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ABSTRACT

Spatially resolved gene expression profiles are key
to understand tissue organization and function. How-
ever, spatial transcriptomics (ST) profiling tech-
niques lack single-cell resolution and require a com-
bination with single-cell RNA sequencing (scRNA-
seq) information to deconvolute the spatially in-
dexed datasets. Leveraging the strengths of both
data types, we developed SPOTlight, a computa-
tional tool that enables the integration of ST with
scRNA-seq data to infer the location of cell types and
states within a complex tissue. SPOTlight is centered
around a seeded non-negative matrix factorization
(NMF) regression, initialized using cell-type marker
genes and non-negative least squares (NNLS) to sub-
sequently deconvolute ST capture locations (spots).
Simulating varying reference quantities and quali-
ties, we confirmed high prediction accuracy also
with shallowly sequenced or small-sized scRNA-seq
reference datasets. SPOTlight deconvolution of the
mouse brain correctly mapped subtle neuronal cell
states of the cortical layers and the defined archi-
tecture of the hippocampus. In human pancreatic
cancer, we successfully segmented patient sections
and further fine-mapped normal and neoplastic cell
states. Trained on an external single-cell pancreatic
tumor references, we further charted the localization
of clinical-relevant and tumor-specific immune cell
states, an illustrative example of its flexible applica-
tion spectrum and future potential in digital pathol-
ogy.

GRAPHICAL ABSTRACT

INTRODUCTION

Spatially resolved transcriptomics is key in advancing our
understanding of tissue architectures. Unveiling the spa-
tial disposition of cells enables researchers to determine
cell-cell interactions and tissue reconstruction for a better
knowledge of homeostasis and disease mechanisms. Array-
based spatial transcriptomics (ST) is an unbiased and high-
throughput approach to map genes within their spatial con-
text. ST has been applied to chart the organizational land-
scape of tissues and diseases, such as prostate and pancre-
atic cancer (1,2), melanoma (3), amyotrophic lateral scle-
rosis (4) or the developmental human heart (5). Further-
more, recent studies successfully implemented ST to define
the spatial topography of the human dorsolateral prefrontal
cortex and its association with schizophrenia and autism
(6).

Several technologies enable the spatial indexing of tran-
scripts and the subsequent mapping of gene expression pro-
files, their main trade-off being a loss of single-cell resolu-
tion. Here, transcripts detected at capture locations (spots)
are generally sampled from a mixture of cells which may
be homo or heterogeneous. While widely used microarray-
based ST techniques utilize 50–100 um spot diameters (10–
20 cells) (7,8), bead array-based methods further minimized
spot sizes to capture cell locations more precisely (2–10
um) (9,10). On the other hand, single-cell RNA sequencing
(scRNA-seq) enables the profiling of thousands of single-
cell transcriptomes without preserving the spatial context
and potentially introducing recovery biases of cell compo-
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sition. Successful integration of both data modalities could
enable an in-depth study of tissue and organ architecture,
elucidate cellular cross-talk, spatially track dynamic cell tra-
jectories, and identify disease-specific interaction networks
(e.g. between tumors and their microenvironment). Inter-
secting cell-type-specific genes from scRNA-seq with ST
capture sites previously identified local enrichments, suffi-
cient to segment tumor sections into normal and cancerous
areas (2). However, while such analysis allowed predicting
the presence or absence of cell types, it lacked the resolution
to quantitatively infer cellular compositions at each capture
site.

Here, we present SPOTlight, a deconvolution algo-
rithm that builds upon a non-negative matrix factorization
(NMF) regression algorithm which was previously applied
to ST data (10). Importantly, SPOTlight adds prior infor-
mation to the model, initializing both the basis and coeffi-
cient matrices with cell type marker genes, thereby greatly
improving sensitivity and robustness. SPOTlight also relies
on non-negative least squares (NNLS) to populate the coef-
ficient matrix of capture locations as well as to determine a
spot’s composition. The latter is carried out by defining cell
type-specific topic profiles, the distribution of genes defin-
ing a cell type or state, and by identifying the weights needed
to reconstruct a spot profile. A unit-variance normalization
step enables both paired and unmatched ST and scRNA-
seq raw count matrices as input. We confirmed the sensi-
tivity and accuracy of SPOTlight predictions on synthetic
mixtures, testing scRNA-seq references of varying quali-
ties (protocols, sequencing depth, cell numbers). SPOTlight
showed excellent classification metrics even with low cell
and molecule inputs. The possibility to integrate unpaired
ST and scRNA-seq data enabled an automated, data-driven
interpretation using large reference single-cell atlases, exem-
plified here using an adult mouse brain atlas (11). The auto-
mated interpretation of ST from patient sections has the po-
tential to digitize pathology and improve patient stratifica-
tion. As a proof-of-concept, we applied SPOTlight on pan-
creatic adenocarcinoma (PDAC) data and determined the
spatial organization of clinical-relevant immune cell states
in the tumor microenvironment.

MATERIALS AND METHODS

Implementation

Non-negative matrix factorization regression. The follow-
ing annotations will be used when describing the model:

• N – Set of all cells from scRNAseq.
• M – Set of all capture locations from spatial data.
• G – Set of selected genes from scRNAseq, cell type

marker genes + 3000 highly variable genes.
• G’ – Set of all genes from spatial data.
• Gi – G∩G’, intersection between G and G’.
• C – Number of cell types in the scRNAseq dataset
• K – Number of topics to use to reduce the dimensionali-

ties, equal to C.
• V – matrix of dimensions Gi × N containing data from

scRNAseq
• W – matrix of dimension Gi × K containing the gene dis-

tribution for each topic, basis between V and H.

• H – matrix of dimensions K × N containing the topic
distribution for each cell.

• V’ – matrix of dimensions Gi × M containing spatial
data.

• H’ – matrix of dimensions K × M containing the topic
distributions for each capture location.

• Q – matrix of dimension K × C containing the topic dis-
tributions for each cell type.

• P – matrix of dimension C × M containing the cell type
weights for each capture location.

At the core of our tool, we use non-negative matrix fac-
torization (NMF) along with non-negative least squares
(NNLS). NMF is used to factorize a matrix into two or
more lower dimensionality matrices without negative ele-
ments. We first have an initial matrix V, which is factored
into W and H. Unit variance normalization by gene is per-
formed in V and V’ in order to standardize discretized gene
expression levels, ‘counts-umi’ (10,12). Factorization is then
carried out using the non-smooth NMF method (13), im-
plemented in the R package NMF (14). This method is in-
tended to return sparser results during the factorization in
W and H, thus promoting cell-type-specific topic profile and
reducing overfitting during training. Before running fac-
torization, we initialize each topic, column, of W with the
unique marker genes for each cell type with weights 1 – P
value. The marker genes are obtained from Seurat’s func-
tion FindAllMarkers. In turn, each topic of H in SPOTlight
is initialized with the corresponding belongance of each cell
for each topic, 1 or 0. This way, we seed the model with prior
information, thus guiding it towards a biologically relevant
result. This initialization also aims at reducing variability
and improving the consistency between runs.

V ∼ W ∗ H

Second, NNLS regression is used to map each capture lo-
cation’s transcriptome in V’ to H’ using W as the basis. We
obtain a topic profile distribution over each capture loca-
tion which we can use to determine its composition.

V’ ∼ W ∗ H’

Third, we obtain Q, cell-type specific topic profiles, from
H. We select all cells from the same cell type and compute
the median of each topic for a consensus cell-type-specific
topic signature. We then use NNLS to find the weights of
each cell type that best fit H’ minimizing the residuals.

H’ ∼ Q ∗ P

We use a minimum weight contribution to determine
which cell types belong within a capture location. 0.09% is
set by default, related to the expected number of cells at the
capture locations (1–10 cells). In a scenario with 10 cells, we
would detect all and also account for partially contributing
cells.

By using NNLS, we are able to return a measure of error
along with the predicted cell proportions. To do so, we cal-
culate the total sum of squares (TSS) and the residual sum
of squares (RSS) for each row. By dividing the RSS by the
TSS we obtain the percentage of unexplained residuals for
each spot. This measure can be used to assess the quality of
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a predicted composition.

TSS =
C∑

i = 1

(Yi − 0)2

RSS =
C∑

i = 1

(
Yi − Ŷi

)2

Unexplained residuals (%) = RSS/TSS

Parameters

Three important parameters can be adjusted and tuned in
order to optimize the performance of this tool: (i) number
of cells per cell-type, (ii) the supervised vs unsupervised ap-
proach along with marker gene sets and (iii) the minimum
weight contribution threshold to include a cell as present.
We benchmarked these parameters to assess their impact
on the performance as follows:

• The number of cells per cell-type used to train the model.
We identify the optimal number of cells maximizing per-
formance along with computing time.

• The supervised versus unsupervised approach. For the
former, we also tested marker genes together with differ-
ent numbers of HVG. For the unsupervised approach, we
used the 3000 HVG as in the original NMFreg (10).

• The minimum weight contribution. This refers to the
NNLS weights from C that best fit H’. This weight con-
tribution must be set. Due to the nature of NNLS, there
may be cell types contributing a low amount just to resid-
ually minimize the squares, and therefore, adding noise to
the prediction.

Synthetic mixtures

To be able to test the tool’s performance, to benchmark pa-
rameters and to apply it on different data types, we gener-
ated synthetic mixtures of cells with defined composition.
To generate these synthetic test mixtures, we selected be-
tween two and eight cells from the scRNA-seq datasets and
combined their transcriptomic profiles. If the resulting mix-
ture had >25 000 UMI counts we randomly downsampled
it to 20 000 UMI counts in order to better simulate biolog-
ical capture locations. Test mixtures can be generated using
the SPOTlight function test spot fun.

Performance evaluation

To address how well the model performed, we assessed sev-
eral parameters using synthetic and real datasets. From the
predicted composition, we first evaluated if we were able
to accurately predict when a cell type was correctly pre-
dicted within the mixture. Moreover, we also assessed if the
predicted proportions were an accurate representation of
the true composition. The former is a classification prob-
lem for which we used the following parameters; sensitiv-
ity, if a cell type correctly predicted to be present within
the capture location; specificity, predicting its absence when

its not present; precision, how good we are at identifying
cell-types present; accuracy, percentage of correctly classi-
fied cell types; and F1 score, integrating sensitivity and pre-
cision. For the latter we used the Jensen-Shannon Diver-
gence (JSD) distance metric used to measure the similarity
between two probability distributions, P and Q, defining a
probability space X. The JSD is a symmetric and smoothed
version of the Kullback-Leibler divergence.

Dkl (P||Q) =
∑
x∈X

P (x) log
(

P (x)
Q (x)

)

M = 1
2

(P + Q)

JSD(P| |Q) = 1
2

Dkl (P||M) + 1
2

Dkl (Q||M)

Benchmarking

For technology benchmarking, we assessed if the tech-
nology used to obtain scRNAseq data affected the per-
formance of the model. We used data from peripheral
blood mononuclear cells (PBMC) downsampled to the
same sequencing depth (20 000 reads/cell). Specifications
on how the data was generated and processed can be
found elsewhere (15). For each technology, we trained
the model and tested synthetic mixtures of 2–8 cells. We
assessed: Cel-Seq2, ChromiumV2, Chromium V2 single-
nucleus, C1HT-medium, C1HT-Small, ddSeq, Drop-Seq,
gmcSCRB-Seq, ICELL8, inDrop, MARS-Seq, QUARTZ-
Seq2 and SMART-Seq2. Data is publicly available through
the Gene Expression Omnibus (GSE133549). To bench-
mark the effect of sequencing depth, we analyzed a
Chromium V3 PBMC dataset (15) (GSE133549) downsam-
pled to different depths using zUMI (16) (5000, 10 000, 15
000, 20 000, 50 000 reads/cell). Shared cell types between
the different datasets were used excluding biases introduced
by varying cell type numbers.

We benchmarked SPOTlight against other bulk and
single-cell deconvolution tools: MuSiC (weighted and
all-genes) (17), CIBERSORTx (18), DeconRNAseq (19),
SCDC (20), RCTD (21) and the unsupervised NMFreg
(10). Furthermore, we applied CoGAPS (22) to carry out
the non-negative matrix factorization step in the SPOTlight
workflow to assess if pre-existing single-cell specific tools
showed an improvement on nNMF. To replace the nNMF
approach by CoGAPS, we implemented the latest version
of CoGAPS, CoGAPS 3 by Sherman et al., using the Bio-
conductor R package version ‘3.6.0’. All tools were run
with default settings as specified in their documentation and
vignettes using the QUARTZ-Seq2 scRNA-seq dataset as
the training set and the 1000 previously generated synthetic
mixtures. Performances were assessed by the ability to cor-
rectly predict the presence/absence and the cell type propor-
tions.

Mouse brain deconvolution

To assess the tool’s performance on a biological dataset, we
used mouse brain as model tissue. Despite its complexity
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with multiple cell types and states, it presents well-defined
structures with location-specific types. We used a mouse
brain reference scRNA-seq dataset comprised of cells sam-
pled from multiple cortical areas and the hippocampus, pro-
vided by the Allen Institute, with ∼76 000 cells and 47
annotated clusters sequenced using SMART-Seq2 (11,23)
(GSE71585). The spatial transcriptomics data of an adult
mouse brain (anterior and posterior sagittal slices) was ob-
tained from 10X Genomics (24). Two replicates for each
slice were available and used to confirm the predictions. To
validate the predicted cell type spatial distribution within
the brain structure, we used known cell-type gene markers
along with reference in situ hybridization (ISH) image data
at cellular-level resolution from the Allen Mouse Brain At-
las (25). The marker genes used for the hippocampal cell
types represented in this study were: Cornu Ammonis 1 stra-
tum pyramidale (CA1sp), Fibcd1; Cornu Ammonis 2 stra-
tum pyramidale (CA2sp), Ccdc3; Cornu Ammonis 3 stra-
tum pyramidale (CA3sp), Pvrl3; and Dentate gyrus (DG),
Prox1, as reported in Cembrowski et al. (2016).

In situ hybridization images were obtained from the Allen
Brain Atlas. Links to the images are the following:

• Fibcd1:mouse.brain-map.org/experiment/siv?id=69672
462&imageId=69647545&initImage=ish&coordSystem
=pixel&x=4464.5&y=3184.5&z=1

• Ccdc3:mouse.brain-map.org/experiment/siv?id=68844
056&imageId=68705406&initImage=ish&coordSystem
=pixel&x=4352.5&y=2880.5&z=1

• Pvrl3:mouse.brain-map.org/experiment/siv?id=6981673
3&imageId=69747543&initImage=ish&coordSystem=p
ixel&x=5744.5&y=3576.5&z=1

• Prox1:mouse.brain-map.org/experiment/siv?id=6928976
3&imageId=69177644&initImage=ish&coordSystem=p
ixel&x=5416.5&y=3720.5&z=1

Pancreatic ductal adenocarcinoma

We used pancreatic ductal adenocarcinoma (PDAC) ST
data publicly available through the Gene Expression
Omnibus (GSE111672) (2). Spatial data for this study
was generated with the original spatial transcriptomics
technology (9), while scRNAseq data was generated using
inDrops. Further specifications on how the data was gen-
erated and processed can be found elsewhere (2). In total,
10 spatial slides from six tumor samples are available, two
of which (PDAC-A and PDAC-B) have three biological
replicates and paired scRNAseq data. For the purpose of
this study, we used samples PDAC-A and PDAC-B and se-
lected sections that harbored both normal and tumor areas
(identified through the mapping of normal cell types and
tumor clones). For PDAC-A, we used GSM3036911 (ST1
data) and GSM3036909, GSM3036910, GSM3405527,
GSM3405528, GSM3405529, GSM3405530 (inDrops
data). For PDAC-B, we used GSM4100723 (ST2 data) and
GSM3405531, GSM3405532, GSM3405533. Filtering and
data processing was carried out as specified in the original
publication, keeping cells with ≥1000 UMIs, ≤20% mi-
tochondrial transcripts, and ≤30% ribosomal transcripts
(2). In PDAC-B, one cluster of ductal cells with low UMIs
and high mitochondrial content was removed. A cell type

annotation of the scRNA-seq datasets was provided by the
authors of the original publication (2).

To generate a comprehensive immune cell type refer-
ence atlas for PDAC, we re-analyzed scRNA-seq data from
Peng et al. (2019); Genome Sequence Archive: ID PR-
JCA001063). From this dataset only the tumoral pancreas
samples were included. Cells with >20% of mitochondrial
content and <100 UMIs were removed. We normalized,
scaled, extracted the highly variable genes and performed
PCA analysis on the remaining cells prior to clustering. Re-
sulting clusters were annotated according to gene markers
provided in the original manuscript. All the tumor and non-
immune cells were identified and removed by marker gene
analysis. For the detailed annotation of the immune cells, we
used cell labels as defined in our Tumor Immune Cell Atlas
(26). Briefly, we first used canonical markers to group cells
into the major cell types (i.e. CD79A, CD68 and CD3E for
B-cells, myeloid cells, and T-cells, respectively). To further
stratify the cells into cell states, we re-clustered and anno-
tated each of them comparing the cluster markers to well-
characterized single-cell gene sets of the tumor microenvi-
ronment (27–29) by computing the Jaccard similarity index
using matchSCore2 (15). We were able to identify all of the
expected cell populations, including rare immune cell states.

When stratifying the tissue into tumoral and non-
tumoral sections, tumoral spots contained >40% cancer-
cell proportion. Cell type proportions within the spots were
compared between regions and significance assessed using
a non-parametric test (Mann–Whitney). To assess cell type
enrichment between regions, we computed the proportion
of spots containing each cell type. The significance between
the proportions was assessed with a permutations test where
the cell type specific statistic distribution was created ran-
domly 10 000 times for each cell type. Moreover, we also as-
sessed a third region, intermediate, between the tumoral and
non-tumoral regions. Here, regions were defined as follows:
tumoral, >40% cancer-cell proportion; intermediate, <40%
cancer-cell and ductal-cell proportion; and non-tumoral,
>40% ductal-cell type proportion. Again, cell type propor-
tions within the spots were compared between regions and
significance assessed with a Mann–Whitney test. Bonfer-
roni adjusted P-values are reported for multiple compar-
isons. To calculate interaction networks, the edges between
the cell-types represent the proportion of spots in which we
detect co-localization.

Code versions and availability

This tool is developed to run with R versions ≥3.5;
docker images with the appropriate environment are avail-
able at Docker hub: marcelosua/spotlight env rstudio and
marcelosua/spotlight env r.

RESULTS AND DISCUSSION

At the core of SPOTlight, we identify cell type-specific topic
profiles used to deconvolute ST spots (Figure 1). We set
out to use NMF to obtain topic profiles due to its previ-
ous success in identifying biologically relevant gene expres-
sion programs (12), as well as its previous implementation
in ST analysis (10). Its non-negative constraint allows it to
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Figure 1. SPOTlight scheme. Step-by-step illustration of SPOTlight’s algorithm. At the beginning of this process we have a count matrix, V, for scRNAseq
data and a set of marker genes for the identified cell types. First, we use prior information to initialize the basis and coefficient matrices, W and H respectively.
We assume the number of topics, k, to be equal to the number of cell types in the dataset. Each topic is then associated with a cell type; columns in W are
initialized with marker genes for the associated cell type with that topic, while rows in H are initialized with the membership of each cell to its associated
topic. Second, we proceed with the matrix factorization from which we obtain gene distributions for each topic in W, and topic profiles for each cell in H.
Third, we use W to map the ST data, V’, by means of non-negative least squares (NNLS) to obtain H’. Columns in H’ represent the topic profile for each
spot. Fourth, from the H matrix obtained from the scRNAseq data we consolidate all the cells from the same cell type to obtain cell type-specific topic
profiles. Lastly, we use NNLS to find which combination of cell type-specific topics resembles each spot’s topic profile.
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model count data, which provides more interpretable results
than standard matrix factorization. We seed the model with
prior information, guiding it towards biologically relevant
results and greatly improving the consistency between runs.
Gene expression counts are used as input after a unit vari-
ance normalization (by gene) is performed to standardize
discretized gene expression levels (10,12). Importantly, the
NMF is initialized by the two main matrices: the basis ma-
trix (W) with unique cell type marker genes and weights,
and the coefficient matrix (H) in which each row is initial-
ized, specifying the corresponding relationship of a cell to
a topic (i.e. association with a cell type, Figure 1). Factor-
ization is then carried out using non-smooth NMF (13,14).
This step returns sparser results during the factorization,
promoting cell type-specific topic profiles, while reducing
overfitting during training. After factorization, we obtain
cell type-specific topic profiles from the coefficient matrix
and generate consensus topic signatures across all cells. Sub-
sequently, NNLS regression is used to map each spot’s tran-
scriptome to a topic profile distribution using the unit-
variance normalized ST count matrix and the basis matrix
previously obtained. Lastly, NNLS is again applied to de-
termine the weights for each cell type that best fit each spot’s
topic profile by minimizing the residuals. We use a minimum
weight contribution threshold to determine which cell types
are contributing to the profile of a given spot, also consid-
ering the possibility of partial contributions. NNLS also re-
turns a measure of error along with the predicted cell pro-
portions, allowing the user to estimate the reliability of pre-
dicted spot compositions.

Benchmarking SPOTlight performance

To evaluate the SPOTlight’s performance, we benchmarked
parameters and tested different scenarios with synthet-
ically generated mixtures of cells of known cell type
composition. To generate synthetic mixtures, we selected
cells from peripheral blood mononuclear cell (PBMC)
scRNA-seq datasets and combined their transcriptomic
profiles to different proportions (Materials and Methods).
PBMC scRNA-seq data have multiple well-characterized
and discrete cell populations, providing an ideal input for
benchmarking purposes. Synthetic mixtures then served as
ground-truth to evaluate SPOTlight’s performance to pre-
dict cell types and spot composition using the following pa-
rameters: sensitivity (correctly predicted cell type presence);
specificity (correctly predicting absence); precision (perfor-
mance when calling a cell type present); accuracy (percent-
age of correctly classified cell types); and F1 score (integrat-
ing recall/sensitivity and precision). To assess the similar-
ity between the real and predicted proportions, we used the
Jensen-Shannon Divergence (JSD), a distance metric that
determines the similarity between two probability distribu-
tions. As JSD is a distance metric, values closer to 0 signify
a higher similarity between both distributions.

When testing the performance on synthetic mixtures, we
obtained a sensitivity of 0.911, an accuracy of 0.78, and an
F1 score and specificity of 0.77 and 0.63, respectively. Me-
dian JSD values of 0.160 [CI:0.096–0.224] indicated a high
accuracy of estimated cell type proportions. The bench-
marking results are in line with results from subsequent

applications of SPOTlight in different biological scenar-
ios, such as brain tissue or PDAC patient samples; SPOT-
light sensitively detected cell types and subtle cell states at
their expected locations. A major challenge of NMF is its
stochastic nature, requiring repeated iterations from differ-
ent starting points in order to obtain valid results. To over-
come this inherent variability, we initialized the basis and
coefficient matrices by seeding them with prior information.
Consequently, multiple iterations with seeded NMF regres-
sion obtained very similar results for synthetic cell type mix-
tures (JSD scores, Figure 2A–D). In line with these results,
topic profiles from different cell types displayed consistent
profiles in all iterations (Supplementary Figure S1) and sin-
gle cells used to train the model presented comparable topic
profiles (Supplementary Figure S2).

We reason that different input qualities (transcriptome
complexity), quantities (cell numbers) and proportion (ex-
tended discussion) would critically impact the performance
of SPOTlight. Therefore we opted to test different input sce-
narios, including scRNA-seq protocols, sequencing depth,
cell numbers and other tunable parameters to simulate vari-
able experimental designs and to identify ideal inputs and
limitations of the tools.

We previously benchmarked scRNA-seq protocols for
their performance in producing complex sequencing li-
braries and their suitability to generate reference cell atlases
(15). First, we assessed if the scRNA-seq technologies used
to generate data affected the performance of SPOTlight.
Different protocols produced vastly variable data quali-
ties and we expected this to impact downstream applica-
tions, such as deconvolution algorithms. We used down-
sampled scRNA-seq datasets (20,000 reads per cell) and
trained the SPOTlight model on synthetic mixtures for each
protocol (Figure 2A). The best performance was achieved
with Quartz-Seq2, Smart-Seq2, and Chromium protocols
that also showed excellent benchmarking performance. It is
worth highlighting the performance of single-nucleus (sn)
sequencing in this context (Chromium sn), which resulted
in deconvolution metrics that were comparable to scRNA-
seq despite the sampling from a reduced transcriptome
pool. In general, scRNA-seq with defined clusters and cell
type-specific markers are ideal for optimal performance of
SPOTlight. However, other commonly used sc/snRNA-seq
protocols also return accurate predictions.

Second, we benchmarked the impact of reduced sequenc-
ing depth to identify the performance peak for a cost-
effective reference atlas generation. An increased sequenc-
ing depth enables the detection of more molecules and
genes, including lowly expressed transcripts. When testing
SPOTlight on step-wise downsampled datasets (5000–50
000 reads per cell), we observed a critical drop in perfor-
mance at lower sequencing depth (Figure 2B). While accu-
racy and specificity were comparable to deeply sequenced
datasets, the sensitivity and accuracy of estimated cell type
proportions (JSD index) was reduced at lower depths. Nev-
ertheless, despite the lower sensitivity, shallowly-sequenced
data such as large atlas projects (30,31) are also suitable in-
puts for accurate localization of cell types in space. We de-
tected a peak in performance ∼20 000 reads per cell; this se-
quencing depth was also identified to be most cost-efficient
for high-throughput scRNA-seq protocols (32).
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Figure 2. Benchmarking SPOTlight under different technical conditions and parameter optimization. In the classification metrics, the mean of 10 iterations
is shown; when assessing JSD we show the results for each iteration. (A) The performance of SPOTlight was assessed with different scRNA-seq protocols to
identify optimal input protocols (20 cells per cell type). (B) Benchmarking SPOTlight on the same dataset downsampled to different sequencing depths (20
cells per cell type). Performance improved at higher depths, but no sharp decrease at shallow sequencing depths was observed. (C) Optimizing the number
of cells per cell type used to train the SPOTlight model. Peak performance was obtained using 100 cells per cell type, less cells decreased performance
while more cells increased computational time without improving performance. (D) Optimizing the gene sets used to train the SPOTlight model. Optimal
performance was obtained when using the union gene set between marker genes and 3000 highly variable genes (HVG). The unsupervised approach using
only the 3000 HVG performed the worst. (E) Benchmarking classification performance of bulk and single-cell deconvolution tools on 1000 synthetic
mixtures. SPOTlight proofed to be the most accurate and with the highest F1 score. (F) Proportion prediction performance of the different deconvolution
tools on 1000 synthetic mixtures.

Third, scRNA-seq protocols scale differently with
droplet-based methods processing up to millions of cells,
while plate-based protocols (e.g. Smart-seq2) generally
generate datasets for a few thousand cells. We assessed the
impact of input cell numbers on SPOTlight’s performance,
also considering computational time as an important
factor using synthetic mixtures generated from a large and
complex Smart-seq2 dataset (11,23). We found that the

cell number per cell type to train the model was a key pa-
rameter (Figure 2C). The optimal value to strike a balance
between deconvolution performance and computational
time was around 100 cells. Selecting fewer cells would
decrease computational time, but the performance has not
plateaued. Selecting more cells would drastically increase
computational time with marginal improvements on per-
formance. As 100 cells per cell type are in the range of both
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droplet- and plate-based methods, SPOTlight is suitable
for the most commonly used formats of scRNA-seq data.

To train the model, different sources (gene selection) can
be used as input. The selection of highly variable genes
(HVG) has been shown to be critical for the clustering of
scRNA-seq data and we reason that it could also be crucial
for spot deconvolution. We further quantified the improve-
ments due to the addition of cell type gene markers, a main
difference to previous tools using NMF on ST data (10).
We found that SPOTlight’s performance was optimal when
combining both HVG and specific cell types markers to seed
the model (Figure 2D). Marker genes critically improved all
metrics compared to an unsupervised approach using the
3000 HVG alone as proposed by the original NMF regres-
sion documentation (10). The number of HVG used had a
marginal impact on the performance; however, optimal per-
formance was observed using gene markers combined with
the 3000 HVG.

Lastly, we benchmarked SPOTlight against published
bulk and single-cell deconvolution methods, including Mu-
SiC (weighted and all-genes) (17), CIBERSORTx (18), De-
conRNAseq (19), SCDC (20), RCTD (21), and the unsu-
pervised NMFreg (10). Predicting the presence/absence of
cell types within a synthetic mixture, SPOTlight showed
the highest accuracy, F1 score and sensitivity (Figure 2E).
Assessing the performance of the predicted proportions,
SPOTlight (median JSD 0.1276) obtained comparable high
results as the best performing methods RCTD (0.0361) and
MuSiC weighted (0.0674, (Figure 2F). We further bench-
marked SPOTlight against CoGAPS3, another factoriza-
tion methods specifically designed for single-cell data (22).
CoGAPS3 uses Bayesian non-negative matrix factoriza-
tion for single-cell analysis with asynchronous updates and
sparse data structures as well as a Markov Chain Monte
Carlo allowing it to escape local maxima. Using CoGAPS3,
we observed a slightly improved sensitivity, however, it un-
derperformed seeded nNMF in the other metrics assessed
(Figure 2E, F).

Deconvoluting ST derived mouse brain tissue

To validate the SPOTlight performance on complex tissue
architectures, we used mouse brain sections, a thoroughly
cataloged tissue, presenting well-defined structures, and a
plethora of cell types and states with specific molecular
fingerprints. As a reference, we used scRNA-seq datasets
(Smart-seq2) derived from multiple cortical areas as well as
the hippocampus (11) (∼76 000 cells and 47 annotated cell
types/states; Supplementary Table S1, Supplementary Fig-
ure S3). To anatomically match the sampling site, we ana-
lyzed ST data of the adult mouse brain obtained from ante-
rior and posterior sagittal slices (24). Two biological repli-
cates for each slice were analyzed to test the robustness of
SPOTlight predictions. To validate the predicted spatial cell
type distribution within brain areas, we used canonical cell
type gene markers along with in situ hybridization (ISH) im-
ages with cell-level resolution (25).

SPOTlight spatial deconvolution of the mouse brain ST
data accurately reconstructed the layered and segmented
structure of brain anatomy (Figure 3A). The predicted lo-
calization of the 47 annotated clusters confirmed their en-

richment in distinct layers (e.g. cortical areas) or specific re-
gions (e.g. hippocampus) of the mouse brain (Supplemen-
tary Figure S4 and Extended Discussion). The joint analysis
of brain cell types and states resulted in a high-level segmen-
tation, but also provided more detailed information about
heterogeneity (composition) of specific areas. A closer in-
spection confirmed the regional enrichment of specific cell
types on their known structures, confirming the high accu-
racy and sensitivity of the SPOTlight predictions. The re-
sults on independent anterior and posterior sections also
reflected robust predictions (Supplementary Figure S5).

Illustrative examples include the SPOTlight deconvolu-
tion to delineate the spatial organization of different corti-
cal layers, L2/3 to L6, including layer-specific neuronal sub-
types (Figure 3B). Consistent with the strictly layered struc-
ture of the cortex, subpopulations aligned along stretched
areas descending towards the center (L2–L6, (Figure 3C–J).
L6 contributed multiple neuronal subtypes that were all ac-
curately predicted to the respective layer substructure (Fig-
ure 3H–J). The ability to differentiate between cortical neu-
ronal subtypes underlines the tool’s sensitivity when similar
cell types and states are present in complex tissues.

The hippocampus architecture was first delineated us-
ing canonical markers: Cornu Ammonis 1 stratum pyrami-
dale (CA1sp), Fibcd1; Cornu Ammonis 2 stratum pyrami-
dale (CA2sp), Ccdc3; Cornu Ammonis 3 stratum pyrami-
dale (CA3sp), Pvrl3; and Dentate gyrus (DG), Prox1 (33).
With SPOTlight, we could clearly discern between CA1sp,
CA2sp, CA3sp and the DG, which was subsequently con-
firmed by ISH images (Supplementary Figure S6). Gene ex-
pression measurements of cell type markers from ST alone
provided noisy signals (CA1sp, CA2sp, DG) or complete
absence (CA3sp) related to the sparsity of ST data; high-
lighting the need for more sophisticated spatial annotation
tools.

Charting spatial heterogeneity in human cancer

To further validate a broader application spectrum and
to test its performance in complex human tissues, we ap-
plied SPOTlight on ST data from PDAC patient samples
(2), generated with a different ST protocol version than
the mouse brain data (9) (Extended Discussion). Sample-
matched scRNA-seq data (inDrop) was analyzed to chart
the tumor composition and subsequently used to train the
SPOTlight model (Figure 4A). When integrating scRNA-
seq and ST (PDAC-A) (Supplementary Table S2), we ob-
served a discrete regional enrichment of normal pancreatic
and neoplastic cell types (Figure 4B). In detail, normal cell
types of the pancreas were mainly excluded from the tu-
mor fraction and further split into acinar and ductal areas.
Centroacinar ductal populations appeared in the duct ep-
ithelium, while terminal ductal populations were found in
both duct epithelium as well as co-localizing in the cancer-
ous part of the tissue (Supplementary Figure S7). In line
with previous results (2), we detected the intermixing of two
distinct tumor cell clones and the enrichment of a ductal
population with a hypoxia gene signature in the cancerous
region (Figure 4C).

To shed light on the distribution of immune cells in the tu-
mor sections, we integrated, clustered, and annotated an ex-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkab043/6129341 by guest on 23 M

arch 2021



Nucleic Acids Research, 2021 9

Astro

CA1sp

CA1sp/SUB−sp Kcnip1

CA2sp/IG

CA3sp

Car3

CR

DG

Endo

IT RHP Dcn

L2/3 IT Cdc14a

L2/3 IT Cxcl14

L2/3 IT Ndst4 Endou

L2/3 IT Otof

L2/3 IT Plch1

L4 IT

L4/5 IT

L5 ET

L5 IT

L6 CT

L6 IT

L6b

Lamp5

Lamp5 Lhx6

Low Quality

Ly6g6e

Macrophage

Meis2

NP

Oligo

PIR Six3

POST−PRE−PAR Ptgfr

Pvalb

RHP Cplx3

RSP_ACA IT Scnn1a

RSP/ACA L4/5 IT

Serpinf1

SMC

Sncg

Sncg/Ndnf HPF

Sst

Sst Chodl

SUB−Sp Ndst4

Unknown

Vip

VLMC

A

B

C

D

E F G

H I J

L2/3

L4 IT

L4/5 IT L5 ET L5 IT

L6 CT L6 IT L6b

Astro

CA1sp

CA1sp/SUB-sp Kcnip1

CA2sp/IG

CA3sp

Car3

CR

DG

Endo

IT RHP Dcn

L4 IT

L4/5 IT

L5 ET

L5 IT

L6 CT

L6 IT

L6b

Lamp5

Lamp5 Lhx6

Low Quality

Ly6g6e

Macrophage

Meis2

NP

Oligo

PIR Six3

POST-PRE-PAR Ptgfr

Pvalb

RHP Cplx3

RSP_ACA IT Scnn1a

RSP/ACA L4/5 IT

Serpinf1

SMC

Sncg

Sncg/Ndnf HPF

Sst

Sst Chodl

SUB-Sp Ndst4

Unknown

Vip

VLMC

L2/3

Figure 3. Cell type mapping on sagittal adult mouse brain anterior and posterior slices. (A) Spatial scatter pie plot representing the proportions of the cells
from the reference atlas within capture locations in the adult mouse brain; we can observe the substructures of anatomical regions in the brain as defined
by their specific cell types. (B) Proportions of the cortical cells from the reference atlas within capture locations; SPOTlight is able to capture the cortical
structure being able to discern between highly similar neuronal cell types. (C–J) Proportion within each capture location of each specific cortical neuron
type.
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Figure 4. Mapping cell subpopulations across the tissue, charting tumoral and immune cell distribution on the tissue to identify differential immune
microenvironments in tumoral versus non-tumoral regions. (A) UMAP projections of 1926 cells from PDAC-A, paired data from tissue slices. Cells are
colored and labelled according to the cell type annotations from the original paper. (B) Spatial scatter pie plot representing the proportions of the cell types
in the paired inDrop dataset within the capture locations. (C) Predicted proportion within each capture location for cancer clones S100A4 and TM4SF1 and
centroacinar and hypoxic ductal cells. (D) UMAP projections of pancreatic immune reference cells mapped onto PDAC-A ST1. (E) Spatial scatter pie plot
representing the proportions of the immune cells within the capture locations. (F) Predicted proportion within each capture spot for proliferative T-cells,
pre-exhausted CD8 cells as well as proinflammatory and M2 TAMs. (G) Tissue stratification by tumoral - non-tumoral capture locations, stratification
coincides with pathologist’s annotation. (H) Cell type proportion comparison within each spot between tumoral and non-tumoral sections. (I) Proportion
of capture locations containing each immune cell type within the tumoral and non-tumoral sections.
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ternal single-cell PDAC dataset with a specific focus on the
tumor immune microenvironment (34). Briefly, scRNA-seq
data from 24 PDAC patients and 41 986 cells were merged to
identify a total of 10 623 immune cells (Figure 4D). Cluster-
ing and curated annotation resulted in 22 immune subpop-
ulations with 12 T-cell, 3 macrophage/monocyte, 2 B-cell,
4 dendritic and 1 MAST cell clusters. SPOTlight trained
on PDAC immune cells and applied on the PDAC-A ST
slides resulted in a remarkable local enrichment of tumor-
specific cell states (Figure 4E, F and Supplementary Figure
S8). In line with the regional distribution of normal and
cancer cells, we identified a striking segmentation of im-
mune cell states in the PDAC section (Figure 4G and Sup-
plementary Figure S9). While anti-inflammatory M2 TAMs
and transitional memory CD4 T-cells were enriched in the
normal pancreas tissue, recently activated CD4 and pre-
exhausted CD8 T-cells as well as proliferative CD8 cells
and pro-inflammatory TAMs were significantly increased
in the tumor (P < 0.01, Figure 4H, I and Supplementary
Figure S9). In a second PDAC patient section (PDAC-B)
(Supplementary Table S3), recently activated CD4 and pre-
exhausted CD8 T-cells again co-localized with the tumor ar-
eas, while transitional memory CD4 T-cells and M2 TAMs
were depleted from that area and mainly found together
with endothelial and endocrine cells (Supplementary Fig-
ure S10). Most importantly, the enrichment of recently ac-
tivated CD4 cells could not be detected through their pres-
ence alone. While the PDAC-B case showed an exclusive lo-
calization to the tumor area, recently activated CD4 cells
were highly abundant in all areas, but to higher proportions
in the tumor in PDAC-A. This finding strongly underlines
the need to sensitively deconvolute spot composition to en-
able precise pathology assessments. The regional differences
and local immune cell enrichments further allowed us to
compute cell-cell interaction networks using the cell’s co-
localization in the PDAC sections (Supplementary Figure
S11). Such visualization underlined the concerted interac-
tion of tumor-resident immune cells and could provide fur-
ther insight into the peculiarities of tumor microenviron-
ments.

CONCLUSION

SPOTlight proved to be a robust, accurate, and sensitive
tool to determine cell-type locations and a fine-grained
composition of ST spots. We showed that scRNA-seq qual-
ity can impact its performance, obtaining the best results
with deeply sequenced data from complex sequencing li-
braries. Nevertheless, SPOTlight also returns accurate pre-
dictions with shallowly sequenced references; an important
feature when using large atlas projects as a reference. We
further showed that as few as 100 cells per cell-type were
sufficient to train the model without prolonged computa-
tion time. Benchmarking SPOTlight against other bulk and
single-cell deconvolution tools confirmed its high accuracy
for detecting cell types and for predicting the composition
of ST spots. Applying SPOTlight on vastly different bio-
logical scenarios, different technology versions, and using
matched and external references confirmed its broad and
flexible application spectrum. This makes it a universal tool
to combine both pillars of the single-cell genomics field (35)

and to deduce cellular function and organization in situ. We
are particularly excited about the potentially transforma-
tive impact on pathological assessments. Using an external
immune reference to delineate the localization of immune
cells in tumors could be implemented in automated digi-
tal pathology systems, where query ST patient samples are
screened for immune cell composition and distribution. Im-
portantly, both features have been related to patient progno-
sis and (immuno-) therapy response. Thus, we foresee spa-
tial deconvolution using SPOTlight or similar tools to have
a major impact on future cancer patient management and
on precision oncology.

DATA AVAILABILITY

The SPOTlight code and the analysis notebooks to re-
produce the aforementioned analysis are hosted at https:
//github.com/MarcElosua/SPOTlight and https://github.
com/MarcElosua/SPOTlight deconvolution analysis.

The ST and scRNA-seq data has been previously
published (11,15,34) and is freely available at the Gene
Expression Omnibus (GEO) under GSE133549, and
GSE71585 and GSE111672 and n the Genome Se-
quence Archive under project PRJCA001063. Docker
environments are available for R and Rstudio at
Docker Hub marcelosua/spotlight env r:latest and
marcelosua/spotlight env rstudio:latest respectively.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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et al. (2019) High-definition spatial transcriptomics for in situ tissue
profiling. Nat. Methods, 16, 987–990.

10. Rodriques,S.G., Stickels,R.R., Goeva,A., Martin,C.A., Murray,E.,
Vanderburg,C.R., Welch,J., Chen,L.M., Chen,F. and Macosko,E.Z.
(2019) Slide-seq: a scalable technology for measuring genome-wide
expression at high spatial resolution. Science, 363, 1463–1467.

11. Tasic,B., Menon,V., Nguyen,T.N., Kim,T.K., Jarsky,T., Yao,Z.,
Levi,B., Gray,L.T., Sorensen,S.A., Dolbeare,T. et al. (2016) Adult
mouse cortical cell taxonomy revealed by single cell transcriptomics.
Nat. Neurosci., 19, 335–346.

12. Kotliar,D., Veres,A., Nagy,M.A., Tabrizi,S., Hodis,E., Melton,D.A.
and Sabeti,P.C. (2019) Identifying gene expression programs of
cell-type identity and cellular activity with single-cell RNA-Seq.
eLife, 8, e43803.

13. Pascual-Montano,A., Carazo,J.M., Kochi,K., Lehmann,D. and
Pascual-Marqui,R.D. (2006) Nonsmooth nonnegative matrix
factorization (nsNMF). IEEE Trans. Pattern Anal. Mach. Intell., 28,
403–415.

14. Gaujoux,R. and Seoighe,C. (2010) A flexible R package for
nonnegative matrix factorization. BMC Bioinformatics, 11, 367.

15. Mereu,E., Lafzi,A., Moutinho,C., Ziegenhain,C., McCarthy,D.J.,
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