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Abstract 

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and 

replication, which depend on the structure and dynamics of its constituent proteins. Many protein 

structures have been solved, but far less is known about their relevant conformational changes. 

To address this challenge, over a million citizen scientists banded together through the 

Folding@home distributed computing project to create the first exascale computer and simulate 

an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening 

of the apo Spike complex, far beyond that seen experimentally, which explains and successfully 

predicts the existence of 8cryptic9 epitopes. Different Spike homologues modulate the 

probabilities of open versus closed structures, balancing receptor binding and immune evasion. 

We also observe dramatic conformational changes across the proteome, which reveal over 50 

8cryptic9 pockets that expand targeting options for the design of antivirals. All data and models 

are freely available online, providing a quantitative structural atlas. 
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Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that 

poses an imminent threat to global human health and socioeconomic stability.1 With estimates of 

the basic reproduction number at ~3-4 and a case fatality rate for coronavirus disease 2019 

(COVID-19) ranging from ~0.1-12% (high temporal variation), SARS-CoV-2/COVID-19 has 

spread quickly and currently endangers the global population.2-6 As of September 12th, 2020, 

there have been over 29 million confirmed cases and over 925,000 fatalities, globally. 

Quarantines and social distancing are effective at slowing the rate of transmission; however, they 

cause significant social and economic disruption. Taken together, it is crucial that we find 

immediate therapeutic interventions. 

A structural understanding of the SARS-CoV-2 proteins could accelerate the discovery of 

new therapeutics by enabling the use of rational design.7 Towards this end, the structural biology 

community has made heroic efforts to rapidly build models of SARS-CoV-2 proteins and the 

complexes they form. However, it is well established that a protein9s function is dictated by the 

full range of conformations it can access; many of which remain hidden to experimental 

methods. Mapping these conformations for SARS-CoV-2 proteins will provide a clearer picture 

of how they enable the virus to perform diverse functions, such as infecting cells, evading a 

host9s immune system, and replicating. Such maps may also present new therapeutic 

opportunities, such as 8cryptic9 pockets that are absent in experimental snapshots but provide 

novel targets for drug discovery. 

Molecular dynamics simulations have the ability to capture the full ensemble of 

structures a protein adopts but require significant computational resources. Such simulations 

capture an all-atom representation of the range of motions a protein undergoes. Modern datasets 

often consist of a few microseconds of simulation for a single protein, with a few noteworthy 

examples reaching millisecond timescales.8,9 However, many important processes occur on 

slower timescales. Moreover, simulating every protein that is relevant to SARS-CoV-2 for 

biologically relevant timescales would require compute resources on an unprecedented scale. 

To overcome this challenge, more than a million citizen scientists from around the world 

have donated their computer resources to simulate SARS-CoV-2 proteins. This massive 

collaboration was enabled by the Folding@home distributed computing platform, which has 

crossed the exascale computing barrier and is now the world9s largest supercomputer. Using this 

resource, we constructed quantitative maps of the structural ensembles of over two dozen 

proteins and complexes that pertain to SARS-CoV-2. Together, we have run an unprecedented 

0.1 s of simulation. Our data uncover the mechanisms of conformational changes that are 

essential for SARS-CoV-29s replication cycle and reveal a multitude of new therapeutic 

opportunities. The data are supported by a variety of experimental observations and are being 

made publicly available (https://covid.molssi.org/ and https://osf.io/fs2yv/) in accordance with 

open science principles to accelerate the discovery of new therapeutics.10,11 

 

To the Exascale and beyond! 

Folding@home (http://foldingathome.org) is a community of citizen scientists, researchers, and 

tech organizations dedicated to applying their collective computational and intellectual resources 

to understand the role of proteins9 dynamics in their function and dysfunction, and to aid in the 

design of new proteins and therapeutics. The project was founded in the year 2000 with the 

intent of understanding how proteins fold.12 At the time, simulating the folding of even small 

proteins could easily take thousands of years on a single computer. To overcome this challenge, 
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researchers developed algorithms for dividing these seemingly intractable problems into smaller 

simulations that could be performed completely independently of one another. They then created 

the Folding@home project to enable anyone with a computer and an internet connection to 

volunteer to run these small chunks of simulation, called <work units=. 

Over the years, the applications of Folding@home have been generalized to address 

many aspects of protein dynamics, and the algorithms have developed significantly. The 

Folding@home Consortium now involves eight laboratories around the world studying various 

aspects of disease from cancer to antimicrobial resistance to membrane protein dysfunction 

diseases (https://foldingathome.org/about/the-foldinghome-consortium/). The project has 

provided insight into diverse topics, ranging from signaling mechanisms.13-15 to the connection 

between phenotype and genotype.16-18 Translational applications have included new means to 

combat antimicrobial resistance, Ebola virus, and SFTS virus.19-21 

 

 
Figure 1: Summary of Folding@home9s computational power. A) The growth of Folding@home (F@H) in 

response to COVID-19. The cumulative number of users is shown in blue and COVID-19 cases are shown in 

orange. B) Global distribution of Folding@home users. Each yellow dot represents a unique IP address contributing 

to Folding@home. C) The processing speed of Folding@home and the next 10 fastest supercomputers, in 
exaFLOPS. 

  

        In response to the COVID-19 pandemic, Folding@home quickly pivoted to focus on 

SARS-CoV-2 and the host factors it interacts with. Many people found the opportunity to take 

action at a time when they were otherwise feeling helpless alluring. In less than three months, the 

project grew from ~30,000 active devices to over a million devices around the globe (Fig. 1A 

and 1B). 

Estimating the aggregate compute power of Folding@home is non-trivial due to factors 

like hardware heterogeneity, measures to maintain volunteers9 anonymity, and the fact that 
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volunteers can turn their machines on and off at-will. Furthermore, volunteers9 machines only 

communicate with the Folding@home servers at the beginning and end of a work unit, with the 

intervening time taking anywhere from tens of minutes to a few days depending on the 

volunteer9s hardware and the protein to simulate. Therefore, we chose to estimate the 

performance by counting the number of GPUs and CPUs that participated in Folding@home 

during a three-day window and making a conservative assumption about the computational 

performance of each device (see Methods for details). We note that a larger time window has 

been used on our website for historical reasons. 

 Given the above, we conservatively estimate the peak performance of Folding@home hit 

1.01 exaFLOPS. This performance was achieved at a point when ~280,000 GPUs and 4.8 million 

CPU cores were performing simulations. As explained in the Methods, to be conservative about 

our claims, we assume that each GPU/CPU has worse performance than a card released before 

2015. For reference, the aggregate 1 exaFLOPS performance we report for Folding@home is 5-

fold greater than the peak performance of the world9s fastest traditional supercomputer, called 

Summit (Fig. 1C). It is also more than the top 100 supercomputers combined. Prior to 

Folding@home, the first exascale supercomputer was not scheduled to come online until the end 

of 2021. 

 

Extensive spike opening reveals cryptic epitopes 

The Spike complex (S) is a prominent vaccine target that is known to undergo substantial 

conformational changes as part of its function.22-24 Structurally, S is composed of three 

interlocking proteins, with each chain having a cleavage site separating an S1 and S2 fragment. S 

resides on the virion surface, where it waits to engage with an angiotensin-converting enzyme 2 

(ACE2) receptor on a host cell to trigger infection.25,26 The fact that S is exposed on the virion 

surface makes it an appealing vaccine target. However, it has a number of effective defense 

strategies. First, S is decorated extensively with glycans that aid in immune evasion by shielding 

potential antigens.27,28 S also uses a conformational masking strategy, wherein it predominantly 

adopts a closed conformation (often called the down state) that buries the receptor-binding 

domains (RBDs) to evade immune surveillance mechanisms. To engage with ACE2, S must 

somehow expose the conserved binding interface of the RBDs. Characterizing the full range of S 

opening is important for understanding pathogenesis and could provide insights into novel 

therapeutic options. 

 To capture S opening, we employed our goal-oriented adaptive sampling algorithm, 

FAST, in conjunction with Folding@home. The FAST method iterates between running a batch 

of simulations, building a map called a Markov state model (MSM), ranking the conformational 

states of this MSM based on how likely starting a new simulation from that state is to yield 

useful data, and starting a new batch of simulations from the top ranked states.29,30 The ranking 

function is designed to balance between favoring structures with a desired geometric feature (in 

this case opening of S) and broad exploration of conformational space. By balancing exploration-

exploitation tradeoffs, FAST often captures conformational changes with orders of magnitude 

less simulation time than alternative methods. Broadly distributed structures from our FAST 

simulations were then used as starting points for extensive Folding@home simulations, totaling 

over 1 ms of data for SARS-CoV-2 S, enabling us to obtain a statistically sound final model. 
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Figure 2: Structural characterization of Spike opening and conformational masking for three Spike 

homologues. A) An example structure of SARS-CoV-2 Spike protein from our simulations that is fully compatible 

with receptor binding, as shown by superimposing ACE2 (gray). The three chains of Spike are illustrated with a 

cartoon and transparent surface representation (orange, teal, and purple), and glycans are shown as sticks (green). B) 

Three Spike homologues have very different probabilities of adopting ACE2 binding competent conformations, 

likely modulating their affinities for both ACE2 and antibodies that engage the ACE2-binding interface. HCoV-

NL63, SARS-CoV-1, and SARS-CoV-2 are shown as light-blue, orange, and black, respectively. C) The probability 

distribution of Spike opening for each homologue. Opening is quantified in terms of how far the center of mass of an 

RBD deviates from its position in the closed (or down) state. The cryptic epitope for the antibody CR3022 (red) is 

only accessible to antibody binding in extremely open conformations. D) Our simulations capture exposure of 

cryptic epitopes that are buried in the up and down cryoEM structures. The fraction of residues within different 
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epitopes that are exposed to a 0.5 nm radius probe for the down structure (blue), up structure (yellow), the ensemble 

average from our simulations (green), and the maximum value we observe in our simulations (red). Epitopes are 

determined as the residues that contact the specified antibody, and are clustered by their binding location on the 

RBD.36 

 

Our SARS-CoV-2 S protein simulations capture opening of S and substantial 

conformational heterogeneity in the open state with full atomistic detail (Fig. 2). Capturing 

opening of S is an impressive technical feat. Other large-scale simulations have provided 

valuable insight into aspects of S, but were unable to capture this essential event for the initiation 

of infection.28,31,32 We successfully captured this rare event for both glycosylated and 

unglycosylated S and found that glycosylation slightly increases the population of the open state, 

but is qualitatively very similar to the unglycosylated ensemble (Fig. S1). The closed state is 

more probable than the open state, explaining the experimental observation that full-length S has 

a lower affinity for ACE2 than an isolated RBD.40 Intriguingly, we find that opening occurs only 

for a single RBD at a time, akin to the up state observed in cryoEM structures.33 Moreover, we 

find that the scale of S opening is often substantially larger than has been observed in 

experimental snapshots in the absence of binding partners (Fig. S2). The dramatic opening we 

observe explains the observation that antibodies, and other therapeutics, can bind to regions of 

the RBD that are deeply buried and seemingly inaccessible in existing experimental snapshots.34-

37 For example, the cryptic epitope for the antibody CR3022 is buried in up and down cryoEM 

structures, but is clearly exposed in our conformational ensemble (Fig. 2C). Indeed, our 

ensemble captures the exposure of many known epitopes, despite their occlusion in apo 

experimental snapshots (Fig. 2D). Our models also provide a quantitative estimate of the 

probability that different epitopes are exposed, is consistent with experimental measures of 

dynamics, and can be used to determine the most suitable regions for the design of neutralizing 

antibodies. 

To understand the potential role of conformational masking in determining the lethality 

and infectivity of different coronaviruses, we also simulated the opening of S proteins from two 

related viruses: SARS-CoV-1 and HCoV-NL63. These viruses were selected because they also 

bind the ACE2 receptor but are associated with varying mortality rates. SARS-CoV-1 caused an 

outbreak in 2003 with a high case fatality rate but has not become a pandemic.38 NL63 was 

discovered the following year and continues to spread around the globe, although it is 

significantly less lethal than either SARS virus.39 We hypothesized that these phenotypic 

differences may be partially explained by changes to the S conformational ensemble. 

Specifically, we propose mutations or other perturbations can increase the S-ACE2 affinity by 

increasing the probability that S adopts an open conformation or by increasing the affinity 

between an exposed RBD and ACE2. In contrast, the affinity of S for ACE2 (or antibodies that 

bind cryptic epitopes) can be reduced by stabilizing the closed state. 

As expected, the three S complexes have very different propensities to adopt an open 

state and bind ACE2. Structures from each ensemble were classified as competent to bind ACE2 

if superimposing an ACE2-RBD structure on S did not result in any steric clashes between 

ACE2 and the rest of the S complex. We find that SARS-CoV-1 has the highest population of 

conformations that can bind to ACE2 without steric clashes, followed by SARS-CoV-2, while 

opening of NL63 is sufficiently rare that we did not observe ACE2-binding competent 

conformations in our simulations (Fig. 2B). Interestingly, S proteins that are more likely to adopt 

structures that are competent to bind ACE2 are also more likely to adopt highly open structures 

(Fig 2C). 
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Figure 3: Effects of glycan shielding and conformational masking on the accessibility of different parts of the 

Spike to potential therapeutics. A) The probability that a residue is exposed to potential therapeutics, as 

determined from our structural ensemble. Red indicates a high probability of being exposed and blue indicates a low 

probability of being exposed. B) Exposure probabilities colored on the surface of the Spike protein. Exposed patches 

are circled in orange. Red residues have a higher probability of being exposed, whereas blue residues have a lower 
probability of being exposed. Green atoms denote glycans. C) Sequence conservation score colored onto the Spike 

protein. A conserved patch on the protein is circled in orange. Red residues have higher conservation, whereas blue 

residues have lower conservation. D) The difference in the probability that each residue is exposed between the 

ACE2-binding competent conformations and the entire ensemble. Red residues have a higher probability of being 

exposed upon opening, whereas blue residues have a lower probability of being exposed. 
 

We also observe a number of interesting correlations between conformational masking, 

lethality, and infectivity of different coronaviruses. First, more deadly coronaviruses have S 

proteins with less conformational masking. Second, there is an inverse correlation between S 

opening and the affinity of an isolated RBD for ACE2 (RBD-ACE2 affinities of ~35 nM, ~44 

nM, and ~185 nM for HCoV-NL63, SARS-CoV-2, and SARS-CoV-1, respectively).41,42 

These observations suggest a tradeoff wherein greater conformational masking enables 

immune evasion but requires a higher affinity between an exposed RBD and ACE2 to 

successfully infect a host cell. We propose that the NL63 S complex is probably best at evading 

immune detection but is not as infectious as the SARS viruses because strong conformational 

masking reduces the overall affinity for ACE2. In contrast, the SARS-CoV-1 S complex adopts 

open conformations more readily but is also more readily detected by immune surveillance 

mechanisms. Finally, SARS-CoV-2 balances conformational masking and the RBD-ACE2 

affinity in a manner that allows it to evade an immune response while maintaining its ability to 

infect a host cell. Based on this model, we predict that mutations that increase the probability that 

the SARS-CoV-2 S complex adopts open conformations may be more lethal but spread less 

readily.  

Our atomically detailed model of S can facilitate structure-based vaccine antigen design 

through identification of regions minimally protected by conformational masking or the glycan 

shield.43 To identify these potential epitopes, we calculated the probability that each residue in S 

could be exposed to therapeutics (e.g. not shielded by a glycan or buried by conformational 

masking), as shown in Fig. 3A. Visualizing these values on the protein reveals a few patches of 

protein surface that are exposed through the glycan shielding (Fig. 3B). However, another 

important factor when targeting an antigen is picking a region with a conserved sequence to yield 

broader and longer lasting efficacy. Not surprisingly, many of the exposed regions do not have a 

strongly conserved sequence. Promisingly, though, we do find a conserved area with a larger 

degree of solvent exposure (Fig. 3C). This region was recently found to be an effective site for 

neutralizing antibodies.44 Another possibility for antigen design is to exploit the opening motion. 

A number of residues surrounding the receptor binding motif (RBM) of the RBD show an 

increase in exposure by ~30% in ACE2 binding competent structures (Fig. 3C). Consistent with 

immunoassays and cryoEM structures, these regions are hotspots for neutralizing antibody 

binding.34,45,46 

 

Cryptic pockets and functional dynamics are present throughout the proteome 

Every protein in SARS-CoV-2 remains a potential drug target. So, to understand their role in 

disease and help progress the design of antivirals, we unleashed the full power of Folding@home 

to simulate dozens of systems related to pathogenesis. While we are interested in all aspects of a 

proteins9 functional dynamics, expanding on the number of antiviral targets is of immediate 
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value. Towards this end, we seeded Folding@home simulations from our FAST-pockets 

adaptive sampling to aid in the discovery of cryptic pockets. We briefly discuss two illustrative 

examples, out of 36 datasets. 

Nonstructural protein number 5 (NSP5, also named the main protease, 3CLpro, or as we 

will refer to it, Mpro) is an essential protein in the lifecycle of coronaviruses, cleaving polyprotein 

1a into functional proteins, and is a major target for the design of antivirals.47 It is highly 

conserved between coronaviruses and shares 96% sequence identity with SARS-CoV-1 Mpro; it 

cleaves polyprotein 1a at no fewer than 11 distinct sites, placing significant evolutionary 

constraint on its active site. Mpro is only active as a dimer, however it exists in a monomer-dimer 

equilibrium with estimates of its dissociation constant in the low ¿M range.48 Small molecules 

targeting this protein to inhibit enzymatic activity, either by altering its active site or favoring the 

inactive monomer state, would be promising broad-spectrum antiviral candidates.49 

Our simulations reveal two novel cryptic pockets on Mpro that expand our current 

therapeutic options. These are shown in Fig. 4A, which projects states from our MSM onto the 

solvent exposure of residues that make up the pockets. The first cryptic pocket is an expansion of 

NSP59s catalytic site. We find that the loop bridging domains II and III is highly dynamic and 

can fully undock from the rest of the protein. This motion may impact catalysis4i.e. by 

sterically regulating substrate binding4and is similar to motions we have observed previously 

for the enzyme ³-lactamase.50 Owing to its location, a small molecule bound in this pocket is 

likely to prevent catalysis by obstructing polypeptide association with catalytic residues. The 

second pocket is a large opening between domains I/II and domain III. Located at the 

dimerization interface, this pocket offers the possibility to find small molecules or peptides that 

favor the inactive monomer state. 

In addition to cryptic pockets, our data captures many potentially functionally relevant 

motions within the SARS-CoV-2 proteome. We illustrate this with the SARS-CoV-2 

nucleoprotein. The nucleoprotein is a multifunctional protein responsible for major lifecycle 

events such as viral packaging, transcription, and physically linking RNA to the envelope.51,52 As 

such, we expect the protein to accomplish these goals through a highly dynamic and rich 

conformational ensemble, akin to context-dependent regulatory modules observed in Ebola virus 

nucleoprotein.53,54 Investigating the RNA-binding domain, we observe both cryptic pockets and 

an incredibly dynamic beta-hairpin, which hosts the RNA binding site, referred to as a <positive 

finger= (Fig. 4C-D). Our observed conformational heterogeneity of the positive finger is 

consistent with a structural ensemble determined using solution-state nuclear magnetic resonance 

(NMR) spectroscopy.55 Our simulations also capture numerous states of the putative RNA 

binding pose, where the positive finger curls up to form a cradle for RNA. These states can 

provide a structural basis for the design of small molecules that would compete with RNA 

binding, preventing viral assembly. 
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Figure 4: Examples of cryptic pockets and functionally-relevant dynamics. A-B) Conformational ensemble of 

Mpro (monomeric) highlighting cryptic pockets near the active site (AS) and domain interface (DI). Conformational 

states (black circles) are projected onto the solvent accessible surface areas (SASAs) of residues surrounding either 

the active-site or dimerization interface. The starting structure for simulations (6Y2E) is shown as a red dot. 

Representative structures are depicted with cartoon and transparent surface. Domains I and II are colored cyan and 

domain III is colored gray. The loop of domain III, which covers the active-site residues and is seen to be highly 
dynamic, is colored red. C-D) The conformational ensemble from our simulations of nucleoprotein is similar to the 

distribution of structures seen experimentally. Conformational states are projected onto the distance and angle 

between the positive finger and a nearby loop. Angles were calculated between vectors that point along each red 

segment in panel D and distances were calculated between their centers of mass. Cluster centers are represented as 

black circles, the starting structure for simulations (6VYO) is shown as a red dot, and NMR structures are shown 

with solid blue dots. Representative structures are shown as cartoons. 

 

The data we present in this paper represents the single largest collection of all-atom 

simulations. Table 1 is a comprehensive list of the systems we have simulated. Systems span 

various oligomerization states, include important complexes, and include representation from 

multiple coronaviruses. We also include human proteins that are targets for supportive therapies 

and preventative treatments. To accelerate the discovery of new therapeutics and promote open 

science, our MSMs and structures of cryptic pockets are available online 

(https://covid.molssi.org/ and https://osf.io/fs2yv/). For ease of use, within each final model we 
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provide the residues that comprise cryptic pockets along with an ordered list of states from 

largest to smallest opening. 

 

Table 1: Summary of protein systems we have simulated on Folding@home, organized by 

viral strain. 

*Missing residues were modeled using Swiss model.56 

**Structural model was generated from a homologous sequence using Swiss model.56 

***Missing residues were modeled using CHARMM-GUI.57,58 

 

System name Oligomerization 
Initial 

structure 
Residues 

Atoms 

in 

system 

Aggregate 

simulation 

time (¿s) 

Cryptic 

pockets 

discovered 

       
SARS-CoV-2       

NSP3 (Macrodomain 
<X=) 

Monomer 6W02 167 23907 10,906 - 

NSP3 (Papain-like 

protease 2, PL2pro) 
Monomer 3E9S** 306 97285 731 2 

NSP5 (main protease, 
Mpro, 3CLpro) 

Monomer 6Y2E 306 64791 6,405 2 

NSP5 (main protease, 
Mpro, 3CLpro) 

Dimer 6Y2E 612 77331 2,902 2 

NSP7 Monomer 5F22** 79 20094 3,722 3 
NSP8 Monomer 2AHM** 191 156282 1,776 3 
NSP9 Dimer 6W4B* 226 49885 8,939 2 
NSP10 Monomer 6W4H* 131 29560 6,141 2 

NSP12 (polymerase) Monomer 6NUR** 891 186622 3,330 3 
NSP13 (helicase) Monomer 6JYT** 596 129368 3,407 3 
NSP14 Monomer 5C8S** 527 216380 2,384 2 
NSP15 Monomer 6VWW 347 67345 3,674 4 
NSP15 Hexamer 6VWW 2082 230339 4,270 - 
NSP16 Monomer 6W4H* 298 45672 2,382 5 
Nucleoprotein (RBD) Monomer 6VYO 173 29125 9,493 3 
Nucleoprotein 

Dimerization Domain 
Monomer 6YUN* 118 34905 6,782 - 

Nucleoprotein 
Dimerization Domain 

Dimer 6YUN* 236 72733 1,458 2 

Spike Trimer 6VXX*** 3363 442881 1,109 - 
NSP7 / NSP8 / NSP12 Trimer complex 6NUR** 1184 215694 1,686 - 
NSP10 / NSP14 Dimer complex 5C8S** 688 226672 689 3 
NSP10 / NSP16 Dimer complex 6W4H* 429 63752 3,463 2 

       

SARS-CoV-1       
NSP3 (Macrodomain 
<X=) 

Monomer 2FAV 172 33117 659 - 

NSP9 Dimer 1QZ8* 226 49599 7,763 - 
NSP15 Monomer 2H85 345 67345 4,734 - 
NSP15 Hexamer 2H85 2070 230339 1,130 - 
Nucleoprotein RBD Monomer 2OFZ 174 29125 4,088 - 
Nucleoprotein 

Dimerization Domain 
Monomer 2GIB 370 34905 1,626 - 

Nucleoprotein 
Dimerization Domain 

Dimer 2GIB 740 72733 4,221 - 

Spike Trimer 5X58*** 3261 375851 741 - 
NSP10 / NSP16 Dimer complex 6W4H** 425 69589 518 - 

       
Human       

IL6 Monomer 1ALU 166 26855 1,593 2 
IL6-R Monomer 1N26 299 149764 196 5 
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ACE2 Monomer 6LZG 596 75787 664 2 
       
MERS       

NSP13 Monomer 5WWP 596 121134 719 - 

NSP10 / NSP16 Dimer Complex 6W4H** 424 69127 518 - 
       
HCoV-NL63       

Spike Trimer 5SZS*** 3606 453348 651 - 

 

 

Discussion 

The Folding@home community has created one of the largest computational resources in the 

world to tackle a global threat. Over a million citizen scientists have pooled their computer 

resources to help understand and combat COVID-19, generating more than 0.1 seconds of 

simulation data. The unprecedented scale of these simulations has helped to characterize crucial 

stages of infection. We find that Spike proteins have a strong trade-off between making ACE2 

binding interfaces accessible to infiltrate cells and conformationally masking epitopes to subvert 

immune responses. SARS-CoV-2 represents a more optimal tradeoff than related coronaviruses, 

which may explain its success in spreading globally. Our simulations also provide an atomically 

detailed roadmap for designing vaccines and antivirals. For example, we have made a 

comprehensive atlas and repository of cryptic pockets hosted online to accelerate the 

development of novel therapeutics. Many groups are already using our data, such as the COVID 

Moonshot,59 an international collaboration between multiple computational and experimental 

groups working to develop a patent-free inhibitor of the main protease. 

 Beyond SAR S-CoV-2, we expect this work to aid in a better understanding of the roles 

of proteins in the coronaviridae family. Coronaviruses have been around for millennia, yet many 

of their proteins are still poorly understood. Because climate change has made zoonotic 

transmission events more commonplace, it is imperative that we continue to perform basic 

research on these viruses to better protect us from future pandemics. For each protein system in 

Table 1, an extraordinary amount of sampling has led to the generation of a quantitative map of 

its conformational landscape. There is still much to learn about coronavirus function and these 

conformational ensembles contain a wealth of information to pull from. 

 While we have aggressively targeted research on SARS-CoV-2, Folding@home is a 

general platform for running molecular dynamics simulations at scale. Before the COVID-19 

pandemic, Folding@home was already generating datasets that were orders of magnitude greater 

than from conventional means. With our explosive growth, our compute power has increased 

around 100-fold. Our work here highlights the incredible utility this compute power has to 

rapidly understand health and disease, providing a rich source of structural data for accelerating 

the design of therapeutics. With the continued support of the citizen scientists that have made 

this work possible, we have the opportunity to make a profound impact on other global health 

crises such as cancer, neurodegenerative diseases, and antibiotic resistance. 

 

Methods 

System preparation 

All simulations were prepared using Gromacs 2020.60 Initial structures were placed in a 

dodecahedral box that extends 1.0 nm beyond the protein in any dimension. Systems were then 

solvated and energy minimized with a steepest descents algorithm until the maximum force fell 

below 100 kJ/mol/nm using a step size of 0.01 nm and a cutoff distance of 1.2 nm for the 
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neighbor list, Coulomb interactions, and van der Waals interactions. The AMBER03 force field 

was used for all systems except Spike protein with glycans, which used CHARMM36.61,62 All 

simulations were simulated with explicit TIP3P solvent.63 

Systems were then equilibrated for 1.0 ns, where all bonds were constrained with the 

LINCS algorithm and virtual sites were used to allow a 4 fs time step.64 Cutoffs of 1.1 nm were 

used for the neighbor list with 0.9 for Coulomb and van der Waals interactions. The particle 

mesh ewald method was employed for treatment of long-range interactions with a fourier 

spacing of 0.12 nm. The Verlet cutoff scheme was used for the neighbor list. The stochastic 

velocity rescaling (v-rescale) thermostat was used to hold the temperature at 300 K.65 

 

Adaptive sampling simulations 

The FAST algorithm was employed for each protein in Table 1 to enhance conformational 

sampling and quickly explore dominant motions. The procedure for FAST simulations is as 

follows: 1) run initial simulations, 2) build MSM, 3) rank states based on FAST ranking, 4) 

restart simulations from the top ranked states, 5) repeat steps 2-4 until ranking is optimized. For 

each system, MSMs were generated after each round of sampling using a k-centers clustering 

algorithm based on the RMSD between select atoms. Clustering continued until the maximum 

distance of a frame to a cluster center fell within a predefined cutoff. In addition to the FAST 

ranking, a similarity penalty was added to promote conformational diversity in starting 

structures, as has been described previously.66 

FAST-distance simulations of all Spike proteins were run at 310 K on the Microsoft 

Azure cloud computing platform. The FAST-distance ranking favored states with greater RBD 

openings using a set of distances between atoms. Each round of sampling was performed with 22 

independent simulations that were 40 ns in length (0.88 ¿s aggregate sampling per round), where 

the number of rounds totaled 13 (11.44 ¿s), 22 (19.36 ¿s), and 17 (14.96 ¿s), for SARS-CoV-1, 

SARS-CoV-2, and HCoV-NL63, respectively. 

For all other proteins, FAST-pocket simulations were run at 300 K for 6 rounds, with 10 

simulations per round, where each simulation was 40 ns in length (2.4 ¿s aggregate simulation). 

The FAST-pocket ranking function favored restarting simulations from states with large pocket 

openings. Pocket volumes were calculated using the LIGSITE algorithm.67 

 

Folding@home simulations 

For each adaptive sampling run, a conformationally diverse set of structures was selected to be 

run on Folding@home. Structures came from the final k-centers clustering of adaptive sampling, 

as is described above. Simulations were deployed using a simulation core based on either 

GROMACS 5.0.4 or OpenMM 7.4.1.60,68 

To estimate the performance of Folding@home, we make the conservative assumption 

that each CPU core performs at 0.0127 TFLOPS and each GPU at 1.672 native TFLOPS (or 3.53 

X86-equivalent TFLOPS), as explained in our long-standing performance estimate 

(https://stats.foldingathome.org/os). For reference, a GTX 980 (which was released in 2014) can 

achieve 5 native TFLOPS (or 10.56 X86-equivalent TFLOPS). An Intel Core i7 4770K (released 

in 2013) can achieve 0.046 TFLOPS/core. We report x86-equivalent FLOPS. 

 

Markov state models 

A Markov state model is a network representation of a free energy landscape and is a key tool for 

making sense of molecular dynamics simulations.69 All MSMs were built using our python 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.06.27.175430doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175430
http://creativecommons.org/licenses/by/4.0/


package, enspara.70 Each system was clustered with the combined FAST and Folding@home 

datasets. In the case of Spike proteins, states were defined geometrically based on the RMSD 

between backbone CS coordinates. States were generated as the top 3000 centers from a k-centers 

clustering algorithm. All other proteins were clustered based on the Euclidean distance between 

the solvent accessible surface area of residues, as is described previously.50 Systems generated 

either 2500, 5000, 7500, or 10000 cluster centers from a k-centers clustering algorithm. Select 

systems were refined with 1-10 k-medoid sweeps. Transition probability matrices were produced 

by counting transitions between states, adding a prior count of 1/�$%&%'$, and row-normalizing, 

as is described previously.71 Equilibrium populations were calculated as the eigenvector of the 

transition probability matrix with an eigenvalue of one. 

 

Spike/ACE2 binding competency 

To determine Spike protein binding competency to ACE2 the following structures of the RBD 

bound to ACE2 were used: 3D0G, 6M0J, and 3KBH, for SARS-CoV-1, SARS-CoV-2, and 

HCoV-NL63, respectively. The RBD of the bound complex was superimposed onto each RBD 

for structures in our MSM. Steric clashes were then determined between backbone atoms on the 

ACE2 molecule and the rest of the spike protein. If any of the structures had a superposition that 

resulted in no clashes, it was deemed binding competent. 

 

Cryptic pockets and solvent accessible surface area 

For ease of detecting cryptic pockets and other functional motions, we employed our exposon 

analysis method.50 This method correlates the solvent exposure between residues to find 

concerted motions that tend to represent cryptic pocket openings. Solvent accessible surface area 

calculations were computed using the Shrake-Rupley algorithm as implemented in the python 

package MDTraj.72 For all proteins and complexes, a solvent probe radius of 0.28 nm was used, 

which has been shown to produce a reasonable clustering and exposon map.50 

Spike protein solvent accessible surface areas for SARS-CoV-2 were computed with 

glycan chains modeled onto each cluster center. Multiple glycan rotamers were sampled for each 

state and accessible surface areas for each residue were weighted based on MSM equilibrium 

populations. 

 

Sequence conservation 

Sequence conservation of spike proteins was calculated using the Uniprot database.73 Sequences 

between 30% - 90% were pulled and aligned with the Muscle algorithm.74 The entropy at each 

position was calculated to quantify variability of amino acids. Conservation was defined as one 

minus the entropy. 
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Figure S1: Distribution of SARS-CoV-2 Spike RBD opening. The probability that the center of mass of an RBD 

deviates from its position in the closed (or down) state for SARS-CoV-2 spike with glycans (gray) and without 

glycans (black). 

 
Figure S2: Simulations of the SARS-CoV-2 Spike complex reveal the existence of an <open= state. For reference, three 
Spike complex snapshots are shown: the <down= state (6VXX), the <up= state (6VSB), and an <open= state from our simulations. 
Structures are depicted with a cartoon backbone, transparent surface for sidechains, and sticks for glycans. Each chain in the 
complex has a unique color, orange, purple, or teal, and glycans are colored green.  
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Cryptic pocket highlights for select systems in the SARS-CoV-2 proteome 

 

 
Figure S3: NSP3-PL2Pro domain transition from closed to open state. Backbone is represented as a cartoon and sidechains 
are represented with a transparent surface (gray). The residues that undergo a large conformational change to expose a cryptic 
pocket are highlighted in pink. 

 

 

 
Figure S4: NSP5 (dimer) transition from closed to open state. Backbone is represented as a cartoon, sidechains are 
represented with a transparent surface, and pocket volumes are represented as blue spheres. Each molecule in the dimer is 
identified with a unique color, gray or cyan. 

 

 
Figure S5: NSP7 transition from closed to open state. Backbone is represented as a cartoon and sidechains are represented 
with a transparent surface. The protein is colored by residue number following a rainbow. 
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Figure S6: NSP8 transition from closed to open state. Backbone is represented as a cartoon and sidechains are represented 
with a transparent surface. For reference, two regions that undergo a large conformational transition are highlighted as green and 
pink. 

 

 
Figure S7: NSP9 (dimer) transition from closed to open state. Backbone is represented as a cartoon and sidechains are 
represented with a transparent surface. Each molecule in the dimer is identified with a unique color, gray or cyan. The residues 
that undergo a large conformational change to expose a cryptic pocket are highlighted in red. 

 

 
Figure S8: NSP10 transition from closed to open state. Backbone is represented as a cartoon and sidechains are represented 
with a transparent surface. Pocket volumes are highlighted with pink spheres. Here, an existing pocket is greatly expanded from 
the swivel of an ³-helix. 
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Figure S9: NSP12 transition from closed to open state. Backbone is represented as a cartoon and sidechains are represented 
with a transparent surface. The residues that undergo a large conformational change to expose a cryptic pocket are highlighted in 
red. 

 

 
Figure S10: NSP13 transition from closed to open state. Backbone is represented as a cartoon and sidechains are represented 
with a transparent surface. The protein is colored by residue number following a rainbow and highlights the various domains. 
Here, we observe a large domain motion between domains 1A and 2A, which may be relevant for nucleotide binding. 

 

 
Figure S11: NSP14 transition from closed to open state. Backbone is represented as a cartoon and sidechains are represented 

with a transparent surface. The residues that undergo a large conformational change to expose a cryptic pocket are highlighted in 
red. 
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Figure S12: NSP15 transition from closed to open state. Backbone is represented as a cartoon and sidechains are represented 
with a transparent surface. The residues that undergo a large conformational change to expose a cryptic pocket are highlighted in 

red. 

 

 
Figure S13: NSP16 transition from closed to open state. Backbone is represented as a cartoon and sidechains are represented 
with a transparent surface. Pocket volumes are highlighted with maroon spheres. SAM cofactor is shown with pink sticks. 

 
Figure 5: NSP10/NSP14 (complex) transition from closed to open state. Backbone is represented as a cartoon and sidechains 
are represented with a transparent surface. The residues that undergo a large conformational change to expose a cryptic pocket 
are highlighted in pink. 
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Figure S15: NSP10/NSP16 (complex) transition from closed to open state. Backbone is represented as a cartoon and 
sidechains are represented with a transparent surface. Each molecule in the complex is identified with a unique color, gray 
(NSP16) or cyan (NSP10). The residues that undergo a large conformational change to expose a cryptic pocket are highlighted in 

red. 

 

 
Figure S16: Nucleoprotein dimerization domain transition from closed to open state. Backbone is represented as a cartoon 

and sidechains are represented with a transparent surface. The residues that undergo a large conformational change to expose a 
cryptic pocket are highlighted in orange. 

 

 
Figure S17: Human ACE2 transition from closed to open state. Backbone is represented as a cartoon and sidechains are 
represented with a transparent surface. The protein is colored by residue number following a rainbow. Pocket is proximal to the 
region that binds to SARS-CoV-2 spike protein. 
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Figure S18: Human IL6 transition from closed to open state. Backbone is represented as a cartoon and sidechains are 
represented with a transparent surface. The residues that undergo a large conformational change to expose a cryptic pocket are 
highlighted in red. 

 

 
Figure 6: Human IL6-R transition from expanded to closed state. Backbone is represented as a cartoon and sidechains are 
represented with a transparent surface. The residues that undergo a large conformational change to reveal a potential druggable 

site are highlighted in red. 
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