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P
recision treatment of cancer relies on the detection of genetic 
alterations, which are diagnosed by molecular biology assays1. 
These tests can be a bottleneck in oncology workflows because 

of high turnaround time, tissue usage and costs2. Clinical guidelines 
recommend molecular testing of tumor tissue for most patients with 
advanced solid tumors. However, in most tumor types, routine test-
ing includes only a handful of alterations, such as KRAS, NRAS and 
BRAF mutations and microsatellite instability (MSI), in colorectal 
cancer3. While new studies identify more and more molecular fea-
tures of potential clinical relevance, current diagnostic workflows 
are not designed to incorporate an exponentially rising load of tests. 
For example, in colorectal cancer, previous studies have identified 
consensus molecular subtypes (CMSs)4 as a candidate biomarker, 
but sequencing costs and method complexity preclude widespread 
testing in clinical routine and clinical trials5. Therefore, there is a 
growing need to identify new, inexpensive and scalable biomarkers 
in medical oncology.

While comprehensive molecular and genetic tests are difficult 
to implement at scale, tissue sections stained with hematoxylin 
and eosin are ubiquitously available. We hypothesized that these 
routine tissue sections contain information about established and 
candidate biomarkers and that molecular biomarkers could be 
inferred directly from digitized whole-slide images (WSIs). The 
rationale for this hypothesis is that genetic changes in tumor cells 
cause functional changes, which can influence tumor cell morphol-
ogy6,7. In addition to such first-order genotype3phenotype cor-
relations, genetic changes in tumor cells can influence the tumor 
microenvironment, resulting in higher-order genotype3phenotype 
correlations. Specific examples for such correlations are known for 
MSI74a clinically approved biomarker for cancer immunotherapy 
in colorectal cancer8. In the case of MSI, the genotype3phenotype 
correlation is consistent enough to robustly infer the genotype just 
by observing morphological features in a histological image, as we 
have shown previously9. Other previous studies have identified 
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genotype3phenotype links for selected genetic features in lung can-
cer10,11, prostate cancer12, head and neck cancer13 and liver cancer14, 
among others. Building on these previous studies, we systematically 
investigated the presence of genotype3phenotype links for a wide 
range of clinically relevant molecular features across all major solid 
tumor types. Specifically, we asked which molecular features leave 
a strong enough footprint in histomorphology that they can be 
inferred from histology images alone with deep learning. We aimed 
to use deep learning in a pan-molecular, pan-cancer approach, with 
a focus on clinically relevant genetic molecular features. Such an 
approach could ultimately yield clinically useful biomarkers with 
favorable cost, time and material requirements. More specifically, 
this approach could guide a narrower indication for molecular test-
ing, increasing the pre-test probability of a given molecular feature. 
Independent of potential clinical application, inferring genetic 
changes from histology images could also elucidate biological 
mechanisms of downstream effects of molecular alterations in 
solid tumors. Therefore, we developed, optimized and externally 
validated a deep learning pipeline to determine molecular features 
directly from histology images.

Results
Optimization of deep learning for inference of genotype from 
histology. We hypothesized that deep learning can infer molecular 
alterations directly from routine histology images across multiple 
common solid tumor types. To test this, we developed, optimized 
and extensively validated a one-stop-shop workflow to train and 
evaluate deep learning networks (Fig. 1a,b). To select an efficient 
network model and to optimize the deep learning hyperparam-
eters, prediction of MSI in colorectal cancer was used as a clinically 
relevant benchmark task9. In this benchmark, we sampled a large 
hyperparameter space with different commonly used deep learning 
models9,10,13,15, which were modified specifically for this application. 
Unexpectedly, ShuffleNet164a lightweight neural network archi-
tecture4performed similarly to more complex networks includ-
ing the DenseNet17, Inception18 and ResNet19 networks, which have 
been used in many other studies20 (Fig. 1c). ShuffleNet showed high 
accuracy at a low training time (raw data in Supplementary Table 1;  
n = 426 patients in The Cancer Genome Atlas (TCGA) cohort). 
ShuffleNet is optimized for mobile devices, making this deep neu-
ral network architecture attractive for decentralized point-of-care 
image analyses or direct implementation in microscopes21. We 
externally validated the best ShuffleNet classifier by training on 
n = 426 patients in the TCGA colorectal cancer cohort9 and vali-
dating on n = 379 patients with available MSI status in the DACHS 
(8Darmkrebs: Chancen der Verhütung durch Screening9, which 
translates as 8colorectal cancer: chances for prevention through 
screening9) cohort9, reaching an area under the receiver operating 
curve (AUROC) of 0.89 (confidence interval, 0.8830.92). This rep-
resents an improvement over the previous best performance of 0.84 
in that dataset9, and supports the notion that ShuffleNet is an effi-
cient and powerful neural network model that can infer clinically 
relevant molecular changes directly from histology images.

Pan-cancer prediction of genetic variants from histology. Having 
thus identified a deep neural network model and a set of suitable  
hyperparameters, we systematically applied this approach to hundreds  
of molecular alterations in 14 major tumor types, and trained and 
evaluated deep learning networks by threefold cross-validation 
on each cohort. This yielded approximately 104 independently 
trained deep neural networks, which were systematically evaluated  
and compared across molecular features across cancer types. The  
full list of candidate mutations (Supplementary Table 1) included 
all point mutations targetable by Food and Drug Administration- 
approved drugs (level 1 evidence on www.oncokb.org; the  
20 most common mutations are shown in Fig. 1d). First, we trained 

deep neural networks to detect any sequence variants in these target  
genes. We found that in 13 out of 14 tested tumor types, the muta-
tion of one or more such genes could be inferred from histology 
images alone, with statistical significance after correction for mul-
tiple testing (Fig. 2a3n and Extended Data Fig. 1). In particular, in 
major cancer types such as lung adenocarcinoma, colorectal can-
cer, breast cancer and gastric cancer, alterations of several genes 
of particular clinical and/or biological examples were detectable  
(Fig. 2a3d). Examples include mutations in TP53, which could be 
significantly detected (P < 0.05 after FDR correction) in all four of 
these cancer types, as well as mutations of BRAF in colorectal can-
cer (colon adenocarcinoma (COAD) and rectum adenocarcinoma 
(READ) TCGA cohorts22; n = 555; Fig. 2b), MTOR4a candidate 
for targeted treatment234in gastric cancer (Fig. 2d), and FBXW7 
mutation in lung adenocarcinoma (LUAD TCGA cohort24; n = 457;  
Fig. 2a) and gastric cancer (stomach adenocarcinoma (STAD) 
TCGA cohort25; n = 321; Fig. 2d). Mutations of PIK3CA (which are 
directly targetable by a small molecule inhibitor26) were significantly 
detectable (P = 7 × 1039) in breast cancer (BRCA TCGA cohort27; 
n = 995; Fig. 2c) and gastric cancer (Fig. 2d). In addition, in breast 
cancer, mutations of MAP2K4 (which is a potential biomarker  
for response to MEK inhibitors28) were significantly detectable  
(P = 0.0008) (Fig. 2c). Among all tested tumor types, gastric cancer 
(Fig. 2d) and colorectal cancer (Fig. 2b) had the highest absolute 
number of detectable mutations. For all statistically significant fea-
tures, the mean cross-validated AUROC for the top eight mutations 
ranged from 0.6030.78 in lung adenocarcinoma (Extended Data 
Fig. 2a3h), from 0.6530.76 in colorectal cancer (Extended Data  
Fig. 2i3p), from 0.6230.78 in breast cancer (Extended Data Fig. 2q3x) 
and from 0.6630.78 in gastric cancer (Extended Data Fig. 3a3h). 
Beyond these four tumor types, a range of notable mutations could 
be detected in other tumor types. While in melanoma (skin cuta-
neous melanoma (SKCM) TCGA cohort29) primary tumors few 
mutations were detectable (Extended Data Fig. 3i3p), in melanoma 
metastases mutations in FBXW7 (P = 0.0129) and PIK3CA (P = 
0.0052) were significantly detectable (Fig. 2e and Extended Data 
Fig. 3q3x). In prostate cancer (prostate adenocarcinoma (PRAD) 
TCGA cohort30; n = 397 patients; Fig. 2f and Extended Data  
Fig. 4a3h), our method detected TP53 and FOXA1 mutations from 
histology, among others. In pancreatic adenocarcinoma (PAAD 
TCGA cohort31; n = 171 patients; Fig. 2g and Extended Data  
Fig. 4i3p), identifying KRAS wild-type patients is of high clinical 
relevance because these patients are potential candidates for tar-
geted treatment and our method significantly identified mutations 
in the KRAS gene in pancreatic cancer (P = 0.0016). Lung squamous 
cell carcinoma is known for its difficulty in molecular diagnosis and 
few molecularly or genetically targeted treatment options even in 
clinical trials. Thus, it is plausible that in this cancer type tumor his-
tomorphology is not well correlated to mutations, and correspond-
ingly, few mutations were significantly detectable in this tumor type 
in our experiments (lung squamous cell carcinoma (LUSC) TCGA 
cohort32; n = 413; Fig. 2h and Extended Data Fig. 4q3x) In hepato-
cellular carcinoma (liver hepatocellular carcinoma (LIHC) TCGA 
cohort33; n = 358 patients; Fig. 2i), the product of the ³-catenin gene 
(CTNNB1) is a key driver gene with broad prognostic and predic-
tive implications34, and its mutational status was highly significantly 
detected (P = 2 × 1037) from histology (Extended Data Fig. 5a3h). 
In papillary35 (Fig. 2j and Extended Data Fig. 5i3p) and clear cell36 
renal cell carcinoma (Fig. 2k and Extended Data Fig. 5q3x), altera-
tions in multiple genes including KRAS and PBRM were highly 
detectable, while in chromophobe37 renal cell carcinoma (Fig. 2l 
and Extended Data Fig. 6a3h) no genetic variants were significantly 
detectable, possibly due to a low patient number in this cohort. In 
head and neck squamous cell carcinoma (HNSC TCGA cohort38; 
n = 435 patients), the CASP8 gene, which is linked to resistance to 
cell death39, was significantly detected (P = 3 × 1036) (Fig. 2m and 
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Extended Data Fig. 6i3p). In cervical cancer (cervical squamous 
cell carcinoma and endocervical adenocarcinoma (CESC) TCGA 
cohort40; n = 261 patients), mutations in TCERG1, STK11 and 
AMER1, among others, were detectable with high AUROC values 
(Fig. 2n and Extended Data Fig. 6x3q).

Pan-cancer prediction of oncogenic drivers from histology. Not 
all genetic variants are causative of malignant processes. Therefore, 
we repeated the screening experiment, limiting mutations to con-
firmed or putative oncogenic drivers (Fig. 3a3n). With this cri-
terion, the absolute number of patients affected by a particular 
mutation was lower; thus, fewer genes met the threshold of at least 
four positive cases in a given tumor type. In contrast, we hypoth-
esized that oncogenic driver genes could leave a stronger pattern 
in histological morphology due to their higher biological relevance. 

Genetic variants in classical oncogenes such as TP53 and KRAS are 
almost always oncogenic drivers and, correspondingly, mutations  
of these genes reached similar prediction accuracy values in the 
8drivers only9 experiment compared with the 8all variants9 approach 
(Fig. 3a3n). For mutations in other genes, prediction accuracy 
increased when limited to oncogenic drivers. A notable example 
was EGFR in lung adenocarcinoma (Fig. 3a). In summary, these 
data show that deep learning can detect targetable and potentially 
targetable point mutations in a wide range of genes directly from 
histology across multiple prevalent tumor types.

Inference of molecular subtypes and gene expression signatures. 
In the next step, we asked whether established molecular subtypes 
and gene expression signatures of cancer and immune cells could be 
detected by deep learning. Compared with single-gene mutations, 
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Fig. 1 | Deep learning workflow for the prediction of molecular features from histology images. a, Training of the deep learning system comprised 

six steps: (1) patient cohorts were randomly split into three partitions for cross-validation of deep classifiers; (2) the tumor region on each WSI was 

tessellated into tiles; (3) up to 500 randomly chosen tiles were collected; (4) tiles from patients in the training partitions were collected and classes 

were equalized by random undersampling; (5) all training tiles were used to train a deep neural network (pre-trained on a non-medical task); and (6) 

classification performance was evaluated on patients from the test partition. b, For patient-level inference of molecular labels in patients not seen during 

training, three successive steps were used: (1) tiles were generated from the tumor region on WSIs; (2) a prediction was made for each tile; and (3) 

tile-level class predictions were pooled on the patient level. c, Hyperparameters of the deep learning system were optimized in a benchmark task (the 

prediction of MSI in colorectal cancer). The opacity of each point corresponds to the number of trainable layers. ShuffleNet4a lightweight neural network 

architecture4was selected as a highly efficient network model. d, Pan-cancer application. This workflow was subsequently applied for the prediction of 

four types of molecular features across 14 cancer types. In particular, this included genetic mutations. The distribution of the 20 most common mutations 

among all analyzed mutations is shown for each tumor type. Icons are from Twitter Twemoji (CC-BY 4.0 license).
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these changes occur at a higher functional level and we hypothe-
sized that their morphological impact could be larger than that of 
single mutations. To address this hypothesis, we chose features with 
known biological and potential clinical significance. A major group 
of such features are immune-related gene expression signatures41 
of CD8-positive lymphocytes and macrophages, cell proliferation, 
interferon-³ signaling and transforming growth factor-³ signaling 
(a full list is available in Supplementary Table 1). These biological 
processes are involved in response to cancer treatment, including 
immunotherapy. Detecting their morphological correlates in histol-
ogy images could facilitate the development of more nuanced treat-
ment strategies. Indeed, across all investigated tumor types, we saw 
that these high-level biological features had much greater predictabil-
ity than genetic variants or driver mutations (Fig. 4a3d and Extended 
Data Fig. 1). Again, AUROC values for significantly (P < 0.05 after 
false discovery rate (FDR) correction) predictable features were 
highest in lung adenocarcinoma (Fig. 4e), colorectal cancer (Fig. 4f), 
breast cancer (Fig. 4g) and gastric cancer (Fig. 4h). In lung adeno-
carcinoma, signatures of proliferation, macrophage infiltration and 
T-lymphocyte infiltration were significantly detectable from images 
with high AUROCs (Fig. 4e). Similarly, significant AUROCs for 
these biomarkers were achieved in colorectal cancer (Fig. 4f), breast 

cancer (Fig. 4g) and gastric cancer (Fig. 4h). In gastric cancer, we 
additionally found that a signature of stem cell properties (stem-
ness) was highly detectable directly from histology images (Fig. 4h). 
Recent studies have clustered tumors into comprehensive molecular 
subtypes41. We found that our method could detect TCGA molecular 
subtypes41 with up to AUROC 0.74 in lung adenocarcinoma (Fig. 4e), 
pan-gastrointestinal subtypes42 with up to AUROC 0.76 in colorectal 
cancer (Fig. 4f), and PAM50 subtypes with up to AUROC 0.78 in 
breast cancer (Fig. 4g), among other molecular subtypes. These find-
ings could open up new options for clinical trials of cancer. While 
accumulating evidence shows that such molecular clusters of tumors 
reflect biologically distinct groups and are correlated with clini-
cal outcome, deep molecular classification of these tumors is usu-
ally not available in clinical routine or clinical trials. Detecting these 
subtypes merely from histology would allow for these subtypes to 
be analyzed in clinical trials directly from broadly available routine 
material, potentially helping to identify new biomarkers for treat-
ment response, or to guide specific molecular testing.

Prediction of standard histological biomarkers with deep learn-
ing. To comprehensively evaluate the potential clinical use of our 
deep learning pipeline, we investigated classification accuracy 
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Fig. 2 | Inference of genetic mutations from histological images. A deep learning system was trained to predict the mutational status (mutated or wild 

type) of relevant genes in 14 cancer types and was evaluated by cross-validation. All mutations, including variants of unknown significance, were included 

in the mutated class. For each gene, the patient-level test set performance is shown as the AUROC, with two-sided t-test P)value for prediction scores 

corrected for multiple testing (FDR). The significance level of 0.05 is marked with a solid horizontal line. P)values smaller than 1025 were set to 1025. On the 

right-hand side of each panel, a kernel density estimate shows the distribution of all plotted data points. n denotes the number of patients with available 

genetic information and matched histology images in each tumor type. a3d, In lung adenocarcinoma (a), colorectal cancer (b), breast cancer (c) and 

gastric cancer (d), a number of relevant genes were significantly predictable (P < 0.05) from histology alone, including key oncogenic drivers such as 

TP53, BRAF and MTOR. e3n, In all other tested tumor types (that is, melanoma (e), prostate (f), pancreatic (g), lung squamous cell (h), hepatocellular (i), 

renal papillary (j), renal clear cell (k), renal chromophobe (l), head and neck (m) and cervical (n)), mutational status was predictable for some genes, with 

notable examples including KRAS in pancreatic cancer, CTNNB1 in hepatocellular carcinoma and TP53 and CASP8 in head and neck cancer.
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for standard histopathological biomarkers. We found that deep 
learning could predict most of these biomarkers for breast cancer  
(Fig. 4c,i), gastric cancer (Fig. 4d,j) and other tumor types.  
In particular, the status of hormone receptors was predictable 
from routine histology in breast cancer, with an AUROC of 0.82 
for estrogen receptors and 0.74 for progesterone receptors (Fig. 4i). 
Together, these results show that deep learning-based inference of 
genetic alterations, high-level molecular alterations and established 
biomarkers from routine diagnostic histology slides is feasible.

Evaluation of alternative approaches. Deep learning-based infer-
ence of molecular features from histology is a relatively novel field 
of research and it can be anticipated that technical improvements  
can further improve prediction performance. We quantified the 
effect of alternative technical approaches in the colorectal can-
cer cohort (COAD and READ TCGA cohorts). First, we investi-
gated the role of color normalization of tiles. In a head-to-head 
comparison with the baseline approach, we found a tendency of  
Macenko9s43 color normalization to improve classifier perfor-
mance for mutation prediction but not for the prediction of sub-
types or gene expression signatures (Extended Data Fig. 7a3c). 
Second, we investigated a weakly supervised approach to our base-
line of expert-annotated tumor regions and found that the weakly 
supervised approach was only slightly inferior to manual anno-
tation (Extended Data Fig. 8a3c). Third, we analyzed prediction  

performance on frozen slides compared with diagnostic slides. 
While frozen slides are not generally available in a clinical setting, 
the TCGA database provides an opportunity to perform such a 
direct comparison. In a weakly supervised experiment, we found 
that the prediction power for driver genes was on par, but the predic-
tion power for genetic variants and high-level subtypes and signa-
tures was better in frozen slides than in diagnostic slides (Extended 
Data Fig. 9a3c). These data provide quantitative guidance for future 
large-scale validation studies.

External validation of the classification results. Deep learning 
approaches to a single dataset are prone to overfit and should be 
validated in external populations before clinical deployment. For 
external validation of our method, we used routine hematoxylin 
and eosin slides of n = 408 patients with colorectal cancer from the 
DACHS study for whom BRAF mutational status and CpG island 
methylator phenotype (CIMP) was available. We trained deep 
learning classifiers for BRAF and CIMP on TCGA colorectal cancer 
samples and evaluated the patient-level accuracy on DACHS. Both 
features were statistically significantly detectable from DACHS 
hematoxylin and eosin images alone. For BRAF mutants, the 
AUROC was 0.77 (0.6430.82; P < 1025), whereas for CIMP-high, the 
AUROC was 0.66 (0.5630.72; P < 1025). These data show that deep 
learning-based prediction of clinically relevant genetic features can 
generalize to external patient populations.
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Fig. 3 | Inference of putative oncogenic drivers from histological images. A deep learning system was trained to predict oncogenic driver genes from 

histology. Only putative and confirmed drivers were included, and variants of unknown significance were pooled with the wild-type class. On the 

right-hand side of each panel, a kernel density estimate shows the distribution of all plotted data points. n denotes the number of patients with available 

genetic information and matched histology images in each tumor type. The layout of this figure corresponds to that of Fig. 2. a3n, This process (in lung 

adenocarcinoma (a), colorectal cancer (b), breast cancer (c), gastric cancer (d), melanoma (e), prostate cancer (f), pancreatic cancer (g), lung squamous 

cell carcinoma (h), hepatocellular carcinoma (i), renal papillary carcinoma (j), renal clear cell carcinoma (k), renal chromophobe carcinoma (l), head and 

neck cancer (m) and cervical cancer (n)) uncovered the significant predictability of multiple oncogenic drivers, including EGFR, BRAF and TP53.
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Discussion
Image-based genetic testing as a clinical and research tool. Our 
results show the feasibility of pan-cancer deep learning-based infer-
ence of a broad range of molecular and genetic features directly 

from histological images. We show that a unified workflow yields 
reliably high performance across multiple clinically relevant sce-
narios without the need to tune technical parameters to a specific 
molecular target. Our systematic screening approach identifies 
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Fig. 4 | Inference of molecular subtypes, gene expression signatures and standard biomarkers directly from histology. In addition to the prediction of 

single-gene mutations, the capability of deep learning to infer high-level molecular features was systematically assessed. a3d, In lung (a), colorectal (b), 

breast (c) and gastric cancer (d), gene expression signatures (such as TCGA molecular subtype in any tumor type) and standard-of-care features (such 

as hormone receptor status in breast cancer) were highly predictable from histology alone, as shown by the distribution of two-sided t-test FDR-corrected 

P)values as visualized by a kernel density estimate. Individual data points are shown in Extended Data Figs. 236. e3h, Gene expression signatures (in lung  

(e), colorectal (f), breast (g) and gastric cancer (h)) for proliferation (Prolif), wound healing (WoundHeal), macrophage infiltration (Mcrphg), homologous 

repair deficiency (HRD), CD8-positive lymphocyte (LymCD8), TCGA molecular subtypes (LUAD-136), pan-gastrointestinal (GI) molecular subtypes, 

CMSs, PAM50 subtypes and other key molecular features were highly predictable across multiple tumor types. Mean patient-level AUROC values are 

shown with bootstrapped confidence intervals (error bars). Asterisks denote a two-sided t-test FDR-corrected P)value of <0.05. n refers to the number  

of patients. i,j, Standard-of-care biomarkers, including estrogen receptor (ER) and progesterone receptor (PR) status, in breast cancer (i) and gastric 

cancer (j). In gastric cancer (j), pathologic subtype and MSI were highly predictable from routine histology alone by deep learning. Solid vertical line  

(e3j) indicates AUROC = 0.5. hi, high; lo, low; neg, negative; pos, positive; Basal, breast cancer expression subtype basal; CIMP-L, hypermethylation 

category low CpG island methylator phenotype; CIN, chromosomally instable subtype; CMS, consensus molecular subtype; ER, estrogen receptor; 

GI, gastrointestinal; GS, genome stable subtype; HER2, human epidermal growth factor receptor 2; HM-indel, hypermutated indel subtype; HM-SNV, 
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proliferation sigature; Signet, signet ring cell differentiation; TGFb, transforming growth factor-³ response signature; WntBetaCat, Wnt3³-catenin signaling 

signature; WoundHeal, wound healing signature.
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candidate genetic variants, driver genes, gene expression signatures 
and standard-of-care features that can be inferred from histology 
images, opening up perspectives for large-scale validation of these 
candidate markers. As a large-scale, systematic screening study, this 
work identifies a number of mutations that are significantly linked 
to a detectable phenotype in histological images, including those in 
key oncogenic pathways including the products of TP53, FBXW7, 
KRAS, BRAF and CTNNB1. In addition to individually mutated 
genes, our data show that higher-level gene expression clusters or 
signatures can be inferred from histological images. Many of these 

clusters represent groups of patients with distinct and well-described 
cancer biology, such as CMSs in colorectal cancer. By linking these 
molecularly defined groups to specific histological image features, 
our method constitutes a tool to decipher downstream biological 
effects of molecular alterations in solid tumors. In an external val-
idation cohort, we show that the models trained on images from 
the TCGA archive generalize to external patients, demonstrat-
ing the potential of applying these methods to routine material 
from real-world clinical cohorts. Of note, additional retrospective 
and prospective validation and regulatory approval is needed for 
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Fig. 5 | Explainability of deep learning-based analysis of histological images. Deep learning-based predictions were visualized through genotype maps 

and comparison of highly ranked image tiles. a3e, Prediction maps for CMS1 (b), CMS2 (c), CMS3 (d) and CMS4 (e) from a colorectal cancer image (a) 

show spatially resolved prediction scores, unveiling the intratumor heterogeneity of predicted genotype. As a generic tool, this visualization approach 

allows us to identify spatial regions associated with a molecular feature. In this patient, the correct prediction of CMS4 showed that deep learning  

robustly predicts CMSs from histology alone while highlighting potential intratumor heterogeneity. f3i, For each of the CMS classes (CMS1 (f), CMS2 (g), 

CMS3 (h) and CMS4 (i)), the most highly scored test set tiles are shown, enabling correlation of deep learning predictions with histopathological features 

at high resolution. In this case, highly predicted CMS1 tiles contain numerous tumor-infiltrating lymphocytes, whereas predicted CMS4 tiles contain 

abundant stroma, consistent with previous studies. j,k, Highly scored tiles in the external test cohort DACHS for the prediction of the BRAF mutation 

versus the wild type.
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histology-based deep learning methods to be implemented in clini-
cal workflows. An example for clinical implementation would be 
their use as pre-screening tools to enrich patient populations for 
specific molecular testing. While it is expected that the first applica-
tions of deep learning technology in routine workflows will relate 
to the automatic identification of tumor tissues for the selection of 
specimens or regions of interest, our method could be easily added 
to such digital pathology workflows, providing a strong additional 
incentive for digitization of histopathology.

Limitations. Currently, a limitation of our method is the low 
AUROC values for some molecular features (Figs. 2 and 3). A strat-
egy to increase the diagnostic performance would be re-training on 
larger patient cohorts. Re-training can be expected to boost perfor-
mance because previous studies have shown that the performance of 
deep learning systems in histopathology scales with the number of 
patients in the training cohort15. In addition, the performance of deep 
learning systems could potentially be improved by technical modifi-
cations. Our systematic evaluation of alternative technical approaches 
provides guidance for this on multiple levels. First, regarding the 
choice of neural network models, our results show that lightweight 
neural network models perform on par with more complex mod-
els, facilitating further evaluation of these methods on decentralized 
hardware, including desktop or ultimately mobile hardware. While 
this finding is based on a clinically relevant benchmark task and gen-
eralizes to an external population, we cannot exclude that other net-
work models perform better in other histology applications. Second, 
regarding the type of input image data, other studies in digital pathol-
ogy have used frozen histology sections10. In contrast, our baseline 

workflow was based on formalin-fixed, paraffin-embedded (FFPE) 
tissue slides (labeled as diagnostic slides in the TCGA archive) due to 
their clinical relevance. In clinical settings, frozen specimens consti-
tute only a small fraction of pathology samples; therefore, establish-
ing methods on FFPE material is paramount for large-scale clinical 
validation. Our head-to-head comparison showed that molecular 
inference generally works better on frozen slides, which is a limitation 
of the FFPE-based method. Further studies are needed to determine 
the reasons for this observation. Lastly, our baseline method relied on 
expert annotations of tumor tissue, constraining deep learning mod-
els to learn from invasive tumor tissue only. The rationale behind 
this design was that despite advances in computer vision, expert 
annotation of tumor tissue remains the gold standard in histopathol-
ogy studies. Yet, in a head-to-head comparison, a weakly supervised 
approach without any manual annotation did not markedly reduce 
performance, demonstrating the feasibility of even simpler data pre-
processing pipelines. Ultimately, fully automatic workflows can be 
expected to be superior to manual workflows in terms of scalability 
and reproducibility. We have publicly released all of the source codes 
of our method, enabling further optimization and validation on a 
larger scale (see 8Code availability9).

Deciphering genotype–phenotype links. Beyond being a poten-
tially useful tool for clinical applications, deep learning-based 
inference of molecular features from morphology could shed light 
on more fundamental properties of cancer biology. Our study  
systematically screens hundreds of molecular alterations and  
identifies candidates linked to detectable patterns in histology 
images. These patterns can be visualized through prediction maps 
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(Fig. 5a3e). Such spatialization of genetic predictions is a key aspect 
lacking in conventional bulk genetic tests of tumors, and could be 
useful to trace back molecular alterations to specific spatial regions. 
An alternative approach to understanding deep learning-based  
predictions is through visualization of highly ranked image tiles 
(Fig. 5f3k). This approach can serve as a plausibility control and 
may help to discover new morphological features. Indeed, highly 
ranked tiles of CMS classes in colorectal cancer showed poorly 
differentiated tumors in CMS1 tiles (Fig. 5f), well-differentiated 
glands for CMS233 (Fig. 5g,h) and highly stromal tiles for CMS4 
(Fig. 5i). These patterns correspond to known biological processes 
underlying CMS subclasses, corroborating the assumption that 
our deep learning system detects biologically meaningful features. 
Similarly, visualizing histomorphology in the highest-predicted tiles 
in patients with a BRAF mutation in the validation cohort (Fig. 5j,k) 
showed poorly differentiated areas and mucinous areas as recurring 
features in BRAF mutant image tiles, which is consistent with pre-
vious studies44. Visualizing highly predicted tiles in gastric cancer 
(Fig. 6a3h) highlighted highly cellular areas as correlates of a pro-
liferation gene expression signature, but at the same time identified 
patterns for mutations (for example, in AMER1 and MTOR) that 
could help to form new hypotheses on how these specific muta-
tions influence cancer cell behavior and morphology. Interestingly, 
the prediction performance markedly varied between the 14 differ-
ent types of cancer (Fig. 2 and Extended Data Fig. 1). Variations in 
sample size between the cohorts could explain some of these dif-
ferences, but additional biological effects could contribute to this. 
One hypothesis is that tumor types with few clinically targetable 
mutations (for example, lung squamous cell cancer and pancreatic 
cancer) also display few detectable mutations. Further studies are 
warranted to investigate this.

Conclusion
Together, our results show that molecular changes in solid tumors 
can be inferred from routine histology alone with deep learning. 
This could be a useful tool for objectively elucidating genotype3
phenotype relationships in cancer, and ultimately could be used as a 
low-cost biomarker in clinical trials and routine clinical workflows.

Methods
Patient cohorts and ethics. All experiments were conducted in accordance with 
the Declaration of Helsinki and the International Ethical Guidelines for Biomedical 
Research Involving Human Subjects. Anonymized scanned WSIs were retrieved 
from the TCGA project through the Genomic Data Commons Portal (https://
portal.gdc.cancer.gov/). We applied our method to 14 of the most common 
solid tumor types: breast (BRCA)27, cervical (CESC)40, colorectal (COAD and 
READ)22, gastric (STAD)25, head and neck (HNSC)38, hepatocellular (LIHC)33, 
lung adenocarcinoma (LUAD)24, lung squamous (LUSC)32, melanoma (SKCM)29, 
pancreatic (PAAD)31, prostate (PRAD)30, renal cell chromophobe (KICH)37, renal 
cell clear cell (KIRC)36 and renal cell papillary cancer (KIRP)35. Melanoma tissue 
slides in the TCGA database comprised primary tumor samples as well as metastasis 
tissue. Vese groups were analyzed separately. For external validation, we acquired 
colorectal cancer tissue samples from the DACHS study45,46, which were retrieved 
from the tissue bank of the National Center for Tumor Diseases (NCT; Heidelberg, 
Germany), as described before9. Ethics oversight of the TCGA study is described at 
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/
tcga/history/policies and ethical approval of the DACHS study was given by the 
ethics committee of the Medical Faculty of the University of Heidelberg. Informed 
consent was obtained by all participants in the TCGA and DACHS studies.

Molecular labels. The aim of this study was to predict clinically relevant 
features, including genetic alterations, directly from routine histology slides. 
We systematically applied this screening approach to four groups of molecular 
alterations. First, we used single-gene mutations, considering any genetic variant. 
We used the most commonly mutated genes in the respective tumor types (derived 
from the cBioPortal database47,48 at http://cbioportal.org) and clinically targetable 
genes (level 1 genes from OncoKB at http://www.oncokb.org; Pan-Cancer Atlas 
Project49). We required each mutation to affect at least four patients in a given 
cohort. Second, we repeated the analysis on putative and confirmed oncogenic 
driver mutations only, as defined in OncoKB. Third, we aimed to predict gene 
expression subtypes, relevant gene expression signatures and immune cell gene 

expression signatures derived from systematic studies41,42,50. Fourth, we used 
standard-of-care features derived from the TCGA database (data at http://portal.
gdc.cancer.gov), including hormone receptor status in breast cancer. All labels 
(genetic variants, driver mutations, signatures and standard features) are listed in 
Supplementary Table 1. For each individual target label in each tumor type and each 
cross-validation run, we re-trained a single deep neural network, using identical 
hyperparameters. Features with continuous values were binarized at the mean.

Image preprocessing. Scanned WSIs of diagnostic tissue slides (FFPE tissue) 
stained with hematoxylin and eosin were acquired in SVS format. All images were 
downsampled to 20× magnification, corresponding to 0.5 µm px21. Each WSI was 
manually reviewed and the tumor area was annotated under direct supervision of 
a specialty pathologist. During annotation, all observers were blinded with regard 
to any molecular or clinical feature. Only those images containing at least 1 mm2 
contiguous tumor tissue were used for downstream analysis. In total, 6% of WSIs, 
corresponding to 5% of patients, were excluded due to technical artefacts or a lack 
of tumor (Supplementary Table 2). Tumor tissue on all other slides was tessellated 
into square tiles of 512 px × 512 px edge length, corresponding to 256 µm × 256 µm 
at a resolution of 0.5 µm px21. Tiles with more than 50% background were 
discarded. Background pixels were defined by a brightness of >0.86 (220/255). 
For the benchmark task (identification of an optimum neural network model), 
these images were resized to 224 px × 224 px (at 1.14 µm px21) to be consistent 
with a previous study9. All steps in the data preprocessing pipeline (including 
preprocessing of images and preprocessing of metadata) are documented in 
detail in our in-house manual for data preparation, which is publicly available 
at https://doi.org/10.5281/zenodo.3694994. All methods for WSI processing, 
including tessellation of images and visualization of spatial activation maps, were 
implemented in QuPath51 version 0.1.2 in Groovy (http://qupath.github.io).

Patient-level cross-validation. Aiming to develop a one-stop-shop method for 
systematic discovery of genotype3phenotype links in multiple cancer types, we 
developed a reusable pipeline of data processing steps. One or more WSIs per 
patient were collected and tumor regions in these images were tessellated into tiles. 
All tiles inherited the molecular label of their parent patient. Before training, the 
patient cohort was randomly split into three partitions, keeping the target labels 
balanced between partitions. Neural networks were trained on two partitions each 
and subsequently evaluated on the third partition. Thus, no tiles from a given 
patient were ever part of a training set and a test set for the same classifier. Before 
training, tile libraries were randomly undersampled in such a way that the number 
of tiles per label was identical for each label (Fig. 1a).

Neural network training, model selection and hyperparameter optimization. 
Deep neural networks were trained on image tiles with the aim of predicting 
molecular labels. All neural networks were pre-trained on the ImageNet database, 
as described previously9, and were specifically modified for the classification task  
at hand by replacing the three top layers with a 1,000-neuron fully connected  
layer, a softmax layer and a classification layer. For training, we used on-the-fly 
data augmentation (random horizontal and vertical reflection) to achieve 
rotational invariance of the classifiers. Hyperparameter selection was performed 
for five commonly used deep neural networks: ResNet-18, AlexNet, Inception-V3, 
DenseNet-201 and ShuffleNet. The sampled hyperparameter space was as follows: 
learning rate: 5 × 1025 and 1 × 1024; maximum number of tiles per WSI: 250, 500 
and 750; number of trainable layers: 10, 20 and 30. We trained for four epochs with 
a mini-batch size of 512, similar to previous experiments9. As a benchmark task, we 
used MSI detection in colorectal cancer as described before9.

Inference of molecular status. During inference, a categorical prediction was 
made for each tile by the neural network (Fig. 1b). The percentage of positive 
predicted tiles for each class was regarded as a probability score for each patient. 
This score was used as the free variable for a receiver operating characteristic 
analysis, with AUROC being the primary endpoint for each target feature.

Alternative approaches. In our baseline approach, image tiles from manually 
annotated tumor regions on FFPE slides (diagnostic slides) were used. This 
approach was compared with several alternative approaches, as shown in Extended 
Data Figs. 739. The first alternative approach used color normalization of image 
tiles with the Macenko method43 to mitigate differences in staining intensity and 
hue (Extended Data Fig. 7). Some previous studies have used color normalization 
for deep learning9, while other studies have shown that color normalization 
can bias histology image classification52. The second alternative approach we 
investigated was to use tiles from the whole slide, as opposed to the tumor region 
only. In this weakly supervised approach, many tiles without invasive cancer tissue 
were present in the training and inference sets (Extended Data Fig. 8). The third 
alternative approach was to use frozen slides as opposed to FFPE slides in a weakly 
supervised way (Extended Data Fig. 9).

Statistics and reproducibility. AUROC values are reported as means with a 
confidence interval representing the lower and upper range of a 10× bootstrapped 
experiment. To quantify whether predictions for different classes of patients 
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were statistically significant, the probability scores for patients in a given class 
were compared with the probability scores of all other patients. The statistical 
significance of these differences was assessed with a two-sided t-test with a 
pre-defined significance level of 0.05. To compensate for the large number of tested 
hypotheses in this study, we performed FDR correction, using the Benjamini3
Hochberg method, on all P values across all cancer types. All P values smaller 
than 1035 after FDR correction are reported as 1025. Statistical methods are further 
described in Extended Data Fig. 10a3c. The number of tiles generated per WSI is 
shown in Extended Data Fig. 10d. No statistical method was used to predetermine 
sample size. The investigators were blinded to the molecular status of samples 
during manual annotation, image processing procedures and outcome assessment. 
Source codes are publicly available, allowing replication of our findings. The 
investigators re-ran the computer codes three times, receiving identical results.

Implementation and hardware. Training and inference were performed on our 
local computing cluster on ten Nvidia RTX graphics-processing units (GPUs), each 
with 24 GB of GPU random-access memory. The cumulative computing time for 
all experiments within this study was approximately 12,000 GPU hours. All deep 
learning algorithms were implemented in MATLAB R2019a (MathWorks).

External validation. To investigate whether complex deep learning biomarkers 
generalize to external patient cohorts, we trained deep learning classifiers on all 
TCGA samples of a given tumor type and externally validated the predictions in 
patient cohorts from our respective institutions. External validation was performed 
for BRAF mutation status and CIMP in colorectal cancer in n = 408 patients4a 
subset of the multicenter DACHS study from whom data were previously collected, 
as described9. BRAF and CIMP were chosen as validation markers because of their 
biological relevance and the availability of robust measurements of these markers 
in the DACHS cohort.

Feature visualization. To visualize the deep learning predictions and make them 
understandable to human observers, we used two approaches. First, we rendered 
the tile-level soft predictions for each class as activation maps, visualizing prediction 
scores as a heatmap overlay on the original histology image. Second, we identified 
the highest-predicted tiles of the highest-predicted true positive patients for each 
class, allowing observers to identify histological patterns that were correlated with 
a molecular feature. These approaches were designed to allow human observers to 
identify which morphological features deep learning classifiers were most sensitive to.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data, including histological images and information about the age and sex of 
the participants from the TCGA database are available at https://portal.gdc.cancer.
gov/. Genetic data for patients in the TCGA cohorts are available at https://portal.
gdc.cancer.gov/ and https://cbioportal.org. Raw data for the DACHS cohort are 
stored and administered by the DACHS consortium (more information is available 
from http://dachs.dkfz.org/dachs/). The corresponding authors of this study are 
not involved in data sharing decisions of the DACHS consortium. All other data 
supporting the findings of this study are available from the corresponding author 
upon reasonable request. Source data are provided with this paper.

Code availability
All source codes are available under an open-source license at https://github.com/
jnkather/DeepHistology/releases/tag/v0.2.
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