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Abstract

Developments in microfabrication technology have enabled the production of neural electrode
arrays with hundreds of closely-spaced recording sites, and electrodes with thousands of sites are
currently under development. These probes in principle allow the simultaneous recording of very
large numbers of neurons. However, use of this technology requires the development of techniques
for decoding the spike times of the recorded neurons, from the raw data captured from the probes.
Here, we present a set of novel tools to solve this problem, implemented in a suite of practical,
user-friendly, open-source software. We validate these methods on data from the cortex,
hippocampus, and thalamus of rat, mouse, macaque, and marmoset, demonstrating error rates as
low as 5%.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

10correspondence: kenneth.harris@ucl.ac.uk.

Contributions

C.R., D.F.M.G., S.N.K. and J.S. wrote SpikeDetekt. K.D.H, S.N.K., and D.F.M.G. designed the Masked EM algorithm and wrote
Klustakwik. C.R. and M.L.D.H. wrote KlustaViewa. C.R wrote Galry. S.N.K. analyzed algorithm performance. Rat data were
recorded by A.G., M.B. and G.B.. Mouse data were recorded by A.S and M.C.. Marmoset data were recorded by S.S. The procedure
for non-chronic laminar recordings with Neuronexus Vector probes in awake, behaving macaques was developed by G.H.D., A.S.E.,
A.S.T., who also collected the data. K.D.H., S.N.K., and C.R. wrote the manuscript with inputs from all authors.



siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

Rossant et al. Page 2

Introduction

One of the most powerful techniques for neuronal population recording is extracellular
electrophysiology using microfabricated electrode afrdyAdvances in microfabrication

have continuously increased the number of recording sites available on neural probes, and
the number of recordable neurons is further increased by having closely spaced recording
sites. Indeed, while a single sharp electrode can provide good isolation of one or two
neurons, placing as few as four recording sites together in a “tetrode” can reveal the firing
patterns of 10-20 simultaneously recorded ¢&liFhis increase is possible because each
recorded neuron produces extracellular action potential waveforms (“spikes”) with a
characteristic spatiotemporal profile across the recordind4feShe process of using

these waveforms to decipher the firing times of the recorded neurons is known as “spike
sorting11: 12

Spike sorting, as currently applied in nearly all labs using extracellular recordings, involves a
manual operator. While some labs use a fully manual system, lower error rates can be
achieved with a semi-automated pro8esensisting of four steps. First, spikes are detected,
typically by high-pass filtering and thresholding. Second, each spike waveform is
summarized by a compact “feature vector”, typically by principal component analysis.

Third, these vectors are divided into groups corresponding to putative neurons using cluster
analysis. Finally, the results are manually curated, to adjust any errors made by automatic
algorithmg3, This last step is necessary because although fully automatic spike sorting
would be a powerful tool, the output of current algorithms cannot be accepted without
human verification. A similar situation arises in many fields of data-intensive science: in
electron microscopic connectomics, for example, automatic methods can only be used under
the supervision of human operattks

For tetrode data this semi-automatic process performs well, reaching error rates of 5% or
lower, as assessed by ground truth data obtained with simultaneous intracellular récording
However, spike sorting methods developed for tetrodes do not work for a newer generation
of larger electrode arra¥ 18 This failure occurs for two reasons. First, the automated
component can fail in high dimensions, for example due to the “curse of dimensionality”
that affects cluster analysis in high-dimensional sgdc&€gcond and perhaps more

critically, the process of manual curation -- while manageable with low-count probes --
cannot scale to the high-count case without software that guides the operator to only those
decisions that cannot be made reliably by a computer. While many different methods for
spike sorting have been proposed (e.g. 3%, no method has yet solved these problems
robustly enough to be widely adopted by the experimental community.

Here we describe a system for the spike sorting of high-channel count electrode data,
implemented in a suite of freely available software. While the spike sorting problem has
attracted considerable theoretical research, our goal was to produce a practical system that
can be immediately used by working neurophysiologists. The ability to process large
datasets (millions of spikes in hundreds of dimensions) in reasonable human and computer
time was deemed essential; error rates comparable to those of commonly-used tetrode
methods were deemed acceptable. We tested the software on data recorded from rat
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neocortex with 32-site shank electrodes, as well as data from other species and brain regions.
While traditional methods performed extremely poorly on this data, the new algorithms gave
close to theoretically optimal performance. The techniques and software have been
developed in a community-led manner, through extensive feedback from a user base of over
320 scientists in 50 neurophysiology labs. The software is downloadable and documented at
http://cortexlab.net/toojsand is supported by a highly active user-group mailing list,
klustaviewas@groups.google.com.

Results

Our spike sorting pipeline involves three steps: (1) spike detection and feature extraction, (2)
cluster analysis, and (3) manual curation. We describe these steps in order.

Spike Detection

The first step of the pipeline is spike detection and feature extraction, implemented by the
programSpikeDetekt

The primary difference between spike detection for high count silicon probes and for

tetrodes is that temporally overlapping spikes are extremely common in the former. This
phenomenon can be seen by examining of a segment of raw data recorded with high count
probes (Fig. 1). The spikes seen in these data are diverse, with some detected on only one or
two channels, and others spanning large numbers of channels, as expected of pyramidal cells
whose apical dendrites are aligned parallel to the $Raimkthese data, simultaneous firing

of multiple neurons is common. However, simultaneously firing neurons are usually detected
on distinct sets of channels.

To deal with the problem of temporally overlapping spikes, we therefore sought to detect

spikes as local spatiotemporal events (Fig. 2). This step requires knowledge of the probe

geometry, which is specified by the user in the form of an “adjacency graph” (Fig. 2a). We
illustrate the spike detection process with reference to a small segment of data containing
two temporally overlapping but spatially separated spikes (Fig. 2b).

The first stage of the algorithm is high-pass filtering the raw data to remove the slow local
field potential signal (Butterworth in forward-backward mode; Fig. 2c). Next, spikes are
detected using a double-threshold flood fill algorithm (Fig. 2d,e). Specifically, spikes are
detected as spatiotemporally connected components, in which the filtered signal exceeds a
“weak threshold’g,, for every point, and in which at least one point exceeds a “strong
threshold” 65 (optimal values for these parameters were found to be 4 and 2 times the
standard deviation of the filtered signal, as described below). Two points are considered
neighboring if they are on a single channel and separated by one time sample, or at a single
timepoint on channels joined by the adjacency graph; this allows the algorithm to work with
probes of any geometry, not just linear ones. The dual-threshold approach avoids spurious
detection of small noise events, since isolated islands in which only the weak threshold is
exceeded are not retained. Conversely, spikes will not be erroneously split due to noise, as
areas joined by weak threshold crossings are merged.
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After detection, spikes are temporally realigned to subsample resolution, to the center of
mass of the spike’s suprathreshold components, weighted by a power pajafseter
Methods). Visual inspection showed that spike times detected with this method correspond
closely to those that would be assigned by a human operator (Fig. 2e).

The waveforms of each spike are summarized by two vectors. First, a “feature vector” is
found by principal component analysis of the realigned waveforms on each channel (3
principal components were kept for the current analysis). All channels are used in
computing the feature vector; thus our two example spikes have similar feature vectors, as
their central times are similar (Fig. 2f). Second, a “mask vector” is computed from the peak
spike amplitude on each detected channel, rescaled and clipped so channels outside the
connected component have mask 0, and channels with amplitude@lawe mask 1. The
mask vector allows temporally overlapping spikes to be clustered as separate cells. Indeed,
although the feature vectors of our two example spikes were very similar, their mask vectors
are completely different (Fig. 29g).

Performance Validation and parameter optimization

To quantify the performance and optimize the parameters of this algorithm requires “ground
truth”: knowledge of when the recorded neurons actually fired. We created a simulated
ground truth dataset by repeatedly adding the spikes of a “donor cell” identified in one
recording, to a second “acceptor” recording made with same probe; since the extracellular
medium is a linear conduc#y addition of spike waveforms serves as a sufficient model for
overlapping spikes. To evaluate the performance of the system, we chose 10 donor cells with
a variety of amplitudes and waveform distributions (Fig. 3a), using recordings from rat

cortex with a 32-channel probe shank. To model the variability of waveforms produced by a
single neuron due to phenomena such as bufétifgwe scaled each spike to a random
amplitude in a range that varied by a factor of 2 (see Methods). We refer to the spikes added
to the acceptor dataset as “hybrid spikes”, and the result as a “hybrid dataset”.

To evaluate spike detection performance, we used a heuristic criterion to identify which
spikes detected by the algorithm corresponded to which hybrid spikes (see Methods). We
measured performance as a function of three algorithm param@te; andp), using four
performance statistics.

The first statistic was the fraction of hybrid spikes detected (Fig. 3b). This showed a strong
dependence on the thresholds: value8s@bove 4 times standard deviation (4 SD) resulted
in poor detection, particularly for low-amplitude cells. The dependence of performance on
6,,was more complex: poor performance resulted not just from overly high values (>2.5
SD), but also overly low values (<2 SD). Examination of example errors (not shown)
indicated that overly low values 6%, led to inappropriate merging of temporally

overlapping but spatially separated spikes, while overly high values led to artificial splitting
of single spikes.

The second statistic was the total number of detection events (Fig. 3c). Because this includes
noise events as well as true spikes of the hybrid and background cells, this number should be
as small as possible provided the fraction correctly detected remains high. We found that this
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statistic most critically depended on the strong threshold, increasing markedly for values
below 4SD.

The third statistic was timing jitter: the standard deviation of the difference between the
detected and actual times of each hybrid spike (Fig. 3d). Jitter was in all cases less than one
sample, and improved for larger valuesfdgtind 6,,, indicating that spike times are best
estimated from a minority of larger amplitude spikes. For all hybrid cells, jitter was worse

for p< 1; for low amplitude cells it showed a further worseningofer2, reflecting noise
introduced by overweighting of peak amplitude times.

The final statistic was mask accuracy (Fig. 3e), which measures how closely the detected
mask vectors match those expected from the ground truth (see Methods). This showed
strongest dependence 6 with a peak around 2 SD, and less pronounced dependence on
Ospeaking around 5 SD.

We conclude that close to optimal performance can be obtained using a strong threshold of 4
SD, a weak threshold of 2 SD and a power weight of 2. Furthermore, using these parameters
yields around 95% correctly detected spikes, and spike timing jitter of 0.5 samples.

Cluster Analysis

The second step of our spike sorting pipeline is automatic cluster analysis, implemented in
the progranKiustaKwik.

For tetrode data, we previously found that cluster analysis using a mixture of Gaussians fit
gave close to optimal performafic@his approach cannot be directly ported to high-
channel-count data for two reasons. The first is the “curse of dimensionality”: in high
dimensions, noise measured on the large number of uninformative channels will swamp
signals measured on the smaller number of informative channels. Second, because
temporally overlapping spikes have similar feature vectors (Fig. 2F), further information
such as the mask vectors must be used to distinguish these spikes.

To solve this problem, we designed a novel method, the “masked EM algSftfthis

algorithm fits the data as a mixture of Gaussians, but with each feature vector replaced by a
virtual ensemble in which features with masks near zero are replaced by a noise distribution
(see Methods). Channels with low mask values are thus “disenfranchised”, and do not
contribute to cluster assignment; the probabilistic nature of this disenfranchisement means
false clusters are not created when amplitudes cross an arbitrary threshold. The
computational complexity of this algorithm is better than that of the traditional EM

algorithm, scaling with the mean number of unmasked channels per spike (which does not
increase for larger arrays), rather than the total number of channels.

To evaluate the performance of this algorithm, we used the hybrid datasets described above.
For each dataset, we identified the cluster containing most hybrid spikes and computed the
false discovery rate (fraction of spikes in the cluster that were not hybrids), and the true
positive rate (fraction of all hybrid spikes assigned to the cluster). To estimate the theoretical
optimum performance that could be expected, we used the Best Ellipsoid Error Rate (BEER)
measur®, which fits a quadratic decision boundary using ground truth data, and evaluates its
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performance with cross-validation, varying the parameters of the classifier to obtain an ROC
curve showing optimal performance.

The masked EM algorithm'’s performance on an example hybrid dataset was close to the
optimum estimated by the BEER measure but the classical EM algorithm’s performance was
poor, with error rates typically exceeding 50% (Fig. 4a). Across all hybrid datasets, we

found no significant difference between the total error of the masked EM algorithm and
theoretical optimal performance (p = 0.8, t-test), but a significant difference between the
performance of the Classical and Masked EM algorithms (p = 0.005, t-test; Fig. 4b). To
ensure the poor performance of the classical EM algorithm did not simply reflect incorrect
parameter choice, we reran it for multiple values of the penalty parameter (which determines
the number of clusters found), but this could not improve Classical EM performance. This
analysis also demonstrated that the error rates of the masked EM algorithm were largely
independent of the penalty parameter; using a value corresponding to the Bayesian
Information Criterion seems a good option for penalty choice, as it led to a reasonably small
number of clusters without compromising error rates (Fig. 4c,d).

We conclude that the performance of the Masked EM algorithm is close to optimal for this
clustering problem, yielding false positive and false discovery rates both of the order 5%.

Manual Curation

The final step of the spike sorting pipeline is manual verification and adjustment of cluster
assignments, which are implemented in the progkénstaViewa

Although semi-automatic clustering provides more consistency and lower error rates than
fully manual spike sortirfyy further manual corrections are typically required, such as

merging of clusters split due to electrode drift, bursting, or other redsth3hese

waveform shifts are hard to model and correct mathematically, but can usually be identified
by inspection of waveforms, auto- and cross-correlograms, and cluster shapes. It is essential
that this step be done with a minimum of human operator time, a particularly acute problem
with the very large numbers of neurons recorded by large dense electrode arrays.
Specifically, if N clusters are produced automatically, it is impractical for a human operator

to inspect all ordef\? potential merges.

We addressed this problem using a semi-automatic “Wizard,” that reduces the number of
potential merges to ordé. The Wizard works by presenting the operator with pairs of
potentially mergeable clusters, ordered by a measure of pairwise cluster similarity. Because
the Wizard is used iteratively, this measure must be computable in a fraction of a second,
even for datasets containing millions of spikes. Thus, only metrics based on summary
statistics of each cluster, rather than individual points, are suitable. We evaluated several
candidate similarity measures. The Kullback-Leibler divergence between two Gaussian
distributions was unsuitable as it overweighted differences in covariance matrix relative to
differences in the mean. However, good performance was obtained using a single step of the
masked EM algorithm to compute the similarity of the mean of one cluster to each of the
others (Fig. 5a). To verify the accuracy of this measure, we simulated automatic clustering
errors by splitting the ground truth clusters in the hybrid datasets into two subclusters
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containing high and low amplitude spikes. In all cases, the similarity measure correctly
identified the other half of the artificially split cluster (Fig. 5b).

The manual stage can take several hours of operator time, and human error is lowest during
the start of this period. The Wizard therefore iteratively presents the operator with decisions
that can be made quickly, with the most important decisions presented first. The Wizard
iterates through all clusters starting with the best currently unsorted spikes. The remaining
clusters are ordered by similarity to the best unsorted cluster, and the decision of whether to
merge, split, or delete each merge candidate is in turn made by the operator (Fig. 5¢,d). Once
satisfied that no more potential merges exist for the currently best unsorted cluster, the
operator either accepts it as a well-isolated neuron, or rejects it as multiunit activity or noise,
and the top-level iteration begins again.

Although the Wizard guides the operator through the decision process, the operator at all
times has free access to all data required to make rapid decisions, provided by
KlustaViewa's user-friendly and easily-navigable graphical user interface (Figure 6). Using
this software, the time taken for manual curation scales linearly with the number of clusters,
with a scaling factor that varies between operators and is generally about 1 minute per
cluster, regardless of probe size. This software therefore allows for thorough manual
curation of a dense-array recording in a few hours.

We assessed the performance of 8 human operators (5 experienced spike-sorters, 3 novices)
using this system (Fig. 7a). First, we asked whether the operators would correctly fix a
misclustering that was produced by the masked EM algorithm in simulation of electrode

drift (described further below). All experienced operators, and all but one of the novices did
this correctly. Second we asked how consistent the results of these operators would be on the
same dataset (Fig. 7b-d). We separately assessed consistency on spikes that all operators had
identified be in “good” clusters, on spikes that at least one operator had identified to be in a
good cluster, and on all remaining spikes. Similarity was assessed with the Fowlkes-Mallows
index31, which gives a score between 1 for complete agreemengfand¢omplete

disagreement. For all operators apart from one of the novices, consistency was extremely
high for those spikes identified as good by at least one operator (Fig. 7e,f); nevertheless the
judgement of whether a cluster should be considered well-isolated varied between operators
(Fig. 7g). We conclude that experienced operators are likely to make accurate and consistent
judgements on cluster merging identification, but that the judgement on which clusters to

term “good” is inconsistent; we therefore recommend that quantitative riétfise used

to determine isolation quality.

Additional tests

We used the system described above to answer several additional questions regarding the
process of spike sorting, and the design of electrodes.

First, we used our simulated ground truth dataset to ask how spike sorting performance
would change for different electrode designs. We considered two cases. In the first (“site
thinning”; Supplementary Figs. 1 and 2), the electrode was made less dense by omitting
alternating channels on both sides. We evaluated the performance of spike detection and
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clustering using the same hybrid spikes described earlier, but only on this subset of channels
(the adjacency graph was modified to join any two channels that both connected to a missing
channel). Spike detection was strongly impacted, with correct detection rates dropping to an
average of below 80% (Supplementary Fig. 1). Clustering performance was also impacted,
as assessed both by the theoretical optimum, and by the Masked EM algorithm. While some
cells saw little decrease in clustering performance (typically those found on multiple
channels), others were strongly impacted by both metrics (Supplementary Figure 2). We
conclude that performance in rat cortex decreases substantially for site spacing larger the
40pm same-side site spacing of these test probes.

Next, we simulated removing one side of the probe (Supplementary Figs. 3 and 4). Of the 10
hybrid cells analyzed, 6 were only detectable on one of the probe’s two sides, while the
other 4 could be detected on both sides to a greater or lesser extent (Supplementary Table 1).
The effect of side removal was different to that of site thinning. The performance of each
unit’s “preferred side” was comparable to that of the full probe. However, for the 4 units that
were visible on both sides of the probe, performance on the “unpreferred side” was
substantially worse than performance on the full probe, as assessed both by theoretical
optimum performance and the actual results of the masked EM algorithm. We conclude that
in staggered probes, the probe’s two sides function largely independently: the primary
benefit of two-sided shanks is not to increase the isolation quality of a cell already well
isolated on one side of the probe, but to record from a larger number of units.

Next, we asked whether similar performance to that seen in neocortex could also be obtained
in other brain structures and species. We first generated an additional 5 hybrid cells using
10-site recordings from rat CA1 (Supplementary Figs. 5 and 6). Good performance was
again obtained; furthermore, the spike detection parameters found to be optimal in cortical
data were also optimal in CA1 data. We then ran the same code on high-count data collected
from a wider range of preparations: V1 of awake mouse and awake macaque monkey
(Supplementary Figs. 7-9), and LGN thalamus of anesthetized marmoset (Supplementary
Fig. 10). Additional confidence in the method was provided both by further analyses of
hybrid data (Supplementary Fig. 11) and by the observation of sharp orientation-tuned
responses (Supplementary Fig. 7c-l), including amongst cells of apparently similar
waveforms that were nevertheless separated by the spike sorting procedure (Supplementary
figure 7m).

Next, we asked how well the system would deal with non-stationarity in spike amplitudes.
Such non-stationarity can occur both because of electrode drift, and also because of activity-
related changes in spike amplitude such as after bursts or prolonged periods?sf firing
Examination of data from acute recordings (where electrode drift is often stronger than with
chronic probes), showed that the algorithm often tracked drift successfully, but in other cases
split the spikes of a single drifty cell into multiple clusters requiring manual merging
(Supplementary Fig. 12).

To simulate nonstationarity, we constructed 6 hybrid datasets in which spike amplitude
drifted throughout the recording as a geometric random walk (Supplementary Fig. 13). Spike
detection was hardly impacted by this nonstationarity (Supplementary Fig. 14). For
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clustering, only one of the 6 drifty hybrid datasets required manual curation, and once this
was performed, accuracy of the masked EM algorithm was comparable to the theoretical
optimum (Supplementary Fig. 15). A different type of nonstationarity, in which the hybrid
cell simply stopped firing halfway through the recording, also had no effects on performance
(p=0.75; two-sample t-test on total errors; Supplementary Fig. 16). As an important task is
often to track cells between recordings made over multiple days — i.e. where drift occurs in
non-recorded periods — we also asked whether the Wizard’s similarity metric might be used
for this purpose. Although ground truth data was not available, a conservative criterion gave
encouraging results, as indicated by the similarities of the autocorrelograms of the units
associated to each other (Supplementary Fig. 17).

A strategy sometimes used to deal with nonstationarity is to include time as an additional
feature in the cluster analysis algorithm, in principle allowing the algorithm to track slow
changes in amplitude. To our surprise, we found that this actually worsened clustering
performance, which could not always be overcome by manual curation (Supplementary Fig.
15). We conclude that nonstationarity (at least of the type modelled here) does not present a
serious problem to automatic sorting performance if time is not added as an additional
feature, and if manual curation is performed when required.

Discussion

We have produced a software suite for spike sorting of data from large, dense electrode
arrays. Analysis of simulated ground-truth data indicated that error rates of this approach are
frequently of the order 5%.

A critical step in this system, and all others currently in wide uséfaivo data, is manual
curation. Extracellular array recordings are subject to numerous sources of error including
electrode drift, overlapping spikes, and the fact that neuronal spike waveforms are not
constant, but change according to firing patterns including but not limited to béfstthg
While most working neurophysiologists have a good understanding of these potential
artifacts, formalizing this knowledge into a reliable mathematical model has proved
challenging. Because spike sorting errors could lead to erroneous scientific conéfugions
remains essential that a scientist is able to inspect the results produced by an automatic
algorithm, then correct or discard its results. We found that experienced operators tended to
make similar judgements during the manual curation process, but that their judgements of
which units were well-isolated were subjective. Fortunately, quantitative criteria exist for
assessing the quality of unit isolat®8n33 and we therefore recommend that these be used,
rather than human judgements, when deciding which cells to include in further scientific
analysis.

The current performance of the system is sufficient for practical analysis of data produced
by current, commercially-available silicon probes. Nevertheless, there remain areas for
further improvement. The first of these concerns execution time. KlustaKwik is several
orders of magnitude faster than standard mixture of Gaussians fitting; nevertheless, when
running on large datasets, it can take hours or even days to complete on a standard single-
core machine. Hardware acceleration such as &Rissloud computingf may speed up
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this analysis stage, as may alternative cluster analysis algorithms that exclude the most
computationally expensive step of covariance matrix estimation (e.g.3Re¥§. Faster

versions of the code presented here, currently under development, are avdiltapte/at
github.com/kwikteam/klustakwik@ndhttps://github.com/kwikteam/phyA second

opportunity for improvement regards the detection of spatiotemporally overlapping spikes.
While the current algorithm can detect the majority of temporally overlapping spikes, which
occur on distinct sets of channels, it cannot resolve spikes that overlap in both space and
time. Template-matching algorithms have solved this problem in the caseitsb retinal

array datd® 39 but these data are much less noisy tianivo brain recordings. While

recent research suggests that certain forms of template matching may succeed at least for
tetrode datan vivo'8 21 such methods are not at present widely appligd tao

recordings, and numerous challenges need to be overcome, most critically regarding the
manual curation step. The platform we have described here constitutes both a practical
solution to today’s spike sorting challenges, and also a framework from which to develop
solutions for future generations of electrodes containing thousands of channels.

A supplementary Methods checklist is available.

To test the algorithm, we created simulated ground truth data using a method termed “hybrid
datasets”. The primary raw data used to construct this ground truth (shown in the main text
figures) consisted of two separate recordings from somatosensory cortex (-3.8 mm from
bregma, 3 mm lateral to midline, 1mm depth) of sleeping adult rats, using silicon probes
with 32 non-activated platinum-plated recording sites of size 10x16 pum arranged in a
staggered shank configuration (vertical spacing 20 um between adjacent sites on opposite
sides of the shank, 40 um between adjacent sites on the same side), mounted on a home-
made microdrive. Ground and reference electrodes were stainless steel screws over the
cerebellum. Data was continuously recorded wideband (1Hz-Nyquist), at a sampling rate of
20 kHz. During the recording session, the signals were amplified (1000x), bandpass filtered
(1 to 5000 Hz), and acquired continuously at 20 kHz on a 128-channel DataMax system (16-
bit resolution; RC Electronics). All protocols were approved by the Institutional Animal

Care and Use Committee of Rutgers University.

To perform additional tests (supplementary figures 5-12), we analyzed data collected in
additional brain structures and species. Data was collected from the septal third of
hippocampal CA1 region in male rats using 10-site silicon probes using the same methods as
above. All protocols were approved by the Institutional Animal Care and Use Committee of
Rutgers University. To obtain recordings in mouse V1, mice were implanted with a custom-
built head post and recording chamber (4 mm inner diameter) under isoflurane anesthesia.
After several days acclimatization to head-fixation, animals were anesthetized under
isoflurane and a ~1 mm craniotomy was performed over area V1 one day prior to the first
recording (see Refé? 4for further details). Data were recorded with an acutely-inserted
32-site Neuronexus Edge probe (20 micron spacing). Experiments were conducted
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according to the UK Animals (Scientific Procedures) Act, 1986 under personal and project
licenses issued by the Home Office following ethical review. Non-chronic recordings were
obtained from cortical area V1 of two awake, behaving, adult male rhesus momiaeyx-é
mulattd using Neuronexus Poly2 and custom-designed Edge (60 micron spacing) Vector
probes. Animals were first implanted with scleral search coils and fit with a custom-built
titanium head post and recording chamber (see Fef&for further details). Subsequently,

a 2-3mm diameter trephination was performed through which daily penetrations would be
made. Data were acquired as broad-band signals (0.5-16 kHz, sampled at 32 kHz), digitized
at 24-bits using PXI-4498 cards (National Instruments, Austin, TX). All procedures were
conducted in accordance with the ethical guidelines of the National Institutes of Health and
were approved by the Baylor College of Medicine IACUC. To obtain recordings from dorsal
lateral geniculate nucleus (LGN) of sufentanil-anaesthetised adult male marmoset monkey
(Callithrix jacchus), a craniotomy was made over the right LGN and a Neuronexus A16x2
probe (500um probe separation, 50um spacing between contact points on each shank) was
lowered into LGN and allowed to settle for at least 30 minutes before recording. Data were
band-pass filtered (0.3-5kHz, sampled at 24kHz), and digitized by a Tucker-Davis
Technologies RZ2 real time processor (see #dbr further details). All procedures were
approved by the University of Sydney Animal Ethics Committee and conform to Australian
National Health and Medical Research Council (NHMRC) policies on the use of animals in
neuroscience research.

Hybrid datasets

File format

To create the hybrid datasets, we first completed a full spike sorting of each dataset,
including manual verification. Five clusters were chosen from each dataset, corresponding to
neurons spanning the range of amplitudes and channel distributions observed in the data
(Figure 3A). The mean unfiltered waveform of each neuron was computed, its mean was
subtracted, and its value at each end was set to exactly zero by tapering with a Hamming
function. These “donor waveforms” were added at prescribed times to the raw unfiltered
data of the other “acceptor” recording. To simulate amplitude variability, we linearly scaled

each added waveform by a random factor chosen from the l\/§[,2,7 L\/ﬁ] causing

amplitudes to vary by a factor of two, which suffices to capture the variability typical of
bursting neurond’. The interspike intervals typical of bursting neurons were not simulated

as this does not affect the spike detection or clustering process; instead, hybrid spikes were
added regularly at rates in the range 2-4 spikes per second. To ensure that the simulated data
tested the ability of our software to realign spikes to subsample resolution, each added spike
was shifted by a random subsample offset using cubic spline interpolation. For simulations

of drifty cells, amplitude was as geometric random walk (i.e. the exponential of a Brownian
random walk), which was then normalized so that the mean amplitude remained the same as
its non-drifty counterpart.

To implement the software, we designed an HDF5-based file format to store raw data,
intermediate analysis results (such as extracted spike waveforms and feature vectors), as
well as final data such as spike times and cluster assignfiRefitse format makes use of
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HDFS5 links to allow a single, small file (the “.kwik file") containing all data required for
scientific analysis (e.g. spike times, cluster assignments, unit isolation quality measures).
Bulky raw data and intermediate processing steps such as feature vectors are stored in
separate files (the “.kwd” and “.kwx” files). This “detachable” format is designed for data
sharing applications, allowing users to download as much data as required for their needs. A
full specification of the format can be foundnétips://phycortexlab.net/format

Spike detection was implemented by SpikeDetekt, a custom program written in Python 2.7
using the packages NumPy, SciPy, and PyTables.

The first step of the program is to filter the raw voltage trace data to remove the low-
frequency local field potential (LFP). This is achieved with a 3rd order Butterworth filter

used in the forward-backward mode to ensure zero phase distortion. Filter parameters can be
specified by the user; for the analyses described here we used a band-pass filter of 500 Hz to
0.95*Nyquist.

The second step is threshold determination. Spike detection thresholds are specified as
multiples of the standard deviation of the filtered signal; at the option of the user, a single
threshold is used for all channels in order to avoid emphasizing noise from low-amplitude
channels. To boost execution speed while minimizing the chance of biased estimates, the
standard deviation is estimated from five data chunks of length 1 second each, picked
randomly from throughout the recording. The standard deviation is computed with a robust
estimator, median¥f)/.6745, to avoid contamination by spike waveforms.

The next step is spike detection. The spike detection code operates on consecutive chunks of
data (1s length) for memory efficiency. Spatiotemporally connected regions of weak

threshold crossing are detected using a non-recursive flood fill algorithm, with spatial
continuity defined using a user-specified adjacency graph. Only connected components for
which at least one point exceeds the strong threshold are kept for further analysis.

Spike alignment is computed based on a scaled and clipped transformation of the filtered
voltage /¢t,c)

Note thaty(Z 9 can never be negative within a spike, as the floodfill algorithm only finds
points for which (¢ g > 6, The center time for each spil&s computed as

—_ ZaoesP(t 0
ST S sVt o)

Nat NeurosciAuthor manuscript; available in PMC 2016 September 22.


http://https://phycortexlab.net/format

siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

Rossant et al.

KlustaKwik

Page 13

where ¢ 9 € Sdenotes the set of times and channels, for all points assigned to this spike by
the floodfill algorithm. Ifp= 1, this formula measures the spike’s center of mass; ffp =
it measures the time of the spike peak.

Spikes were realigned ¢ to subsample resolution using cubic spline interpolation (note

that the center time will, in general, not be an integer number of samples). Feature vectors
are computed for each channel separately by principal component analysis; the number of
features per channel is a user settable parameter, with default value 3. Finally, mask vectors
are computed for each spil&as zero for channels not appearing in the connected
component, and as the maximum scaled waveform for all channels inside the component:

m max ¥ (t,c)

©S t(te)es

To evaluate the performance of SpikeDetekt, required identifying which detected spikes
correspond to ground truth spikes. This was done with a dual criterion: the difference
between the detected time and ground truth needed to be less than 2 samples, and the
detected mask vectang needed to have a similarity to the ground truth mask vegtoof

at least 0.8, defined by the mask similarity measure

mg -1

Img|[mg|

Note that mask similarity cannot exceed 1, by the Cauchy-Schwartz inequality. The validity
of this criterion was verified by showing that detected spike timing jitter rapidly increased

for similarity threshold for values less than 0.8, but was insensitive to threshold value above
0.8. Once the detected spikes corresponding to ground truth had been identified, the four
measures in figure 3 were computed. This analysis used the Python library Joblib to prevent
unnecessary recomputation.

Automatic clustering was performed by KlustaKwik, a custom program written in C++. The
first version of this program was designed for tetrode data, implemented a hard EM
algorithm for maximume-likelihood fitting of a mixture of arbitrary-covariance Gaussians,

and was released in 2000 but not specifically described in a published manuscript. Here, we
have implemented several modifications of this software to enable automatic sorting of high-
count probe data. The program now implements a novel “masked EM algotRhm”

designed for high-dimensional classification, as well as other features such as cache
optimization resulting in a speed increase of over 10,000%.

The masked EM algorithm takes as input both feature vectors and mask vectors. It works by
fitting a mixture of Gaussians to a virtual dataset in which each feature vector is replaced by
a probability distribution:
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~ xn,S prOb mn,S
Tns ™ N(vn,o§> prob 1—m

n,S

Here,x, srepresents the" component of the feature vector for spiRem,, srepresents

the /" component of the mask vector for spiBeand/ (v, aﬁ) denotes a univariate
Gaussian distribution with mean and variance equal to those of the subthreshold noise
distribution of ther#" feature.

The masked EM algorithm consists of alternation of an “E step” in which each spike is
assigned to the cluster for which it has highest posterior probability, and an “M step” in
which the means and covariances of each cluster are estimated. We have derived analytic
formulas for the expectation of the cluster assignment probability used in the E-step, and the
cluster mean and variance used in the M step, over the virtual probability distrl%n,g:i%

Thus, explicit sampling from the virtual distribution does not need to be performed;
furthermore, these expectations can be computed much faster than those of the full EM
algorithm as they scale with the square of the number of unmasked features, rather than the
square of the total number of features.

KlustaKwik automatically determines the number of clusters that best fit the data,
determined using a penalty function that encodes a preference for fits with smaller numbers
of clusters. We have found a modification of the Bayesian Information Criterion to deal with
masked data works well in practié® Because the algorithm allows for dynamic splitting

and merging of clusters during the fitting process, a search for the optimal number of
clusters can be achieved in a single run of the algorithm. We have found that starting the
algorithm from an initial clustering determined heuristically from the mask vectors avoids
the problem of local maxima, and allows good results to be obtained from a single run.

KlustaViewa

Manual correction of automatic clustering is performed with KlustaViewa, a custom
program written in Python 2.7. The manual stage requires interactive visualization of very
large numbers of data points, for which existing libraries such as matplotlib were not
suitable. We therefore designed a new Python library for rapid interactive data visualization
named Galry*8. Galry leverages the computational power of modern graphics processing
units34 through the OpenGL graphics libraty High performance is achieved by porting
most visualization computations to the GPU using custom shaders, and by minimizing the
number of OpenGL API calls through batch rendering techniques.

To ensure rapid adoption by the experimental community, we designed KlustaViewa's user
interface by the integrating novel features necessary for high-count probes into a user
interface as similar as possible to existing manual spike sorting environments such as
Klusters13. In addition to data views familiar from previous spike sorting systems (such as
waveform, auto- and cross-correlograms, and similarity matrix), we implemented several
new features. The most important of these is the Wizard (described in the main text), that
automatically leads the user through the manual verification and merging process, while
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always allowing the user free access to all of the views familiar from standard spike sorting
systems. In addition, a number of enhancements were designed specifically to make the
sorting of high-count probe data tractable. These include features to allow display of
masking information; rapid and automatic display of the channels relevant to selected
clusters; transient color brushifiy and automatic downsampling to ensure low latency
display when dealing with very large datasets.

The Wizard is based on a metric of similarity for each pair of clusters. This was computed
by running a single step from the EM algorithm to compute the posterior probability for
assigning the mean of clust&o clustery:

_ wiN (pilps;Cy5)
U Spwge (14l i Cre)

Here w; represents the weight of clusjdi.e. the fraction of points already assigned to this
cluster);,; and C; represent its mean and covariance as computed by the M-step of the
masked EM algorithm. The quality of each clugteas defined as the diagonal elemgpt
i.e. the posterior probability for classifying clusfarmean as coming from clustéitself. A
high value fory; therefore indicates that clusjénas no close neighbors.

The difference between two clusteringsC", consisting ofk andK clusters, respectively,
and confusion matrix entriegy, - where measured using the Fowlkes-Mal®wiadex,

/W, W, Where:

2k ! (g — 1) /2
Spn'y (n'y —1) /2

k' k! (M — 1) /2
Seng(ng—1)/2 7

;X ,
Wi (C,C )= W»(C,C )=

M=k’ N k' =%k Mk, k=1,...K.k” =1,...,K’. Wy is the probability that a pair
of points which are in the same cluster under the clustérisglso in the same clusterdh
". Ws is the same with the two clusterings interchanged. The Fowlkes-Mallows index
symmetrizes these two asymmetric quantities by taking their geometric mean.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. High-count silicon probe recording
(a), Layout of the 32-site electrode array used to collect test #t&Hort segment of data

recorded in rat neocortex with this array. Color of traces indicates recording from the
corresponding colored site in (a). Black rectangles highlight action potential waveforms;
note the frequent occurrence of temporally overlapping spikes on separate recording
channels.
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Figure 2. Local spike detection algorithm
(a), Adjacency graph for the 32-channel prolty, Eegment of raw data showing two
simultaneous action potentials on spatially separated channels (scale bars indicate 0.5mV /
10 samples).d), High-pass filtered data shown in pseudocolor format (units of standard
deviation). Vertical lines on the colorbar indicate strong and weak thresBghisd 6,,
(respectively 4 and 2 times standard deviatiat)). Gray-scale representation showing

samples which cross the weak threshold (gray), and the strong threshold (@hiRgsqlts

of two-threshold flood fill algorithm, showing connected components corresponding to the
two spikes in orange and brown. Note that isolated weak threshold crossings resulting from
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noise are removed. White lines indicate alignment times of the two sgkéts€udocolor
representation of feature vectors for the two detected spikes (top and bottom). Each set of
three dots represents three principal components computed for the corresponding channel
(arbitrary units). Note the similarity of the feature vectors for these two simultaneous spikes
(top and bottom).d), Mask vectors obtained for the two detected spikes (top and bottom; 0
represents completely masked, 1 completely unmasked). Unlike the feature vectors, the
mask vectors for the two spikes differ. Each set of three dots represents the three identical
components of the mask vector for the corresponding channel.
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Figure 3. Evaluation of spike detection performance
(a), Waveforms of the 10 donor cells used to test spike detection performance, in order of

increasing peak amplitude (left to righ)),(Fraction of correctly detected spikes as a
function of strong thresholés (left), weak threshold,, (center), and power parameter
(right). Colored lines indicate performance for the correspondingly colored donor cell
waveform shown in A; black line indicates mean over all donor cells, Dependence of
the total number of detected events, timing jitter, and mask accuracy on the same three
parameters.
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Figure 4. Evaluation of automatic clustering performance
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(a), Receiver-Operating Characteristic (ROC) Curve showing the performance of the
Masked EM algorithm (blue) and Classical EM algorithm (red) on one of the 10 hybrid
datasets; each dot represents performance for a different value of the penalty parameter. The
cyan curve shows a theoretical upper bound for performance, the best ellipsoid error rate
(BEER) measure obtained by cross-validated supervised leafnjnllgan and standard

error of the total error (false discovery plus false positive) over all 10 hybrid datasets for
theoretical optimum (BEER measure), Masked EM and Classical EM algorithms. For each
dataset and measure, the parameter setting leading to best performance wey Effedt (

of varying the penalty parameter (as a multiple of the AIC penalty) on the total error for both
algorithms. The dotted line indicates the parameter value corresponding to BIC. Note that
the Masked EM algorithm performed well for all penalty valug)s. {The number of clusters
returned by the Masked EM algorithm as a function of the penalty parameter.
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Figure 5. The “Wizard” for computer-guided manual correction

(a), lllustration of the measure used to quantify cluster similgwjtyepresents the posterior
probability with which the EM algorithm would assign of the mean of clusteclustey;.

(b), To test this measure, the clusters corresponding to hybrid spikes were artificially cut into
halves of high and low amplitude. In each case, the similarity measure identified the second
half as the closest merge candidatg. The Wizard identifies the best unsorted cluster as the
one with highest quality (top), and finds the closest match to it using the similarity matrix.
(d), The Wizard algorithm. The best unsorted cluster and closest match are identified. The
operator can choose merge the closest match into the best unsorted, ignore the closest match,
or delete it by marking it as multiunit activity or noise; the wizard then presents the next
closest match to the operator (blue arrows). After a sufficient number of matches have been
presented, the operator can decide that no further potential matches could have come from
the same neuron, and either accept the best unsorted cluster as a well-isolated neuron, or
delete it as multiunit activity or noise. The wizard then finds the next best unsorted cluster to
present to the operator (orange arrows).
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Figure 6. Screenshot of the KlustaViewa graphical user interface
In order to make the decisions presented by the Wizard, the operator has access to

information including waveforms (center panel; gray waveforms correspond to masked
channels), principal component features (top right), auto- and cross-correlograms (bottom
right), and an automatically computed similarity metric for each pair of clusters (inset). To
enable rapid navigation, all views are integrated; for example, clicking on a particular
channel in the Waveform View will update other views to show the selected channels or
clusters.
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Figure 7. Consistency of manual curation across operators
(a), Performance of 8 human operators (5 experts, 3 novices) on a “drifty” hybrid cell

requiring manual curation (see supplementary figure 13b). A tick indicates correct merging
of the split hybrid cell, a cross indicates this merge was not perforbiedl. ¢onsistency of
assignments of multiple operators over all cells in this dataset. Each submatrix shows the
conditional probability of the first operator’s cluster assignments given the assignments of
the second operator (color scale at bottom of (H)).consistency of cluster assignments for
spikes marked as well-isolated by all operatas;donsistency of cluster assignments for
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spikes marked as well-isolated by at least one operajoicdnsistency of whether spikes

were marked as well-isolated by different operat@s)( Operator consistency for the

analyses of (b-d) was quantified using the Fowlkes-Mallows index, for which 1 represents
complete agreement and 0 complete disagreement. Note that while cluster assignments were
highly consistent between all expert operators, the operators were often inconsistent in their
judgements of which units were well-isolated.
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