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Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but as-

semblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have

generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an as-

sembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome

with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific

Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding

genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements.

Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and

the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.

[Supplemental material is available for this article.]

Improvements in sequencing read lengths and throughput have

enabled the rapid and cost-effective assembly of many large and

complex genomes (Gnerre et al. 2011; Lam et al. 2011).

Comparisons between assembled genomes have revealed many

classes of sequence variation of major functional significance

that were not detected by direct alignment of sequence reads to a

common reference (The 1000 Genomes Project Consortium

2010;Gan et al. 2011; Bishara et al. 2015). Therefore, accurate com-

parative genomics requires that genome sequences are assembled

prior to alignment, but in many eukaryotic genomes, assembly is

complicated by the presence of large tracts of repetitive sequences

(Treangen and Salzberg 2012; Chaisson et al. 2015) and the com-

mon occurrence of genome duplications, for example, in poly-

ploids (Blanc and Wolfe 2004; Berthelot et al. 2014).

Recent innovations in sequence library preparation, assembly

algorithms, and long-range scaffolding have dramatically im-

proved whole-genome shotgun assemblies from short-read se-

quences. These include PCR-free library preparation to reduce

bias (Aird et al. 2011), longer sequence reads, and algorithms

that preserve allelic diversity during assembly (Weisenfeld et al.

2014). Short-read assemblies have been linked into larger
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chromosome-scale scaffolds by Hi-C in vivo (Lieberman-Aiden

et al. 2009) and in vitro (Putnam et al. 2016) chromatin proximity

ligation, as well as by linked-read sequencing technologies

(Mostovoy et al. 2016; Weisenfeld et al. 2016). Although it is

more expensive than short-read sequencing approaches, single-

molecule real-time (SMRT) sequencing improved the contiguity

and repeat representation of mammalian (Pendleton et al. 2015;

Gordon et al. 2016; Bickhart et al. 2017) and diploid grass genomes

(Zimin et al. 2017). SMRT technologies are also being used to gen-

erate the complete sequence of transcripts, increasing the accuracy

of splicing isoform definition (Abdel-Ghany et al. 2016).

The assembly of the 17Gb allohexaploid genome of bread

wheat (Triticum aestivum) has posed major difficulties, as it is

composed of three large, repetitive, and closely related genomes

(Moore et al. 1995). Despite progressive improvements, an accu-

rate and near-complete wheat genome sequence assembly and

corresponding high-quality gene annotation has not yet been

generated. Initial whole-genome sequencing used orthologous

Poaceae protein sequences to generate highly fragmented gene

assemblies (Brenchley et al. 2012). A BAC-based assembly of

Chromosome 3B providedmajor insights intowheat chromosome

organization (Choulet et al. 2014). Illumina sequencing and as-

sembly of flow-sorted chromosome arm DNA (Chromosome

Survey Sequencing [CSS]) identified homoeologous relationships

between genes in the three genomes, but the assemblies remained

highly fragmented (The InternationalWheat Genome Sequencing

Consortium 2014). Recently, a whole-genome shotgun sequence

of hexaploid wheat was assembled and anchored, though not an-

notated, using an ultradense genetic map (Chapman et al. 2015).

The assembly contained ∼48.2% of the genome with contig and

scaffold N50 lengths of 8.3 and 25 kb, respectively.

Here we report the most complete and accurate sequence as-

sembly and annotation to date of the allohexaploid wheat refer-

ence accession, Chinese Spring (CS42). Our approach is open

source, rapid, and scalable and enables a more in-depth analysis

of sequence and structural variation in this key global crop.

Results

DNA library preparation and sequencing

We aimed to reduce bias and retain maximum sequence complex-

ity by using unamplified libraries for contig generation (Kozarewa

et al. 2009) and to improve scaffolding by using precisely sized

mate-pair libraries (Heavens et al. 2015). Libraries were sequenced

using Illumina paired-end (PE) 250-bp reads to distinguish closely

related sequences. In total, 1.1 billion PE reads were generated to

provide 33× sequence coverage of the CS42 genome (Supple-

mental Information S1; Supplemental Table S4.1). For scaffolding,

long mate-pair (LMP) libraries with insert sizes ranging from

2480–11,600 bp provided 53× sequence coverage, and Tight, Am-

plification-free, Large insert PE Libraries (TALL) with an insert size

of 690 bp provided 15× sequence coverage (Supplemental Infor-

mation S1; Supplemental Table S4.2).

Genome assembly

Nearly 3 million contigs (of length >500 bp) were generated using

the w2rap-contigger (Clavijo et al. 2017) with an N50 of 16.7 kb

(Supplemental Information S1; Supplemental Table S4.3). After

scaffolding using SOAPdenovo (Luo et al. 2012), the assembly

contained 1.3 million sequences with an N50 of 83.9 kbp. The

TGACv1 scaffolds were classified to chromosome arms using

raw CSS reads (The International Wheat Genome Sequencing

Consortium2014) and subsequently screenedwith a two-tiered fil-

ter based first on their length and their k-mer content (see

Supplemental Information S1, section S4.5). The approach re-

moved short, redundant sequences from the assemblyminimizing

the loss of unique sequence content, leading to an increase in scaf-

fold N50 to 88.8 kb. Contig accuracy was assessed by mapping

links from the 11-kb LMP library, whichwas not used in the contig

assembly. Breaks in the linkage at different mate-pair mapping

coverages only affected a very small portion of the content and

did not reduce N50 contiguity significantly (Supplemental

Information S1; Supplemental Figs. S4.4, S4.5). Supplemental

Tables S4.5 and S4.6 in S1 show that 91.1% of TGACv1 genes

were correctly assigned to Chromosome 3B, with no discrepancies

in gene order identified.

The genome of a synthetic wheat line W7984 was previously

assembled with an improved version of meraculous (Chapman

et al. 2011) using 150-bp PE libraries with varying insert sizes,

for a combined genome coverage of 34.3×, together with 1.5-

and 4-kb LMP libraries for scaffolding (Chapman et al. 2015).

This contig assembly, with an N50 of 8.3 kb, covered 8 Gb of the

genome while the scaffold assembly covered 8.21 Gb with an

N50 of 24.8 kb. In comparison, the TGACv1 assembly represents

∼80% of the 17-Gb genome, a 60% improvement in genome cov-

erage. The contiguity of the TGACv1 assembly, as measured by

scaffold N50 values, is 3.7-fold greater than that of the W7984 as-

sembly and 30 times that of the CSS assembly (Table 1; The

International Wheat Genome Sequencing Consortium 2014).

A KAT k-mer spectra copy number plot provides information

to analyze howmuch andwhat type of k-mer content from reads is

present in an assembly (Mapleson et al. 2017). It decomposes the k-

mer spectrum of a read data set by the frequency in which the k-

mers are encountered in the assembly. The plot generated from

TGACv1 (Fig. 1A) showed that k-mers found at low frequency

(less than 12), representing sequencing errors, were not found in

the assembly (shown by the black distribution at k-mer multiplic-

ity less than 12). Most sequence content was represented in the as-

sembly once (shown by the main red distribution), with k-mers

originating from the repetitive and the homoeologous regions of

the genome represented at higher frequencies (more than 50).

The absence of k-mers in the assembly that are not present in

the reads indicated that the assembled contigs accurately reflected

the input data. A similar analysis of the CSS assembly (Fig. 1B)

identified approximately 50 million k-mers that were not found

as sequenced content in the PCR-free paired-end data, as shown

by the red bar at k-mer multiplicity equal to zero. This is indicative

of chimeric sequences or consensus inconsistencies in the CSS as-

sembly. The black distribution between k-mer multiplicity 15 and

45 shows k-mers from the PCR-free reads that were not present in

Table 1. Comparison of TGACv1 scaffolds to the IWGSC and
Chapman assemblies of hexaploid wheat

Size
(Gb)

Seq.
count

N20
(kb)

N50
(kb)

N80
(kb)

%
Ns

% of
genome

TGACv1 13.43 735,943 180.1 88.8 32.8 5.7 78.8
W7984 8.21 955,122 47.1 24.8 9.9 15.2 48.2
CSS 8.32 4,061,833 8.6 3.3 1.2 1.0 48.9

Numbers are calculated using sequences >500 bp and including gaps
(Ns) for each assembly. (IWGSC) International Wheat Genome
Sequencing Consortium.
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the CSS assembly,most probably coming from the one-third of the

genome not represented by the CSS assembly. The PCR-free library

is expected to capture unbiased coverage of the genome, which is

reflected in the increased size of the TGACv1 assembly compared

with the CSS assembly. Greater amounts of duplication were ob-

served in the single copy regions of the CSS assembly, correspond-

ing to the purple and green areas above the main red distribution.

The content and order of genes in TGACv1 scaffolds assigned

to Chromosome 3B (Supplemental Information S1; Supplemental

Table S4.4) was compared to that in the Chromosome 3B BAC-

based assembly (Choulet et al. 2014); 91.2% of the genes previous-

ly identified on the 3B BAC-based assembly aligned to TGACv1

scaffolds (Table 2), with no discrepancies in gene order (Supple-

mental Information S1; Supplemental Table S4.5). This compared

with 73.9% aligned to W7984 3B scaffolds and 68.0% aligned to

CSS Chromosome 3B scaffolds, demonstrating the improved rep-

resentation of the TGACv1 assembly.

Alignment of TGACv1 3B scaffolds to the 3B BAC-based pseu-

domolecule (Fig. 2A,C) showed that they were largely in agree-

ment. Two examples of apparent disagreement are shown in

Figure 2, B and D. Scaffold_221671_3B spanned a gap of 700 kb

in the 3B BAC assembly, and reoriented and removed a duplica-

tion, by identifying both ends of a CACTA element (Fig. 2B).

Scaffold_220592_3B spanned 582 kb and diverged in one location

(Fig. 2D) and contained a Sabrina solo-LTR with a characteristic

ATCAG target site duplication (TSD). In scaffold_220592_3B, the

TSDwas present on either side of the Sabrina_3231 element, while

in the BAC-based scaffold Sabrina homology ended in Ns. In the

BAC-based assembly, only one side of the disjunction showed

alignment similarity to CACTA_3026, whichwas found to be com-

plete in scaffold_220592_3B and spanned the disjunction (Fig.

2D). These two examples illustrate how the TGACv1 assembly gen-

erated accurate scaffolds spanning typical complex and long tracts

of repetitive DNA characterizing the wheat genome, which were

misassembled in the BAC-based approach.

Repetitive DNA composition

More than 80% of the 13.4-Gb assembly was composed of approx-

imately 9.7 million annotated transposable element entities, of

which ∼70% were retroelements (class I) and 13% DNA

Figure 1. Summary of the TGACv1 wheat genome sequence assembly. (A,B) KAT spectra-cn plots comparing the PE reads to the TGACv1 scaffolds (A)
and CSS scaffolds (B). Plots are colored to show how many times fixed length words (k-mers) from the reads appear in the assembly; frequency of occur-
rence (multiplicity; x-axis) and number of distinct k-mers (y-axis). Black represents k-mers missing from the assembly; red, k-mers that appear once in the
assembly; green, twice; etc. Plots were generated using k = 31. The black distribution between k-mer multiplicity 15 and 45 in B represents k-mers that do
not appear in the CSS assembly. (C) Comparison of scaffold lengths and total assembly sizes of the TGACv1, W7984, and CSS assemblies. (D) Scaffold
577042 of the TGACv1 assembly. Tracks from top to bottom: aligned BAC contigs, CSS contigs, W7984 contigs, coverage of PE reads, coverage of LMP
fragments, and GC content with scaffolded gaps (N stretches) with 0%GC highlighted in green. There are two BACs (composed of seven and four contigs
each), 22 CSS contigs, and 15 W7984 contigs across the single TGACv1 scaffold.

Table 2. Comparison of TGACv1 Chromosome 3B scaffolds to BAC-
based scaffolds (Choulet et al. 2014) and 3B scaffolds from theW7984
and CSS assemblies

Scaffold
count

N50
(kb)

Total seq.
(Mb)

Gene
count

%
genes

3B ref. 2808 892.4 832.8 7703 100.0
TGACv1 29,090 116.5 790.0 6983 91.2
W7984 26,206 30.6 479.4 5671 73.9
CSS 272,072 3.4 557.2 5233 68.0

Numbers are calculated using sequences >500 bp and including gaps
(Ns) for each assembly.
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transposons (class II) (Supplemental Information S1;

Supplemental Table S7.1). Among the class I elements, Gypsy

and Copia LTR retroelements comprised the major component

of the repeats, while CACTA DNA elements were highly predomi-

nant among class II DNA repeat types. Nomajor differences in the

repeat composition of the three genomes were apparent.

Compared with Brachypodium distachyon, which has a related but

much smaller genome (Vogel et al. 2010), there has been a greater

than 100× increase in repeat content, driven by both class I and

class II expansion. The preponderance of CACTA DNA elements

in the wheat genome emerged during this massive expansion.

Gene prediction and annotation

A total of 217,907 loci and 273,739 transcripts were identified

from a combination of cross-species protein alignments, 1.5 mil-

lion high-quality long Pacific Biosciences (PacBio) cDNA reads,

and over 3.2 billion RNA-seq read pairs covering a range of tissues

and developmental stages (Table 3; Supplemental Information S8).

Loci were identified as coding, long ncRNA, or repeat associ-

ated and were classified as high (HC) or low (LC) confidence based

on similarity to knownplant protein sequences and supporting ev-

idence from wheat transcripts (Supplemental Information S8.5.5).

We assigned 104,091 coding genes (154,798 transcripts) as HC, of

which 95,827 spanned at least 80% of the length of the best

identified homolog (termed protein rank 1, P1, in the annotation)

(Supplemental Fig. S8.1; Supplemental Information S8.5.1).

The HC protein-coding set contained 51,851 genes confirmed by

a PacBio transcript (Transcript rank 1, T1) and an additional

29,996 genes fully supported by assembled RNA-seq data (T2), pro-

viding full transcriptome support for 81,847 (78.63%) HC genes.

Gene predictions were assessed by identifying 2707 single copy

genes common to B. distachyon, Oryza sativa, Sorghum bicolor,

Setaria italica, and Zea mays. A single orthologous wheat gene

was identified for 2686 (99.22%) of these, with 2665 (98.45%)

Figure 2. Comparative alignment of TGACv1 scaffolds with the 3B BAC-based pseudomolecule. (A,C) Dot plots between TGACv1 scaffolds and 3B show
disruptions in sequence alignment, including rearrangements (red) and inversions (blue). (B,D) Graphical representation of sequence annotations in dis-
rupted regions. Junctions in the TGACv1 scaffolds are consistent with a complete retroelement spanning the junction that includes identical TSD on either
side of the retroelement (asterisks). Corresponding regions in the 3B BAC-based pseudomolecule are characterized by Ns that produce inconsistent align-
ment of retroelements across putative junctions. Retroelements of the same family (CACTA, Sabrina) but matching distinct members in the TREP database
are indicated by different colors. Numbers adjacent to sequences correspond to regions shown in panel A and C, respectively. (B) Scale bars, 10 kbp; (D)
scale bars, 30 kbp.

Table 3. Characteristics of predicted high (HC) and low (LC) confidence wheat genes including coding (mRNA) and long noncoding (ncRNA)
RNA

All TGAC Models mRNA HC mRNA LC ncRNA HC ncRNA LC Repeat-associated

Genes 217,907 104,091 83,217 10,156 9933 10,510
Transcripts 273,739 154,798 85,778 11,591 10,438 11,134
Transcripts per gene 1.26 1.49 1.03 1.14 1.05 1.06
Transcript mean cDNA size (bp) 1766.12 2119.52 1304.53 1368.24 1083.98 1462.71
Exons per transcript 4.48 5.83 2.8 2.58 2.76 2.27
Exons mean size (bp) 394.15 363.73 465.27 530.25 392.24 644.09
Transcript mean CDS size (bp) 1,165.52 1,361.82 839.97 — — 891.05
Mono-exonic transcripts 60,322

22.04%
19,034
12.30%

30,479
35.53%

3061
26.41%

3044
29.16%

4704
42.25%

Genes with alternative splicing 32,616
14.97%

28,608
27.48%

2033
2.44%

1037
10.21%

460
4.63%

478
4.55%
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classified as HC and 21 (0.78%) in the LC set. A high coherence in

gene length (r = 0.969) was found between wheat and B. distachyon

proteins (Supplemental Fig. S8.2). These findings show that the

HC gene set is robust and establishes a lower bound estimate for

the total number of protein-coding genes in wheat. An additional

103,660 loci were defined as LC (i.e., gene models with all their

transcripts either having <60% protein coverage or lacking wheat

transcript support). These include bona fide genes that were frag-

mented due to breaks in the current assembly, wheat-specific

genes, and genes without transcriptome support (Supplemental

Table S8.8).

Wealso identified 10,156HCnoncoding geneswith little sim-

ilarity in protein databases and low protein-coding potential. The

majority of these genes are located in intergenic regions (8854, or

87.18%),whilemostof the remaining1302areanti-sense to coding

genes (1082, or 10.65%) (see Supplemental Information, section 8.

5.8); 5413 of wheat noncoding genes (53.30%) were detected in at

least one of the two sequenced wheat diploid progenitor species

Triticum urartu and Aegilops tauschii (at least 90% coverage and

90% identity) (see Supplemental Information S8.5.8).

To obtain additional support for gene predictions, a proteome

map was constructed from 27 wheat tissues (Supplemental

Information S9). This identified 2,106,323 significant peptide

spectrum matches corresponding to 102,379 distinct peptides.

Of these, 96.20%matched HC genes, while 13.29% were assigned

to LC genes. For 56,391 genes (43,431 HC, 12,960 LC), we were

able to identify at least one peptide confirming the predicted cod-

ing sequence. Due to the hexaploid nature of wheat, only 22.1% of

the peptides could be assigned to a single gene. Applying progres-

sively stricter filters, by requiring at least two or five peptides, con-

firmed the protein sequence of 30,607 and 17,316 HC genes,

respectively; 10,819 genes met the criteria of having support

frommultiple peptides with at least one uniquely identifying pep-

tide andwere considered as unambiguously corroborated by prote-

omic data. Among the LC genes, only 368were identified by twoor

more peptides that did notmatch anyHCgene, further supporting

confidence assignments. Among these, 343 were classified as LC

due to having <60% the length of the identified homolog, while

the remaining 25 genes were classified as LC due to either repeat

association or lack of wheat transcript support.

We compared the TGACv1, CSS (The International Wheat

Genome Sequencing Consortium 2014), and Chromosome 3B

(Choulet et al. 2014) gene models. Of the 100,344 HC genes in

the International Wheat Genome Sequencing Consortium

(IWGSC) annotation (PGSB/MIPS version 2.2 and INRA version

1.0 from Ensembl release 29), we were able to transfer 97,072

(97%) to the TGACv1 assembly with stringent alignment parame-

ters (at least 90% coverage and 95% identity). Fewer (72%) of the

IWGSC (The International Wheat Genome Sequencing Consor-

tium 2014) LC, unsupported, repeat associated, and noncoding

loci could be aligned (at least 90%coverage and 95% identity), like-

ly reflecting differences between the assemblies of repeat rich and

difficult to assemble regions. Of the TGACv1 HC genes, 61% over-

lapped with an aligned IWGSC HC gene and 78% to the full

IWGSC gene set (Supplemental Information S8.5.7). Less agree-

ment was found between TGACv1 LC and ncRNA genes and the

IWGSC annotation, with only 8% overlapping IWGSC HC loci

and 40% overlapping the full IWGSC gene set (Fig. 3A). Of the

22,904 (22%) HC TGACv1 genes not overlapping a transferred

IWGSC gene, 19,810 (86%) had cross-species protein similarity

support with 6665 (29%) fully supported by a PacBio transcript

(Fig. 3B). We identified 13,609 TGACv1 genes that were over-

lapped by transcripts originating from two or more IWGSC genes

in our annotation, indicating that they were likely fragmented in

the CSS assembly. In 8175 of these cases (60%), we were able to

find a PacBio read fully supporting our gene model. These differ-

ences reflect improvements in contiguity, a more comprehensive

representation of the wheat gene space in our assembly, and im-

proved transcriptome support for annotation.

Alternative splicing

Alternative splicing is an important mRNA processing step that in-

creases transcriptome plasticity and proteome diversity (Staiger

and Brown 2013). The TGACv1 annotation includes high-quality

alternative splicing variants identified from PacBio transcriptome

reads. To provide a more comprehensive representation of alterna-

tive splicing, we subsequently integrated transcript assemblies

generated from six strand-specific Illumina libraries (Supplemental

Information S8.6; Supplemental Table S8.1). This added a further

121,997 transcripts, increasing the number of genes with splice

variants from 15% in the TGACv1 annotation to 31% in the sup-

plemented set of transcripts (i.e., incorporating Illumina RNA-seq

assemblies), as well as increasing the average number of transcripts

per gene from 1.26 to 1.88. When considering only HC genes, the

number of alternatively spliced genes was increased from 27.48%

to 48.80% (2.36 transcripts per gene), similar to that observed in

a wide range of plant species (Zhang et al. 2015).

Intron retention (IR) was the prevalent alternative splicing

event in wheat (34%) followed by alternative 3′ splice sites

(A3SS; 27%), exon skipping (ES; 20%), alternative 5′ splice sites

(A5SS; 19%), and mutually exclusive exons (MXE; 0.04%). This

was similar to previous analyses of Chromosome 3B (Pingault

et al. 2015), and IR is also predominant in barley (Panahi et al.

2015). Alternative splicing coupled to nonsense mediated decay

(NMD) regulates gene expression (Lykke-Andersen and Jensen

2015). We found 22% of all transcripts (17% of all genes) and

29% of multiexonic HC protein-coding transcripts (33% genes)

may be potential targets for NMD. IR was the most common splic-

ing event leading to NMD sensitivity, with 40% of IR transcripts

identified as potential NMD targets (34% ES, 38% A5SS, 34%

A3SS, 26%MXE). This suggests a potentially substantial role for al-

ternative splicing/NMD in regulating gene expression in wheat.

Gene families

HC and LC gene families were analyzed separately using

OrthoMCL version 2.0 (Li et al. 2003; Supplemental Figs. S10.1,

S10.2). Splice variants were removed from the HC gene data set,

keeping the representative transcript for each gene model (see

Supplemental Information S8.5.6, S10.1), and data sets were fil-

tered for premature termination codons and incompatible reading

frames. For theHCgene set, a total of 87,519coding sequenceswere

clustered into 25,132 gene families. The vast majority of HC gene

families containedmembers from the A, B, andD genomes, consis-

tent with the relatively recent common ancestry of the A and B ge-

nomes and the proposed hybrid origin of the D genome from

ancestral A and B genomes (Marcussen et al. 2014). Subsets of

gene families and singleton genes (those not clustered into any

family) were classified to identify (1) genes and families that are

A, B, or D genome specific; (2) gene families with expanded num-

bers in one genome; and (3) wheat gene families that are expanded

relative to other species. These gene sets were analyzed for overrep-

resented Gene Ontology (GO) terms, shown in Supplemental File

S2. Gene families that were significantly expanded in wheat
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compared with Arabidopsis, rice, sorghum, and Brachypodium in-

clude those encoding proteins involved in chromosome mainte-

nance and reproductive processes, as well as protein and

macromolecule modification and protein metabolism processes.

TheD genomehas expanded gene families encoding phosphoryla-

tion, phosphatemetabolism, andmacromoleculemodification ac-

tivities, while the B genome has expanded gene families encoding

components of chromosome organization, DNA integration and

conformation/unwinding, and telomere maintenance. The B ge-

nome is derived from the Sitopsis section of the Triticeae, which

has contributed genomes to many polyploid Triticeae species

(Riley et al. 1961), suggesting B genomes may have contributed

gene functions for establishing and maintaining polyploidy in

the Triticeae. This is supported by the location of the major chro-

mosome pairing Ph1 locus on Chromosome 5B (Griffiths et al.

2006).

Genome organization

A corrected version of the POPSEQ genetic map (Chapman et al.

2015) was used to order TGACv1 scaffolds along chromosomes

(Supplemental information S5). This uniquely assigned 128,906

(17.5 %) of the 735,943 TGACv1 scaffolds to 1051 of 1187

genetic bins (class 1) (Supplemental Information S5) to form the

final TGACv1 map. The total length of these scaffolds is

8,551,191,083 bp, representing 63.68% of the TGACv1 assembly

and 50.52% of the 17-Gbp wheat genome. A further 13,019

(1.77%) scaffolds were ambiguously assigned to different cM posi-

tions on the same chromosome (class 2), 489 (0.07%) scaffolds

were assigned to homoeologous chromosomes (class 3), and

3320 (0.45%) scaffolds had matching markers with conflicting

bin assignment (class 4).

The TGACv1 map also assigns unique chromosomal posi-

tions to 3927 (3.05%) scaffolds that were not previously assigned

to a chromosome arm (class 5). The CSS-based chromosome arm

assignments of 380 (0.295%) class1 scaffolds and 11 (0.08%) class

2 scaffolds disagree with the map-based chromosome assignments

(classes 6, 7). A list of scaffold classifications can be found in

Supplemental Information S6.

The TGACv1 map encompasses 38,958 of the 53,792

scaffolds containing at least one annotated HC protein-coding

gene (72.42%), comprising gene sequences of 307,085,968 bp

(73.28% of total predicted gene sequence space). In total, we

were able to assign genetic bins to 75,623 (72.65%) of the HC

genes.

Chromosomal locations of related genes were identified by

anchoring to the TGACv1 map and are displayed in Figure 4.

Analysis of OrthoMCL outlier triads (Supplemental Information

S1, sections S6, S10) provided genomic support for known

ancestral reciprocal translocations between chromosome arms

4AL and 5AL, a combination of pericentromeric inversions be-

tween chromosome arms 4AL and 5AL, and a reciprocal exchange

Figure 3. Comparison between IWGSC annotation and TGACv1 high (HC) and low confidence (LC) genes. IWGSC genes were aligned to the TGACv1
assembly (gmap,≥90% coverage,≥95% identity) and classified based on overlap with TGACv1 genes. (A) Identical indicates shared exon–intron structure;
contained, exactly containedwithin the TGACv1 gene; structurally different, alternative exon–intron structure; andmissing, no overlap with IWGSC. (B) Bar
plot showing proportion of HC TGACv1 protein-coding genes supported by protein similarity or PacBio data. Genes are classified based on overlap with the
full set of IWGSC genes.
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between chromosome arms 4AL and 7BS (Devos et al. 1995).

Several putative novel chromosomal translocations were also iden-

tified (Fig. 4; Supplemental File S3). As these may have originated

in the parental lines used in the POPSEQmap rather than in CS42,

nine genes in the predicted transloca-

tions (six previously known and three

novel) were tested using PCR assays on

Chinese Spring chromosomal deletion

stocks (Sears et al. 1966). Three known

translocation events—4AL-5AL and

7BS-4AL (Devos et al. 1995) and 5AL-

7BS (Ma et al. 2013)—and one previously

unidentified translocation, 5BS-4BL,

were validated by PCR assays.

Gene expression

To explore global gene expression pat-

terns, we mapped multiple wheat RNA-

seq data sets to the TGACv1 transcrip-

tome (Supplemental Information S1;

Supplemental Table S11.1). Seventy-five

percent of RNA-seq reads mapped to the

TGACv1 transcriptome (Supplemental

Information S1; Supplemental Table

S11.1), and 78% of the HC protein-cod-

ing transcripts were expressed above the

background level of 2 tpm (Wagner

et al. 2013). Interestingly, 23% of the LC

genes were also expressed above 2 tpm.

Expression levels of genes across chromo-

someswere similar, with the exception of

19 genetic bins that had increased expres-

sion (defined as “hotspots” with a medi-

an expression level >20 tpm, containing

on average 5 genes) across the six tissues

examined (Supplemental Information;

Supplemental Fig. S11.1). Hotspots tend-

ed to be enriched for genes encoding

components of the cytoskeleton, ribo-

some biogenesis, and nucleosome assem-

bly that were expressed at high levels in

all tissues. Other notable hotspots were

enriched in genes of photosystem I for-

mation in leaf tissues, and nutrient reser-

voir activity in seed tissues.

The more complete and accurate

annotation provided an opportunity to

analyze patterns of transcript levels in

homoeologous triads. Transcript levels

of 9642 triads were analyzed in response

to biotic and abiotic stress using publicly

available RNA-seq data sets, selected as

they all used 7-d-old seedlings, were

replicated, and assessed dynamic tran-

scriptional responses to standardized

treatments (Supplemental Information

S1; Supplemental Table S11.2). Across

treatments, 26% (2424 of 9159) of ex-

pressed triads showed higher expression

in one or two genomes in at least one

stress condition (rather than balanced expression of three ge-

nomes) (see Supplemental Information S11.5). Abiotic stress led

to more differentially regulated transcripts, compared with biotic

stress responses, across all three genomes. To assess the

Figure 4. Circular representation of the TGACv1 CS42 assembly. Chromosomes, genetic bins, and ge-
nomic features are visualized on the outer rings (A–H) and interchromosomal links identify known and
potentially novel translocation events. (A) The seven chromosome groups of the A, B, and D genomes,
scaled by number of genetic bins (black bands). (B–H) Combined heatmap/histogram representations
of genomic features per genetic bin. With the exception of D, all counts are normalized by the size of
the genetic bin in Mbp, calculated as the total size of all scaffolds assigned to the bin. (B) Distribution
of unique genes, i.e., genes that did not have orthologs in a genome-wide OrthoMCL screen. (C)
Distribution of wheat-specific genes. (D,E) Number of HC protein-coding genes. (F) Distribution of
DTC, DTM, and DTH DNA transposons (Supplemental Information S1; Supplemental Table S7.1). (G)
Distribution of RLX, RLC, RLG, RXX, and RIX retrotransposons. (H) Distribution of tandem duplications.
Light yellow links connect homoeologous OrthoMCL triads. Dark yellow-colored links connect genetic
bins harboring OrthoMCL outlier triads (Supplemental Information S1, section S6) that identify known
translocation events. Dark green links connect genetic bins harboring at least three OrthoMCL outlier tri-
ads that may support novel translocation events. The cyan link shows a novel PCR-validated translocation
event between Chromosomes 5BS-4BL.
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conservation of this stress response between homoeologs, we clas-

sified each homoeolog as either up-regulated (greater than twofold

change, UP), down-regulated (less than 0.5-fold change, DOWN),

or flat (between 0.5-fold to twofold change). We then assessed

whether the individual homoeolog response to stress compared

with control conditions was consistent (Supplemental Informa-

tion S1; Supplemental Table S11.3). Eighty percent (±5.1% SE) of

triads were not differentially expressed in response to the stress

treatments and were excluded from further analysis. The most fre-

quent pattern of differential triad expression was a single homoeo-

log UP or DOWN, with the other two remaining flat (79%–99%

across conditions) (Fig. 5). Triads in which either all homoeologs

were expressed in the same pattern (“3 UP” or “3 DOWN”) were

rare, as were triads in which homoeologs were expressed in oppo-

site directions. This is consistent with Liu et al. (2015), who identi-

fied between 13% and 41% of homoeolog triads in which

homoeologs did not respond to the same degree in response to

stress conditions.

The genomic context of differences in homoeolog expression

was explored in genomic regions containing at least five HC genes

insyntenicorderonall threegenomes,ofwhichat leastonehomoe-

ologwas expressedoverbackground levels in root, shoot, andendo-

sperm tissue at 10 and 20 d post anthesis (DPA; DRP000768 and

ERP004505) (Supplemental Information S1; Supplemental Table

S11.1; Pfeifer et al. 2014). Of the four blocksmeeting these criteria,

one showedequal expressionof all 15homoeologs in at least oneof

the tissues,while theother threeblocks showedunbalancedexpres-

sion of at least one homoeolog (Supplemental Information S1;

Supplemental Fig. S11.2). All blocks exhibited major structural

and promoter sequence differences, as well as variant transcription

start sites (Supplemental Information S1; Supplemental Fig. S11.3).

These multiple types of genomic differences all have the potential

to contribute tounbalancedexpression.To facilitate furtherexpres-

sion studies the expression atlas at http://www.wheat-expression.

com has been updated with the TGACv1 annotation and expres-

sion data from 424 RNA samples (Borrill et al. 2015).

Gene families of agronomic interest

Wheat disease–resistance genes

Plant disease–resistance (R-) genes termed nucleotide binding site–

leucine rich receptors (NBS-LRRs) (Dodds and Rathjen 2010) are

challenging to assemble as they are often organized in multigenic

clusters with many tandem duplications and rapid pseudogeniza-

tion. The TGACv1 assembly contains 2595 NBS-containing genes

(Table 4) of which 1185 are NBS-LRR genes. Among these, 98%

have complete transcripts compared with only 2% in the CSS as-

sembly. We also used NLR-parser (Steuernagel et al. 2015) to pre-

dict the coiled-coil (CC-) NBS-LRR subclass of R-genes. We

identified 859 complete CC-NBS-LRR genes supported by specific

MEME motifs (Jupe et al. 2012) compared with 225 in the CSS as-

sembly (Table 4). The total of 1185 wheat NBS-NLRs was consis-

tent with that found in diploid wheat progenitors (402 NLRs in

T. urartu) and diploid relatives (438 in O. sativa) (Sarris et al.

2016). Nearly 90% of CS42 R-genes were unambiguously assigned

to chromosome arms, and 57% (674/1185) were anchored to the

TGACv1 map. The number of R-genes per scaffold ranged from

one to 31, compared with only two to three R-gene per scaffold

in the CSS wheat assembly (The International Wheat Genome

Sequencing Consortium 2014). This finding is corroborated by

BAC sequence assemblies (Supplemental Information S1; Supple-

mental Fig. S12.1).

Gluten genes

Glutens form the major group of grain storage proteins, account-

ing for 10%–15% of grain dry weight, and confer viscoelastic prop-

erties essential for bread-making (Shewry et al. 1995). Gluten genes

encode proteins rich in glutamines and prolines that form low-

complexity sequences composed of PxQ motifs, and occur in tan-

dem repeats in highly complex loci that have posed significant

challenges for their assembly and annotation. We characterized

the gluten genes in the TGACv1 assembly and showed that most

of the known genes were fully assembled. Gluten loci, while still

fragmented, exhibit much greater contiguity than in the CSS

assembly (The International Wheat Genome Sequencing Consor-

tium 2014) with up to six genes per scaffold (Supplemental Infor-

mation S1; Supplemental Fig. S12.2). We identified all assembly

regions with nucleotide similarity to publicly available gluten se-

quences, adding an additional 33 gluten genes to the annotation

and manually correcting 21 gene models. In total, we identified

105 full-length or partial gluten genes and 13 pseudogenes in

the TGACv1 assembly (Table 4; Supplemental information S1, sec-

tion S12.2).

The gibberellin biosynthetic and signaling pathway

Mutations in the gibberellin (GA) biosynthetic and signal trans-

duction pathways have been exploited in wheat, where gain-of-

function mutations in the GA signaling protein Rht-1 confer GA

insensitivity and a range of dwarfing effects. Most modern wheat

cultivars carry semi-dominant Rht-1 alleles (Phillips 2016), but

these alleles also confer negative pleiotropic effects, including re-

ducedmale fertility and grain size. Hence, there is considerable in-

terest in developing alternative dwarfing alleles based on GA-

biosynthetic genes such as GA20ox2. A prerequisite for this is ac-

cess to a complete set of genes encoding the biosynthetic pathway.

Figure 6 shows that the TGACv1 assembly contains full-length

sequences for 67 of the expected 72 GA pathway genes, in contrast

to only 23 genes in the CSS assembly (The International Wheat

Figure 5. Response of differentially expressed (DE) triads to stress treat-
ments according to the number and pattern of DE homoeologs. Triads
were classified as having one homoeolog DE (yellow), two homoeologs
DE with same direction of change (green), three homoeologs DE with
same direction of change (orange), or opposite direction of change be-
tween DE homoeologs (blue). The stresses applied were drought (D),
heat (H), drought and heat combined (DH), powdery mildew (PM), and
stripe rust (SR),with thedurationof stress application indicated inhours (h).
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Genome SequencingConsortium 2014). Two paralogs ofGA20ox3

on Chromosome 3D are separated by 460 kb, and GA1ox-B1 and

GA3ox-B3 are separated by 3.2 kb, suggesting common ancestry

of these two enzymes with different catalytic activities (Pearce

et al. 2015).

Discussion

Access to a complete and robust wheat genome assembly is essen-

tial for the continued improvement of wheat, a staple crop of glob-

al significance with 728 M tonnes produced in 2014 (http://fenix.

fao.org/faostat/beta/en/#home). The capacity to assemble and

annotate wheat genomes accurately, rapidly, and cost-effectively

addresses key social, economic, and academic priorities by facilitat-

ing trait analyses, by exploiting diverse germplasm resources, and

by accelerating plant breeding. However, polyploidy and the ex-

tensive repeat regions in wheat have limited the completeness of

previous assembly efforts (Brenchley et al. 2012; The International

Wheat Genome Sequencing Consortium 2014; Chapman et al.

2015), reducing their utility.

Here we report a much more com-

plete wheat genome assembly, repre-

senting ∼80% of the 17-Gb genome in

large scaffolds. We combined high-qual-

ity PCR-free libraries and precisely size-

selected LMP libraries (Heavens et al.

2015) with the w2rap assembly software

(Clavijo et al. 2017) to generate contigu-

ous and complete assemblies from rela-

tively low (about 33×) Illumina PE read

coverage and LMP libraries. The contigu-

ity of the TGACv1 assembly allowed us

to create a greatly improved gene anno-

tation supported by extensive transcrip-

tome data. Over 78% of the 104,091

HC protein-coding genes are fully sup-

ported by RNA-seq data. These improve-

ments identified 22,904 genes that were

absent from previous wheat gene sets

(The International Wheat Genome Sequencing Consortium

2014; Choulet et al. 2014), almost all of which have a homolog

in other species (Fig. 3B). The robustness of the annotation is fur-

ther supported by the use of high-quality PacBio data and agree-

ment with proteomic data, with 42% of the HC gene models

supported by sequenced peptides. This new wheat gene set pro-

vides an improved foundation for wheat research. Finally, incor-

poration of strand-specific Illumina RNA-seq libraries into the

annotation showed that nearly half of the HC genes were alterna-

tively spliced, in line with observations in many other plants

(Zhang et al. 2015).

Awell-defined gene set in large sequence scaffolds is an essen-

tial foundation for trait analyses in wheat. We identified the com-

plement of disease-resistance genes, gluten protein genes that

confer nutritional and bread-making quality of wheat grains,

and the set of GA biosynthetic and signal transduction genes

that are important determinants of cropheight and yield. An accu-

rate gene set is also essential for understanding expression of gene

families in complex allopolyploid genomes.Weobserved that 20%

of homoeologous triads showed differential expression in seedling

Table 4. Disease-resistance and gluten gene repertoires in the TGACv1 assembly

R-genes Gluten genes

CSS TGACv1 CDS Pseudogenes

NBS-containing (Pfam) 1224 2595 Gliadins
Fragmented 1188 65 Alpha 29 9
Complete transcript 36 2530 Gamma 18 0
No. of scaffolds 1195 1853 Unknown 14 1
Maximum genes per scaffold 3 31 Omega 10 0

NBS-LRR (Pfam) 627 1185 Glutenins
Partial genes 611 11 HMW 6 1
Full-length genes 16 1174 LMW 16 1
No. of scaffolds 613 979 Prolamins
Maximum genes per scaffold 2 13 Avenin 4 0

CC-NBS-LRR (NLR-parser) 225 859 Farinin 4 0
Globulin 2 1
Hordein 1 0
Unknown 1 0

Total 105 13

Resistance genes were identified by their characteristic domain architecture (Sarris et al. 2016). Gluten genes were identified by sequence similarity to
either a gliadin, glutenin, or generic prolamin class, representing prolamin-like glutens discovered in oat (avenin), wheat (farinin), or barley (hordein).
See Supplemental Information, section 12.

Figure 6. Genes encoding the gibberellin (GA) biosynthetic and signaling pathway in bread wheat.
The GA biosynthesis, inactivation, and signal transduction pathway, illustrating the representation of
the gene sequences in CSS and TGACv1 assemblies. If more than one paralog is known for a gene, its
number according to the classification by Pearce et al. (2015) is indicated on the left of the box.
Bioactive GAs are boxed in red.
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leaves subject to biotic and abiotic stress conditions. This is consis-

tent with coexpression analyses in developing grains (Pfeifer et al.

2014), where most differentially expressed genes were single

homoeologs that were up/down-regulated. Taken together, these

results identify widespread subfunctionalization of homoeologous

genes due to differential regulation. The new assembly and anno-

tation will enable the identification of multiple sequence differ-

ences in promoters, transcription start sites, gene splicing, and

other features among strict homoeologs, providing a foundation

for systematic analyses of the causes of these differences.

Generating complete and accurate wheat genome assemblies

is essential for capturing the full range of genetic variation

in wheat genomes. By identifying this variation, genomics will

directly facilitate trait analyses and accelerate plant breeding.

Our rapid, accurate, and cost-effective assembly approach is suit-

able for assembling multiple wheat and other Triticeae genomes

in robust and comparable ways, using relatively inexpensive se-

quencing technologies based on PCR-free libraries and open-

source software. We anticipate that researchers with access to suit-

able computational infrastructure will use the approaches de-

scribed here to sequence multiple wheat varieties, including elite

varieties, unimproved landraces, and progenitor species. These as-

semblieswill reveal awide spectrumof genetic variation, including

large-scale structural changes such as translocations and chromo-

some additions that are known to play a major role in the adapta-

tion of the wheat crop to different growing environments.

By adopting this pan-genomics approach, we will enrich our un-

derstanding of complex genome evolution and the plasticity of

genome regulation and empower new approaches to wheat

improvement.

Methods

DNA library preparation and sequencing

A full description of the DNA preparation and sequencing meth-

ods is in Supplemental Information. PCR-free PE libraries were se-

quenced using 2× 250-bp reads on HiSeq2500 platforms for contig

generation. TALL libraries and Nextera LMP libraries (Heavens

et al. 2015) were used for scaffolding. Insert size distributions

(Supplemental Information S1; Supplemental Figs. S4.1–S4.3)

were checked by mapping to the CS42 Chromosome 3B pseudo-

molecule (Choulet et al. 2014) using the DRAGEN coprocessor

(http://www.edicogenome.com/dragen/).

Genome assembly

Assemblywas performed using theWheat/Whole-Genome Robust

Assembly Pipeline, w2rap (Clavijo et al. 2017). It combines the

w2rap-contigger, based on DISCOVAR de novo (Weisenfeld et al.

2014), an LMP preparation approach based on FLASH (Magoc

and Salzberg 2011) andNextclip (Leggett et al. 2014), and scaffold-

ing with SOAPdenovo2 (Luo et al. 2012). The w2rap-contigger

takes advantage of DISCOVAR (Weisenfeld et al. 2014; Love et al.

2016) algorithms to preserve sequence variation during assembly

but has been further developed to enable processing of much

larger data volumes and complex genomic repeats. The paired-

end read data set was assembled into contigs on a SGI UV200 ma-

chine with 7TB of shared RAM. The contig assembly took 38 d

using 64 cpus, with the default settings of the w2rap-contigger

from https://github.com/bioinfologics/w2rap-contigger/releases/

tag/CS42_TGACv1. Newer versions of w2rap can achieve similar

results in half the time or less, using close to half the memory.

Scaffolding with the LMP data took a total of 10 d and was execut-

ed on the same hardware but used 128 cpus and <1 TB of RAM.

Contigs were scaffolded using the PE, LMP, and TALL reads and

the SOAPdenovo2 (Luo et al. 2012) prepare→map→scaffold

pipeline, run at k = 71. Contigs and scaffolds were quality con-

trolled using KAT spectra-cn plots (Mapleson et al. 2017) to assess

motif representation.

Gene annotation

A high-quality gene set for wheat was generated using a custom

pipeline integrating wheat-specific transcriptomic data, protein

similarity, and evidence-guided gene predictions generated with

AUGUSTUS (Stanke and Morgenstern 2005). Full methods are in

Supplemental Information S8. RNA-seq reads (ERP004714,

ERP004505, and 250-bp PE strand-specific reads from six different

tissues) were assembled using four alternative assembly methods

(Trapnell et al. 2010; Haas et al. 2013; Pertea et al. 2015; Song

et al. 2016) and integrated with PacBio transcripts into a coherent

and nonredundant set of models using Mikado (https://github.

com/lucventurini/mikado). PacBio reads were then classified ac-

cording to protein similarity and a subset of high-quality (e.g.,

full length, canonical splicing, nonredundant) transcripts used

to train an AUGUSTUS wheat-specific gene prediction model.

AUGUSTUS was then used to generate a first draft of the genome

annotation, using as input Mikado-filtered transcript models, reli-

able junctions identified with Portcullis (https://github.com/

maplesond/portcullis), and peptide alignments of proteins from

five close wheat relatives (B. distachyon, maize, rice, S. bicolor, and

S. italica). This draft annotation was refined by correcting probable

gene fusions, missing loci and alternative splice variants. The an-

notation was functionally annotated, and all loci were assigned a

confidence rank based on their similarity to known proteins and

their agreement with transcriptome data.

Data access

All data generated in this study have been submitted to the

European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena)

under accession numbers PRJEB15378, PRJEB15378 (PE and LMP

reads used for genome assembly and scaffolding), PRJEB11773 (ge-

nome assembly), and PRJEB15048 (Illumina and PacBio reads used

for genome annotation). The assembly and annotation are avail-

able in Ensembl Plants (release 32; Ensembl Plants, http://plants.

ensembl.org/Triticum_aestivum/Info/Index) and from the

Earlham Institute Open Data site (EI; http://opendata.earlham.ac

.uk/Triticum_aestivum/TGAC/v1/). BLAST services for these data

sets are available via Grassroots Genomics (Grassroots; https://

wheatis.tgac.ac.uk/grassroots-portal/blast).
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delivered via the BBSRC National Capability in Genomics (BB/

J010375/1) at the Earlham Institute (EI; formerly The Genome

Analysis Centre, Norwich), by members of the Platforms and

Pipelines Group. Open data access and BLAST databases and ser-

vice are provided by the EI Data Infrastructure group.
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