
ABySS 2.0: resource-efficient assembly of large
genomes using a Bloom filter

Shaun D. Jackman,1 Benjamin P. Vandervalk,1 Hamid Mohamadi, Justin Chu,

Sarah Yeo, S. Austin Hammond, Golnaz Jahesh, Hamza Khan, Lauren Coombe,

Rene L. Warren, and Inanc Birol
Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 4S6, Canada

The assembly of DNA sequences de novo is fundamental to genomics research. It is the first of many steps toward elucidat-

ing and characterizing whole genomes. Downstream applications, including analysis of genomic variation between species,

between or within individuals critically depend on robustly assembled sequences. In the span of a single decade, the se-

quence throughput of leading DNA sequencing instruments has increased drastically, and coupled with established and

planned large-scale, personalized medicine initiatives to sequence genomes in the thousands and even millions, the devel-

opment of efficient, scalable and accurate bioinformatics tools for producing high-quality reference draft genomes is timely.

With ABySS 1.0, we originally showed that assembling the human genome using short 50-bp sequencing reads was possible

by aggregating the half terabyte of compute memory needed over several computers using a standardized message-passing

system (MPI).We present here its redesign, which departs fromMPI and instead implements algorithms that employ a Bloom

filter, a probabilistic data structure, to represent a de Bruijn graph and reduce memory requirements. We benchmarked

ABySS 2.0 human genome assembly using a Genome in a Bottle data set of 250-bp Illumina paired-end and 6-kbp mate-

pair libraries from a single individual. Our assembly yielded a NG50 (NGA50) scaffold contiguity of 3.5 (3.0) Mbp using

<35GB of RAM. This is a modest memory requirement by today’s standards and is often available on a single computer. We

also investigate the use of BioNano Genomics and 10x Genomics’ Chromium data to further improve the scaffold NG50

(NGA50) of this assembly to 42 (15) Mbp.

[Supplemental material is available for this article.]

De novo genome assembly remains a challenging problem, espe-

cially for large and complex genomes. The problem refers to recon-

structing the chromosome sequence(s) for a genome from

sequencing reads, which are orders of magnitude shorter than

the target genome (Nagarajan and Pop 2013). In practice, current

state-of-the-art assemblers do not fully reconstruct the chromo-

some sequences but rather reduce the input sequencing reads to

a smaller number of nonredundant, more contiguous sequences

(contigs). If further linkage information is available, such as in

the form of paired-end reads or physical maps, these contigs may

be ordered and oriented with respect to each other and reported

as scaffolds, where there may be undetermined sequences (repre-

sented as “N”s) between contigs. The quality of returned contigs

and scaffolds are conventionally measured by the contiguity of

the assembled sequences. Often assembly algorithms are also val-

idated using data from resequencing experiments, where assem-

bled sequences are compared against a reference genome for

their correctness in addition to their contiguity (Gurevich et al.

2013).

Performance of sequence assembly algorithms is closely cou-

pled with the sequencing technology used and the quality of the

data they generate, with highly accurate long reads always being

desirable. However, the genomics research landscape, especially

cancer genomics studies, has been heavily dominated by the

high-throughput sequencing platforms from Illumina. Although

longer (albeit noisier) sequences from Pacific Biosciences instru-

ments are proven to yield high-quality de novo human genome as-

semblies (Chaisson et al. 2014; Pendleton et al. 2015), they come at

a higher price relative to Illumina reads. The newer long-read in-

struments from Oxford Nanopore Technologies do not yet have

the necessary throughput or data quality to be of utility in human

genomics studies. As a result, most large cohort projects, as well as

price-sensitive personalized medicine applications, still use the

Illumina platforms.

Recently, new sequencing technologies have been introduced

that combine long-range linkage informationwith the strengths of

existing Illumina short-read technologies. The Chromium plat-

form from10xGenomics generates sequencing libraries that local-

ize sequence information onDNA fragments that are >100 kb long.

The technology employs microfluidics to isolate large DNA frag-

ments in partitions containing sequencing primers and a unique

barcode, preparing a library that is compatible with Illumina

paired-end sequencing (Weisenfeld et al. 2017). Another recent

technology for long-range linkage information is the optical map-

ping platform from BioNano Genomics. It has previously been

demonstrated in the Human Genome Project (International

Human Genome Sequencing Consortium 2001) and other pio-

neering de novo sequencing projects that linkage information

froma physicalmap is very valuable in building highly contiguous
1These authors are joint first authors and are listed in alphabetical
order.
Corresponding author: ibirol@bcgsc.ca
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.214346.116.
Freely available online through the Genome Research Open Access option.

© 2017 Jackman et al. This article, published in Genome Research, is available
under a Creative Commons License (Attribution 4.0 International), as described
at http://creativecommons.org/licenses/by/4.0/.

Method

768 Genome Research 27:768–777 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

mailto:ibirol@bcgsc.ca
mailto:ibirol@bcgsc.ca
http://www.genome.org/cgi/doi/10.1101/gr.214346.116
http://www.genome.org/cgi/doi/10.1101/gr.214346.116
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/
http://www.cshlpress.com


assemblies. In this article, we show that 10x Genomics data and

BioNano Genomics data can be used in combination to substan-

tially improve the contiguity of a de novo assembly.

Of particular interest in this study is resequencing data from

human genome studies. The approach of de novo assembly of

data from these experiments prior to comparison to a reference se-

quence is a valuable approach in detecting structural variants be-

tween individuals or between tumor and normal genomes (Mose

et al. 2014; Li 2015b). Even though it is substantiallymore compu-

tationally intensive to analyze sequencing data by assembling the

reads first, the specificity gains and resulting savings in event verifi-

cation effortsmay justify the choice. However, whenworkingwith

mammalian-size genome data, de novo assembly is often plagued

with long assembly run times and prohibitively large memory re-

quirements—resource usages that warrant improvements.

In this domain, ABySS 1.0 was the first scalable de novo as-

sembly tool that could assemble a human genome, using short

reads from a high-throughput sequencing platform (Simpson

et al. 2009). However, the feat required aggregating a large amount

ofmemory distributed across a number of compute nodes commu-

nicating through the message-passing interface (MPI) protocol.

Although this enabling technology found applications in many

large cancer cohort studies (Yip et al. 2011; Roberts et al. 2012;

Ley et al. 2013; Morin et al. 2013; Pugh et al. 2013), its large mem-

ory consumption constituted a substantial bottleneck. This issue

was not unique to ABySS 1.0, with popular algorithms such as

SOAPdenovo2 (Luo et al. 2012) and DISCOVAR de novo requiring

>600 GB to assemble a typical human data set. Some noteworthy

assembly algorithms that have been developed to reduce memory

requirements include the following: (1) SGA (Simpson andDurbin

2011), which uses the Burrows-Wheeler transform to compress

and index sequencing data; (2) Minia (Chikhi and Rizk 2013),

which uses a Bloom filter (Bloom 1970) to represent the de

Bruijn graph; (3) BCALM 2 (Chikhi et al. 2016), which employs

minimizer hashing (Chikhi et al. 2014) to partition the de Bruijn

graph; and (4) MEGAHIT (Li et al. 2016), which employs the

Succinct de Bruijn graph data structure of Bowe et al. (2012).

In this article, we describe the implementation of ABySS 2.0,

which reduces memory requirements for de novo assembly by an

order of magnitude, while achieving results competitive with ex-

isting assemblers. ABySS 2.0 follows the model of Minia, wherein

a probabilistic Bloom filter representation is used to encode the

de Bruijn graph. We compare the performance of ABySS 2.0

against the latest version of ABySS 1.0, as well as two other scalable

assembly pipelines that include a scaffolding stage: SOAPdenovo2

and SGA. We note that there are other algorithms that can build

contigs without scaffolding, and we include comparison to

DISCOVAR de novo, MEGAHIT, Minia, and BCALM 2, scaffolding

the contigs of DISCOVAR de novo using the scaffolding tools

BESST (Sahlin et al. 2016), LINKS (Warren et al. 2015), and the

ABySS scaffolding algorithm. We also demonstrate how long-

range linkage information from Chromium reads and BioNano

mapsmay improve scaffold contiguity of draft genome assemblies.

Results

Overview of ABySS 2.0 assembly algorithm

ABySS 1.0 is a multistage de novo assembly pipeline consisting of

unitig, contig, and scaffold stages. At the unitig stage, we perform

the initial assembly of sequences according to the de Bruijn graph

assembly paradigm (Pevzner et al. 2001). At the contig stage, we

align the paired-end reads to the unitigs and use the pairing infor-

mation to orient and merge overlapping unitigs. At the scaffold

stage, we align the mate-pair reads to the contigs to orient and

join them into scaffolds, inserting runs of “N” characters at gaps

in coverage and for unresolved repeats. The most resource-inten-

sive stage of ABySS 1.0 is the unitig (de Bruijn graph) assembly

stage and is also its peak memory requirement. This stage of the

pipeline loads the full set of k-mers from the input sequencing

reads into a hash table and stores auxiliary data for each k-mer

such as the number of k-mer occurrences in the reads and the pres-

ence/absence of possible neighbor k-mers in the de Bruijn graph.

ABySS 1.0 addresses the largememory requirement by implement-

ing a distributed version of the de Bruijn graph assembly approach,

wherein the hash table of k-mers is split across cluster nodes, and

communication between nodes occurs via the MPI standard. By

these means, ABySS 1.0 enables the assembly of large genomes

on clusters of commodity hardware. For example, ABySS 1.0 was

used to assemble the 20-Gbp white spruce genome with 115 clus-

ter nodes and ∼4.3 TB of aggregate memory (Birol et al. 2013).

The main innovation of ABySS 2.0 is a Bloom filter-based im-

plementation of the unitig assembly stage, and it reduces the over-

all memory requirements by an order of magnitude, enabling

assembly of large genomes on a single machine. A Bloom filter

(Bloom 1970) is a compact data structure for representing a set of

elements that supports two operations: (1) inserting an element

into the set, and (2) querying for the presence of an element in

the set. In the context of Bloom filter-based de Bruijn graph assem-

bly algorithms, the elements of the set are the k-mers of the input

sequencing reads. The Bloom filter data structure consists of a bit

vector and one or more hash functions, where the hash functions

map each k-mer to a corresponding set of positions within the bit

vector (Fig. 1A); we refer to this set of bit positions as the bit signa-

ture for the k-mer. A k-mer is inserted into the Bloom filter by set-

ting the positions of its bit signature to one and is queried by

testing if all positions of its bit signature are one. While a Bloom

filter provides a very memory-efficient means of representing a

set, it has the caveat that it can generate false positives when the

bit signatures of different k-mers overlap by chance. In the context

of our application, this means that a certain fraction of k-mer que-

ries will return true even though the k-mers do not exist in the in-

put sequencing data. The false-positive rate (FPR) for a Bloom filter

(Bloom 1970) can be estimated using

FPR = 1− 1−
1

m

( )hn
( )h

≈ (1− e−(hn/m))h (1)

where m is the Bloom filter in bits, h is the number of hash func-

tions, and n is the number of distinct k-mers in the data.

Handling false positives was the main design challenge of ABySS

2.0, and we discuss the issue in further detail in Methods.

During unitig assembly, two passes are made through the in-

put sequencing reads. In the first pass, we extract the k-mers from

the reads and load them into a Bloom filter (Fig. 1A). To filter out

the majority of k-mers caused by sequencing errors, we discard all

k-mers with an occurrence count below a user-specified threshold,

typically in the range of two to four.We refer to the retained k-mers

as solid k-mers. In the second pass through the reads, we identify

reads that consist entirely of solid k-mers, which we term solid

reads, and extend them left and right within the de Bruijn graph

to create unitigs (Fig. 1C). During read extension, we adopt the

same approach to graph traversal as originally described for

Minia (Chikhi and Rizk 2013). Since only the nodes (k-mers) of

ABySS 2.0

Genome Research 769
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


the de Bruijn graph are stored in the Bloom filter andnot the edges,

we query all four possible k-mers neighboring the current k-mer

during each step of graph traversal. This step enables us to discover

outgoing edges (Fig. 1B). We note that during the read extension

phase of assembly, it is possible for multiple solid reads to result

in the same unitig. To avoid such duplicate sequences, we use an

additional tracking Bloom filter to record k-mers included in previ-

ous unitigs, and a solid read is only extended if it has at least one

k-mer that is not already in the tracking Bloom filter.

Effect of Bloom filter FPR

In the context of de Bruijn graph assembly, Bloom filter false pos-

itives have the effect of adding to the graph k-mers that are not pre-

sent in the input sequencing reads. To address this issue, we have

implemented a look-ahead mechanism to remove such k-mers

from the graph, as described in the Methods. However, in order

to confirm that Bloom filter false positives do not cause assembly

artifacts and to better understand the relationship between Bloom

filter FPR, assembly quality, RAMusage, and running time,we con-

ducted the following experiment.

By using the Caenorhabditis elegans data set DRR008444, we

conducted assemblies with a range of Bloom filter FPRs and mea-

sured the resulting NG50 lengthmetric, number of misassemblies,

and wall-clock time (Fig. 2). We note that the Bloom filter FPR is

not a directly tunable parameter of ABySS 2.0. Instead, we con-

trolled the FPR indirectly by changing the Bloom filter size from

250 to 3000 MB, with a step size of 250 MB. Further details of

the experimental setup are provided in “Effect of Bloom Filter

Positive Rate” in the Supplemental

Material. In Figure 2A, we observe that

the NG50 remains stable in the neigh-

borhood of 9600 bp as the Bloom filter al-

location decreases from 3000 to 500 MB,

corresponding to FPR values of 1.91%

and 10.9%, respectively, but drops sharp-

ly when Bloom filter allocation is de-

creased further from 500 to 250 MB

(FPR 10.9% and 20.7%, respectively).

Similarly, the number of major misas-

semblies (9) and local misassemblies

(30–31) reported by QUAST 3.2 remains

stable as the Bloom filter allocation is de-

creased from 3000 to 250 MB (Fig. 2B).

Additional QUAST metrics indicate that

genome assemblies are of similar quality

with a Bloom filter allocation as low as

500 MB (detailed in Supplemental Figs.

S1–S3; Supplemental Tables S1–S3).

Finally, in Figure 2C we observe that

the run time of ABySS 2.0 is inversely re-

lated to Bloom filter size. This behavior is

due to the use of a look-ahead algorithm

to trim false branches from the de Bruijn

graph, as described in the Methods and

depicted in Figure 1C. Run time increases

gradually as the Bloom filter allocation

decreases from 3000 to 500 MB but rises

sharply from 57 to 152 min when the al-

location is further decreased from 500 to

250MB. These plots demonstrate a trade-

off betweenmemory usage and run time,

with an FPR in the range of 5%–10% giving both goodmemory us-

age and time performance. It also indicates that any FPR <20% has

no adverse effects on assembly quality, considering both contigu-

ity and correctness.

Most false-positive k-mers result in a tip that is pruned by the

look-ahead algorithm. In a standard de Bruijn graph, two k-mers

that occur at distant locations in the genome but, coincidentally,

share an overlap of k− 1 nucleotides cause a branch in the de

Bruijn graph, stopping the assembly of a contig at that branching

point. The false-positive k-mers of a Bloom filter de Bruijn graph

can make a connection between two k-mers that overlap by fewer

than k− 1 nucleotides. Such a chance connection similarly creates

a branching point causing the contig to come to a premature end.

The probability of such a chance connection decreases exponen-

tially with a decreasing overlap, FPRk−1−o, where o is the amount

of overlap between the two k-mers. If these chance connections oc-

curred frequently, we would expect that varying the size of the

Bloom filter and thus the FPR to significantly affect the contiguity

of the assembly. However, we show empirically in Figure 2A that

the contiguity of the assembly is largely insensitive to the FPR,

and we surmise that these chance connections occur infrequently.

Assembler comparison

To assess the performance of ABySS 2.0, we compared it with other

leading assemblers for large genomes: ABySS 1.0 (Simpson et al.

2009), BCALM 2 (Chikhi et al. 2016), DISCOVAR de novo,

MEGAHIT (Li et al. 2016), Minia (Chikhi and Rizk 2013), SGA

(Simpson and Durbin 2011), and SOAPdenovo2 (Luo et al. 2012).

Figure 1. Overview of the ABySS 2.0 assembly algorithm. (A) k-mers from each input sequencing read
are loaded into the Bloom filter by computing the hash values of each k-mer sequence and setting the
corresponding bit in the Bloom filter. For clarity, we show a Bloom filter that uses a single hash function;
in practice, multiple bit positions are set for each k-mer using multiple independent hash functions. (B) A
path in the de Bruijn graph is traversed by repeatedly querying for possible successor k-mers and advanc-
ing to the successor(s) that are found in the Bloom filter. Each possible successor corresponds to single-
base extension of the current k-mer by “A,” “C,” “G,” or “T.” (C) ABySS 2.0 builds unitig sequences by
extending solid reads left and rightwithin the de Bruijn graph. A solid read is a read that consists entirely of
k-mers with an occurrence count greater or equal to a user-specified threshold (solid k-mers); the opti-
mum minimum occurrence threshold is typically in the range of two to four. Extension of a solid read
is halted when either a branching point or a dead end in the de Bruijn graph is encountered. A look-ahead
algorithm is employed to detect and ignore short branches caused by Bloom filter false positives and/or
recurrent read errors.

Jackman et al.

770 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


Wenote that DISCOVAR de novo is thewhole-genome de novo as-

sembly successor to DISCOVAR (Weisenfeld et al. 2014). We con-

ducted our comparison using a recent, publicly available human

short-read data set provided by the Genome in a Bottle (Zook

et al. 2016) project. The NIST HG004 (Coriell cell line NA24143)

data were chosen for its deep 70× coverage of Illumina short-read

(paired-end 250 bp) data and the availability of sequences from

other platforms, including a 175× physical coverage mate-pair

data set (after trimming), 10x Genomics Chromium data, and

BioNanoopticalmappingdata.Wenote that paired-end250-bp se-

quencing data from an Illumina HiSeq 2500 in rapid-run mode is

currently roughly double the cost per base of paired-end 125-bp se-

quencing data on the same machine in high-throughput mode

(http://bit.ly/hiseq2500, http://bit.ly/cornell-price-list).

Each of the assemblers in the comparison was chosen due to

its significant contributions toward the goal of scalable de novo as-

sembly. The previous version of ABySS facilitates large genome as-

semblies by distributing the de Bruijn graph across cluster nodes

andwas the first software to assemble a human genome from short

reads. The BCALM 2 assembler introduces a novel method for par-

titioning the de Bruijn graph using minimizer hashing, which en-

ables subsets of the graph to be assembled iteratively or in parallel.

DISCOVAR de novo is a recent de Bruijn graph assembler for large

genomes. MEGAHIT utilizes a data structure called a succinct de

Bruijn graph (Bowe et al. 2012) to reduce the memory require-

ments for de Bruijn graph assembly. Minia is the first assembler

to employ a Bloom filter representation of the de Bruijn graph

and uses a novel algorithm for eliminating Bloom filter false posi-

tives. SGA demonstrates the use of an FM-index (Simpson and

Durbin 2011) as the core data structure for assembly, enabling

detection of variable-length overlaps between reads with a low

memory footprint. In addition to the aforementioned assemblers,

we also attempted to include ALLPATHS-LG 52488 (Gnerre et al.

2010) and MaSuRCA 3.1.3 (Zimin et al. 2013); however, we were

unable to run these assemblers to completion on the HG004

data set (for details, see “Assembler Scripts and Configuration

Files” in Supplemental Material). For the majority of assemblers,

we conducted assemblies across a range of k-mer sizes and selected

a single assembly for inclusion in the comparison that represented

the best tradeoff between maximizing contiguity (NG50 and

NGA50) and minimizing alignment breakpoints with respect to

reference genome GRCh38 (Supplemental Fig. S5; Supplemental

Tables S5–S9). Further details regarding k-mer size optimization

are described in “K-mer Size Sweeps” in the SupplementalMaterial.

In Figure 3A andTable 1, we compare the peak RAMusage and

wall-clock time of the assemblers. All assemblies fromFigure 3were

Figure 2. Effect of Bloom filter memory allocation on ABySS 2.0 assem-
blies of the C. elegans DRR008444 data set. (A) The assembly contiguity
(NG50) remains stable in the neighborhood of 9600 bp as the Bloom filter
allocation decreases from 3000 MB of 500 MB but drops sharply as the al-
location is further decreased from500 to 250MB. (B) The number of major
misassemblies (9) and local misassemblies (30–31) reported by QUAST re-
mains stable as the Bloom filter allocation is decreased from 3000 to 250
MB. (C ) The assembly wall-clock time increases gradually as the Bloom fil-
ter allocation is decreased from 3000 to 500 MB but rises sharply from 57
to 152 min when the allocation is further decreased from 500 to 250 MB.
(D) The relationship between Bloom filter false-positive rate and the Bloom
filter memory allocation. From these results, we conclude that a Bloom fil-
ter FPR in the range of 5%–10% provides a good balance between assem-
bly time and memory usage, without any detrimental effect on assembly
quality.

Figure 3. De novo assembly results for Genome in a Bottle HG004 hu-
man genome short-read data with ABySS 1.0, ABySS 2.0, BCALM 2,
DISCOVAR de novo, MEGAHIT, Minia, SOAPdenovo2, and SGA. To enable
comparison with ABySS, the DISCOVAR de novo assembly was scaffolded
with third-party scaffolders ABySS-Scaffold, LINKS (Warren et al. 2015),
and BESST (Sahlin et al. 2016). For panels B–D, on the y-axes we show
the range of NGA50 to NG50 to indicate uncertainty caused by real geno-
mic variants between individual HG004 and the reference genome
(GRCh38). On the x-axes, we show the number of breakpoints that oc-
curred when aligning the sequences to the reference genome. (A) Peak
memory usage and wall-clock time for the assemblers. (B) Contiguity and
correctness metrics for contig sequences. (C) Contiguity and correctness
metrics after scaffolding with mate-pair (MPET) reads. The SOAPdenovo2
result for this plot was excluded as an outlier with an NGA50 (NG50) value
of 103 kbp (172 kbp) and 10,610 breakpoints. (D) Contiguity and correct-
ness metrics after further scaffolding with BioNano optical mapping data,
using BioNano’s hybrid scaffolding pipeline.

ABySS 2.0

Genome Research 771
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://bit.ly/hiseq2500
http://bit.ly/hiseq2500
http://bit.ly/hiseq2500
http://bit.ly/hiseq2500
http://bit.ly/cornell-price-list
http://bit.ly/cornell-price-list
http://bit.ly/cornell-price-list
http://bit.ly/cornell-price-list
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


benchmarked on a server with 2.5 TB of RAM and four Xeon E7-

8867 v3 CPUs running at 2.50 GHz, providing a total of 64 cores.

Memory usage and run time of the assemblers varied from 5 GB

(BCALM 2) to 659 GB (SOAPdenovo2) and 9 h (BCALM 2) to

65 h (SGA). The tools that represent the de Bruijn graph suc-

cinctly—ABySS 2.0, MEGAHIT, Minia, and SGA—had memory

footprints many times smaller than ABySS 1.0, DISCOVAR de

novo, and SOAPdenovo2. BCALM 2 achieved both the smallest

memory footprint, by virtue of its novel partitioning strategy to

constructing the de Bruijn graph, and completed the assembly in

9 h, 8 h of which was spent counting k-mers with DSK (Rizk

et al. 2013). DISCOVAR de novo, which achieved the best se-

quence contiguity, required 618 GB of memory and 26 h to com-

plete, and SOAPdenovo2 required a similar 659 GB and 35 h. SGA

achieves its compact memory usage of 82 GB at the expense of run

time, requiring 65 h to complete the assembly. In addition to the

results of Figure 3A, we performed further benchmarking of ABySS

1.0 and ABySS 2.0 on other platforms (Supplemental Table S10).

Most notably, we ran the ABySS 2.0 assembly on a low-memory

machine with 48 GB RAM and 12 CPU cores, with a peak memory

usage of 34 GB and a wall-clock time of 80 h.

In Figure 3B and Table 2, we compare the contiguity and cor-

rectness of the contig sequences generated by the assemblers. To

extract contigs fromtheassemblies,we split the sequences atoccur-

rences of one ormore “N” characters. In addition to comparing the

contigs produced by each assembler, we included two additional

data points (“ABySS 1.0 + Sealer”, “ABySS 2.0 + Sealer”) in Figure

3B to show the contiguity improvement produced by closing scaf-

fold gapswith Sealer (Paulino et al. 2015), prior to splitting the scaf-

fold sequences at “N”s. Further details regarding the Sealer results

are provided in “Gap Filling with Sealer” in the Supplemental

Material. To assess the contiguity of the contigs, we calculated

both NG50 and NGA50 using a genome size of 3,088,269,832 bp.

To assess assembly correctness, we counted the number of break-

points when aligning the contigs to the primary chromosome se-

quences of the human reference GRCh38. Comparing the NG50

and NGA50 of the contigs, we observe that DISCOVAR de novo

achieves the highest sequence contiguity by a factor of approxi-

mately two (DISCOVAR de novo NG50 of 82 kbp vs. ABySS 1.0 +

SealerNG50of 38 kbp), although itsmemoryuse is the second larg-

est, exceeded only by SOAPdenovo2.Wenote that theNG50of the

ABySS 1.0 (30 kbp) and ABySS 2.0 (21 kbp) contigs noticeably ex-

ceeds those of BCALM 2 (1 kbp), MEGAHIT (8 kbp), and Minia (5

kbp), primarily due to the additional use of paired-end information

in ABySS. We also note that ABySS 2.0 achieves a lower contiguity

than ABySS 1.0 (21 kbp vs. 30 kbp). Upon investigation, we con-

clude that the main cause of this difference is the handling of low

coverage regions. Whereas ABySS 1.0 retains all k-mers in the de

Bruijn graph along with their counts, ABySS 2.0 discards k-mers

with counts below a user-specified threshold, as discussed in the

Methods. To further assess the assemblies, we calculated the per-

centage of sequence identity and percentage of genome coverage

of the contigs aligned to the reference genome. The percentage of

identity ranged from 99.5% to 99.8%, the percentage of genome

coverage from 93% to 98%, and ABySS 2.0 scored near the upper

ends of both measures with 99.7% identity and 96% genome cov-

erage (Supplemental Fig. S4; Supplemental Table S4).

In Figure 3C and Table 3, we compare the contiguity and cor-

rectness of the assemblies after scaffoldingwith Illuminamate-pair

data.We generally excluded assemblers from this stage of the com-

parison that did not implement their own scaffolding algorithms.

However, in light of the strong contiguity results of DISCOVAR de

novo at the contig stage, we chose to scaffold the DISCOVAR de

novo contigs with several third-party scaffolders: ABySS-Scaffold

(data not shown), LINKS (Warren et al. 2015), and BESST (Sahlin

et al. 2016). In comparison to Figure 3B, we note that the NG50

and NGA50 values of the DISCOVAR de novo and ABySS assem-

blies begin to converge, as do the values for the two versions of

ABySS compared. We also note that there are significant differ-

ences between the scaffold NG50 and NGA50 length metrics, par-

ticularly in the case of the DISCOVAR de novo + ABySS-Scaffold

assembly with an NG50 of 10.4 Mbp and NGA50 of 6.3 Mbp.

We understand this divergence to be caused by the differing as-

sumptions of the two contiguitymetrics.While the NG50 is calcu-

lated under the assumption that all sequences are correctly

assembled, the NGA50 metric penalizes breakpoints when align-

ing the sequences to the reference genome. While the NG50 is

an overly optimistic metric, the NGA50 is an overly pessimistic

metric because certain breakpoints may be attributed to real

structural variation between the sequenced individual and the

reference genome. For this reason, we show contiguity of the as-

semblies as a range between NGA50 and NG50, with the true un-

known value lying somewhere in between.

In Figure 3D and Table 4, we show the results after an addi-

tional round of scaffolding of the DISCOVAR de novo and ABySS

assemblies using the BioNano optical map for individual HG004,

as provided by the Genome in a Bottle project. The BioNano pro-

tocol generates an optical map of the genome by fluorescently

tagging occurrences of a particular endonuclease motif within

long DNA molecules, resulting in a barcode-like pattern for each

molecule. To perform the scaffolding, the BioNano software gener-

ates an analogous set of barcode patterns in silico for the sequences

of the input assembly and then aligns the two sets of bar

codes. Applying BioNano scaffolding to the mate-pair–scaffolded

sequences improved the NG50 by a factor of five or more across

Table 1. The peak memory usage and wall-clock run time with 64
threads of the assemblies of GIAB HG004

Assembly Memory (GB) Time (h)

ABySS 1.0 418 14
ABySS 2.0 34 20
DISCOVAR de novo 618 26
BCALM 2 5 9
MEGAHIT 197 26
Minia 137 19
SGA 82 65
SOAPdenovo2 659 35

Table 2. The sequence contiguity and number of breakpoints when
aligned to GRCh38 using BWA-MEM of the assemblies of GIAB HG004

Assembly NG50 (kbp) NGA50 (kbp) Breakpoints

ABySS 1.0 30.0 29.1 1898
ABySS 1.0 + Sealer 38.0 36.3 2268
ABySS 2.0 20.6 20.1 1813
ABySS 2.0 + Sealer 24.5 23.7 2089
DISCOVAR de novo 82.1 76.6 1947
BCALM 2 1.2 1.2 236
MEGAHIT 8.2 8.1 1709
Minia 4.8 4.7 949
SGA 7.9 7.9 820
SOAPdenovo2 3.8 3.7 609

Jackman et al.

772 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


all assemblies, with NG50 reaching 52 Mbp with DISCOVAR de

novo + ABySS-Scaffold + BioNano. We observe that the distance

between the NG50 and NGA50 values grows even larger at this

stage of scaffolding, which we surmise is caused by a greater likeli-

hood of encountering real sequence variation between the se-

quenced individual and the reference genome.

Given the aforementioned limitations of our breakpointmet-

ric for assessing assembly correctness, we additionally performed

manual checks for assembly correctness. To this end, we investi-

gated large-scale misassemblies (>10 Mb) and found only two ma-

jor events within our ABySS 2.0 + BioNano scaffolds (Figs. 4, 5).

One of these large-scale events between Chromosomes 1 and 16

was identified in every assembly (Supplemental Figs. S7–S12),

which indicates that the event may be a real structural variant

with respect to the reference human genome GRCh38. The other

large scale event between Chromosomes 6 and 8 is interestingly

also found in the DISCOVAR de novo + BESST + BioNano assembly

(Supplemental Fig. S11), despite having fewer breakpoints and us-

ing an independent methodology. This suggests that the relative

correctness of the ABySS 2.0 + BioNano assembly is on par with

that of other assemblies.

Scaffolding with Chromium data

As the final step of our ABySS 2.0 assembly, we used the 10x

Genomics Chromium data available for individual HG004 to fur-

ther scaffold the BioNano assembly. The Chromium sequencing

platform augments existing short-read technologies by labeling

reads that originate from the same long DNA molecule with a

shared barcode sequence. This labeling is achieved during library

preparation by isolating long DNA molecules into droplets along-

side gel beads containing the barcoding oligos. The barcodes added

by the Chromium protocol provide additional long-range group-

ing information for the short reads, which can be leveraged for

scaffolding and other bioinformatics applications, such as phasing

sequence variants.

To scaffold our assembly with the Chromium data, we devel-

oped ARCS (Yeo et al. 2017). Briefly, we aligned the Chromium

linked reads to the inputBioNano scaffoldswithBWA-MEMand re-

corded the barcodes of the reads that aligned to each scaffold. Aswe

were only interested in the barcodes that joined scaffolds, we re-

duced noise by masking the interior portions of the input

BioNano scaffolds with “N” characters, preserving only the first/

last 30 kbp of sequence in each scaffold, prior to aligning the

Chromium reads. By using the information obtained from the

read alignments, we constructed a graph representation of the rela-

tionships between scaffolds, using nodes to represent scaffolds and

edge weights to represent the number of shared barcodes between

scaffolds. Finally, we supplied this graph as input to the LINKS

(Warren et al. 2015) scaffolding algorithm to identify high-confi-

dence paths within the graph and to output the corresponding

scaffolds. Additional information regarding the Chromium scaf-

folding with ARCS and LINKS is provided in “Assembler Scripts

and Configuration Files” in the Supplemental Material.

The Chromium scaffolding increased the scaffold NG50 of

our ABySS 2.0 assembly from26.9 to 41.9Mbp. At this scale of con-

tiguity, the largest scaffolds represent significant fractions of chro-

mosome arms. In Figure 4, we show the positions on the

chromosomes of the 89 scaffolds >3.2 Mbp that compose 90% of

the genome. We note that many chromosome arms are recon-

structed by one to four large scaffolds, exemplified in Figure 5.

We observe two regions indicative of a structural rearrangement

and/or misassembly. Interestingly, the t(1;16) translocation is

seen in every assembly (Supplemental Figs. S7–S12), and the

t(6;8) translocation is also seen in the DISCOVAR de novo +

BESST + BioNano assembly (Supplemental Fig. S11).

Discussion

The ideogram of Figure 4 demonstrates that correct and highly-

contiguous de novo assembly of human genomes is possible using

current short-read sequencing technologies combined with long-

range scaffolding techniques. While each of the scaffolding data

types usedhere (mate-pair, BioNano,Chromium) are capable of in-

creasing assembly contiguity by orders ofmagnitude on their own,

our results demonstrate that these data are even more powerful

when used in combination, also demonstrated by Mostovoy

et al. (2016). In the human assembly we have described here,

each scaffolding step feeds on the success of the previous assembly

stages. Longer contig sequences improve the results of mate-pair

scaffolding by allowing more mate-pairs to map to the contigs.

Longer mate-pair scaffolds improve the BioNano scaffolding by al-

lowing the optical map to align unambiguously to the mate-pair

scaffolds; for this reason, BioNano recommends that the input as-

sembly contains sequences of at least 100 kbp. Finally, longer

BioNano scaffolds improve the Chromium scaffolding by resolv-

ing ambiguities in ordering and orientation of the scaffolds that

are difficult to resolve using Chromium data alone.

Another observation that can be made from our assembler

comparison is that, in spite of more than a decade of research

and development related to de Bruijn graph assemblers, the mem-

ory and runtime efficiency of short-read assemblers can still be

greatly improved. This issue is particularly important for down-

stream studies that involve large numbers of de novo assemblies,

such as human population studies, cancer genome studies, and

clinical applications. The opportunity for improving the

Table 3. The scaffold contiguity and number of breakpoints when
aligned to GRCh38 using BWA-MEM of the assemblies of GIAB HG004

Assembly
NG50
(Mbp)

NGA50
(Mbp) Breakpoints

ABySS 1.0 4.82 4.36 2975
ABySS 2.0 3.49 2.97 2717
DISCOVAR de novo +

ABySS-Scaffold
10.42 6.32 3085

DISCOVAR de novo + LINKS 3.08 2.44 2655
DISCOVAR de novo + BESST 6.92 3.94 2657
SOAPdenovo2 0.17 0.10 11,219

Table 4. The scaffold contiguity and number of breakpoints when
aligned to GRCh38 using BWA-MEM of the assemblies of GIAB
HG004 with BioNano scaffolding

Assembly
NG50
(Mbp)

NGA50
(Mbp) Breakpoints

ABySS 1.0 + BioNano 32.5 15.3 3051
ABySS 2.0 + BioNano 26.9 12.8 2750
DISCOVAR de novo + ABySS-

Scaffold + BioNano
52.2 15.0 3121

DISCOVAR de novo + LINKS +
BioNano

25.7 13.6 2735

DISCOVAR de novo + BESST
+ BioNano

37.8 9.3 2672

ABySS 2.0

Genome Research 773
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


throughput of de novo assemblies is evidentwhen comparing nov-

el de Bruijn graph implementations such as Minia and BCALM 2

against more mature assembly pipelines such as ABySS 1.0 and

DISCOVAR de novo (Fig. 3A). For example, the BCALM2 assembly

used only 5 GB RAM and 9 h to run, whereas the DISCOVAR de

novo assembly used >600 GB of RAM and over a day to run.

While Minia and BCALM 2 did not match the results of ABySS

and DISCOVAR de novo in terms of assembly contiguity (Fig.

3B), we posit that this is due to the limited error removal of the im-

plementations andnot a fundamental limitation of the algorithms

themselves. In the case of Minia, this hypothesis is borne out by

the results of ABySS 2.0 (Fig. 3A), which employs a Bloom filter-

based assembly approach similar to Minia but achieves contiguity

results that are on par with DISCOVAR de novo and ABySS 1.0.

The assembly of long reads has yielded highly contiguous ge-

nomeassemblies ofhuman (Pendletonet al. 2015;Chinet al. 2016)

and other organisms with sequence contiguity in the megabase

range. Long-read sequencing comes, however, at a cost premium.

For applications that are cost-sensitive, suchas sequencing for diag-

nostic medicine, algorithms that exploit high-throughput short-

read sequencing are valuable. We show that megabase scaffolds

are achievable using short-read sequencing with one paired-end

andonemate-pair library, and scaffolds approaching the size of en-

tirechromosomearmsarepossiblewhenscaffoldingwithaddition-

al BioNano and/or 10x Genomics data. A remaining challenge for

short-read assemblies is to improve their sequence contiguity,

which remains in the range of tens of kilobases, significantly short-

er than the megabases achieved with the assembly of long-read

sequencing.

Methods

Bloom filter de Bruijn graph assembly

The first stage of the ABySS 2.0 assembly pipeline is a de Bruijn

graph assembler that uses a compact, Bloom filter-based represen-

tation of the graph. The use of Bloom filters for de novo assembly

was first demonstrated in Minia (Chikhi and Rizk 2013), and

ABySS 2.0 builds on many aspects of that approach. The parts of

our assembly algorithm that are novel with respect to Minia are

(1) the use of solid reads to seed contig traversals (explained below),

(2) the use of look-ahead for error correction and elimination of

Bloom filter false positives rather than a separate data structure,

and (3) the use of a new hashing algorithm, ntHash (Mohamadi

et al. 2016), designed for processing DNA/RNA sequences

efficiently.

We will begin by describing the basic aspects of our assembly

algorithm that closely follow Minia, including the Bloom filter

representation of the de Bruijn graph and the use of a cascading

Bloom filter to remove low-occurrence k-mers. As in Minia, the first

step of the assembly algorithm is to load all k-mers from the se-

quencing reads into a Bloom filter (Fig. 1A). These k-mers represent

the set of nodes in the de Bruijn graph, but we do not explicitly

store the edges representing the k− 1 bp overlaps between k-

mers. Instead, as in Minia, we discover edges at runtime by query-

ing the Bloom filter for the four possible predecessors/successors of

the current k-mer during the course of a graph traversal (Fig. 1B).

Each possible successor (predecessor) corresponds to a single-

base extension of the current k-mer to the right (left) by “A,”

“C,” “G,” or “T.” Another technique shared with Minia is the

use of a cascading Bloom filter to eliminate low-occurrence k-

mers, the majority of which are caused by sequencing errors

(Vandervalk et al. 2015). Briefly, a cascading Bloom filter is a

chained array of Bloom filters where each Bloom filter stores k-

mers with a count that is one higher than the preceding Bloom fil-

ter. The procedure for inserting a k-mer into a cascading Bloom

Figure 4. Contigs from the 89 scaffolds >3.2Mbp that compose 90% of
the genome are aligned to GRCh38 using BWA-MEM. Contigs from the
same scaffold are shown in the same shade of gray, and alternating shades
of light anddarkgrayareused todistinguishbetweencontigs fromdifferent
scaffolds. Two translocations, t(1;16) and t(6;8), are shown in green and
blue. The segments of the genome that are not covered by alignments of
the largest 89 scaffolds are shown offset in black. Gaps in the reference ge-
nome, includingcentromeresandotherheterochromatin,areshowninred.

Figure 5. A Circos (Krzywinski et al. 2009) assembly consistency plot.
Scaftigs from the largest 89 scaffolds that compose 90% of the genome
are aligned to GRCh38 using BWA-MEM. GRCh38 chromosomes are dis-
played on the left and the scaffolds on the right. Connections show the
aligned regions between the genome and scaffolds. Contigs are included
as a part of the same region if they are within 1 Mbp on either side of the
connection, and regions <100 kbp are not shown. The black regions on
the chromosomes indicate gaps in the reference and the circles indicate
the centromere location on each chromosome.

Jackman et al.

774 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


filter is to query each Bloom filter in succession and to add the k-

mer to the first Bloom filter where it is not already present. After

all k-mers from the reads have been inserted, the last Bloom filter

in the chain is then kept as the set of solid k-mers and the preceding

Bloom filters are discarded. We note that ABySS 2.0 assigns equal

sizes to each Bloom filter in the cascading chain, and so using c cas-

cading Bloom filter levels effectively multiplies the peak memory

requirement of the assembler by a factor of c. We used ntCard

(Mohamadi et al. 2017) to estimate the approximate number of

singleton k-mers in the data set. As we describe below, an addition-

al tracking Bloom filter is used to record k-mers that have been in-

cluded in previously assembled contigs, and so the total memory

multiplier is c + 1.

We now proceed to describe the unique aspects of the ABySS

2.0 algorithm in comparison to Minia. The first difference is the

method used to seed graph traversals in order to generate contigs.

While Minia identifies and stores branching points of the de

Bruijn graph to use as starting points for contig traversal, ABySS

2.0 instead extends solid reads left and right until either a dead

end or a branching point is encountered in the graph. A read is

considered to be a solid read if it consists entirely of solid k-

mers, and is thus likely to represent a correct path in the de

Bruijn graph. The percentage of solid reads in the data set depends

on the user-specified minimum k-mer occurrence threshold. In

the case of the Genome in a Bottle HG004 assembly, the k-mer oc-

currence threshold was set to three and the number of solid reads

was 782,886,725 of 868,593,056 (90.1%), after correction with

BFC (Li 2015a). The read extension approach to contig generation

has the advantage of being simple to implement but requires some

precautions to ensure that redundant contigs are not generated by

solid reads located in the same neighborhood of the de Bruijn

graph. We address this issue by using an additional tracking

Bloom filter to record the set of k-mers that have previously

been included in contigs; if all the k-mers of a solid read are already

contained in the tracking Bloom filter, it is not extended into a

contig but is instead skipped. We note that in order for this

scheme to work correctly, solid reads that span branching points

of the de Bruijn graph must be split at the branching points and

treated as separate candidates for extension. We note that the

tracking Bloom filter is assigned the same size in memory as the

chained Bloom filters that make up the cascading Bloom filter, de-

scribed in the previous paragraph.

A second important difference between Minia and ABySS 2.0

is the strategy used for handling of Bloom filter false positives.

While the Minia approach uses an additional nonprobabilistic

data structure to store critical false positives (Chikhi and Rizk

2013), ABySS 2.0 instead uses a look-ahead mechanism during

graph traversal to eliminate short branches that are caused by false

positives and recurrent sequencing errors (Fig. 1C). Themajority of

branches created by sequencing errors are removed by the cascad-

ing Bloom filter. In detail, we invoke a look-ahead step at each

branching point we encounter during contig extension, up to a

distance of k nodes. If the look-ahead step reveals that a branch

is less than or equal to k nodes in length, it is considered to be a

false branch, and its existence is ignored. If, on the other hand,

the branch point has two or more branches that are longer than

k nodes, then the unitig extension is halted. The use of look-ahead

incurs an additional computational cost to the graph traversal but

obviates the requirement for additional data structures to track

false positives and error k-mers.

A third difference between Minia and ABySS 2.0 is the use of

a specialized hash function called ntHash in ABySS 2.0. The

ntHash algorithm is an efficient method for computing the

hash values of all consecutive k-mers in a DNA sequence recur-

sively, in which the hash value for each k-mer is derived from

the hash value of the previous k-mer. More specifically, ntHash

is an adapted version of cyclic polynomial hashing and is used

to compute normal or canonical hash values for all k-mers in a

DNA sequence. A further feature of ntHash is fast computation

of multiple hash values for the same k-mer, without repeating

the entire hashing computation. This is a useful feature for bioin-

formatics applications such as ABySS 2.0 that employ a Bloom fil-

ter data structure.

Experimental sequencing data

In our experiment to assess the effects of Bloom filter FPRonABySS

2.0 assemblies, we used C. elegans N2 strain data set SRA

DRR008444, consisting of Illumina GAIIx 2 × 100 bp reads on

300-bp fragments with 75-fold coverage.

For the assembler comparison, we used the data for the

Ashkenazi mother (NIST HG004, Coriell cell line NA24143)

from the Genome in a Bottle project (Zook et al. 2016). The

Illumina WGS 2 × 250 bp paired-end sequencing data may be

downloaded from the URLs listed at http://bit.ly/hg004-2x250

(SRA SRR3440461–SRR3440495). The Illumina 6-kbpmate-pair se-

quencing data may be downloaded from URLs listed at http://bit.

ly/hg004-6kb (SRA SRR2832452–SRR283245). The BioNano opti-

cal map EXP_REFINEFINAL1_q.cmap may be downloaded from

the URLs listed at http://bit.ly/hg004-bionano, and the 10x

Genomics Chromiumdatamay be downloaded from theURLs list-

ed at http://bit.ly/hg004-chromium.

We corrected sequencing errors in the reads using the tool

BFC (Li 2015a) with the parameter -s3G. We constructed the

hash table of trusted k-mers using the paired-end reads and used

this hash table to correct both the paired-end andmate-pair reads.

We assembled both the BFC and uncorrected reads with each as-

sembler (Supplemental Fig. S6; Supplemental Tables S11, S12).

We removed adapters from the mate-pair reads using NxTrim

0.4.0 (O’Connell et al. 2015) with parameters --norc

--joinreads --preserve-mp. The tool also classifies the reads

as mate-pair, paired-end, single-end, or unknown. We discarded

the reads classified as either paired-end or single-end and, for scaf-

folding, used the reads classified as mate-pair and unknown,

which are composed primarily of mate-pair reads originating

from large fragments.

Assembler comparison

We assembled the GIAB HG004 data set using ABySS 1.9.0

(Simpson et al. 2009), ABySS 2.0, ALLPATHS-LG 52488 (Gnerre

et al. 2010), BCALM 2.0.0 (Chikhi et al. 2016), DISCOVAR de

novo 52488, MaSuRCA 3.1.3 (Zimin et al. 2013), MEGAHIT

1.0.6-3-gfb1e59b (Li et al. 2016), Minia 3.0.0-alpha1 (Chikhi and

Rizk 2013), SGA 0.10.14 (Simpson and Durbin 2011), and

SOAPdenovo 2.04 (Luo et al. 2012). We assembled with each

tool the paired-end reads corrected by BFC 181. The mate-pair

reads categorized by NxTrim 0.4.0 and corrected by BFC were

used for scaffolding, when applicable for that assembler. We scaf-

folded the DISCOVAR de novo assembly using BESST 2.2.4 (Sahlin

et al. 2016), LINKS 1.8.2 (Warren et al. 2015), and ABySS-Scaffold

1.9.0 (data not shown).

Most software used in these analyses was installed from the

Homebrew-Science software collection using Linuxbrew (http://

linuxbrew.sh) with the command brew install abyss all-

paths-lg bcalm bfc bwa discovardenovo masurca megahit

nxtrim samtools seqtk sga soapdenovo. The development

version of ABySS 2.0 used in the comparison was compiled from

the bloom-abyss-preview tag at https://github.com/bcgsc/abyss/

tree/bloom-abyss-preview, and we provide the source code in

ABySS 2.0

Genome Research 775
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://bit.ly/hg004-2x250
http://bit.ly/hg004-2x250
http://bit.ly/hg004-2x250
http://bit.ly/hg004-2x250
http://bit.ly/hg004-6kb
http://bit.ly/hg004-6kb
http://bit.ly/hg004-6kb
http://bit.ly/hg004-6kb
http://bit.ly/hg004-6kb
http://bit.ly/hg004-bionano
http://bit.ly/hg004-bionano
http://bit.ly/hg004-bionano
http://bit.ly/hg004-bionano
http://bit.ly/hg004-chromium
http://bit.ly/hg004-chromium
http://bit.ly/hg004-chromium
http://bit.ly/hg004-chromium
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://linuxbrew.sh
http://linuxbrew.sh
http://linuxbrew.sh
http://linuxbrew.sh
https://github.com/bcgsc/abyss/tree/bloom-abyss-preview
https://github.com/bcgsc/abyss/tree/bloom-abyss-preview
https://github.com/bcgsc/abyss/tree/bloom-abyss-preview
https://github.com/bcgsc/abyss/tree/bloom-abyss-preview
https://github.com/bcgsc/abyss/tree/bloom-abyss-preview
http://genome.cshlp.org/
http://www.cshlpress.com


Supplemental Archive 1. Minia 3.0.0-alpha1 and LINKS 1.8.2 were

installed manually, as these versions are not yet available in

Linuxbrew as of this writing. The Python package besst was in-

stalled using pip install besst.

We provide the commands and configuration files used to

run the various assemblers and scaffolding tools in Supplemental

Listings S1 through S16 and as Makefile scripts in the

Supplemental Archive 2. The scripts are also available online at

https://github.com/bcgsc/abyss-2.0-giab. To calculate a suitable

Bloom filter size for ABySS 2.0, we counted distinct k-mers in the

reads with ntHash (Mohamadi et al. 2017) and targeted a Bloom

filter FPR of 5%; we provide further details in “Assembler Scripts

and Configuration Files” in the Supplemental Material. To assess

the correctness of each assembly, we aligned the contigs to the pri-

mary chromosome sequences of human reference GRCh38 with

BWA-MEM 0.7.13 and counted the number of resulting break-

points with abyss-samtobreak -G3088269832 -l500.

Data access

The FASTA files for the assemblies of the HG004 Genome in a

Bottle data from this study may be downloaded from NCBI at

http://bit.ly/ncbi-giab-abyss2 and are also mirrored at http://bit.

ly/abyss2-ftp.

Acknowledgments

We thank Martin Krzywinski for his help with the data visualiza-

tion in the ideogram and Circos figures. The research presented

here was funded by the National Human Genome Research

Institute of the National Institutes of Health (under award no.

R01HG007182), with additional support provided by Intel,

Genome Canada, Genome British Columbia, and the British

Columbia Cancer Foundation. The content is solely the responsi-

bility of the authors and does not necessarily represent the official

views of the National Institutes of Health or other funding

organizations.

References

Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Saint
Yuen MM, Keeling CI, Brand D, Vandervalk BP, et al. 2013.
Assembling the 20 Gb white spruce (Picea glauca) genome from
whole-genome shotgun sequencing data. Bioinformatics 29: 1492–
1497.

BloomBH. 1970. Space/time trade-offs in hash codingwith allowable errors.
Commun ACM 13: 422–426.

Bowe A, Onodera T, Sadakane K, Shibuya T. 2012. Succinct de Bruijn graphs.
In Algorithms in bioinformatics (ed. Raphael B, Tang J), pp. 225–235.
Springer, Berlin, Heidelberg.

Chaisson MJP, Huddleston J, Dennis MY, Sudmant PH, Malig M,
Hormozdiari F, Antonacci F, Surti U, Sandstrom R, Boitano M, et al.
2014. Resolving the complexity of the human genome using single-
molecule sequencing. Nature 517: 608–611.

Chikhi R, Rizk G. 2013. Space-efficient and exact de Bruijn graph represen-
tation based on a Bloom filter. Algorithms Mol Biol 8: 1.

Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. 2014. On the
representation of de Bruijn graphs. In International conference on
Research in computational molecular biology (ed. Sharan R), pp. 35–55.
Springer, Cham, Switzerland.

Chikhi R, Limasset A,Medvedev P. 2016. Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics 32:
i201–i208.

Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A,
Dunn C, O’Malley R, Figueroa-Balderas R, Morales-Cruz A, et al. 2016.
Phased diploid genome assembly with single-molecule real-time se-
quencing. Nat Methods 13: 1050–1054.

Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,
Sharpe T, Hall G, Shea TP, Sykes S, et al. 2010. High-quality draft assem-

blies of mammalian genomes from massively parallel sequence data.
Proc Natl Acad Sci 108: 1513–1518.

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assess-
ment tool for genome assemblies. Bioinformatics 29: 1072–1075.

International Human Genome Sequencing Consortium. 2001. Initial se-
quencing and analysis of the human genome. Nature 409: 860–921.

KrzywinskiM, Schein J, Birol I, Connors J, Gascoyne R, HorsmanD, Jones SJ,
MarraMA. 2009. Circos: an information aesthetic for comparative geno-
mics. Genome Res 19: 1639–1645.

Ley T, Miller C, Ding L, Raphael B, Mungall A, Robertson A, Hoadley K,
Triche TJ, Laird P, Baty J, et al. 2013. Genomic and epigenomic land-
scapes of adult de novo acute myeloid leukemia. N Engl J Med 368:
2059–2074.

Li H. 2015a. BFC: correcting Illumina sequencing errors. Bioinformatics 32:
2885–2887.

Li H. 2015b. FermiKit: assembly-based variant calling for Illumina rese-
quencing data. Bioinformatics 31: 3694–3696.

Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, Yamashita H, Lam
T-W. 2016. MEGAHIT v1. 0: a fast and scalable metagenome assembler
driven by advanced methodologies and community practices. Methods
102: 3–11.

Luo R, Liu B, Xie Y, Li Z, HuangW, Yuan J, He G, Chen Y, PanQ, Liu Y, et al.
2012. SOAPdenovo2: an empirically improved memory-efficient short-
read de novo assembler. Gigascience 1: 18.

Mohamadi H, Chu J, Vandervalk BP, Birol I. 2016. ntHash: recursive nucle-
otide hashing. Bioinformatics 32: 3492–3494.

Mohamadi H, Khan H, Birol I. 2017. ntCard: a streaming algorithm for car-
dinality estimation in genomics data. Bioinformatics pii: btw832.

Morin RD, Mungall K, Pleasance E, Mungall AJ, Goya R, Huff RD, Scott DW,
Ding J, Roth A, Chiu R, et al. 2013. Mutational and structural analysis of
diffuse large B-cell lymphoma using whole-genome sequencing. Blood
122: 1256–1265.

Mose LE, Wilkerson MD, Hayes DN, Perou CM, Parker JS. 2014. ABRA: im-
proved coding indel detection via assembly-based realignment.
Bioinformatics 30: 2813–2815.

Mostovoy Y, Levy-SakinM, Lam J, Lam ET, Hastie AR,Marks P, Lee J, Chu C,
Lin C, Džakula Ž, et al. 2016. A hybrid approach for de novo human ge-
nome sequence assembly and phasing. Nat Methods 13: 587–590.

Nagarajan N, Pop M. 2013. Sequence assembly demystified. Nat Rev Genet
14: 157–167.

O’Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ.
2015. NxTrim: optimized trimming of Illumina mate pair reads.
Bioinformatics 31: 2035–2037.

Paulino D, Warren RL, Vandervalk BP, Raymond A, Jackman SD, Birol I.
2015. Sealer: a scalable gap-closing application for finishing draft ge-
nomes. BMC Bioinformatics 16: 230.

Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O, Rausch T, Stütz
AM, Stedman W, Anantharaman T, Hastie A, et al. 2015. Assembly
and diploid architecture of an individual human genome via single-
molecule technologies. Nat Methods 12: 780–786.

Pevzner PA, Tang H, Waterman MS. 2001. An Eulerian path approach to
DNA fragment assembly. Proc Natl Acad Sci 98: 9748–9753.

Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, Carter
SL, Cibulskis K, HannaM, Kiezun A, et al. 2013. The genetic landscape of
high-risk neuroblastoma. Nat Genet 45: 279–284.

Rizk G, Lavenier D, Chikhi R. 2013. DSK: k-mer counting with very low
memory usage. Bioinformatics 29: 652–653.

Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, Chen S-C, Payne-
Turner D, Churchman ML, Harvey RC, et al. 2012. Genetic alterations
activating kinase and cytokine receptor signaling in high-risk acute lym-
phoblastic leukemia. Cancer Cell 22: 153–166.

Sahlin K, Chikhi R, Arvestad L. 2016. Assembly scaffoldingwith PE-contam-
inated mate-pair libraries. Bioinformatics 32: 1925–1932.

Simpson JT, Durbin R. 2011. Efficient de novo assembly of large genomes
using compressed data structures. Genome Res 22: 549–556.

Simpson JT,Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS: a
parallel assembler for short read sequence data. Genome Res 19:
1117–1123.

Vandervalk BP, Yang C, Xue Z, Raghavan K, Chu J, Mohamadi K,
Jackman SD, Chiu R, Warren RL, Birol I. 2015. Konnector v2.0: pseu-
do-long reads from paired-end sequencing data. BMC Med Genomics 8
(Suppl. 3): S1. doi: 10.1186/1755-8794-8-S3-S1.

Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJM, Birol I.
2015. LINKS: scalable, alignment-free scaffolding of draft genomes with
long reads. Gigascience 4: 35.

Weisenfeld NI, Yin S, Sharpe T, Lau B, Hegarty R, Holmes L, Sogoloff B,
Tabbaa D, Williams L, Russ C, et al. 2014. Comprehensive variation dis-
covery in single human genomes. Nat Genet 46: 1350–1355.

Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. 2017. Direct deter-
mination of diploid genome sequences. Genome Res (this issue). doi:
10.1101/gr.214874.116.

Jackman et al.

776 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
https://github.com/bcgsc/abyss-2.0-giab
https://github.com/bcgsc/abyss-2.0-giab
https://github.com/bcgsc/abyss-2.0-giab
https://github.com/bcgsc/abyss-2.0-giab
https://github.com/bcgsc/abyss-2.0-giab
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.214346.116/-/DC1
http://bit.ly/ncbi-giab-abyss2
http://bit.ly/ncbi-giab-abyss2
http://bit.ly/ncbi-giab-abyss2
http://bit.ly/ncbi-giab-abyss2
http://bit.ly/abyss2-ftp
http://bit.ly/abyss2-ftp
http://bit.ly/abyss2-ftp
http://bit.ly/abyss2-ftp
http://bit.ly/abyss2-ftp
http://genome.cshlp.org/
http://www.cshlpress.com


Yeo S, Coombe L, Chu J, Warren RL, Birol I. 2017. ARCS: assembly roundup
by chromium scaffolding. bioRxiv doi: i10.1101/100750.

Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, Birol I,
ChesnelongC, Chiu R, Chuah E, et al. 2011. Concurrent CICmutations,
IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from
other cancers. J Pathol 226: 7–16.

Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. 2013. The
MaSuRCA genome assembler. Bioinformatics 29: 2669–2677.

Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, Weng Z, Liu Y,

Mason CE, Alexander N, et al. 2016. Extensive sequencing of seven hu-

man genomes to characterize benchmark referencematerials. Sci Data3:

160025.

Received August 7, 2016; accepted in revised form February 14, 2017.

ABySS 2.0

Genome Research 777
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 10.1101/gr.214346.116Access the most recent version at doi:
2017 27: 768-777 originally published online February 23, 2017Genome Res. 

  
Shaun D. Jackman, Benjamin P. Vandervalk, Hamid Mohamadi, et al. 
  
Bloom filter
ABySS 2.0: resource-efficient assembly of large genomes using a

  
Material

Supplemental
  

 http://genome.cshlp.org/content/suppl/2017/04/05/gr.214346.116.DC1

  
References

  
 http://genome.cshlp.org/content/27/5/768.full.html#ref-list-1

This article cites 39 articles, 6 of which can be accessed free at:

  
Open Access

  
 Open Access option.Genome ResearchFreely available online through the 

  
License

Commons 
Creative

.http://creativecommons.org/licenses/by/4.0/
Commons License (Attribution 4.0 International), as described at 

, is available under a CreativeGenome ResearchThis article, published in 

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

 https://genome.cshlp.org/subscriptions
go to: Genome Research To subscribe to 

© 2017 Jackman et al.; Published by Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/doi/10.1101/gr.214346.116
http://genome.cshlp.org/content/suppl/2017/04/05/gr.214346.116.DC1
http://genome.cshlp.org/content/27/5/768.full.html#ref-list-1
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.214346.116&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.214346.116.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=57163&adclick=true&url=https%3A%2F%2Fwww.usascientific.com%2Fgreen-initiatives
https://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

