowed the detection of 516 RNA reads
inside nuclear structures <1 micron in size, possibly nucleoplasmic bridges, challenging
structures to resolve in tissue (75) (Fig. S25).

Expression clustering of DAPI-segmented cells (28, 76) revealed the expected mixture of
cell types, including tumor, immune (T-cell, B-cell, and macrophage), and fibroblast cell
clusters, characterized with known biomarkers. These biomarkers include members of the
immunoglobulin family (IGHG1, IGHG4, IGKC) found in B-cells, and genes known to be
expressed in metastatic breast cancer (progesterone receptor, PGR (77); epidermal growth
factor receptor, EGFR (78); aldehyde dehydrogenase 1 family member A3, ALDH1A3 (79))
(Fig. 6B).

Tumor and non-tumor cells were highly intermixed (Fig. 6C). We examined spatial
colocalizations (proximity within 20 microns) between cell types (Fig. 6D; results were
robust to distance parameter value (Fig. S26)). Different B-cell clusters tended to co-localize
in space, consistent with previous observations (80). B-cell clusters exhibited statistically
significant (using bootstrapping (28)) co-localizations to all the other cell clusters (Fig. 6D)
except for one tumor cluster expressing the gene marker PGR (Tumor PGR). This is
consistent with B-cells directly interacting with tumor cells and macrophages, with such
interactions contributing to humoral responses in the microenvironment (80, 81). Our
analysis also indicates other cell type co-localizations, for example between fibroblast
clusters and macrophage, T-cell and tumor clusters (Fig. 6D). Such mappings thus may help
illuminate the role of fibroblasts in supporting leukocyte aggregation at sites of cancer (82)
or the spatial distributions of fibroblast cell types in cancers (83).

We finally analyzed whether one cell type could express genes differently as a function of
physical proximity to another cell type. For example, one cell might change state depending
on physical contact or close proximity to another cell. For each pair of cell clusters that
exhibited colocalization, we searched gene expression differences between specific cells that
were close (i.e, within 20 microns) vs. not close, using bootstrapping (28). Hypoxia-

inducible factor (HIF1A) was >5-fold overexpressed in ALDH1A3-positive tumor cells

when they were in close proximity to HSPG2-positive fibroblasts (Fig. 6Eii). Given that

HIF1A serves as a proxy of hypoxic environments, and is a microenvironmental cue for
tumor cell maintenance (84), ExSeq maps may be helpful for further probing such
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relationships. The mRNA level of HIF1A may also indicate tumor radiotherapy resistance
(85). As a second example, the gene S100A8, a regulator of inflammatory processes and
immune responses that may be a biomarker for relapse or progression in breast cancer
patients (86—88), was 4-fold overexpressed in IGHG1-positive B cells when they were close
to EGFR-positive tumor cells (Fig. 6Ei).

ExSeq adapts two techniques -- expansion microscopyrasitl/sequencing -- to enable
spatially precise, highly multiplexed imaging of RNAs in cells and tissues. ExSeq, in both
untargeted and targeted forms, facilitates the investigation of scientific questions involving
subcellular, and even nanoscale, RNA localization in intact cellular and tissue contexts (e.g.,
as indicated by antibody staining of proteins or DAPI staining of nuclei). It can be applied to
specimens of multiple organ systems and species, ranging from the mouse brain to human
cancer biopsies, to reveal spatial relationships within, and between, cells. Such data may
reveal principles of cellular organization and function, and provide insights into potential
mechanisms of how cells interact, or are coordinated, in complex tissues and multicellular
systems. We anticipate that beyond neuroscience and cancer biology, ExSeq will find uses in
other fields where many cell types are operating within a complex tissue context, ranging
from developmental biology, to immunology, to aging.

Beyond spatial genomics, we expect ExSeq to be usefirt Btsequencing of lineage

(89) and/or connectome (90-92) indexing RNA barcodes, which incorporate designed or
randomized base-level variation that is not naturally addressed by a FISH approach with a
fixed set of tags and targets. More generally, the approaches for re-embedding, passivation,
many-round sequential probing, image analysis@nsdifusequence matching in expanded
samples that we have developed for ExSeq should be broadly applicable to other kinds of
situenzymatic readouts, such as for the multiplexed readout of endogenous DNA or of
antibody-attached tags, which may benefit from nanoscale spatial resolution in intact tissues.

Materials and methods

All tissues were fixed, optionally immunostained, and treated with the RNA anchoring
reagent LabelX. The tissues were then gelled, digested, and expanded (23, 26). Next, the
tissues were re-embedded and passivated, enabling enzymatic reactions to be pgrformed
situ For untargeted ExSeq, thres/ifusequencing library was generated by performing

reverse transcription with random primers, circularization of cDNA, and rolling circle
amplification (RCA). For targeted ExSeq, padlock probes bearing barcodes were hybridized
to transcripts of interest, circularized, and RCA-amplifieds/ifusequencing of the cDNA
amplicons was then performed through iterative rounds of sequencing chemistry and
imaging. The imaging data was converted to nucleotide reads localized in 3D space by a
custom image processing pipeline. Reads were ascribed to cells by using immunostaining or
other morphological markers. For untargeted ExSeq, the reference for alignmestof

reads was generated by extracting and sequencing the cDNA amplicons from the sample,
enabling augmentation of thie s/ituread length. Full methods are available in (28).
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Fig. 1. Untargeted expansion sequencing (ExSeq) concept and wor kflow.
(A) ExSeq schematic. (i) A specimen is fixed, and RNA molecules (green) bound by an

anchor (orange). (ii) The specimen is embedded in a swellable gel material (light blue, not to

scale), mechanically softened, and then expanded with water (iii). RNA molecules are
anchored to the gel. (iv) RNA molecules are reverse transcribed and amplified using
FISSEQ (v)in situsequencing. Colored dots indicate the colors used in the sequencing

chemistry. (vi) In each sequencing round colors (blue, magenta, green, and red) reveal the

current base of the cDNAB) Example of ExSeq from a 50 micron thick slice of mouse
dentate gyrus. (i) One sequencing round, with two zoomed-in regions (ii), and puncta
histories obtained over 17 rounds/pfsitusequencing (iii)(C) Ex situsequencing. (i) After
/n situsequencing, cDNA amplicons are eluted from the sample, and reseqesrsizd
with next-gen sequencing. (ilp situreads are matched to their longarsitucounterparts,
focusing on unique matches, augmenting the effedtigguread length. Scale bars: Bi, 17
microns (in biological, i.e. pre-expansion, units used throughout, unless otherwise
indicated), Bii, 700 nanometers.
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Fig. 2. In situ sequencing in cellsand tissues with untargeted ExSeq.
(A) Example of ExSeq library preparation in hippocampal culture (green, hybridization

probe against amplified cDNA, blue, DAP(B) Maximum intensity projection of one
sequencing round in hippocampal culture; color scheme as in Fi¢C)Bow

magnification image of ExSeq library preparation in aufibslice of mouse hippocampus
(green, hybridization probe against amplified cDN@®) Maximum intensity projection of

a higher magnification image of the specimen of C, focusing on one sequencing round; color
scheme as in Fig. 1BE) Low magnification image of ExSeq library preparation in auB0

slice of mouse hippocampus. Fields of view (FoVs) acquired with a higher magnification
objective are shown as green squares. White, hybridization probe against amplified cDNA.
(F) Maximum intensity projection of one FoV of panel E, with antibody staining/pasiu
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sequencing (red, antibody against YFP; specimen from a Thyl-YFP mouse; green,
hybridization probe against amplified cDNAJ) Sequence analysis of ExSeq specimen
shown in (E). (i-iii) RNA content obtained with ExSeq, either usrg/fusequencing data

from the entire slice (i) or usingx s/ifudata that correspond fo situreads observed within

the FoVs of panel E (i), is comparable to the RNA content of an adjacent slice obtained
with standard RNAseq (iii)). Numbers inside the pie chart represent percentage of the total.
(iv) Agreement between the normalized expression levels of all well-annotated genes
(RefSeq genes) using RNAseq and ExSeq withéulb/fusequencing data as in i. (v) As in

(iv), but using the 10 acquired FoVs, as in ii. (vi) Pearson’s correlation between the log-
transformed expression of RefSeq genes using ExSeq and using RNAseq, as a function of
the number of acquired FoVs (estimated by sampling from thefutffusequencing data to
simulate the number of expected reads for 100 FoVs; (28)). The value for the 100 FoVs is
plotted using the MATLAB boxplot function; central mark, median; bottom and top edges of
the box, 25th and 75th percentiles, respectively. (vii) Fraction of RefSeq genes detected
using ExSeq vs. RNAseq, as a function of the number of acquired FoVs (estimated by
sampling from the fullex situsequencing data to simulate the number of expected reads for
100 FoVs). Scale bars: A-D&F, 13um E, 130um. Note that deconvolution was used in panels
D and F (28).
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Fig. 3. Untargeted ExSeq enables mapping of RNAs and their variantsin dendrites of neurons.
(A) 3D render of Thyl-YFP CA1 neuronal morphology as determined by YFP antibody

staining, containing RNA types as indicated. (i-iv), zoomed-in dendritic regions (boxed
above). Scale bars: top, middle and bottom, 100, 20, and 5 microns, respd&jvely.

Euclidean distance, relative to the center of the cell body, of sequencing reads for neurons in
A. Color code, as in A.
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Fig. 4. Targeted ExSeq of transcripts specifying neuron types of mouse primary visual cortex.
(A) Targeted ExSeq library preparation: (i) RNA anchoring and expansion; (ii) padlock

probe hybridization; (iii) probe ligation; (iv) rolling circle amplificatigi) Amplicon

counts for targeted ExSeq vs. HCRv3.0-amplified ExFISH for the same transcript in the
same Hela cell (60 cells); slope, 0.62 (Pearson’s r = 0.@0)1LYargeted ExSeq of 42 cell

type marker genes in Thyl-YFP mouse visual cortex. Top, maximum intensity projection
image showing targeted ExSeq reads (red) and YFP (green). Bottom, localization of marker
genes Pvalb (red), Sez6 (cyan), Slc32al (magenta), and Gad2 (yellow), with YFP (green).
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(D) Targeted ExSeq gene expression profiles of 1154 cells clustered into 15 cell types.
Cluster legend and colors apply to panels D, F, a3 eatmap showing Pearson’s
correlation between clusters identified in targeted ExSeq vs. a prior sScRNA-seq study (60).
(F) Spatial organization of cell types identified in (D). Cell-segmented reads are shown,
colored by cluster assignment, and overlaid on YFP (wli)Layer-by-layer cell-type
composition across segmented cortical layers. Scale bars: (C) bottom, 20 microns (pre-
expansion).
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Fig. 5. Targeted ExSeq characterization of nanoscale transcriptomic compartmentalization in
mouse hippocampal neuron dendrites and spines.

(A) Confocal image showing targeted ExSeq of a 34-panel gene set across slice of mouse
hippocampus. Green, YFP; magenta, reads identified via ExSeq; white, reads localized
within YFP-expressing cells. DG, dentate gyrus; CA1, CA1 region of hippocaf@)&D
reconstruction of dendrites, spines, and axons showing reads localized in spines (red dots)
and processes (green dots) for regions indicated by orange boxd€inThe abundance of
transcripts in cellular compartments of CA1 pyramidal neurons: (i) abundance of transcripts
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in all cellular compartments vs. cell bodies; (ii) abundance of transcripts in apical and basal
dendrites and spines; (iii) heat map showing the enrichment of transcripts in apical and basal
dendritic and spine compartments of CA1 pyramidal neurons, vs. cell bodies; (*) indicates
statistically significant enrichment (bootstrapped p-value <0.@D))The abundance of
transcripts in cellular compartments of dentate gyrus (DG) granule cells; (i) abundance of
transcripts in the cell bodies and dendrites of DG granule cells; (ii) heat map showing
enrichment of transcripts in compartments of DG granule cells; (*) indicates statistically
significant enrichment (bootstrapped p-value <0.0(H)) Plots showing the density of
transcripts in the dendrites (i) and spines (ii) of CA1 pyramidal neurons along the apical-
basal axis (Euclidean distance) of CA1, including regions S.R. (stratum radiatum), S.O.
(stratum oriens), and S.L.M. (stratum lacunosum moleculare). Scale bars: A, 300 microns,
Bi and Bii, 2 and 3 microns respectively, red and green arrows (pre-expansion).
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Fig. 6. Targeted ExSeq resolves maps of cell types and statesin cancer.
(A) ExSeq resolves 771,904 reads in 2,395 cells (with >100 reads/cell) of 297 genes in a

metastatic breast cancer biop@) Uniform manifold approximation and projection

(UMAP) representation of PCA-based expression clustering reveals immune and tumor cell
clusters, indicated by different colors: green (T-cells, B-cells), red (tumor cells), blue
(macrophages), magenta (fibroblasts) and gray (un-annotated clusters, (28)) (i), which
express known cell markers for immune cells (ii, top row) and tumor cells (ii, bottom row);
expression projected onto UMAP asJ¢@g-counts)(C) Transcriptionally-defined cell

clusters mapped onto tissue context (colors as in B))Spatial colocalization analysis of
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cell clusters. Adjacency matrix text values, number of cell pairs of indicated type that are in
close proximity (nucleus centroid distance of <20 ¥4m; robustness analysis in Fig. S26).
Adjacency matrix heatmap, p-value (500,000 bootstrapping iterations) relative to obtaining
the same or higher number of cells in close proximity by chance. Adjacency matrix entries
with text values are statistically significant (Benjamini Hochberg false-discovery rate of
1.5%). Yellow borders along the diagonal illustrate major cell type categories (B-cell,
fibroblast, macrophage, T-cell, Tumor); two black-bordered entries correspond to pairs
shown in (E)(E) ExSeq analysis of cell state as a function of physical proximity, measured
by calculating differential expression when cells of different kinds are spatially adjacent
(<20vam) vs. far apart. The gene with the largest fold change in a specific cell type when
adjacent versus non-adjacent to another specific cell type is shown in green in the histogram
(p-value = 1e-4 using 100,000 bootstrapping iterations, all other genes shown in the
histogram have p-value < 0.05), as well as in the image showing the gene’s read locations in
the original sample. (i), fold-change of gene expression in IGHG1-positive B cells when in
proximity to EGFR-positive tumor cells (B cells and tumor cells shown with blue and yellow
boundaries, respectively). Solid arrows, cells in close proximity; hollow arrows, cells not in
close proximity. (i), fold-change of gene expression in ALDH1A3-positive tumor cells

when in proximity to HSPG2-positive fibroblasts (tumor and fibroblast cells shown with

blue and yellow boundaries, respectively). Scale bars: (A) and (C) 100 microns, and 10
microns for the insets, (E) 10 microns (pre-expansion).
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