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Abstract

Linear mixed models are a powerful statistical tool for identifying genetic associations and
avoiding confounding. However, existing methods are computationally intractable in large
cohorts, and may not optimize power. All existing methods require time cost4)(MNere N =
#samples and M = #SNPs) and implicitly assume an infinitesimal genetic architecture in which
effect sizes are normally distributed, which can limit power. Here, we present a far more efficient
mixed model association method, BOLT-LMM, which requires only a small number of O(MN)-
time iterations and increases power by modeling more realistic, non-infinitesimal genetic
architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to nine
guantitative traits in 23,294 samples from the Women’s Genome Health Study (WGHS) and

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research,

subject always to the full Conditions of usin://www.nature.com/authors/editorial_policies/license.html#terms
Correspondence should be addressed to P.-R.L. (lon@hsph.harvard.edu) or A.L.P. (aprice@hsph.harvard.edu).
URLs.

BOLT-LMM software and source codeitp://www.hsph.harvard.edu/alkes-price/software/
LTMLM method, http://biorxiv.org/content/early/2014/09/04/008755

Author Contributions
P.L., N. P.,and A. L. P. designed experiments. P. L. performed experiments. P. L., G. T.,B. K. B.,B. J. V,H. K. F., and A. L. P.
analyzed data. D. I. C. and P. M. R. provided data. All authors wrote the paper.

Competing Financial I nterests
The authors declare no competing financial interests.


http://www.nature.com/authors/editorial_policies/license.html#terms
http://www.hsph.harvard.edu/alkes-price/software/
http://biorxiv.org/content/early/2014/09/04/008755

Loh et al. Page 2

observed significant increases in power, consistent with simulations. Theory and simulations show
that the boost in power increases with cohort size, making BOLT-LMM appealing for GWAS in
large cohorts.
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Linear mixed models are emerging as the method of choice for association testing in
genome-wide association studies (GWAS) because they account for both population
stratification and cryptic relatedness and achieve increased statistical power by jointly
modeling all genotyped markérd2 However, existing mixed model methods still have
limitations. First, mixed model analysis is computationally expensive. Despite a series of
recent algorithmic advances, current algorithms require éfN2) or O(M2N) total

running time, wherd is the number of markers ahds the sample size. This cost is
becoming prohibitive for large cohorts, forcing existing methods to subsample the markers
so thatM<N (ref5). Second, current mixed model methods fall short of achieving maximal
statistical power owing to suboptimal modeling assumptions regarding the genetic
architectures underlying phenotypes. The standard linear mixed model implicitly assumes
that all variants are causal with small effect sizes drawn from independent Gaussian
distributions—the “infinitesimal model’—whereas in reality, complex traits are estimated to
have roughly a few thousand causal 18é#*

Methodologically, efforts to more accurately model non-infinitesimal genetic architectures
have followed two general thrusts. One approach is to apply the standard infinitesimal
mixed model but adapt the input data. For example, large-effect loci can be explicitly
identified and conditioned out as fixed effécisr the mixed model can be applied to only a
selected subset of mark®fd-15.16 A more flexible alternative approach is to adapt the

mixed model itself by taking a Bayesian perspective and modeling SNP effects with non-
Gaussian prior distributions that better accommodate both small- and large-effect loci. Such
methods were pioneered in livestock genetics to improve prediction of genetic- Values

have been extensively developed in the plant and animal breeding literature for the purpose
of genomic selectid®. These techniques are of interest in the association testing setting
because models that improve prediction should in theory enable corresponding
improvements in association power (via conditioning on other associated loci when testing a
candidate mark&?. Here, we present an algorithm that performs mixed model analysis in
a small number dD(MN)-time iterations and increases power by modeling non-

infinitesimal genetic architectures. Our algorithm fits a Gaussian mixture model of SNP
effectdd, using a fast variational approximatf@n22to compute approximate phenotypic
residuals, and tests the residuals for association with candidate markers via a retrospective
score statist® that provides a bridge between Bayesian modeling for phenotype prediction
and the frequentist association testing framework. We calibrate our statistic using an
approach based on the recently developed LD Score regression te¢hriipeeentire

procedure operates directly on raw genotypes stored compactly in memory and does not
require computing or storing a genetic relationship matrix. In the special case of the
infinitesimal model, we achieve results equivalent to existing methods at dramatically
reduced time and memory cost.
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We provide an efficient software implementation of our algorithm, BOLT-LMM, and
demonstrate its computational efficiency on simulated data sets of up to 480,000 individuals.
Our simulations also show that BOLT-LMM achieves increased association power over
standard infinitesimal mixed model analysis of traits driven by a few thousand causal SNPs.
We applied BOLT-LMM to perform mixed model analysis of nine quantitative traits in

23,294 samples from the Women’s Genome Health Study (W431d8) observed

increased association power equivalent to up to 10% increase in effective sample size. We
demonstrate through theory and simulations that the power boost increases with cohort size,
making BOLT-LMM a promising approach for large-scale GWAS.

Overview of Methods

The BOLT-LMM algorithm consists of four main steps, each of which require a small
number ofO(MN)-time iterations. These steps are: (1a) Estimate variance parameters; (1b)
Compute infinitesimal mixed model association statistics (denoted BOLT-LMM-inf); (2a)
Estimate Gaussian mixture parameters; (2b) Compute Gaussian mixture model association
statistics (BOLT-LMM). Step 1la computes results nearly identical to standard variance
components analysis but applies a stochastic approximation algé¥#hthat reduces time

and memory cost by circumventing spectral decomposition, which is expensive for large
sample sizes. Instead, the approximation algorithm only requires solving linear systems of
mixed model equations, which can be accomplished efficiently using conjugate gradient
iteratior?8:29 Step 1b likewise circumvents spectral decomposition by introducing a new
retrospective mixed model association statistic similar to GRAMMAR-Gaiharal

MASTOR?23, which we compute—up to a calibration constant—using only solutions to
linear systems of equations. We estimate the calibration constant by computing and
comparing the new statistic and the standard prospective mixed model statistic at a random
subset of SNPs, which can likewise be accomplished efficiently using conjugate gradient
iteration. This procedure is similar in spirit to GRAMMAR-Gamma calibration but requires
only O(MN)-time iterations.

Steps 2a and 2b are Gaussian mixture parallels of steps 1a and 1b. BOLT-LMM'’s non-
infinitesimal model amounts to a generalization of the standard mixed model, which from a
Bayesian perspective imposes a Gaussian prior distribution on SNP effect sizes. BOLT-
LMM relaxes this assumption by using a mixture of two Gaussians as the prior, giving the
model greater flexibility to accommodate large-effect SNPs while maintaining effective
modeling of genome-wide effects (e.g., ancestry). Exact posterior inference is no longer
tractable under the generalized model, so BOLT-LMM instead computes a variational
approximatioR%22that converges after a small numbe©gKIN)-time iterations. Step 2a
applies this method within 5-fold cross-validation to estimate best-fit parameters for the
prior distribution (taking into account variance parameters estimated in Step 1a) based on
out-of-sample prediction accuracy. If the prediction accuracy of the best-fit Gaussian
mixture model exceeds that of the infinitesimal model by at least a specified amount, Step
2b is then run to compute association statistics by testing each SNP against the residual
phenotype obtained from the Gaussian mixture model and calibrating the test statistics
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against the results of Step 1b using LD Score regreéésiotherwise, the BOLT-LMM
association statistic is the same as BOLT-LMM-inf. Both Step 1b and Step 2b are performed
using a leave-one-chromosome-out (LOCO) scheme to avoid proximal contan¥ifidtion

(The software also supports subdividing chromosomes into more segments; see Online
Methods.) The key properties of BOLT-LMM regarding speed and modeling assumptions
are compared to existing methods in Table 1.

Computational cost of BOLT-LMM versus existing methods

To analyze the computational performance of BOLT-LMM, we simulated data sets of sizes
ranging fromN=3,750 to 480,000 individuals ai=300,000 SNPs. We used genotypes

from the WTCCC2 data s€tanalyzed in ret2, which contains 15,633 individuals of

European ancestry, to form mosaic chromosomes, and we used a phenotype model in which
5,000 SNPs explained 20% of phenotypic variance (Supplementary Note).

We benchmarked BOLT-LMM against existing mixed model association methods, running
each method for up to 10 days on machines with 96GB of memory. BOLT-LMM completed
all analyses througR=480,000 individuals within these constraints, whereas previous
methods could only analyze a maximurmiNsf7,500-30,000 individuals (Fig. 1 and
Supplementary Table 1). All previous methods req@if@N?) running time (foM>N),

whereas the running time of BOLT-LMM scales roughly WitN1-> (Fig. 1a and
Supplementary Fig. 1a). We also observed substantial savings in memory use with BOLT-
LMM (Fig. 1b and Supplementary Fig. 1b), which requires little more thaliMid bytes

of memory needed to store raw genotypes (as in GenABEL soffiare

The running time of BOLT-LMM depends not only on the cost of matrix arithmetic, which
scales linearly wittM andN, but also the number @(MN)-time iterations required for
convergence, which empirically scales roughlyN&s (Supplementary Fig. 1) and also

varies with heritability, relatedness, and population structure (Supplementary Note and
Supplementary Fig. 2). These observations apply both to the full Gaussian mixture modeling
performed by BOLT-LMM and to the subset of the computation (Steps 1a and 1b) needed to
compute BOLT-LMM-inf infinitesimal mixed model association statistics, which in our
benchmarks required40% of the full BOLT-LMM run time (Fig. 1a and Supplementary

Fig. 1a). Our results show that even on very large data sets, BOLT-LMM is efficient enough
to enable mixed model analysis using a Gaussian mixture prior, which we recommend
because of its potential to increase power.

Power and false positive control of BOLT-LMM in simulations

To assess the power of BOLT-LMM to detect associated loci, we performed additional
simulations using real genotypes from the WTCCC2 data set, which is an ancestry-stratified
sample containing both Northern and Southern European samples. We simulated phenotypes
with 1,250-10,000 causal SNBd4explaining 50% of phenotypic variance and an

additional 60 standardized effect SNPs explaining 2% of variance. We included the latter
category of SNPs to allow direct power comparisons across different simulation setups, as
the 60 standardized effect SNPs always explain the same total amount of variance regardless
of other simulation parameters. We further introduced environmental differences in ancestry
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by including a phenotypic component aligned with the top principal component that
explained an additional 1% of variance. (We note that principal component analysis is not
part of BOLT-LMM,; it is unnecessary to perform PCA when running mixed model
association metho#&) We chose causal SNPs randomly from the first halves of
chromosomes, leaving the second halves of chromosomes to contain only non-causal SNPs
(Supplementary Note).

We computeg? association statistics using linear regression with 10 principal components
(PCA)2, GCTA-LOCO, BOLT-LMM-inf, and BOLT-LMM. We were unable to test
FaST-LMM-Select® on this data set because of its memory requirements (Fig. 1). For each
method, we computed means ofyifsstatistics over standardized effect SNPs and compared
these means across simulations involving different numbers of causal SNPs (Fig. 2a and
Supplementary Table 2). We observed that BOLT-LMM achieved power gains by modeling
non-infinitesimal architectures. For the sparsest genetic architecture (1,250 causal SNPs plus
60 standardized effect SNPs), we observed a 25% increase in mean BOLFA.MM

statistics at standardized effect SNPs compared to GCTA-LOCO and BOLT-LMM-inf
infinitesimal mixed modey? statistics. This metric is readily interpretable as corresponding
to a 25% increase in effective sample size; for completeness, we also computed traditional
power curves at two significance thresholds (Supplementary Fig. 3). The power gain of the
Gaussian mixture model decreased with increasing numbers of causal SNPs (Fig. 2a). This
behavior is expected because the advantage of the Gaussian mixture lies in its ability to
more accurately model a small fraction of SNPs with larger effects amid a majority of SNPs
with near-zero effects. Larger numbers of causal SNPs explaining a fixed proportion of
variance result in smaller effect sizes per causal SNP, giving BOLT-LMM less opportunity
for power gain. In contrast, all methods other than BOLT-LMM had performance
independent of the number of causal SNPs, consistent with the fact that none of these
methods model non-infinitesimal genetic architectures. GCTA-LOCO and BOLT-LMM-inf
meany? statistics at standardized effect SNPs were essentially identical and slightly
exceeded PCA, consistent with therywe also tested EMMAXand GEMMA®, which

are vulnerable to proximal contaminafteh!2 these methods suffered loss of power relative
to PCA (Supplementary Fig. 4a), consistent with thEory

To further explore the relationship between the magnitude of Gaussian mixture model power
gain and other parameters of the data set, we also varied the proportion of variance
explained by causal SNPs (Fig. 2b) and the number of individuals (Fig. 2c). We observed
that the power boost of BOLT-LMM over infinitesimal mixed model analysis (GCTA-

LOCO, BOLT-LMM-inf) increased with each of these parameters. In further simulations
using data sets of si2&=30,000 andN=60,000 (Supplementary Note) and simulated
phenotypes wittM5,557250-15,000 causal SNPs explaining 15-35% of the variance, we
observed that the effectiveness of the Gaussian mixture model is closelyrté'éN/Mcausm
(wherehg2 is the heritability parameter estimated by BOLT-LMM; see Online Methods for
interpretation); intuitively, this quantity measures the effective number of samples per causal
SNP (Supplementary Fig. 5). These results are consistent with theory (Supplementary Note
and Supplementary Table 2 of #&J, which explains that even in the absence of

confounding, mixed model analysis provides a power gain over marginal regression by
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conditioning on the estimated effects of other SNPs when testing a candid&t&2SNP
sample size increases, the power gain of both methods approaches an asymptote

corresponding to an increase in effective sample size ofhgﬂ)lbut for sparse genetic
architectures, the Gaussian mixture model approaches this asymptote much faster.

To verify that BOLT-LMM is correctly calibrated and robust to confounding, we also
computed meag? statistics across SNPs on the second halves of chromosomes, simulated
to all have zero effect (“null SNPs”). Because our simulated phenotypes included an
ancestry effect, linear regression without correcting for population stratification suffered
35% inflation. In contrast, the BOLT-LMM and BOLT-LMM-inf statistics were both well-
calibrated (Supplementary Fig. 4b, Supplementary Table 3, and Supplementary Table 4).
We further verified that Type | error was properly controlled (Online Methods and
Supplementary Table 5) and that the distribution of statistics at null SNPs did not deviate
noticeably from a 1 d.o.f. chi-squared distribution (Supplementary Fig. 6a,b). Genomic
inflation factor$3 for BOLT-LMM and BOLT-LMM-inf exceeded 1 in these simulations
(Supplementary Fig. 6¢,d), consistent with polygenicity of the simulated phenotype and use
of a mixed model statistic that successfully avoids proximal contamif&fiérin contrast,
EMMAX and GEMMA had deflated test statistics (Supplementary Fig. 4b).

To examine the tightness of the variational approximation used by BOLT-LMM for
Bayesian model fitting and to enable comparison with FaST-LMM-Select, we ran a small-
scale simulation using the same setup as above but only one-third of the saimpj2sX).

We simulated genetic architectures with 1,250 causal SNPs explaining 70% of phenotypic
variance (and 60 additional standardized effect SNPs explaining 2% of variance and
ancestry explaining 1%, as before). We ran PCA, BOLT-LMM-inf, BOLT-LMM, FaST-
LMM-Select, and a modified version of BOLT-LMM in which we replaced the variational
iteration of Step 2b with a Markov chain Monte Carlo (MCMC) Gibbs sampler. In the limit
of infinite sampling iterations, MCMC would produce exact versions of the posterior
approximations computed by BOLT-LMM. In these simulations, the variational iteration
(i.e., standard BOLT-LMM) achieved statistically identical results to MCMC
(Supplementary Table 6a), supporting the choice of variational Bayes for BOLT-LMM. We
also observed that while BOLT-LMM-inf achieved a power gain over PCA and BOLT-
LMM achieved a further power gain over BOLT-LMM-inf (consistent with previous
simulations), FaST-LMM-Select achieved lower power than BOLT-LMM-inf and BOLT-
LMM (Supplementary Table 6a). Upon repeating this experiment with the number of causal
SNPs reduced to 500, we observed that FaST-LMM-Select achieved a power gain in
between BOLT-LMM-inf and BOLT-LMM (Supplementary Table 6b). Finally, we
observed that the LD Score calibration approach used by BOLT-LMM also worked well
when applied to FaST-LMM-Select, validating this calibration approach (Supplementary
Table 6).

Lastly, we investigated the similarity between the BOLT-LMM-inf mixed model statistic
and existing methods at the individual SNP level. Despite its use of an infinitesimal model,
the BOLT-LMM-inf statistic is not identical to any existing mixed model statistic because it
is an approximate test statistic and avoids proximal contamination (Online Methods and
Table 1). Nonetheless, we observed that BOLT-LMM-inf statistics very nearly match
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GCTA-LOCO statistics (which use the standard prospective model)R##Hh 999
(Supplementary Table 7 and Supplementary Fig. 7).

Application of BOLT-LMM to WGHS phenotypes

To assess the efficacy of Gaussian mixture model analysis for increasing power on real
phenotypes, we analyzed nine phenotypes in the Women’s Genome HealthNs2@i294
samplesM=324,488 SNPs after QC) (Online Methods). These phenotypes consisted of five
lipid phenotypes, height, body mass index, and two blood pressure phenotypes; we chose to
analyze these phenotypes because of the availability of large-scale GWAS results.

We compared the power of three association tests: linear regression with 10 principal
components (PCAY, infinitesimal mixed model analysis with BOLT-LMM-inf, and

Gaussian mixture modeling with BOLT-LMM. Because of memory constraints (Fig. 1), we
were unable to run GCTA-LOC® FaST-LMMP, or FaST-LMM-Seled®, which are the

only previous methods that avoid proximal contamination (Table 1); however, GCTA-
LOCO and BOLT-LMM-inf statistics are near-identical (Supplementary Table 7 and
Supplementary Fig. 7). To compare power among these methods, we computed two roughly
equivalent metrics: meay? statistics at known associated loci, a direct but somewhat noisy
approach due to having only 19-180 loci for each trait (Supplementary Table 8), and out-of-
sample predictiof®? (measured in cross-validation) using all SNPs for the mixed model
methods and using only PCs for linear regression. For mixed model analysis, the latter
metric estimates the ability of the mixed model to condition on effects of other SNPs when
testing a candidate SNP, which drives its power (Online Methogs)

BOLT-LMM achieved higher power than PCA for all traits studied (Fig. 3 and
Supplementary Table 9). Most of the increase was due to gains over infinitesimal mixed
model analysis, with the magnitude of this power gain increasing with inferred concentration
of genetic effects at few loci (Supplementary Table 10). Standard errors of the direct method
of assessing improvement (megnat known loci) were somewhat high (0.6—2.2%; Fig. 3a
and Supplementary Table 9), so the improvement was statistically significant (p<0.05) for
only 6 of 9 traits. According to the predicti® metric, improvements were statistically
significant for all traits (p<0.0002) (Fig. 3b and Supplementary Table 9). The largest gains
were achieved for lipid traits; for ApoB, a lipoprotein closely related to LDL cholesterol,
BOLT-LMM analysis achieved a 10% increase in mgastatistics versus PCA and a 9%
increase versus infinitesimal mixed model analysis at known loci. To verify that these
increases were not merely driven by a few loci with the largest effects, we also computed
flat averages across loci of improvementg3statistics (restricting to loci replicating in

WGHS with at least nomingk0.05 significance to reduce statistical noise) and obtained
consistent results (Supplementary Table 8). Simulations show that these improvements will
increase with sample size (Fig. 2c and Supplementary Fig. 5).

We also observed that infinitesimal mixed model analysis achieved statistically significant
power gains over PCA, with the magnitude of the power gains increasing with the
heritability parametelng2 (Fig. 3 and Supplementary Table 9). For heigb%:(OA? in

WGHS), the moderately large sample size of WGN&23,294) was enough to obtain a 6%
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increase in BOLT-LMM-infy? statistics versus PCA, consistent with thé®#: Again,
larger sample sizes will enable further géfmn¥

To verify that BOLT-LMM successfully corrected for confounding from population

structure, we computed meghstatistics across all typed SNPs and genomic inflation

factors for the three methods compared above as well as uncorrected marginal linear
regression. We observed that PCA, BOLT-LMM-inf, and BOLT-LMM statistics were
consistently calibrated, while uncorrected linear regression statistics were inflated,
especially for height (Supplementary Table 11). We further verified that genetic variation at
the lactase gene had a false-positive genome-wide significant association with height using
uncorrected marginal regresstnwhich disappeared when using PCA, BOLT-LMM-inf,

and BOLT-LMM (Supplementary Table 12).

We have described a new algorithm for fast Bayesian mixed model association, BOLT-
LMM, and demonstrated that its running time scales only whiN-> and its memory

usage is onlggMN/4 bytes, resulting in orders-of-magnitude improvements in
computational efficiency over existing methods for large data sets. We have further shown
in simulations and analyses of WGHS phenotypes that the Gaussian mixture modeling
capability of BOLT-LMM enables increased association power over standard mixed model
analysis while controlling false positives. Among WGHS lipid traits, we observed power
increases equivalent to increases in effective sample size of up to 10% over PCA and 9%
over standard mixed model analysis.

BOLT-LMM is an advance for two main reasons. First, as sample sizes continue to increase,
mixed model analysis is simultaneously becoming more important—in order to correct for
population structure and cryptic relatedness in very large data sets—yet less practical with
existing methods, all of which havé®#8MN?) time complexity (fotM>N) and high memory
requirements. The algorithmic innovations of BOLT-LMM overcome this computational
barrier (Fig. 1). (Our implementation useMN/4 bytes of memory, which is already much

less in practice than existing methods. In theory, existing algorithms have a memory
complexity ofO(N?), while BOLT-LMM’s memory complexity could be reduced@M

+N) by iteration on data.) Second, the ability of BOLT-LMM to better model non-

infinitesimal genetic architectures enables a power gain relative to standard mixed model
analysis. Recent methodological progress in this direction includes the multi-locus mixed
model (MLMM)’, which identifies and conditions out large-effect loci as fixed effects, and
FaST-LMM-Select and related meth8ds:15:16.:35which adopt a sparse regression

framework that restricts the mixed model to a subset of markers. However, these methods all
face the sam®(MN?) computational hurdle as standard mixed model analysis.

Bayesian methods have previously been developed that apply non-infinitesimal models to
improve the accuracy of genetic risk prediction. These methods extend in principle to
association testing, although the Bayes factors and posterior inclusion probabilities that are
naturally produced by Bayesian analysis do not directly translate to customary GWAS
frequentist test statisties The variational Bayes spike regression (vBsr) methisda
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recent step toward addressing this issue, proposing a z-statistic heuristically calibrated by
assuming that the vast majority of variants are unassociated (as in genomicé®obtbl

such a technique is prone to deflation when large sample sizes cause inflation due to
polygenicity3:24 BOLT-LMM sidesteps this difficulty via its hybrid approach of leaving
each chromosome out in turn, fitting a Bayesian model on the remaining SNPs, and then
applying a retrospective hypothesis test for association of left-out SNPs with the residual
phenotype. In contrast to modeling all SNPs simultaneously and assessing evidence for
association using Bayesian posterior inferéhaeur approach generalizes existing mixed
model methods that are widely used, and we believe its ability to harness the power of
Bayesian analysis while still computing frequentist statistics will be useful to GWAS
practitioners. Additionally, such a hybrid approach lends itself readily to efficiently testing
millions of imputed SNP dosages for association while including only typed SNPs in the
mixed model, which we recommend to limit computational costs.

While BOLT-LMM improves upon existing mixed model association methods in both speed
and power, BOLT-LMM still has limitations. First, the power gain that BOLT-LMM offers
over existing methods via its more flexible prior on SNP effect sizes is contingent on the
true genetic architecture being sufficiently non-infinitesimal and the sample size being
sufficiently large (Supplementary Fig. 5). Second, BOLT-LMM, like existing mixed model
methods, is susceptible to loss of power when used to analyze large ascertained case-control
data sets in diseases of low prevaléAc@/e recommend BOLT-LMM for randomly
ascertained quantitative traits, ascertained case-control studies of diseases with prevalence
5% (Supplementary Table 13)—e.g., type 2 diabetes, heart disease, common cancers,
hypertension, asthma—and studies of rarer diseases in large, non-ascertained population
cohorts$940 For large ascertained case-control studies of rarer diseases, we are developing a
method of modeling ascertainment using posterior mean liabilities (LTMLM); applying the
techniques of BOLT-LMM to these posterior mean liabilities is an avenue for future
research. Third, while mixed model analysis is effective in correcting for many forms of
confounding, performing careful data quality control remains critical to avoiding false
positives. Fourth, our work does not attempt to estimate the extent to which the heritability
parameter estimated by BOLT-LMM (denoﬂeg?) may be influenced by population

structure or relatedness, nor does it conduct or evaluate genetic prediction in external
validation samples from an independent colfoFifth, we have not studied the

performance of mixed model methods in data sets dominated by family stféicBixeh,

the running time of BOLT-LMM scales with the number of phenotypes analyzed; for data
sets with a very large number of phenotypes (P), the GRAMMAR-Gamma ri&tturich

has running tim@©(MN2+MNP) (reviewed in ref?) may be faster. Seventh, we have only
tested BOLT-LMM in human data sets, which have very different patterns of linkage
disequilibrium and genetic architectures from plant and animal data. In particular, given that
some approximations we make may be violated in non-human data sets (e.g., treating the
denominator of the prospective test statistic as near-coHjtam are unsure whether the
BOLT-LMM statistic is valid in these scenarios. Similarly, these assumptions should be
viewed with caution when testing very rare variants. Finally, we have developed fast mixed
model analysis for a mixed model with one random genetic effect; extending the algorithm
to model multiple variance componehitss a direction for future work.
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Online Methods

Standard mixed model association methods

Standard methods employ a model
y:-rtcstﬁtcst+g+ey 1)

wherey is the phenotypegestis the candidate SNP being testgds the genetic effect, and
eis the environmental effect. We assume for now that all have been mean-centered and

there are no covariates; we treat covariates by projecting them out from both genotypes and

phenotypes, which is equivalent to including them as fixed effects (Supplementary Note).
The genetic and environmental effects are modeled as random effects, while the candidate
SNP is modeled as a fixed effect with coefficiggt; and the goal is to test the null

hypothesi$s=0. Under the standard infinitesimal model, the genetic effect is modeled as

9=XcrmBParvs  (2)

whereXgrm IS anNxMggrp matrix, each column of which contains normalized genotypes
corresponding to a SNP included in the model, fligh is anMgrp-vector of random

SNP effect sizes all drawn from the same normal distribution, sg tiet a multivariate
normal distribution with covariance Cay(x XgrmXcrm'- Note that in order to avoid
proximal contaminatioh®12 theMggrm SNPs used iXgrym should vary depending on
which SNPxgtis being tested: the candidate SKR:(and SNPs in linkage disequilibrium
with it) should be excluded froiXgrm to avoid modeling its effect twice. BOLT-LMM
adopts a leave-one-chromosome-out (LOCO) schéfia whichXgry leaves out SNPs

on the same chromosomexas;;

The matrixXgrmXcrM/MgRrM IS conventionally called the genetic relationship matrix
(GRM) or empirical kinship matrik, and we write

COV(!]):U!IZXGRM Xeann M gpy :‘792K7 (3)

whereog2 is a variance parameter. Environmental effects are assumed i.i.d. normial, so
also multivariate normal with

Cov(e)=a.2I, (4)
wherel denotes th&lxN identity matrix and¢? is another variance parameter.

In practice, the variance paramete@% andog? are unknown. Several existing
method$:10:-12therefore take a two-step approach to computing association statistics: first
estimate the variance parameters (with the &hlifremoved from the model) using
restricted maximum likelihood (REML), and then compute the prospective chi-squared (1
d.o.f.) test statistic (as previously proposed in family-based*®sts
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/ 182
2 _ (Itcst |4 y) 5
=S 6)
xtcst‘ Ltest

where
V=Cov(y)=0,2K+0.’I, (6)

setting the variance paramete[ﬁ ando¢? to their estimates under the null hypothesis
Btes=0. Within a LOCO scheme, the test statistic becomes

’ _ 2
X2 — (‘rtest‘/yjolco y) (7)
LMM—-LOCO xtestVLz)lcoxtest
where we have writte¥X| oco for V to explicitly indicate that the chromosome containing
XtestiS left out of the GRM.

Recent computational advances have also enabled computation of exact likelihood ratio test
statistics that model the variance parameters while testing the candid&é SWie exact
statistics are more accurate in situations with very large-effect SNPs, approximate methods
produce near-identical results in typical human genetics sceh¥ibs

BOLT-LMM-inf mixed model statistic

The BOLT-LMM-inf infinitesimal mixed model statistic is slightly different:

’ 1 2
2 _ (xtest ‘/LOCO y) (8)

XBOLT—LMM—inf . )
Cinf

whereci,; is a constant calibration factor estimated as

’ _ 2
Mean(mtest ‘/Lolco y) (

M 2 )
€ANX T Mv—Loco

Cinf=

so that
Meany? =Meany? (10)
XBOLTfLMl\I—inf XLMI\{—LOCO :

In practice, for computational efficiency, we take means over 30 pseudorandom SNPs not
significantly associated with the phenotypé<6 estimated with the GRAMMAR

statisti¢3). We have observed empirically that 30 random SNPs are enough to estimate the
calibration factor to within 1% (Supplementary Table 14).

We can view the BOLT-LMM-inf statistic either as an approximation of the standard
prospective statistic (which treats phenotypes as random) or as a retrospective statistic
(which treats genotypes as random and builds a null model on SNPs). The first perspective
is motivated by the observation that in human genetics applications, the denominator of the
prospective statistic in equation (%hsiV Xes; is nearly independent of the SMBs;
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being testetP. From this perspective, BOLT-LMM-inf is similar to GRAMMAR-Gam#ia
with two key differences: (1) BOLT-LMM-inf is computed via much faster algorithms
(described below) for performing initial variance parameter estimation and estimating the
calibration constant, and (2) BOLT-LMM-inf avoids proximal contamination via LOCO
analysis. Alternatively, we can also view BOLT-LMM-inf as a retrospective quasi-
likelihood score test similar fB°CORE-Rref44) and MASTORS (Supplementary Note).

BOLT-LMM Gaussian mixture model association statistic

We now generalize BOLT-LMM-inf by observing that the vealpsco Ly appearing in
equation (8) is a scalar multiple of the residual phenotype vegdroco 2ty from best
linear unbiased prediction (BLUP). Thus, #f&oLT-Lmm-inf Statistic is equivalent to
computing (and then calibrating) squared correlations betweengNRsid BLUP
residuals. The power of mixed model association is driven by the fact thak@NBe
tested against these “de-noised” residual phenotypes from which other SNP effects
estimated by the mixed model have been conditioneéttdut

We may generalize this approach by defining

’ 2
2 ("BtestyresideOC()) (11)
Xporr—Lvm — c ’

whereyresig-Locodenotes a generalized residual phenotype vector obtained after fitting a
Gaussian mixture extension of the standard LMM (using SNPs not on the same chromosome
asXes) andc denotes a calibration factor, estimated so that the LD Score regression
intercep?? of y2goLT-Lmm Matches that of the (properly calibrat@@ o T-L mm-inf Statistic.

Under the infinitesimal modeyesid-Locois proportional to/, oco™ Yy, SOX28oLT-LMM

reduces tq2goLT-LMM-inf - The general?goLT-Lmm Statistic can still be interpreted as a
retrospective quasi-likelihood score test and is thus asymptotically chi-squared distributed.

To define the Gaussian mixture LMM extension, it is helpful to first frame the standard
LMM in a Bayesian formulation. The null model of BOLT-LMM-inf is

y:XLOC() BLOCO +e, (12)

where SNP effect, (mindexing SNPs not on the left-out chromosome) are independently
drawn from the Gaussian prior distribution

Br~N (0, 0—92)/J\JLOCO (13)

and environmental effecep, (n indexing samples) are independently drawn fegm N(O,
06). Performing best linear unbiased prediction amounts to computing the posterior mean of
the genetic effeck ocBLoco-

To generalize this model to non-infinitesimal genetic architectures, we replace the Gaussian
prior on SNP effect sizes with a more general distribution; this approach has been
extensively applied by the “Bayesian alphabet” of genomic prediction methods in the animal
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breeding literatur€’~12 In BOLT-LMM, we use a spike-and-slab mixture of two
Gaussian¥ as the prior:

Bm~N(0,051%)with probabilityp. 8,,~N (0,05 °)with probabilityl —p. (14)

This mixture more flexibly models the heavier-tailed distributions of genetic effects of

typical (non-infinitesimal) phenotypes. Explicitly,ft<1 andog 12 >> og 52, the first

component of the mixture is a “slab” that models the existence of a small number of
relatively large-effect loci, while the second component is a “spike” that models the
assumption that most SNPs have near-zero—but not exactly zero—effect on the phenotype.
(Note, however, that all SNPs are assigned the same mixture prior; i.e., SNPs are not
individually allocated to one or the other component.) It is important that the spike
component have nonzero variance so as to capture genome-wide effects on phenotype such
as ancestry or relatedness; then, when testing SNPs for association, these genome-wide
effects are conditioned out from residual phenotypes, protecting against confounding. The
prior could in principle be further generalized; we chose to use a mixture of two Gaussians
to keep the model fairly simple and because Gaussian distributions produce convenient
analytical formulas during model-fitting.

Under this generalized model, posterior means no longer correspond to BLUP, but we can
still approximately fit the Bayesian model (once per left-out chromosome) and obtain
residuals

Yresia_roco=Y — Xi0c0Proco:  (15)

wherep oco are estimated posterior mean effect sizes. Plugging these residuals into
equation (11) gives the BOLT-LMM Gaussian mixture model association test statistic.

Fast iterative algorithm

The BOLT-LMM software performs a four-step computation for mixed model association
analysis, stopping after the first two steps when specialized to the infinitesimal model. We
outline the algorithm here and provide full details and pseudocode in the Supplementary
Note.

Step la: Estimate variance parameters

A key feature of BOLT-LMM is estimation of variance parame@?&andoez using only
linear-time iterations without building or decomposing any covariance matrices. We use a
Monte Carlo REML approaéfi-2’that eliminates alD(MN?) andO(N3)-time matrix
computations, requiring only the solution of linear systems of mixed model equations. We
solve the mixed model equations using conjugate gradient iteration, which requires only
O(MN)-time matrix-vector product§29(Supplementary Note).

Step 1b: Compute and calibrate BOLT-LMM-inf statistics

Having variance parameter estimates from Step 1a, it is straightforward to compute (for each
LOCO rep) the quantity, oco Ly in the numerator of the BOLT-LMM-inf statistic,
equation (8), using conjugate gradient iteration as above. Completing the computation of the
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numerator of?goL T-Lmm-inf then just amounts to calculating one dot product per&NpP
which requires onlYD(MN) additional cost across all SNPs. Moreover, this computation can
easily be performed for additional SNPs not included in the mixed model but at which
association statistics are desired; BOLT-LMM handles imputed “dosage” data in this way.
To compute the calibration constap in equation (9), BOLT-LMM rapidly computes the
prospective statistigZ mv-Loco from equation (7) at 30 random SNPs by applying
conjugate gradient iteration to compMgyco xiestfor each of the 30 selected SNRs;

Finally, in addition to computing? association statistics, BOLT-LMM also computes effect

size estimates for all SNPs tested (Supplementary Note).

There is a slight mismatch between the variance parameters estimated in Step 1a, which

BOLT-LMM computes once using all SNPs—not leaving any chromosomes out—and the

theoretically optimal parameter estimates that would be obtained by refitting once per left-
out chromosome. However, we have observed in simulations that slight mis-specification of
the variance parameters has a negligible impact (<0.5%) on the calibration of the BOLT-

LMM-inf and BOLT-LMM statistics (Supplementary Table 4). Because very slight
miscalibration is not a concern for confounding from population stratification at highly
differentiated markers (Supplementary Table 12) and has little impact on Type | error
(Supplementary Table 5), the BOLT-LMM software does not by default refit variance
parameters for each LOCO rep. If extremely precise calibration is desired, we provide a
runtime option to refit variance parameters for each LOCO rep, at the cost of a factor of 2-3
in running time. We believe that LOCO strikes a good balance in terms of achie3484

of the potential power gain (by jointly fittirg95% of markers that are not in LD with the
candidate marker) while keeping run time dé#mut we also provide a runtime option to
partition the genome more finely (e.g., into 100 segments rather than 22), again at the cost of
a factor of 2—3 in running time.

Step 2a: Estimate Gaussian mixture prior parameters

The first step of BOLT-LMM Gaussian mixture model association analyis is to estimate
parameters of the generalized prior on SNP effect sizes. As written in equation (14), this
mixture has three parameteasgy:l2 andoByzz, the variances of the two Gaussians, pyttie
probability of drawing from the first Gaussian. To reduce the complexity of parameter
estimation, we constrain the total variance of the mixture to equal the varij%‘Me
estimated under the infinitesimal model in Step l1a:

p0ﬂ712+(1 — p)0ﬁ72220'92/1\"f. (16)

We reparameterize the remaining two degrees of freedom using the pararaeidfs
wheref, denotes the proportion of the total mixture variance within the second Gaussian
(the “spike” component that models small genome-wide effects):

(1-p)oj
22— )

fo=
pog,+(1—p)o,

Because the model fit is insensitive to the precise values of the mixture parameters, we test a
discrete set of model parameter combinatify&{0.5,0.3,0.1},pe
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{0.5,0.2.0.1,0.05,0.02,0.01}. Note thfat0.5,p=0.5 corresponds to the infinitesimal model:
whenfy,=1-p, the two Gaussians are identical and the mixture is degenerate. Wefpound
from below to ensure that at least a small amount (10%) of the mixture variance is assigned
to the spike component, protecting against confounding from genome-wide effects. We
boundp from below to prevent the model from trying to fit too strongly to a few SNPs,

which makes model-fitting computationally difficult and also increases susceptibility to
confounding. BOLT-LMM performs model selection among the 18 possible parameter pairs
(f,, p) by performing cross-validation to optimize mean-squared predigfion

BOLT-LMM uses a variational approximation to fit Bayesian linear regressions with
Gaussian mixture priors. Approximation methods are necessary for Bayesian inference in
this setting because exact posterior means involve intractable integrals. We apply a fully
factored variational approximatiéh22:38that repeatedly loops through the SNPs, updating
the estimated effect size of each SNP with its posterior mean conditional on current
estimates of all other SNP effects. This iteration has also previously been termed “iterative
conditional expectation (ICE3?. The variational Bayes framework puts this iteration on a
sound theoretical footing as an optimization of an approximate log likelihood function; the
iteration monotonically increases this function and is guaranteed to cofvvéngiact, we

show that the optimization can be reformulated as cyclic coordinate descent applied to a
penalized regression problem arising from Bayesian linear regression using a transformed
prior (Supplementary Note). The approximate log likelihood also serves as a convenient
convergence criterion: BOLT-LMM stops the iteration when the increase in approximate log
likelihood over one full update cycle drops below 0.01.

While the core variational iteration that BOLT-LMM uses is identical to previous
method$%-22:38p to the choice of SNP effect size prior, BOLT-LMM uses cross-validation
to estimate hyperparamet&tsather than doing so within the variational iteraf#f or

based on variational approximate log likelihodd§Ve found this approach to be more
robust to slackness of the variational approximation caused by linkage disequilibrium.

Step 2b: Compute and calibrate BOLT-LMM Gaussian mixture model statistics

After inferring parameters of the mixture prior in Step 2a, BOLT-LMM uses the same
variational iteration to estimate posterior mean residygls. oco(independently for each
left-out chromosome). The numerators of the BOLT-LMM Gaussian mixture model statistic
from equation (11) are then easily obtained as dot products with test SNPs, leaving only the
constant calibration factarin the denominator to be calculated. Unlike the case of the
infinitesimal model, here we do not have a prospective statistic to calibrate against, so we
instead apply LD Score regressiéiSupplementary Note). In practice, the calibration

factor is usually quite close to 1 (e.g., 1.00 to two decimal places for all WGHS traits; see
Supplementary Table 15).

WGHS data set

The Women'’s Genome Health Study (WGHS) is a prospective cohort of initially healthy,
female North American health care professionals. We analyzed 23,294 individuals with self-
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reported European ancestry with genotyping at 324,488 SNPs after QC (Supplementary
Note).

Interpretation of heritability parameter

The heritability parameter (denoth@?) estimated by BOLT-LMM may in general include
some contribution from cryptic relatedness or population strfaed thus may not

strictly correspond to the heritability explained by genotyped $fNRef3 refers to this
parameter as “pseudo-heritability” for this reason. Because the WGHS samples that we
primarily analyze here do not contain substantial relatedness or population structure, we
have simply used the notatih@2 to avoid complicating the discussion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Computational performance of mixed model association methods
Log-log plots of &) run time andlf) memory as a function of sample sid§.(Slopes of the

curves correspond to exponents of power-law scalingMWiBenchmarking was performed

on simulated data sets in which each sample was generated as a mosaic of genotype data
from 2 random “parents” from the WTCCC2 data $&t15,633,M=360K) and phenotypes
were simulated wittMgg,s275,000 SNPs explaining?.a,ss70.2 of phenotypic variance.
Reported run times are medians of five identical runs using one core of a 2.27 GHz Intel
Xeon L5640 processor. We caution that running time comparisons may vary by a small
constant factor as a function of computing environment. FaST-LMM-Select (resp. GCTA-
LOCO, EMMAX) memory usage exceeded the 96GB availabN=abK (resp. 30K, 60K).
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GEMMA encountered a runtime error (segmentation faulj=0K. Software versions:
FaST-LMM-Select, v2.07; GCTA-LOCO, v1.24; EMMAX, v20120210; GEMMA, v0.94.
Numerical data are provided in Supplementary Table 1.
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Figure2. BOLT-LMM increases power to detect associationsin simulations
Meany? at standardized effect SNPs as a functiomph(mber of causal SNP$)(

proportion of variance explained by causal SNBsn@mber of samples. Simulations used

real genotypes from the WTCCC2 data $&t15,633,M=360K) and simulated phenotypes

with the specified number of causal SNPs explaining the specified proportion of phenotypic
variance and 60 more standardized effect SNPs explaining an additional 2% of the variance.
Error bars, s.e.m., 100 simulations. We verified on the first 5 simulations that the BOLT-
LMM-inf and GCTA-LOCO statistics are nearly identical (Supplementary Table 7).
Numerical data are provided in Supplementary Table 2.
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Figure 3. BOLT-LMM increases power to detect associations for WGHS phenotypes
We compare power (measured using two roughly equivalent metrics) of linear regression

using 10 principal components, standard (infinitesimal) mixed model analysis, and BOLT-
LMM Gaussian mixture model analys{g) Percent increases jg statistics across known

loci using mixed model methods vs. PCA: ratios of sumg sfatistics over typed SNPs in
highest LD with published associated SN@®3.PredictionR? values from 5-fold cross-
validation: each fold was left out in turn and predictions were computed by fitting all SNP
effects simultaneously (for mixed model methods) or estimating covariate effects (for PCA)
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using the training folds. (Note that BOLT-LMM-inf is equivalent to BLUP prediction here.)

We show PCA inb) because the small amount of variance that the PCs explain (due to
population stratification) provides a baseline that allows translating predi@itnthe

power gain of mixed model association vs. regression with PC covariates. That is, the
correspondence between association power and prediction accuracy is such that the red bars
in (a) roughly correspond to differences between red and black b@rys and analogously

for blue bars (Online Methods). Error bars, jackknife s.e. @émown loci

(Supplementary Table 8)p) 5 cross-validation folds. Numerical data are provided in
Supplementary Table 9.
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Table 1

Comparison of fast mixed model association methods that model all SNPs.

Method@ RequiresO(MN?) time  Avoids proximal Models

contamination non-infinitesimal
genetic architecture

EMMAX [3] X

FaST-LMM [5] xb X

FaST-LMM-Select [9, 11, 15] xb X XC

GEMMA [6] X

GRAMMAR-Gamma [10] xd

GCTA-LOCO [12] X X

BOLT-LMM X X

a . S . . - ) )
For methods that have been updated over multiple publications, we cite and list characteristics of the latest published version.
bIf M<N, FaST-LMM and FaST-LMM-Select can completeﬁerN) time.

FaST-LMM-Select models non-infinitesimal genetic architectures by restricting the mixed model to a subset of SNPs; a caveat of this approach is
that it may incur susceptibility to confounding from stratificadi®n

dGRAMMAR-Gamma require@(MNz) time for only the initial computation of the genetic relationship matrix but not for computing association

test statistics. For a detailed breakdown of computational complexity per algorithmic step, see Tabld? of ref.
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