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Abstract

Background: Tumor progression is accompanied by dramatic remodeling of the surrounding extracellular matrix

leading to the formation of a tumor-specific ECM, which is often more collagen-rich and of increased stiffness.

The altered ECM of the tumor supports cancer growth and metastasis, but it is unknown if this effect involves

modulation of T cell activity. To investigate if a high-density tumor-specific ECM could influence the ability of T cells

to kill cancer cells, we here studied how T cells respond to 3D culture in different collagen densities.

Methods: T cells cultured in 3D conditions surrounded by a high or low collagen density were imaged using

confocal fluorescent microscopy. The effects of the different collagen densities on T cell proliferation, survival, and

differentiation were examined using flow cytometry. Cancer cell proliferation in similar 3D conditions was also

measured. Triple-negative breast cancer specimens were analyzed for the number of infiltrating CD8+ T cells and

for the collagen density. Whole-transcriptome analyses were applied to investigate in detail the effects of collagen

density on T cells. Computational analyses were used to identify transcription factors involved in the collagen

density-induced gene regulation. Observed changes were confirmed by qRT-PCR analysis.

Results: T cell proliferation was significantly reduced in a high-density matrix compared to a low-density matrix

and prolonged culture in a high-density matrix led to a higher ratio of CD4+ to CD8+ T cells. The proliferation of

cancer cells was unaffected by the surrounding collagen-density. Consistently, we observed a reduction in the

number of infiltrating CD8+ T-cells in mammary tumors with high collagen-density indicating that collagen-density

has a role in regulating T cell abundance in human breast cancer.

Whole-transcriptome analysis of 3D-cultured T cells revealed that a high-density matrix induces downregulation of

cytotoxic activity markers and upregulation of regulatory T cell markers. These transcriptional changes were

predicted to involve autocrine TGF-β signaling and they were accompanied by an impaired ability of tumor-

infiltrating T cells to kill autologous cancer cells.

Conclusions: Our study identifies a new immune modulatory mechanism, which could be essential for suppression

of T cell activity in the tumor microenvironment.
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Background
Solid tumors consist of cancer cells interacting with the

tumor microenvironment, which includes stromal cells,

immune cells, and the extracellular matrix. Infiltration

of tumors by lymphocytes, and in particular CD8+ cyto-

toxic T cells, is known to predict good prognosis in

many types of cancer [1]. T cell infiltration into solid

tumors is also associated with increased clinical efficacy

of immunotherapies [2]. The beneficial effect of a high

abundance of tumor-infiltrating T cells reflects the abil-

ity of the immune cells to mount a response against

cancer cells [3]. As an important way for the cancer cells

to evade immune destruction, tumors can develop a

strongly immunosuppressive tumor microenvironment

[4–6]. This includes the accumulation of cell types with

immunosuppressive activity, such as tumor-associated

macrophages (TAMs), myeloid-derived suppressor cells

(MDSCs), and regulatory T cells (Tregs) [4]. Upregula-

tion of PD-L1 by cells in the tumor microenvironment

constitutes an important and well-studied immune es-

cape mechanism in which the interaction with its recep-

tor PD-1 on T cells lead to inactivation of the T cells [7].

Antibody-mediated blockade of the PD1-PD-L1 inter-

action has demonstrated remarkable clinical efficacy for

many cancer patients and stimulated the research aiming

at identifying additional targetable immunosuppressive

mechanisms in the tumor microenvironment [7].

In addition to non-malignant stromal cells and im-

mune cells, the tumor microenvironment consists of the

extracellular matrix (ECM). Degradation of the ECM

surrounding a tumor is an essential part of invasive

cancer growth and a main reason for the destruction of

the normal tissue [8–10]. Of central importance, the

degradation of the ECM is accompanied by the depos-

ition of a different tumor-specific ECM [11]. This new

ECM is often of increased density and stiffness, and

contains components that are not typically present in

the original ECM [12, 13]. Within the last decade, a

number of important discoveries have emphasized how

the ECM can affect cancer biology [14, 15]. A strong

correlation between the density of collagen type I, which

is the most abundant component of the tumor ECM,

and poor prognosis of breast cancer, gastric cancer and

oral cancer has been demonstrated [16–18], and in vitro

studies have shown that a high-density and stiff ECM

can induce a process in epithelial cells resembling malig-

nant transformation [19–21]. Other cell types such as

fibroblasts and mesenchymal stem cells have also been

demonstrated to respond to the mechanical properties

of the surrounding ECM by a process termed cellular

mechanosensing [22, 23]. Through the effects on cancer

cells and stromal cells, the ECM can augment many of

the hallmarks of cancer, such as the induction of angio-

genesis [24] and the activation of invasion and metastasis

[15, 25]. It remains quite speculative if the ECM can also

modulate the immunosuppressive tumor microenviron-

ment and thereby support the cancer’s evasion of immune

destruction [15, 26]. It should, however, be noted that the

presentation of antigens linked to a stiff surface has been

demonstrated to impair TCR-mediated T cell activation,

suggesting that T cells possess mechanosensing abilities

[27] and others have confirmed that the TCR is affected

by mechanical force [28]. Furthermore, tumor-associated

remodeling of the ECM, can lead to the deposition of

ECM components such as osteopontin, SPARC, versican,

and tenascin C, which have been suggested to possess

immunosuppressive properties [29–31].

Although cell culture in 3D environments is widely

used in the field of cancer biology [32], 3D culture of T

cells is less common and has mainly been used for the

study of cell migration [33, 34]. The interaction between

collagen and tumor-infiltrating T cells was, however,

studied by Salmon et al. through the use of elegant ex

vivo culture of lung tumor slices combined with

real-time imaging [35]. Here, collagen fibers were sug-

gested to prevent the migration of T cells from the stro-

mal compartment into the tumor islets. Collagen-density

mediated inhibition of directional T cell migration has

also been suggested as the reason for intratumoral T cell

exclusion in pancreatic cancers [36]. It was not ad-

dressed in these studies if the collagen also influences

the activity of the T cells. In this study, we employed 3D

culture assays to investigate if the collagen-density can

directly impact the activity of T cells.

Materials and methods

T cell isolation and culture

Human peripheral blood mononuclear cells (PBMCs)

were isolated from healthy donors by gradient centrifu-

gation using Lymphoprep (Alere AS) separation and

frozen in fetal calf serum (Sigma Aldrich) with 10%

DMSO (Sigma Aldrich). For RNAseq experiments, the

PBMCs were enriched for T cells by allowing the cells to

adhere overnight and collecting only the non-adherent

and loosely adherent cells. For confocal microscopy, T

cells were isolated from healthy donors at the Combined

Technical Research Core facilities at the National Insti-

tute of Dental and Craniofacial Research (NIDCR), NIH

using elutriation. For all other experiments, T cells were

isolated from PBMCs using magnetic anti-CD3 microbe-

ads (Miltenyi Biotec) according to the manufacturer’s

instruction. Cells were cultured at 37 °C in a humidified

5% CO2 environment in X-vivo media (Sartorius) with

5% human serum (Sigma Aldrich).

3D culture in collagen gels

Type I collagen gels were prepared using a modified

protocol from Artym and Matsumoto [37]. Briefly, cells
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were resuspended in a mix of rat tail collagen type I

(Corning), 0.02 N acetic acid, 10x DMEM with Phenol

Red (Sigma Aldrich) and 10x reconstitution buffer

(0 .2M Hepes (Gibco) and 0.2 62M NaHCO3). To

neutralize the pH, 2 N NaOH was added to the reconsti-

tution buffer before use. For all cell lines, low density

(LD) and high density (HD) gels contained 1 mg/ml and

4mg/ml collagen type I respectively. First, 300 to 400 μl

of the collagen solution was plated per well of a

non-tissue culture treated 24-wells plate (Corning) and

allowed to polymerize at 37 °C for at least 30 min. After-

wards a second layer of collagen solution containing the

cells was seeded on top of the first gel and allowed to

polymerize for 1–2 h at 37 °C, after which 600 μl of

culture media was added. For culturing cells in 2D

conditions, the same number of cells were seeded in the

wells of a tissue culture treated 24-well plate.

T cell proliferation assay

T cells from healthy donors were transiently stimulated

with 10 nM PMA (Sigma Aldrich) and 175 nM ionomy-

cin (Sigma Aldrich) and labelled with CellTrace Violet

dye (Thermo Fisher Scientific). 8 × 105 T cells were

seeded in each well within LD or HD collagen gels or on

tissue culture plastic. After 5 days of culture in 3D colla-

gen gels or on plastic (2D), cells were treated with 3 mg/

ml collagenase (Worthington) solution for 45–60min at

37 °C to extract the cells from the gels, washed once

with media and once with DPBS and resuspended in

FACS buffer containing the following: Live/Dead Fixable

Near-IR Dead cell stain (Thermo Fisher Scientific),

anti-CD3-APC (cl. SK7), anti-CD4-PE (cl. SK3), and

anti-CD8-FITC (cl. HIT8a) (all BD Biosciences). Cells

were incubated with the antibodies in the dark at 4 °C

for 30 min, washed twice with FACS buffer, resuspended

in FACS buffer and acquired using a BD FACSCanto II

flow cytometer (BD Biosciences). Analysis was per-

formed with FlowJo V10 software. Experiments were

repeated three times using T cells isolated from different

donors.

T cell proliferation was also measured using the APC

BrdU Flow Kit (BD Biosciences) according to the manu-

facturer’s instructions. Briefly, 8 × 105 T cells were

seeded in each well within LD or HD collagen gels or on

tissue culture plastic for 3 days. For labelling, BrdU was

added to the medium of each well (final concentration

10 μM) and cells were incubated for 90 min at 37 °C in

5% CO2. Afterwards, media of the wells with collagen gels

was aspirated and replaced with 3mg/ml collagenase

solution (Worthington). Collagenase was also added to

the media of 2D cultured cells in concentration similar to

which cells in 3D gels were exposed. After complete

digestion of the collagen gels, cells were collected and

washed once with DPBS (Lonza) and stained with Live/

Dead Fixable Near-IR Dead cell stain (Thermo Fisher

Scientific), anti-CD3-FITC (cl- UCHT1), anti-CD4-PE (cl.

SK3), and anti-CD8-BV421 (cl. RPA-T8) (all BD Biosci-

ences). Next, cells were fixed, permeabilized, and stained

with APC anti-BrdU antibody according to the manufac-

turer’s instructions. Cells were resuspended in FACS

buffer and acquired using a BD FACSCanto II or LSR II

flow cytometer (BD Biosciences). Analysis was performed

with FlowJo V10 software.

Cancer cell proliferation assay

Cell proliferation was determined using the APC BrdU

Flow Kit (BD Biosciences). 50.000 cells were cultured in

the different 3D or 2D culture conditions for 5 days. For

labelling, BrdU was added to the medium of each well

(final concentration 10 μM) and cells were incubated for

45 min at 37 °C in 5% CO2. After digestion of collagen

gels and washing, cells were stained with Zombie Aqua

Fixable Viability Dye (BioLegend) to determine cell

viability and analyzed for the fraction of BrdU positive

cells as described above.

RNA extraction, cDNA synthesis and quantitative real-

time-PCR

For RNA isolation, 8 × 105 PBMCs enriched for T cells,

purified T cells (isolated with anti-CD3 microbeads,

Miltenyi Biotec), or purified CD8 positive cells (isolated

with CD8 MicroBeads, Miltenyi Biotec) were transiently

stimulated with PMA and ionomycin and seeded within

LD or HD collagen gels or on tissue culture plastic.

After 2 days, total RNA from cell cultures was purified

using RNeasy kit (Qiagen) according to the manufac-

turer’s instructions. Quality of samples was measured

using an Agilent 2100 BioAnalyzer (Agilent Genomics).

Afterwards 500 ng – 1 μg RNA per sample was reverse

transcribed using iScript cDNA Synthesis Kit (Bio-Rad).

The synthesized cDNA was used as template in a

real-time quantitative PCR reaction using Brilliant III

Ultra-Fast SYBR Green (Agilent Technologies) according

to the manufacturer’s standard protocol. Equal amounts

of cDNA were applied in each reaction mixture. As a

control for the specificity of the quantitative real-time

PCR, a sample without template was included. The

real-time cycler conditions were as follows: initial activa-

tion step at 95 °C for 3 min, 40 cycles of denaturing at

95 °C for 5 s, and annealing/extension at 60 °C for 20 s,

followed by a melting curve analysis of 65–95 °C with

0 .5°C increment, 5 s per step.

All measurements were based on triplicates or quadru-

plicates of each cell culture condition measured in

duplicates and normalized to the internal control gene,

ACTB. Four independent experiments were performed.

The comparative cycle threshold (��CT) method was

used to calculate the relative fold changes.
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Primers were designed using the Primer-BLAST tool

(NCBI, NIH). All primers spanned exon-exon junction,

and maximum product length was 250 bp. Primer

efficiencies were measured for all primer sets and found

to be between 85 and 103%. Primers are listed in

Additional file 1: Table S2.

T cell cultures from three different healthy donors

were established and transduced with high affinity

MAGE-A3a3a, MAGE-A3a3c, or MART-1 TCR, respect-

ively, as previously described [38]. For MART-1 TCR

transduction, the TCR³ and ³ sequences of the

HLA-A2-restricted MART-1-specific (MART_27–36:

ELAGIGILTV) A42 T cell clone were used [39].

1 × 106 TCR transduced T cells were embedded in

collagen of high (4 mg/ml) or low (1 mg/ml) density

together with 1 × 105 FM82 melanoma cells [38] and

cultured for 2 days, after which total RNA was purified.

Extensive T cell-mediated melanoma cytotoxicity during

the co-culture period resulted in the presence of even

fewer melanoma cells as compared to the starting point.

RNAseq

The quantity and purity of isolated RNA were assessed

using an Agilent 2100 BioAnalyzer (Agilent Genomics).

Total RNA (500 ng) was prepared for sequencing using

polydT-mediated cDNA synthesis in accordance with

the manufacturer’s (Illumina) instructions. Libraries were

made with a NEBNext RNA Library Preparation Kit for

Illumina. Library quality was assessed using Fragment

Analyzer (AATI), followed by library quantification

(Illumina Library Quantification Kit). Sequencing was

done on a HiSeq1500 platform (Illumina) with a read

length of 50 bp. Sequenced reads were aligned to the hu-

man genome assembly hg19 using STAR [40]. Uniquely

aligned reads were quantified at exons of annotated

genes and normalized to sequence depth and gene

length using HOMER [41]. Sequencing depth and

alignment information is in Additional file 1: Table S3.

The number of reads per kilobase per million mapped

(RPKM) for all RefSeq annotated genes can be found in

Additional file 2: Table S1. The analysis of differential

expression was performed using DESeq2 package in R

[42]. Principal component analysis was performed using

R (prcomp package). Heatmaps were generated from

z-score normalized RPKM values using R (pheatmap

package) on selected sets of genes. MA and Volcano

plots were generated using R.

Cytotoxicity assay

A 51Cr-release assay for T cell-mediated cytotoxicity was

used to assess the cytotoxicity of tumor infiltrating T

cells after 3D culture in collagen matrices of high or low

density. Autologous melanoma cells MM33 were used as

target cells [43]. Effector cells (T cells) were pre-cultured

on plastic or in 3D collagen cultures for 3 days, after

which cells were treated with 3 mg/ml collagenase

solution for 45–60min to extract them from the gels,

and washed twice with media. Typically, 5 × 105 target

cells in 150 μl RPMI were labelled with 20 μl 51Cr (Per-

kin Elmer) in a 15ml falcon tube at 37 °C for 1 h. After

washing, 5 × 103 target cells per well were plated out in

a 96-well plate (Corning) and T cells were added at

various effector to target cell (E:T) ratios. Cells were

incubated at 37 °C for 4 h. Next, the level of 51Cr in the

supernatant was measured using a Wallac Wizard 1470

automatic ³ counter (Perkin Elmer). The maximum 51Cr

release was determined by addition of 100 μl 10% Triton

X-100, and minimum release was determined by

addition of 100 μl of RPMI to target cells. Specific lysis

was calculated using the following formula: ((cpm sample

– cpm minimum release)/(cpm maximum release – cpm minimum

release)) × 100%.

Statistical analysis

All individual experiments were performed at least three

times with at least three replicates per condition and

results are presented as mean ± standard error of the

mean (SEM) unless otherwise specified. For two-group

comparisons between cells from the same donors, paired

two-tailed Student’s t-tests were performed. For

multi-group comparisons, one-way analysis of variance

(ANOVA) was used followed by paired two-tailed

Student’s t-tests. All statistical analyses were performed

using GraphPad Prism. A p-value < 0.05 was considered

statistically significant. Correlation between PSR-positive

area and CD8+ cell abundance was analyzed by Pearson

correlation.

Correlation of expression levels of collagen and T cell

activation markers in oral cancer

To study the correlation between collagen type I

(COL1A1) levels and the expression level of 7 markers of

T cell activation, we used an already published

single-cell RNA sequencing dataset available in the

Gene Expression Omnibus (GSE103322). In the study

by Puram et al. [44], head and neck tumors from 18

patients and 5 matching lymph nodes were disaggregated,

sorted into single cells and profiled using Smart-seq2.

Here, we used the already processed data discarding

lymph node samples (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE103322), which contain expression

levels of 23,686 genes in 4541 single-cells (including fibro-

blasts, B cells, T cells, dendritic cells, endothelial cells,

macrophages, mast cells, myocytes, and cancer and

non-cancer cells). To investigate correlation between col-

lagen and T cell activation markers, we first calculated

average expression levels of COL1A1 across all cell types

and expression of each T cell marker across T cells for
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each patient. Then, we calculated pairwise Pearson correl-

ation between average expression levels of COL1A1 and

each T cell activation marker. All data processing and cor-

relation analysis were performed using Pythons SciPy and

Pandas [45].

Additional materials and methods

Detailed information about cancer cell culture, confocal

microscopy, flow cytometry analysis of T cell subsets, hist-

ology, and ELISA can be found in the Additional file 3.

Results

3D culture of T cells in different collagen densities

impairs proliferation without compromising viability

To investigate if 3D culture in collagen matrices of

different collagen concentrations affected the viability of

T cells, we isolated T cells from healthy donors and tran-

siently stimulated the cells with PMA and ionomycin.

This type of stimulation bypasses T cell receptor activa-

tion but acts on several of the same downstream signal-

ing pathways including Protein Kinase C [46]. The T

cells were embedded in collagen matrices of high (4 mg/

ml) or low (1 mg/ml) collagen concentration, or seeded

on regular tissue culture plastic (2D culture) and cul-

tured for 5 days. The selected collagen concentration of

1 mg/ml is representative of healthy normal tissue such

as lung or mammary gland whereas 4 mg/ml collagen

gels mimic the tissue stiffening occurring in solid tumors

[19, 47]. To completely avoid cellular contact with the

plastic surface of the wells, the 3D culture was

established on top of a pre-generated collagen matrix

without cells (Fig. 1a). To evaluate if viability of the T

cells was affected by the different culture conditions,

cells were extracted from the collagen matrices by a brief

collagenase-treatment, stained with a live/dead cell

marker and analyzed by flow cytometry (Fig. 1b). A high

viability of more than 95% was observed in both 2D cul-

ture and in 3D culture in different collagen densities. To

visualize the 3D culture of T cells in collagen matrices of

different collagen concentrations, purified T cells were

embedded in collagen matrices and imaged by confocal

fluorescent microscopy (Fig. 1c-e). As expected, 3D

cultured T cells were completely surrounded by collagen

(Fig. 1c). The structure and density of collagen fibers

were clearly different in the matrices of different colla-

gen concentrations but no apparent morphological

changes were observed between T cells in 3D culture of

high or low collagen density (Fig. 1d-e). To examine if T

cell proliferation was affected by collagen density, T cells

were transiently PMA/ionomycin stimulated, CellTrace

Violet (CTV) labeled, and embedded in a high- or

low-density collagen matrix or cultured on regular tissue

culture plastic. Flow cytometry-based analysis of CTV

dilution in CD3+ cells showed a clear reduction in

proliferation when cells were cultured in 3D compared

to 2D. Interestingly, we also observed a smaller but still

significant reduction in proliferation when T cells

were cultured in a high-density collagen matrix com-

pared to a low-density collagen matrix (Fig. 1f-g).

This result was confirmed using a BrdU-based prolif-

eration assay (Fig. 1h). In consistence with other re-

ports [21, 48] we did not observe that proliferation of

cancer cell lines was similarly impaired in a high-density

collagen matrix (Fig. 1i).

The effects were similar for CD4+ and CD8+ T cells

(Additional file 1: Figure S1) and consistently the differ-

ent culture conditions did not change the ratio of CD4+

cells to CD8+ cells after 2 days in culture (Fig. 1j). How-

ever, after prolonged 3D culture of T cells for 5 days, the

ratio of CD4+ cells to CD8+ cells was higher in a

high-density matrix compared to a low-density matrix

(Fig. 1k), indicating that proliferation and/or survival is

slightly more impaired for CD8+ cells than for CD4+

cells in a high-density collagen matrix. Analysis of the

distribution of the different T cell differentiation subsets

after 5 days of 3D culture in a high- or low-density

collagen matrix or regular 2D culture (Additional file 1:

Figure S2) suggested an increase in effector memory T

cells and a decrease in central memory T cells after 3D

culture in a high-density collagen matrix compared to a

low-density collagen matrix.

To study if the reduced T cell proliferation in a

high-density collagen matrix could be reflected in the

differential abundance of tumor-infiltrating T cells in

breast tumors, we examined 20 samples of resected

triple-negative breast cancers, which were all of histo-

logical grade 3 and had a diameter between 10 and 20

mm. The samples were immunostained for CD8 and

picrosirius red-stained for fibrillar collagen (Fig. 2a-d).

Consistent with our 3D culture data, samples that

contained a high collagen density often had fewer infil-

trating CD8+ T cells, although this negative correlation

failed to reach statistically significance with this lim-

ited material (Fig. 2e). Analysis of the number of CD8

+ cells located in intratumoral regions of either high

or low collagen density within each tumor sample

(Additional file 1: Figure S3) also revealed a tendency

of fewer CD8+ T cells in regions of high collagen

density (Fig. 2f ).

The gene expression profile of T cells is regulated by

surrounding extracellular matrix

To further elucidate the response of T cells to 3D

culture in different collagen densities, T cells were 3D

cultured for 2 days in low- or high-density collagen

matrices or cultured on regular tissue culture plastic and

subjected to RNA sequencing. A principal component

analysis shows that the gene expression profile of cells
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Fig. 1 3D culture in high collagen density impairs T cell proliferation. a Schematic model of the 3D culture system. b T cells were cultured for 5

days in the indicated conditions, and subsequently viability was analyzed by flow cytometry. Each dot in the graph represents an individual

donor. Error bars indicate standard error of the mean (SEM). c-e T cells cultured in a collagen matrix of low density (1 mg/ml, c-d) or high density

(4 mg/ml, E) including fluorescently labeled collagen were imaged by confocal microscopy. c 3D projection of collagen matrix with embedded

T cells. d-e Representative images of individual T cells within a low- density collagen matrix (d) or high-density collagen matrix (e). Size bars:

(c-e) 10 ¿m. f-g T cell proliferation after 5 days in culture was measured by flow cytometry-based analysis of CellTrace Violet (CTV) dilution.

f Representative histogram showing CTV dilution in T cells cultured in 2D or in 3D in a low-density collagen matrix or high-density collagen

matrix. g Quantification of T cell proliferation based on CTV dilution. Three individual donors were analyzed. Connecting lines indicate

measurements of the same donor. h T cells were cultured in collagen gels of high and low density and their proliferation was measured using

a BrdU-based flow cytometry assay. The percentage of CD3-positive BrdU-positive cells is shown. i The breast cancer cell lines EO771.LMB,

MDA-MB-231, and 4 T1 were cultured in collagen matrices of low or high density for 5 days and analyzed using a BrdU-based flow cytometry

assay. The percentage of BrdU-positive cells is depicted. j-k The ratio of CD4+ to CD8+ cells was analyzed by flow cytometry after culture for 2

days (i) or 5 days (j). g-k Error bars indicate standard deviations of technical replicates
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cultured in 3D (low and high density) separate very

clearly from the 2D cultured cells (cultured on plastic)

and additionally that cells cultured in a high-density

collagen matrix cluster separately from cells cultured in

a low-density collagen matrix (Fig. 3a). The full gene

expression dataset is in Additional file 2: Table S1. The

clear difference between 2D and 3D culture was reflected

in 683 differentially regulated genes (FDR < 0.01 and fold

change > 1.5) for cells cultured in a low-density collagen

matrix compared to regular 2D culture on tissue culture

plastic (Fig. 3b and Additional file 1: Figure S4A) and

1928 differentially regulated genes (FDR < 0.01 and fold

change > 1.5) between culture in high-density collagen

compared to regular 2D culture (Additional file 1: Figure

S4B-C). In consistence with the reduced proliferation

(Fig. 1f-h), downregulated genes were involved in cell

cycle processes (Fig. 3c and Additional file 1: Figure S4E).

To investigate if T cell activity was affected by 3D culture,

we examined the expression levels of a panel of T cell

activity markers (Fig. 3d), regulatory T cell (Treg) markers

(Fig. 3e), and exhaustion markers (Fig. 3f). The heatmaps

did not show any clear 3D culture-induced changes in T

cell activity although some of the genes were indeed

significantly regulated, suggesting that 3D culture could

influence T cell biology. To identify putative transcription

factors (TFs) and TF families that may be responsible for

the differential gene expression observed after 3D culture

of T cells, we used the computational method ISMARA

(Integrated Motif Activity Response Analysis, https://

ismara.unibas.ch/mara/) to model transcription factor ac-

tivity [49]. Among the top-ranked identified downregu-

lated TF motifs, several known pro-proliferative factors

such as Myb and members of the E2F family were

included [50, 51] (Additional file 1: Figure S5). This is

consistent with the gene ontology analysis (Fig. 3c) and

the observed reduction in cellular proliferation after 3D

culture of T cells (Fig. 1f-h).

T cells cultured in a high-density collagen matrix

downregulate markers of cytotoxic activity

To investigate the gene regulation specifically induced

by collagen density, we compared T cells cultured in

high- vs. low-density collagen matrices and found that 351

genes were differentially expressed (FDR < 0.01 and fold

change > 1.5) (Fig. 4a and Additional file 1: Figure S4D).

In alignment with the observed collagen density-induced

reduction in proliferation (Fig. 1f-h), downregulated genes

were involved in cell cycle processes (Fig. 4b). Upregulated

A B E

C D F

Fig. 2 Breast cancer samples of high collagen density have fewer infiltrating T cells. a-d Histological sections of triple-negative breast cancers

were picrosirius red (PSR)-stained for visualization of fibrillar collagen (a and c, red color) or immunostained for CD8 for visualization of cytotoxic

T cells (B and D, brown color). a-b Example of a specimen containing low levels of collagen (a) and high abundance of tumor-infiltrating T cells

(b). c-d Example of a specimen containing high levels of collagen (c) and low abundance of tumor-infiltrating T cells (d). Size bar: (a and c) 1 mm;

(b and d) 100 ¿m. e Using Visiopharm-assisted automated image analysis, 20 triple-negative breast cancer sections were analyzed for the

PSR-positive area and the number of tumor-infiltrating CD8+ T cells. Each dot in the graph represents an individual cancer sample. Pearson

correlation r = 0.37, P = 0.11. f Areas of high and low collagen density were defined and the number of CD8+ T cells in these areas was assessed
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genes were involved in processes such as chemotaxis and

cell migration (Fig. 4b). Of the 10 most significantly up-

and down-regulated genes (Table 1), several have been

suggested to impact T cell activity. CD101, which is upreg-

ulated in a high-density matrix, has been suggested to be

involved in the negative regulation of T cell activity [52]

and the expression levels on Tregs correlate with their

immunosuppressive potency [53]. CIP2A, which is down-

regulated in a high-density matrix, has been suggested to

promote T cell activation [54].

To investigate the potential regulation of T cell activity

by collagen density, we visualized the regulation of a

panel of cytotoxic activity markers, exhaustion markers,

and markers of Tregs (Fig. 4c-e). Transcripts encoding

six out of seven T cell activity markers were significantly

downregulated by culture in high-density collagen

compared to low-density collagen (Fig. 4c). Only TNF

did not follow the same trend and was instead signifi-

cantly upregulated. At the same time Treg markers were

slightly upregulated (Fig. 4d). The markers of T cell

A

C D

E

F

B

Fig. 3 Distinct transcriptomic signatures in 2D culture and in 3D culture in different collagen densities. a Principal component analysis of each

RNAseq replicate of T cells cultured on plastic (2D) or in 1 mg/ml (low density) or 4 mg/ml (high density) collagen matrices for 2 days. b MA plot

illustrating the differentially regulated genes (FDR < 0.01 and fold change > +/− 1.5) between cells cultured in a low-density collagen matrix or in

regular 2D culture. Genes that are upregulated in low-density collagen compared to 2D are shown in red and downregulated genes are shown

in blue. c Gene ontology analysis illustrates biological processes most significantly enriched within genes that are upregulated (left panel, red

bars) or downregulated (right panel, blue bars) in low density collagen compared to 2D. d-f Heatmaps of normalized (Z-score) RNAseq read

counts of genes encoding markers of T cell activity (d), Tregs (e), or T cell exhaustion (f). d-f Asterisks indicate significantly regulated genes
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exhaustion were not systematically regulated by colla-

gen density (Fig. 4e). To identify potential transcrip-

tional regulators of these effects, we again used

ISMARA to model TF activity. Among the top-ranked

downregulated TF motifs, we identified several E2F

motifs (Fig. 4f ), which is consistent with the observed

changes in cell proliferation. Among the top-ranked up-

regulated TF motifs, we identified SMAD4 and FOXO1

motifs (Fig. 4f), which are important mediators of TGF-³

induced Treg differentiation [55, 56]. In addition,

upregulated motifs include PML and FOXM1, which

have been suggested to be important for sustaining

TGF-³ signaling [57, 58].

Altogether, the striking gene expression differences

induced by culture in high-density collagen compared to

low-density collagen suggests that the T cells acquire a

less cytotoxic and more regulatory phenotype.

All of the RNA sequencing experiments were performed

using PBMCs isolated from a single healthy donor. To

examine if the collagen-density induced gene regulations

were donor-specific or reflected a general regulatory

mechanism, we examined if similar gene-regulation was

A

C F

D

E

B

Fig. 4 A high-density matrix induces a transcriptomic program indicative of reduced proliferation and cytotoxic activity. a MA plot illustrating the

differentially regulated genes (FDR < 0.01 and fold change > +/− 1.5) between cells cultured in a high-density collagen matrix or a low-density

collagen matrix for 2 days. Genes that are upregulated in high-density collagen compared to low-density are shown in red and downregulated

genes are shown in blue. b Gene ontology analysis illustrates biological processes most significantly enriched within genes that are upregulated

(left panel, red bars) or downregulated (right panel, blue bars) in high density compared to low density. c-e Heatmaps of normalized (Z-score)

RNAseq read counts of genes encoding markers of T cell activity (c), Tregs (d), or T cell exhaustion (e). d-e Asterisks indicate significantly

regulated genes. f Heatmap of most significantly up- or downregulated TF motifs in high-density vs. low-density collagen
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observed in cells isolated from four additional healthy

donors. A panel of six transcripts, which were significantly

regulated by collagen-density in the RNA sequencing ex-

periments (two upregulated and four downregulated),

were analyzed by qRT-PCR and compared to the RNA

sequencing data (Fig. 5a-b). The gene-regulations followed

the same pattern as observed in the RNA sequencing

experiments, with four of the six genes showing a statisti-

cally significant regulation. This experiment as well as the

RNA sequencing was performed with PBMCs enriched

for T cells by excluding the strongly adherent fraction of

the PBMCs, and consequently approximately 70% of the

cells were T cells (data not shown). To investigate if the

remaining 30% cells, which include myeloid cells, could be

critical for mediating this effect of collagen-density we

purified T cells from PBMCs from four healthy donors

using magnetic anti-CD3 microbeads, resulting in a T cell

purity of more than 96% (data not shown). The purified T

cells were again transiently PMA/ionomycin-stimulated

and cultured in high-density collagen or low-density

collagen. Analysis by qRT-PCR of the six-gene panel

showed a similar pattern of gene-regulations, indicating

that T cells are directly affected by the surrounding colla-

gen density (Fig. 5c). The only gene that did not follow the

same pattern in the purified T cell was TNFRSF9, poten-

tially indicating the myeloid cells were involved in mediat-

ing the previously observed upregulation of TNFRSF9.

Analysis of purified CD8+ T cells after culture in collagen

of high or low density showed that cytotoxic CD8-positive

T cells responded to the surrounding collagen matrix in a

comparable manner as observed for total CD3+ T cells

(Fig. 5d). To investigate if TCR-stimulated T cells

responded similarly to the surrounding collagen density,

we co-cultured MAGE-A3 or MART-1 TCR-transduced

T cells together with the melanoma cell line FM82 [38]

within collagen matrices (Fig. 5e). Analysis of the

same six-gene panel showed a similar response as ob-

served for the purified T cells stimulated with PMA/

ionomycin (Fig. 5c-d).

Collagen density modulates the tumoricidal activity of

tumor-infiltrating T cells

To investigate if the collagen density-induced transcrip-

tional regulation of T cells was also reflected in an altered

cytotoxic activity, we used a matched set of cultured T

cells and melanoma cells isolated from the same tumor

fragment. The T cell culture from this patient (MM33) has

previously been shown to contain tumor-reactive T cells

and to have the ability to lyze autologous melanoma cells

[43]. The MM33 T cells were transiently PMA/ionomy-

cin-stimulated and 3D cultured for 2 days in a low-density

collagen matrix or a high-density collagen matrix or on

regular tissue culture plastic. Subsequently, the cells were

extracted from the matrices and assayed for their ability to

lyze melanoma cells in a standard four-hour Cr-51 release

assay (Fig. 6a). The incubation of melanoma cells with in-

creasing numbers of T cells led to increased cell lysis, but

the cytotoxic activity of the T cells was impaired after 3D

culture compared to 2D culture. Strikingly, cytotoxicity

was particularly low for T cells cultured in high-density

collagen matrix (Fig. 6a-b). The collagen density-induced

regulation of T cell cytotoxicity was also reflected in a

reduced level of secreted IFN-³ for the MM33 T cells

cultured in a high-density collagen matrix (Fig. 6c). In

these experiments, stimulation with PMA/ionomycin led

to noticeable cell death for a large fraction of the cells,

which is probably due to the preceding expansion of the

cells in high-dose IL-2 containing media. Therefore, we

also 3D cultured the T cell for 2 days without any stimula-

tion followed by extraction of cells for cytotoxicity

measurements (Fig. 6d). In this situation we also observed

a reduced cytotoxic activity of the T cells cultured in a

high-density collagen matrix compared to the T cells

cultured in a low-density collagen matrix (Fig. 6d-e). The

reduced cytotoxicity was again accompanied by reduced

secretion of IFN-³, although it should be noted that IFN-³

levels were much lower than for the PMA/ionomycin

treated T cells (Fig. 6f).

Table 1 Top up- or downregulated genes in high-density vs.

low-density collagen

Gene name Fold change FDR

Upregulated genes

PMEPA1 4.07834 1.41531E-61

COL6A3 3.68014 3.12178E-51

CD101 3.95483 1.25389E-41

SPON1 2.62745 8.14423E-38

BMF 1.79401 2.27592E-33

LDLRAD4 1.84521 4.21774E-25

KLF7 2.22110 6.98652E-25

DIXDC1 3.00926 5.88243E-24

SRGAP3 3.09677 1.52178E-23

IL2RB 1.55381 4.34924E-23

Downregulated genes

ESPL1 −2.23355 2.11961E-28

TOP2A −1.77958 1.68833E-20

KIF11 −1.85991 2.13272E-18

CSF2 −5.01719 5.95403E-18

KNL1 −2.36757 3.00598E-17

CENPE −2.49309 3.37425E-17

IL2RA −1.72578 7.80826E-17

CIP2A −2.08149 2.08037E-15

IL12RB2 −1.68486 2.31599E-15

NCAPG −1.97323 3.16306E-15
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Taken together, our study reveals a novel immunosup-

pressive mechanism, which could be important for can-

cer progression and for cancer immunotherapy efficacy.

Discussion
Collagen density within tumors and their T cell infiltra-

tion comprise strong prognostic indicators of poor and

good prognosis, respectively. It has, however, not been

investigated if these two parameters are independent or

if they are interrelated. In this study, we used 3D culture

to address whether T cells respond to the surrounding

collagen matrix and if the collagen-density alters their

activity.

A first important observation made was that T cells in-

deed respond to their extracellular matrix environment.

This was reflected in a dramatically altered transcrip-

tional profile and reduced proliferation for 3D cultured

cells compared to regular 2D culture on tissue culture

plastic. Gene ontology analysis to identify biological

process categories that were statistically enriched con-

firmed that cell proliferation was significantly affected in

3D. This suggests that 3D culture models, which more

(See figure on previous page.)

Fig. 5 T cells from different donors respond similarly to the surrounding collagen density. a Bar graph of normalized (Z-score) RNAseq read

counts of a selected panel of differentially regulated genes. b-e Bar graphs of qRT-PCR analyses of the same panel of genes as in (a) in 3–4

different donors. Cultured cells were either PBMCs enriched for T cells (b), purified T cells (c), purified CD8+ cells (d) or TCR transduced T cells

(e) cultured for 2 days in a high-density collagen matrix or a low-density collagen matrix. f Table of correlation analyses between COL1A1 gene

and the same panel of genes as in (a) from a single-cell RNA sequencing dataset available in the Gene Expression Omnibus (GSE103322)

(a-f) Asterisks indicate significantly regulated genes

A B C

D E F

Fig. 6 Tumor-infiltrating T cells display reduced cytotoxicity after culture in a high-density collagen matrix. Tumor-infiltrating T cells from

melanoma MM33 were cultured for 3 days on plastic (2D) or in collagen matrices of high- or low density, after which the cells were assayed for

their ability to lyze autologous MM3 melanoma cells using a 51Cr-release assay. T cells were transiently PMA/ionomycin stimulated before the

culture period (a-c) or cultured without any stimulus (d-f). (a and d) Representative example of MM33 melanoma cell lysis after 4 h incubation

with different numbers of T cells, which had been transiently PMA/ionomycin stimulated (a) or directly embedded in collagen (d) and pre-

cultured as indicated. b Percentage of melanoma cell lysis at the highest T cell: melanoma cell ratio in 3 different experiments. The T cells had

been transiently PMA/ionomycin stimulated and cultured for 3 days in a low-density or high-density collagen matrix before extraction and

incubation with 51Cr-labeled MM33 melanoma cells. c and f IFN³ levels in conditioned media of MM33 T cells, which had been transiently

PMA/ionomycin stimulated (c) or directly embedded in collagen (f) and cultured for 3 days in a low-density or high-density collagen matrix.

e Percentage of melanoma cell lysis at the highest T cell: melanoma cell ratio in 5 different experiments. The T cells had been cultured for 3 days

in a low-density or high-density collagen matrix before extraction and incubation with 51Cr-labeled MM33 melanoma cells
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accurately mimic tissue environments, could be highly

relevant for studies of T cell biology. Although 3D

culture of T cells, compared to regular 2D culture, led to

a substantial change in the transcriptional profile, in-

spection of genes encoding markers of activation, Tregs,

or exhaustion did not reveal any obvious pattern in the

effects on T cell activity.

Another important observation in this study was that

T cells clearly respond to the density of the surrounding

collagen matrix. Culture of T cells within collagen-matri-

ces of either high or low density resulted in fewer differ-

entially regulated genes compared to the culture of T

cells in 2D vs. 3D but nevertheless resulted in striking

functional differences. A high collagen-density reduced

T cell proliferation and 5 days of culture in this matrix

favored CD4+ T cells over CD8+ T cells. A similar

reduction in cell proliferation was not observed for three

different breast cancer cell lines, suggesting that within a

tumor of high collagen density, T cell proliferation (espe-

cially CD8+ T cell proliferation) is impaired whereas

cancer cells are unaffected. In line with these observa-

tions, we observed in a limited number of triple-negative

breast cancer samples, that collagen density seemed to

negatively impact CD8+ T cell abundance. The effect of

collagen density on T cell proliferation could constitute

a new immunosuppressive mechanism within the tumor

microenvironment and provide an explanation for the

correlation between collagen density in tumors and

cancer patient prognosis.

In alignment with the effect of the surrounding

collagen density on T cell proliferation, inspection of

differentially regulated genes confirmed that cell cycle

processes were affected. In addition, markers of cyto-

toxic T cell activity were clearly downregulated by a

high-density collagen matrix compared to a low-density

matrix whereas markers of Tregs were upregulated. This

striking observation suggests that collagen density, in

addition to reducing T cell proliferation, impairs cyto-

toxic activity. Analysis of putative transcription factor

motifs, which could mediate the observed transcriptional

changes, identify decreased activity of E2F motifs and in-

creased activity of transcription factor motifs down-

stream of TGF-³ signaling. These findings suggest that

E2F transcription factors could be involved in the colla-

gen density-induced inhibition of T cell proliferation and

that autocrine TGF-³ signaling could be centrally

engaged in the modulation of T cell activity.

Using a unique T cell culture and melanoma cell

culture established from the same resected melanoma,

we could also demonstrate that the tumor-infiltrating T

cells were indeed less efficient at killing the melanoma

cells after culture in a high-density collagen matrix

compared to a low-density collagen matrix. This obser-

vation suggests that the collagen-density of the tumor

microenvironment can support the cancer cells’ escape

from immune destruction by reducing T cell prolifera-

tion and by modulating the cytotoxic activity of

tumor-infiltrating T cells. This identified immunosup-

pressive mechanism could be of relevance during tumor

progression but also have importance for the efficacy of

cancer immunotherapy.

Although this is the first study to directly assess the

response of T cells to the surrounding collagen density,

the potential of collagen to modulate immune activity is

supported by a study of tissue regeneration, in which

collagen implantation in wounded muscles of mice was

shown to induce an immunosuppressive microenviron-

ment [59]. This effect involved M2-polarization of

macrophages, which led to Th2-polarization of T cells.

In our study we focused on the ability of the surround-

ing collagen to directly regulate T cell activity, but it is

possible that collagen-induced M2-polarization of mac-

rophages could further augment this modulation of T

cells.

In addition to the effects of collagen-density on T cell

activity observed in this study, others have suggested

that stromal collagen could limit the migration of T cells

into the tumor islets and thereby impede their contact

with cancer cells [35, 36]. The impaired T cell migration

into tumor islets was suggested to be caused by reduced

motility in collagen-dense region combined with in-

appropriate guidance of T cells by the collagen fibers

aligned in parallel to tumor islets. These studies further

underscore that collagen within the tumor microenvir-

onment could be an important regulator of anti-cancer

immunity.

Conclusion

By using 3D culture of T cells, we have identified col-

lagen density as a novel regulator of anti-cancer T

cell activity. This immunosuppressive mechanism

could be of central importance for the cancer cells’

evasion of immune-destruction and could constitute a

novel therapeutic target for enhancing immunother-

apy efficacy.

Additional files

Additional file 1: Figure S1. Proliferation of CDLA and CD8A T cells.

Figure S2. Fraction of T cell subsets after HD culture or %D culture in

different collagen densities. Figure S3. Analysis of CD8+ T cell abundance

in areas of high and low collagen density in 20 triple negative breast cancer

samples. Figure S4. RNAseq data. Figure S5. Regulated transcription factors

after 2D culture or 3D culture in low density collagen. Table S2. Sequences

of primers used for RT-qPCR. All primers were designed using the NCBI gene

database and the primer-BLAST tool. Table S3. RNA sequencing depth and

alignment info. (PDF 1041 kb)

Additional file 2: The number of reads per kilobase per million mapped

(RPKM) for all RefSeq annotated genes. (XLSX 5563 kb)
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