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Pan-cancer image-based detection of clinically
actionable genetic alterations

Jakob Nikolas Kather ®'23X, LaraR.Heij*>¢, Heikel. Grabsch®©7”#, ChiaraLoeffler', Amelie Echle’,
Hannah Sophie Muti', Jeremias Krause', Jan M. Niehues', Kai A.J. Sommer!, Peter Bankhead®,
LoesF.S.Kooreman’, Jefree J. Schulte ®°, Nicole A. Cipriani©'°, Roman D.Buelow ®5, Peter Boors,
Nadina Ortiz-Briichle ®¢, Andrew M. Hanby?, Valerie Speirs ©", SaraKochanny'?, Akash Patnaik?,
Andrew Srisuwananukorn®™, Hermann Brenner?'*'>, Michael Hoffmeister'®, Piet A.van denBrandt®,
Dirk Jager?3, Christian Trautwein’, Alexander T.Pearson ©'?°2 and Tom Luedde ©718192<

Molecular alterations in cancer can cause phenotypic changes in tumor cells and their microenvironment. Routine histopa-
thology tissue slides, which are ubiquitously available, can reflect such morphological changes. Here, we show that deep
learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, gene expression signatures and
standard pathology biomarkers directly from routine histology. We developed, optimized, validated and publicly released
a one-stop-shop workflow and applied it to tissue slides of more than 5,000 patients across multiple solid tumors. Our
findings show that a single deep learning algorithm can be trained to predict a wide range of molecular alterations from rou-
tine, paraffin-embedded histology slides stained with hematoxylin and eosin. These predictions generalize to other populations
and are spatially resolved. Our method can be implemented on mobile hardware, potentially enabling point-of-care diagnos-
tics for personalized cancer treatment. More generally, this approach could elucidate and quantify genotype-phenotype links
in cancer.

alterations, which are diagnosed by molecular biology assays'.

These tests can be a bottleneck in oncology workflows because
of high turnaround time, tissue usage and costs®. Clinical guidelines
recommend molecular testing of tumor tissue for most patients with
advanced solid tumors. However, in most tumor types, routine test-
ing includes only a handful of alterations, such as KRAS, NRAS and
BRAF mutations and microsatellite instability (MSI), in colorectal
cancer’. While new studies identify more and more molecular fea-
tures of potential clinical relevance, current diagnostic workflows
are not designed to incorporate an exponentially rising load of tests.
For example, in colorectal cancer, previous studies have identified
consensus molecular subtypes (CMSs)* as a candidate biomarker,
but sequencing costs and method complexity preclude widespread
testing in clinical routine and clinical trials’. Therefore, there is a
growing need to identify new, inexpensive and scalable biomarkers
in medical oncology.

P recision treatment of cancer relies on the detection of genetic

While comprehensive molecular and genetic tests are difficult
to implement at scale, tissue sections stained with hematoxylin
and eosin are ubiquitously available. We hypothesized that these
routine tissue sections contain information about established and
candidate biomarkers and that molecular biomarkers could be
inferred directly from digitized whole-slide images (WSIs). The
rationale for this hypothesis is that genetic changes in tumor cells
cause functional changes, which can influence tumor cell morphol-
ogy®’. In addition to such first-order genotype-phenotype cor-
relations, genetic changes in tumor cells can influence the tumor
microenvironment, resulting in higher-order genotype-phenotype
correlations. Specific examples for such correlations are known for
MSI’—a clinically approved biomarker for cancer immunotherapy
in colorectal cancer®. In the case of MSI, the genotype-phenotype
correlation is consistent enough to robustly infer the genotype just
by observing morphological features in a histological image, as we
have shown previously’. Other previous studies have identified
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genotype-phenotype links for selected genetic features in lung can-
cer'®!, prostate cancer'?, head and neck cancer” and liver cancer',
among others. Building on these previous studies, we systematically
investigated the presence of genotype-phenotype links for a wide
range of clinically relevant molecular features across all major solid
tumor types. Specifically, we asked which molecular features leave
a strong enough footprint in histomorphology that they can be
inferred from histology images alone with deep learning. We aimed
to use deep learning in a pan-molecular, pan-cancer approach, with
a focus on clinically relevant genetic molecular features. Such an
approach could ultimately yield clinically useful biomarkers with
favorable cost, time and material requirements. More specifically,
this approach could guide a narrower indication for molecular test-
ing, increasing the pre-test probability of a given molecular feature.
Independent of potential clinical application, inferring genetic
changes from histology images could also elucidate biological
mechanisms of downstream effects of molecular alterations in
solid tumors. Therefore, we developed, optimized and externally
validated a deep learning pipeline to determine molecular features
directly from histology images.

Results

Optimization of deep learning for inference of genotype from
histology. We hypothesized that deep learning can infer molecular
alterations directly from routine histology images across multiple
common solid tumor types. To test this, we developed, optimized
and extensively validated a one-stop-shop workflow to train and
evaluate deep learning networks (Fig. 1a,b). To select an efficient
network model and to optimize the deep learning hyperparam-
eters, prediction of MSI in colorectal cancer was used as a clinically
relevant benchmark task’. In this benchmark, we sampled a large
hyperparameter space with different commonly used deep learning
models”'*">'*, which were modified specifically for this application.
Unexpectedly, ShuffleNet'*—a lightweight neural network archi-
tecture—performed similarly to more complex networks includ-
ing the DenseNet", Inception'® and ResNet'’ networks, which have
been used in many other studies” (Fig. 1c). ShuffleNet showed high
accuracy at a low training time (raw data in Supplementary Table 1;
n=426 patients in The Cancer Genome Atlas (TCGA) cohort).
ShuffleNet is optimized for mobile devices, making this deep neu-
ral network architecture attractive for decentralized point-of-care
image analyses or direct implementation in microscopes”. We
externally validated the best ShuffleNet classifier by training on
n=426 patients in the TCGA colorectal cancer cohort’ and vali-
dating on n =379 patients with available MSI status in the DACHS
(‘Darmkrebs: Chancen der Verhiitung durch Screening, which
translates as ‘colorectal cancer: chances for prevention through
screening’) cohort’, reaching an area under the receiver operating
curve (AUROC) of 0.89 (confidence interval, 0.88-0.92). This rep-
resents an improvement over the previous best performance of 0.84
in that dataset’, and supports the notion that ShuffleNet is an effi-
cient and powerful neural network model that can infer clinically
relevant molecular changes directly from histology images.

Pan-cancer prediction of genetic variants from histology. Having
thus identified a deep neural network model and a set of suitable
hyperparameters, we systematically applied this approach to hundreds
of molecular alterations in 14 major tumor types, and trained and
evaluated deep learning networks by threefold cross-validation
on each cohort. This yielded approximately 10* independently
trained deep neural networks, which were systematically evaluated
and compared across molecular features across cancer types. The
full list of candidate mutations (Supplementary Table 1) included
all point mutations targetable by Food and Drug Administration-
approved drugs (level 1 evidence on www.oncokb.org; the
20 most common mutations are shown in Fig. 1d). First, we trained

deep neural networks to detect any sequence variants in these target
genes. We found that in 13 out of 14 tested tumor types, the muta-
tion of one or more such genes could be inferred from histology
images alone, with statistical significance after correction for mul-
tiple testing (Fig. 2a-n and Extended Data Fig. 1). In particular, in
major cancer types such as lung adenocarcinoma, colorectal can-
cer, breast cancer and gastric cancer, alterations of several genes
of particular clinical and/or biological examples were detectable
(Fig. 2a-d). Examples include mutations in TP53, which could be
significantly detected (P < 0.05 after FDR correction) in all four of
these cancer types, as well as mutations of BRAF in colorectal can-
cer (colon adenocarcinoma (COAD) and rectum adenocarcinoma
(READ) TCGA cohorts*; n=555; Fig. 2b), MTOR—a candidate
for targeted treatment”—in gastric cancer (Fig. 2d), and FBXW7
mutation in lung adenocarcinoma (LUAD TCGA cohort*; n=457;
Fig. 2a) and gastric cancer (stomach adenocarcinoma (STAD)
TCGA cohort®; n=321; Fig. 2d). Mutations of PIK3CA (which are
directly targetable by a small molecule inhibitor*®) were significantly
detectable (P = 7 X 107) in breast cancer (BRCA TCGA cohort”;
n=995; Fig. 2¢) and gastric cancer (Fig. 2d). In addition, in breast
cancer, mutations of MAP2K4 (which is a potential biomarker
for response to MEK inhibitors®) were significantly detectable
(P =0.0008) (Fig. 2c). Among all tested tumor types, gastric cancer
(Fig. 2d) and colorectal cancer (Fig. 2b) had the highest absolute
number of detectable mutations. For all statistically significant fea-
tures, the mean cross-validated AUROC for the top eight mutations
ranged from 0.60-0.78 in lung adenocarcinoma (Extended Data
Fig. 2a-h), from 0.65-0.76 in colorectal cancer (Extended Data
Fig. 2i-p), from 0.62-0.78 in breast cancer (Extended Data Fig. 2q—x)
and from 0.66-0.78 in gastric cancer (Extended Data Fig. 3a-h).
Beyond these four tumor types, a range of notable mutations could
be detected in other tumor types. While in melanoma (skin cuta-
neous melanoma (SKCM) TCGA cohort”) primary tumors few
mutations were detectable (Extended Data Fig. 3i-p), in melanoma
metastases mutations in FBXW7 (P = 0.0129) and PIK3CA (P =
0.0052) were significantly detectable (Fig. 2e and Extended Data
Fig. 3q—x). In prostate cancer (prostate adenocarcinoma (PRAD)
TCGA cohort™; n=397 patients; Fig. 2f and Extended Data
Fig. 4a-h), our method detected TP53 and FOXAI mutations from
histology, among others. In pancreatic adenocarcinoma (PAAD
TCGA cohort’; n=171 patients; Fig. 2g and Extended Data
Fig. 4i-p), identifying KRAS wild-type patients is of high clinical
relevance because these patients are potential candidates for tar-
geted treatment and our method significantly identified mutations
in the KRAS gene in pancreatic cancer (P = 0.0016). Lung squamous
cell carcinoma is known for its difficulty in molecular diagnosis and
few molecularly or genetically targeted treatment options even in
clinical trials. Thus, it is plausible that in this cancer type tumor his-
tomorphology is not well correlated to mutations, and correspond-
ingly, few mutations were significantly detectable in this tumor type
in our experiments (lung squamous cell carcinoma (LUSC) TCGA
cohort’; n=413; Fig. 2h and Extended Data Fig. 4q—x) In hepato-
cellular carcinoma (liver hepatocellular carcinoma (LIHC) TCGA
cohort™; n =358 patients; Fig. 2i), the product of the p-catenin gene
(CTNNBI) is a key driver gene with broad prognostic and predic-
tive implications™, and its mutational status was highly significantly
detected (P = 2 X 107) from histology (Extended Data Fig. 5a-h).
In papillary* (Fig. 2j and Extended Data Fig. 5i-p) and clear cell’
renal cell carcinoma (Fig. 2k and Extended Data Fig. 5q-x), altera-
tions in multiple genes including KRAS and PBRM were highly
detectable, while in chromophobe®” renal cell carcinoma (Fig. 21
and Extended Data Fig. 6a-h) no genetic variants were significantly
detectable, possibly due to a low patient number in this cohort. In
head and neck squamous cell carcinoma (HNSC TCGA cohort*;
n=435 patients), the CASP8 gene, which is linked to resistance to
cell death®, was significantly detected (P = 3 x 10°°) (Fig. 2m and
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Fig. 1| Deep learning workflow for the prediction of molecular features from histology images. a, Training of the deep learning system comprised

six steps: (1) patient cohorts were randomly split into three partitions for cross-validation of deep classifiers; (2) the tumor region on each WSI was
tessellated into tiles; (3) up to 500 randomly chosen tiles were collected; (4) tiles from patients in the training partitions were collected and classes

were equalized by random undersampling; (5) all training tiles were used to train a deep neural network (pre-trained on a non-medical task); and (6)
classification performance was evaluated on patients from the test partition. b, For patient-level inference of molecular labels in patients not seen during
training, three successive steps were used: (1) tiles were generated from the tumor region on WSils; (2) a prediction was made for each tile; and (3)
tile-level class predictions were pooled on the patient level. ¢, Hyperparameters of the deep learning system were optimized in a benchmark task (the
prediction of MSI in colorectal cancer). The opacity of each point corresponds to the number of trainable layers. ShuffleNet—a lightweight neural network
architecture—was selected as a highly efficient network model. d, Pan-cancer application. This workflow was subsequently applied for the prediction of
four types of molecular features across 14 cancer types. In particular, this included genetic mutations. The distribution of the 20 most common mutations
among all analyzed mutations is shown for each tumor type. Icons are from Twitter Twemoji (CC-BY 4.0 license).

Extended Data Fig. 6i-p). In cervical cancer (cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC) TCGA
cohort’; n=261 patients), mutations in TCERGI, STKII and
AMERI, among others, were detectable with high AUROC values
(Fig. 2n and Extended Data Fig. 6x-q).

Pan-cancer prediction of oncogenic drivers from histology. Not
all genetic variants are causative of malignant processes. Therefore,
we repeated the screening experiment, limiting mutations to con-
firmed or putative oncogenic drivers (Fig. 3a-n). With this cri-
terion, the absolute number of patients affected by a particular
mutation was lower; thus, fewer genes met the threshold of at least
four positive cases in a given tumor type. In contrast, we hypoth-
esized that oncogenic driver genes could leave a stronger pattern
in histological morphology due to their higher biological relevance.

NATURE CANCER | www.nature.com/natcancer

Genetic variants in classical oncogenes such as TP53 and KRAS are
almost always oncogenic drivers and, correspondingly, mutations
of these genes reached similar prediction accuracy values in the
‘drivers only’ experiment compared with the ‘all variants’ approach
(Fig. 3a-n). For mutations in other genes, prediction accuracy
increased when limited to oncogenic drivers. A notable example
was EGFR in lung adenocarcinoma (Fig. 3a). In summary, these
data show that deep learning can detect targetable and potentially
targetable point mutations in a wide range of genes directly from
histology across multiple prevalent tumor types.

Inference of molecular subtypes and gene expression signatures.
In the next step, we asked whether established molecular subtypes
and gene expression signatures of cancer and immune cells could be
detected by deep learning. Compared with single-gene mutations,
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Fig. 2 | Inference of genetic mutations from histological images. A deep learning system was trained to predict the mutational status (mutated or wild
type) of relevant genes in 14 cancer types and was evaluated by cross-validation. All mutations, including variants of unknown significance, were included
in the mutated class. For each gene, the patient-level test set performance is shown as the AUROC, with two-sided t-test Pvalue for prediction scores
corrected for multiple testing (FDR). The significance level of 0.05 is marked with a solid horizontal line. Pvalues smaller than 10=> were set to 10-°. On the
right-hand side of each panel, a kernel density estimate shows the distribution of all plotted data points. n denotes the number of patients with available
genetic information and matched histology images in each tumor type. a-d, In lung adenocarcinoma (a), colorectal cancer (b), breast cancer (¢) and
gastric cancer (d), a number of relevant genes were significantly predictable (P < 0.05) from histology alone, including key oncogenic drivers such as
TP53, BRAF and MTOR. e-n, In all other tested tumor types (that is, melanoma (e), prostate (f), pancreatic (g), lung squamous cell (h), hepatocellular (i),
renal papillary (j), renal clear cell (k), renal chromophobe (I), head and neck (m) and cervical (n)), mutational status was predictable for some genes, with
notable examples including KRAS in pancreatic cancer, CTNNBT in hepatocellular carcinoma and TP53 and CASP8 in head and neck cancer.

these changes occur at a higher functional level and we hypothe-  cancer (Fig. 4g) and gastric cancer (Fig. 4h). In gastric cancer, we
sized that their morphological impact could be larger than that of additionally found that a signature of stem cell properties (stem-
single mutations. To address this hypothesis, we chose features with  ness) was highly detectable directly from histology images (Fig. 4h).
known biological and potential clinical significance. A major group  Recent studies have clustered tumors into comprehensive molecular
of such features are immune-related gene expression signatures*’  subtypes*’. We found that our method could detect TCGA molecular
of CD8-positive lymphocytes and macrophages, cell proliferation, subtypes* with up to AUROC 0.74 in lung adenocarcinoma (Fig. 4¢),
interferon-y signaling and transforming growth factor-p signaling  pan-gastrointestinal subtypes** with up to AUROC 0.76 in colorectal
(a full list is available in Supplementary Table 1). These biological cancer (Fig. 4f), and PAM50 subtypes with up to AUROC 0.78 in
processes are involved in response to cancer treatment, including  breast cancer (Fig. 4g), among other molecular subtypes. These find-
immunotherapy. Detecting their morphological correlates in histol-  ings could open up new options for clinical trials of cancer. While
ogy images could facilitate the development of more nuanced treat-  accumulating evidence shows that such molecular clusters of tumors
ment strategies. Indeed, across all investigated tumor types, we saw  reflect biologically distinct groups and are correlated with clini-
that these high-level biological features had much greater predictabil-  cal outcome, deep molecular classification of these tumors is usu-
ity than genetic variants or driver mutations (Fig. 4a-d and Extended  ally not available in clinical routine or clinical trials. Detecting these
Data Fig. 1). Again, AUROC values for significantly (P<0.05 after  subtypes merely from histology would allow for these subtypes to
false discovery rate (FDR) correction) predictable features were be analyzed in clinical trials directly from broadly available routine
highest in lung adenocarcinoma (Fig. 4e), colorectal cancer (Fig. 4f), material, potentially helping to identify new biomarkers for treat-
breast cancer (Fig. 4g) and gastric cancer (Fig. 4h). In lung adeno-  ment response, or to guide specific molecular testing.

carcinoma, signatures of proliferation, macrophage infiltration and

T-lymphocyte infiltration were significantly detectable from images  Prediction of standard histological biomarkers with deep learn-
with high AUROCs (Fig. 4e). Similarly, significant AUROCs for ing. To comprehensively evaluate the potential clinical use of our
these biomarkers were achieved in colorectal cancer (Fig. 4f), breast deep learning pipeline, we investigated classification accuracy
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Fig. 3 | Inference of putative oncogenic drivers from histological images. A deep learning system was trained to predict oncogenic driver genes from
histology. Only putative and confirmed drivers were included, and variants of unknown significance were pooled with the wild-type class. On the
right-hand side of each panel, a kernel density estimate shows the distribution of all plotted data points. n denotes the number of patients with available
genetic information and matched histology images in each tumor type. The layout of this figure corresponds to that of Fig. 2. a-n, This process (in lung
adenocarcinoma (a), colorectal cancer (b), breast cancer (c), gastric cancer (d), melanoma (e), prostate cancer (f), pancreatic cancer (g), lung squamous
cell carcinoma (h), hepatocellular carcinoma (i), renal papillary carcinoma (j), renal clear cell carcinoma (k), renal chromophobe carcinoma (I), head and
neck cancer (m) and cervical cancer (n)) uncovered the significant predictability of multiple oncogenic drivers, including EGFR, BRAF and TP53.

for standard histopathological biomarkers. We found that deep
learning could predict most of these biomarkers for breast cancer
(Fig. 4c,i), gastric cancer (Fig. 4d,j) and other tumor types.
In particular, the status of hormone receptors was predictable
from routine histology in breast cancer, with an AUROC of 0.82
for estrogen receptors and 0.74 for progesterone receptors (Fig. 4i).
Together, these results show that deep learning-based inference of
genetic alterations, high-level molecular alterations and established
biomarkers from routine diagnostic histology slides is feasible.

Evaluation of alternative approaches. Deep learning-based infer-
ence of molecular features from histology is a relatively novel field
of research and it can be anticipated that technical improvements
can further improve prediction performance. We quantified the
effect of alternative technical approaches in the colorectal can-
cer cohort (COAD and READ TCGA cohorts). First, we investi-
gated the role of color normalization of tiles. In a head-to-head
comparison with the baseline approach, we found a tendency of
Macenkos® color normalization to improve classifier perfor-
mance for mutation prediction but not for the prediction of sub-
types or gene expression signatures (Extended Data Fig. 7a-c).
Second, we investigated a weakly supervised approach to our base-
line of expert-annotated tumor regions and found that the weakly
supervised approach was only slightly inferior to manual anno-
tation (Extended Data Fig. 8a-c). Third, we analyzed prediction
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performance on frozen slides compared with diagnostic slides.
While frozen slides are not generally available in a clinical setting,
the TCGA database provides an opportunity to perform such a
direct comparison. In a weakly supervised experiment, we found
that the prediction power for driver genes was on par, but the predic-
tion power for genetic variants and high-level subtypes and signa-
tures was better in frozen slides than in diagnostic slides (Extended
Data Fig. 9a—c). These data provide quantitative guidance for future
large-scale validation studies.

External validation of the classification results. Deep learning
approaches to a single dataset are prone to overfit and should be
validated in external populations before clinical deployment. For
external validation of our method, we used routine hematoxylin
and eosin slides of n=408 patients with colorectal cancer from the
DACHS study for whom BRAF mutational status and CpG island
methylator phenotype (CIMP) was available. We trained deep
learning classifiers for BRAF and CIMP on TCGA colorectal cancer
samples and evaluated the patient-level accuracy on DACHS. Both
features were statistically significantly detectable from DACHS
hematoxylin and eosin images alone. For BRAF mutants, the
AUROC was 0.77 (0.64-0.82; P < 107°), whereas for CIMP-high, the
AUROC was 0.66 (0.56-0.72; P<107°). These data show that deep
learning-based prediction of clinically relevant genetic features can
generalize to external patient populations.
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Fig. 4 | Inference of molecular subtypes, gene expression signatures and standard biomarkers directly from histology. In addition to the prediction of
single-gene mutations, the capability of deep learning to infer high-level molecular features was systematically assessed. a-d, In lung (a), colorectal (b),
breast (¢) and gastric cancer (d), gene expression signatures (such as TCGA molecular subtype in any tumor type) and standard-of-care features (such
as hormone receptor status in breast cancer) were highly predictable from histology alone, as shown by the distribution of two-sided t-test FDR-corrected
Pvalues as visualized by a kernel density estimate. Individual data points are shown in Extended Data Figs. 2-6. e-h, Gene expression signatures (in lung
(e), colorectal (f), breast (g) and gastric cancer (h)) for proliferation (Prolif), wound healing (WoundHeal), macrophage infiltration (Mcrphg), homologous
repair deficiency (HRD), CD8-positive lymphocyte (LymCD8), TCGA molecular subtypes (LUAD-1-6), pan-gastrointestinal (GI) molecular subtypes,
CMSs, PAM50 subtypes and other key molecular features were highly predictable across multiple tumor types. Mean patient-level AUROC values are
shown with bootstrapped confidence intervals (error bars). Asterisks denote a two-sided t-test FDR-corrected Pvalue of <0.05. n refers to the number

of patients. i,j, Standard-of-care biomarkers, including estrogen receptor (ER) and progesterone receptor (PR) status, in breast cancer (i) and gastric
cancer (§). In gastric cancer (j), pathologic subtype and MSI were highly predictable from routine histology alone by deep learning. Solid vertical line

(e-j) indicates AUROC = 0.5. hi, high; lo, low; neg, negative; pos, positive; Basal, breast cancer expression subtype basal; CIMP-L, hypermethylation
category low CpG island methylator phenotype; CIN, chromosomally instable subtype; CMS, consensus molecular subtype; ER, estrogen receptor;

Gl, gastrointestinal; GS, genome stable subtype; HER2, human epidermal growth factor receptor 2; HM-indel, hypermutated indel subtype; HM-SNV,
hypermutated single-nucleotide variant subtype; HRD, homologous recombination repair deficiency; Hyprmut, hypermutated; IDC, invasive ductal
carcinoma; ILC, invasive lobular carcinoma; Lauren, Lauren histological subtype; LUAD, lung adenocarcinoma subtype; LumA, luminal A; LumB, luminal

B; LymCD8, CD8* lymphocyte expression signature; Mcrphg, macrophage signature; MSI-MSS, microsatellite instability status: microsatellite stable;
MSI-MSI-H, microsatellite instability status: microsatellite instability high; neg, negative; Path, pathological subtype; PR, progesterone receptor; Prolif,
proliferation sigature; Signet, signet ring cell differentiation; TGFb, transforming growth factor-p response signature; WntBetaCat, Wnt-p-catenin signaling
signature; WoundHeal, wound healing signature.

Discussion from histological images. We show that a unified workflow yields
Image-based genetic testing as a clinical and research tool. Our  reliably high performance across multiple clinically relevant sce-
results show the feasibility of pan-cancer deep learning-based infer-  narios without the need to tune technical parameters to a specific
ence of a broad range of molecular and genetic features directly —molecular target. Our systematic screening approach identifies

NATURE CANCER | www.nature.com/natcancer


http://www.nature.com/natcancer

NATURE CANCER ARTICLES

Predicted probability

f TCGA, CMS

256 uM

CcMSt N c CcMS2

e CcMSs4

Fig. 5 | Explainability of deep learning-based analysis of histological images. Deep learning-based predictions were visualized through genotype maps
and comparison of highly ranked image tiles. a-e, Prediction maps for CMS1 (b), CMS2 (¢), CMS3 (d) and CMS4 (e) from a colorectal cancer image (a)
show spatially resolved prediction scores, unveiling the intratumor heterogeneity of predicted genotype. As a generic tool, this visualization approach
allows us to identify spatial regions associated with a molecular feature. In this patient, the correct prediction of CMS4 showed that deep learning
robustly predicts CMSs from histology alone while highlighting potential intratumor heterogeneity. f-i, For each of the CMS classes (CMST1 (f), CMS2 (g),
CMS3 (h) and CMS4 (i), the most highly scored test set tiles are shown, enabling correlation of deep learning predictions with histopathological features
at high resolution. In this case, highly predicted CMST tiles contain numerous tumor-infiltrating lymphocytes, whereas predicted CMS4 tiles contain
abundant stroma, consistent with previous studies. jk, Highly scored tiles in the external test cohort DACHS for the prediction of the BRAF mutation

versus the wild type.

candidate genetic variants, driver genes, gene expression signatures
and standard-of-care features that can be inferred from histology
images, opening up perspectives for large-scale validation of these
candidate markers. As a large-scale, systematic screening study, this
work identifies a number of mutations that are significantly linked
to a detectable phenotype in histological images, including those in
key oncogenic pathways including the products of TP53, FBXW7,
KRAS, BRAF and CTNNBI. In addition to individually mutated
genes, our data show that higher-level gene expression clusters or
signatures can be inferred from histological images. Many of these
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clusters represent groups of patients with distinct and well-described
cancer biology, such as CMSs in colorectal cancer. By linking these
molecularly defined groups to specific histological image features,
our method constitutes a tool to decipher downstream biological
effects of molecular alterations in solid tumors. In an external val-
idation cohort, we show that the models trained on images from
the TCGA archive generalize to external patients, demonstrat-
ing the potential of applying these methods to routine material
from real-world clinical cohorts. Of note, additional retrospective
and prospective validation and regulatory approval is needed for
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Fig. 6 | Highest-scoring image tiles for molecular features in gastric cancer. a,b, Highest-scoring tiles in the highest-scoring patients corresponding to
AMERT mutational status (driver (a) or no driver (b)) in the STAD TCGA dataset. ¢,d, Tiles corresponding to MTOR mutational status (mutant (¢) and wild
type (d)). e f, Tiles corresponding to high (e) or low values of a proliferation signature (). gh, Tiles corresponding to hypermutation status (hypermutated

(g) versus not hypermutated (h)).

histology-based deep learning methods to be implemented in clini-
cal workflows. An example for clinical implementation would be
their use as pre-screening tools to enrich patient populations for
specific molecular testing. While it is expected that the first applica-
tions of deep learning technology in routine workflows will relate
to the automatic identification of tumor tissues for the selection of
specimens or regions of interest, our method could be easily added
to such digital pathology workflows, providing a strong additional
incentive for digitization of histopathology.

Limitations. Currently, a limitation of our method is the low
AUROC values for some molecular features (Figs. 2 and 3). A strat-
egy to increase the diagnostic performance would be re-training on
larger patient cohorts. Re-training can be expected to boost perfor-
mance because previous studies have shown that the performance of
deep learning systems in histopathology scales with the number of
patients in the training cohort'. In addition, the performance of deep
learning systems could potentially be improved by technical modifi-
cations. Our systematic evaluation of alternative technical approaches
provides guidance for this on multiple levels. First, regarding the
choice of neural network models, our results show that lightweight
neural network models perform on par with more complex mod-
els, facilitating further evaluation of these methods on decentralized
hardware, including desktop or ultimately mobile hardware. While
this finding is based on a clinically relevant benchmark task and gen-
eralizes to an external population, we cannot exclude that other net-
work models perform better in other histology applications. Second,
regarding the type of input image data, other studies in digital pathol-
ogy have used frozen histology sections'. In contrast, our baseline

workflow was based on formalin-fixed, paraffin-embedded (FFPE)
tissue slides (labeled as diagnostic slides in the TCGA archive) due to
their clinical relevance. In clinical settings, frozen specimens consti-
tute only a small fraction of pathology samples; therefore, establish-
ing methods on FFPE material is paramount for large-scale clinical
validation. Our head-to-head comparison showed that molecular
inference generally works better on frozen slides, which is a limitation
of the FFPE-based method. Further studies are needed to determine
the reasons for this observation. Lastly, our baseline method relied on
expert annotations of tumor tissue, constraining deep learning mod-
els to learn from invasive tumor tissue only. The rationale behind
this design was that despite advances in computer vision, expert
annotation of tumor tissue remains the gold standard in histopathol-
ogy studies. Yet, in a head-to-head comparison, a weakly supervised
approach without any manual annotation did not markedly reduce
performance, demonstrating the feasibility of even simpler data pre-
processing pipelines. Ultimately, fully automatic workflows can be
expected to be superior to manual workflows in terms of scalability
and reproducibility. We have publicly released all of the source codes
of our method, enabling further optimization and validation on a
larger scale (see ‘Code availability’).

Deciphering genotype-phenotype links. Beyond being a poten-
tially useful tool for clinical applications, deep learning-based
inference of molecular features from morphology could shed light
on more fundamental properties of cancer biology. Our study
systematically screens hundreds of molecular alterations and
identifies candidates linked to detectable patterns in histology
images. These patterns can be visualized through prediction maps
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(Fig. 5a—e). Such spatialization of genetic predictions is a key aspect
lacking in conventional bulk genetic tests of tumors, and could be
useful to trace back molecular alterations to specific spatial regions.
An alternative approach to understanding deep learning-based
predictions is through visualization of highly ranked image tiles
(Fig. 5f-k). This approach can serve as a plausibility control and
may help to discover new morphological features. Indeed, highly
ranked tiles of CMS classes in colorectal cancer showed poorly
differentiated tumors in CMS1 tiles (Fig. 5f), well-differentiated
glands for CMS2-3 (Fig. 5g,h) and highly stromal tiles for CMS4
(Fig. 51). These patterns correspond to known biological processes
underlying CMS subclasses, corroborating the assumption that
our deep learning system detects biologically meaningful features.
Similarly, visualizing histomorphology in the highest-predicted tiles
in patients with a BRAF mutation in the validation cohort (Fig. 5j,k)
showed poorly differentiated areas and mucinous areas as recurring
features in BRAF mutant image tiles, which is consistent with pre-
vious studies*. Visualizing highly predicted tiles in gastric cancer
(Fig. 6a-h) highlighted highly cellular areas as correlates of a pro-
liferation gene expression signature, but at the same time identified
patterns for mutations (for example, in AMERI and MTOR) that
could help to form new hypotheses on how these specific muta-
tions influence cancer cell behavior and morphology. Interestingly,
the prediction performance markedly varied between the 14 differ-
ent types of cancer (Fig. 2 and Extended Data Fig. 1). Variations in
sample size between the cohorts could explain some of these dif-
ferences, but additional biological effects could contribute to this.
One hypothesis is that tumor types with few clinically targetable
mutations (for example, lung squamous cell cancer and pancreatic
cancer) also display few detectable mutations. Further studies are
warranted to investigate this.

Conclusion

Together, our results show that molecular changes in solid tumors
can be inferred from routine histology alone with deep learning.
This could be a useful tool for objectively elucidating genotype—
phenotype relationships in cancer, and ultimately could be used as a
low-cost biomarker in clinical trials and routine clinical workflows.

Methods

Patient cohorts and ethics. All experiments were conducted in accordance with
the Declaration of Helsinki and the International Ethical Guidelines for Biomedical
Research Involving Human Subjects. Anonymized scanned WSIs were retrieved
from the TCGA project through the Genomic Data Commons Portal (https://
portal.gdc.cancer.gov/). We applied our method to 14 of the most common

solid tumor types: breast (BRCA)?, cervical (CESC)*, colorectal (COAD and
READ)*, gastric (STAD)*, head and neck (HNSC)*, hepatocellular (LIHC)*,

lung adenocarcinoma (LUAD)*, lung squamous (LUSC)*, melanoma (SKCM)*,
pancreatic (PAAD)’, prostate (PRAD)*, renal cell chromophobe (KICH)”, renal
cell clear cell (KIRC)* and renal cell papillary cancer (KIRP)**. Melanoma tissue
slides in the TCGA database comprised primary tumor samples as well as metastasis
tissue. These groups were analyzed separately. For external validation, we acquired
colorectal cancer tissue samples from the DACHS study*>*, which were retrieved
from the tissue bank of the National Center for Tumor Diseases (NCT; Heidelberg,
Germany), as described before’. Ethics oversight of the TCGA study is described at
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/
tcga/history/policies and ethical approval of the DACHS study was given by the
ethics committee of the Medical Faculty of the University of Heidelberg. Informed
consent was obtained by all participants in the TCGA and DACHS studies.

Molecular labels. The aim of this study was to predict clinically relevant
features, including genetic alterations, directly from routine histology slides.

We systematically applied this screening approach to four groups of molecular
alterations. First, we used single-gene mutations, considering any genetic variant.
We used the most commonly mutated genes in the respective tumor types (derived
from the cBioPortal database*”*" at http://cbioportal.org) and clinically targetable
genes (level 1 genes from OncoKB at http://www.oncokb.org; Pan-Cancer Atlas
Project”). We required each mutation to affect at least four patients in a given
cohort. Second, we repeated the analysis on putative and confirmed oncogenic
driver mutations only, as defined in OncoKB. Third, we aimed to predict gene
expression subtypes, relevant gene expression signatures and immune cell gene
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expression signatures derived from systematic studies**>*. Fourth, we used
standard-of-care features derived from the TCGA database (data at http://portal.
gdc.cancer.gov), including hormone receptor status in breast cancer. All labels
(genetic variants, driver mutations, signatures and standard features) are listed in
Supplementary Table 1. For each individual target label in each tumor type and each
cross-validation run, we re-trained a single deep neural network, using identical
hyperparameters. Features with continuous values were binarized at the mean.

Image preprocessing. Scanned WSIs of diagnostic tissue slides (FFPE tissue)
stained with hematoxylin and eosin were acquired in SVS format. All images were
downsampled to 20X magnification, corresponding to 0.5 um px~'. Each WSI was
manually reviewed and the tumor area was annotated under direct supervision of
a specialty pathologist. During annotation, all observers were blinded with regard
to any molecular or clinical feature. Only those images containing at least 1 mm?
contiguous tumor tissue were used for downstream analysis. In total, 6% of WSIs,
corresponding to 5% of patients, were excluded due to technical artefacts or a lack
of tumor (Supplementary Table 2). Tumor tissue on all other slides was tessellated
into square tiles of 512 px X 512 px edge length, corresponding to 256 um X 256 um
at a resolution of 0.5 um px~". Tiles with more than 50% background were
discarded. Background pixels were defined by a brightness of >0.86 (220/255).
For the benchmark task (identification of an optimum neural network model),
these images were resized to 224 px X 224 px (at 1.14um px™") to be consistent
with a previous study’. All steps in the data preprocessing pipeline (including
preprocessing of images and preprocessing of metadata) are documented in

detail in our in-house manual for data preparation, which is publicly available

at https://doi.org/10.5281/zenodo.3694994. All methods for WSI processing,
including tessellation of images and visualization of spatial activation maps, were
implemented in QuPath®' version 0.1.2 in Groovy (http://qupath.github.io).

Patient-level cross-validation. Aiming to develop a one-stop-shop method for
systematic discovery of genotype—phenotype links in multiple cancer types, we
developed a reusable pipeline of data processing steps. One or more WSIs per
patient were collected and tumor regions in these images were tessellated into tiles.
All tiles inherited the molecular label of their parent patient. Before training, the
patient cohort was randomly split into three partitions, keeping the target labels
balanced between partitions. Neural networks were trained on two partitions each
and subsequently evaluated on the third partition. Thus, no tiles from a given
patient were ever part of a training set and a test set for the same classifier. Before
training, tile libraries were randomly undersampled in such a way that the number
of tiles per label was identical for each label (Fig. 1a).

Neural network training, model selection and hyperparameter optimization.
Deep neural networks were trained on image tiles with the aim of predicting
molecular labels. All neural networks were pre-trained on the ImageNet database,
as described previously’, and were specifically modified for the classification task
at hand by replacing the three top layers with a 1,000-neuron fully connected

layer, a softmax layer and a classification layer. For training, we used on-the-fly
data augmentation (random horizontal and vertical reflection) to achieve
rotational invariance of the classifiers. Hyperparameter selection was performed
for five commonly used deep neural networks: ResNet-18, AlexNet, Inception-V3,
DenseNet-201 and ShuffleNet. The sampled hyperparameter space was as follows:
learning rate: 5X 10~° and 1 X 10~% maximum number of tiles per WSI: 250, 500
and 750; number of trainable layers: 10, 20 and 30. We trained for four epochs with
a mini-batch size of 512, similar to previous experiments’. As a benchmark task, we
used MSI detection in colorectal cancer as described before’.

Inference of molecular status. During inference, a categorical prediction was
made for each tile by the neural network (Fig. 1b). The percentage of positive
predicted tiles for each class was regarded as a probability score for each patient.
This score was used as the free variable for a receiver operating characteristic
analysis, with AUROC being the primary endpoint for each target feature.

Alternative approaches. In our baseline approach, image tiles from manually
annotated tumor regions on FFPE slides (diagnostic slides) were used. This
approach was compared with several alternative approaches, as shown in Extended
Data Figs. 7-9. The first alternative approach used color normalization of image
tiles with the Macenko method* to mitigate differences in staining intensity and
hue (Extended Data Fig. 7). Some previous studies have used color normalization
for deep learning’, while other studies have shown that color normalization

can bias histology image classification™. The second alternative approach we
investigated was to use tiles from the whole slide, as opposed to the tumor region
only. In this weakly supervised approach, many tiles without invasive cancer tissue
were present in the training and inference sets (Extended Data Fig. 8). The third
alternative approach was to use frozen slides as opposed to FFPE slides in a weakly
supervised way (Extended Data Fig. 9).

Statistics and reproducibility. AUROC values are reported as means with a
confidence interval representing the lower and upper range of a 10X bootstrapped
experiment. To quantify whether predictions for different classes of patients
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were statistically significant, the probability scores for patients in a given class
were compared with the probability scores of all other patients. The statistical
significance of these differences was assessed with a two-sided t-test with a
pre-defined significance level of 0.05. To compensate for the large number of tested
hypotheses in this study, we performed FDR correction, using the Benjamini-
Hochberg method, on all Pvalues across all cancer types. All Pvalues smaller

than 10~ after FDR correction are reported as 10~°. Statistical methods are further
described in Extended Data Fig. 10a-c. The number of tiles generated per WSI is
shown in Extended Data Fig. 10d. No statistical method was used to predetermine
sample size. The investigators were blinded to the molecular status of samples
during manual annotation, image processing procedures and outcome assessment.
Source codes are publicly available, allowing replication of our findings. The
investigators re-ran the computer codes three times, receiving identical results.

Implementation and hardware. Training and inference were performed on our
local computing cluster on ten Nvidia RTX graphics-processing units (GPUs), each
with 24 GB of GPU random-access memory. The cumulative computing time for
all experiments within this study was approximately 12,000 GPU hours. All deep
learning algorithms were implemented in MATLAB R2019a (MathWorks).

External validation. To investigate whether complex deep learning biomarkers
generalize to external patient cohorts, we trained deep learning classifiers on all
TCGA samples of a given tumor type and externally validated the predictions in
patient cohorts from our respective institutions. External validation was performed
for BRAF mutation status and CIMP in colorectal cancer in n=408 patients—a
subset of the multicenter DACHS study from whom data were previously collected,
as described’. BRAF and CIMP were chosen as validation markers because of their
biological relevance and the availability of robust measurements of these markers
in the DACHS cohort.

Feature visualization. To visualize the deep learning predictions and make them
understandable to human observers, we used two approaches. First, we rendered

the tile-level soft predictions for each class as activation maps, visualizing prediction
scores as a heatmap overlay on the original histology image. Second, we identified
the highest-predicted tiles of the highest-predicted true positive patients for each
class, allowing observers to identify histological patterns that were correlated with
amolecular feature. These approaches were designed to allow human observers to
identify which morphological features deep learning classifiers were most sensitive to.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All data, including histological images and information about the age and sex of
the participants from the TCGA database are available at https://portal.gdc.cancer.
gov/. Genetic data for patients in the TCGA cohorts are available at https://portal.
gdc.cancer.gov/ and https://cbioportal.org. Raw data for the DACHS cohort are
stored and administered by the DACHS consortium (more information is available
from http://dachs.dkfz.org/dachs/). The corresponding authors of this study are
not involved in data sharing decisions of the DACHS consortium. All other data
supporting the findings of this study are available from the corresponding author
upon reasonable request. Source data are provided with this paper.

Code availability
All source codes are available under an open-source license at https://github.com/
jnkather/DeepHistology/releases/tag/v0.2.
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