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Single-cell transcriptional diversity is a hallmark of developmental potential

Authors

Gunsagar S. Gulati"t, Shaheen S. Sikandar', Daniel J. Wesche', Anoop Manjunath’, Anjan
Bharadwaj', Mark J. Berger?, Francisco llagan’, Angera H. Kuo', Robert W. Hsieh', Shang Cai?,
Maider Zabala', Ferenc A. Scheeren*, Neethan A. Lobo', Dalong Qian', Feigiao B. Yu®,
Frederick M. Dirbas®, Michael F. Clarke'’, Aaron M. Newman'®*

Affiliations

' Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford,
California, USA.

2 Department of Computer Science, Stanford University, Stanford, California, USA.

3 School of Life Sciences, Westlake University, Zhejiang Province, China.

4 Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, the
Netherlands.

> Chan Zuckerberg Biohub, San Francisco, California, USA'

® Department of Surgery, Stanford Cancer Institute, Stanford University, Stanford, California,
USA.

" Department of Medicine, Stanford University, Stanford, California, USA.

8 Department of Biomedical Data Science, Stanford University, Stanford, California, USA.

TThese authors contributed equally.

*Corresponding author. Email: amnewman@stanford.edu



https://doi.org/10.1101/649848

bioRxiv preprint doi: https://doi.org/10.1101/649848; this version posted May 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Abstract

Single-cell RNA-sequencing (scRNA-seq) is a powerful approach for reconstructing cellular
differentiation trajectories. However, inferring both the state and direction of differentiation
without prior knowledge has remained challenging. Here we describe a simple yet robust
determinant of developmental potential—the number of detectably expressed genes per cell—
and leverage this measure of transcriptional diversity to develop a new framework for predicting
ordered differentiation states from scRNA-seq data. When evaluated on ~150,000 single-cell
transcriptomes spanning 53 lineages and five species, our approach, called CytoTRACE,
outperformed previous methods and ~19,000 molecular signatures for resolving experimentally-
confirmed developmental trajectories. In addition, it enabled unbiased identification of tissue-
resident stem cells, including cells with long-term regenerative potential. When used to analyze
human breast tumors, we discovered candidate genes associated with less-differentiated
luminal progenitor cells and validated GULP1 as a novel gene involved in tumorigenesis. Our
study establishes a key RNA-based correlate of developmental potential and provides a new
platform for robust delineation of cellular hierarchies (https://cytotrace.stanford.edu).
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Main Text

In multicellular organisms, tissues are hierarchically organized into distinct cell types and
cellular states with intrinsic differences in function and developmental potentiall. Common
methods for studying cellular differentiation hierarchies, such as lineage tracing and functional
transplantation assays, have revealed detailed roadmaps of cellular ontogeny at scales ranging
from tissues and organs to entire model organisms2%. However, despite the power of these
technologies, they cannot be applied to human tissues in vivo and generally require prior
knowledge of cell type-specific genetic markers2. These limitations have made it difficult to study
the developmental organization and cell fate decisions of primary human tissues under normal
physiological conditions and during disease.

Single-cell RNA-sequencing (scRNA-seq) has recently emerged as a promising approach to
study tissue architecture®® and cellular differentiation trajectories at high resolution in primary
tissue specimens’. Although a large number of computational methods for predicting lineage
trajectories have been described, they generally rely upon (1) a priori knowledge of the starting
point (and thus, direction) of the inferred biological process®™* and (2) the presence of
intermediate cell states to reconstruct the trajectory’>1¢. These requirements, although
reasonable in well-established systems and in time-series experiments, can be challenging to
satisfy in tissues with poorly understood developmental biology, such as human neoplasms?’.
Moreover, it remains difficult to distinguish quiescent (non-cycling) adult stem cells with long-
term regenerative potential from more specialized cells using existing in silico approaches.
While gene expression-based models can potentially overcome these limitations (e.g.,
transcriptional entropy®2, pluripotency-associated gene sets2! and machine learning
strategies??), their relative utility across diverse developmental systems and single-cell

sequencing technologies is still unclear.

Here, we profiled nearly 19,000 features of single-cell gene expression data to discover factors
that accurately predict cellular differentiation states independently of tissue type, species, and
platform. Among the top-performing features, we identified a simple yet surprisingly effective
determinant of developmental potential—the number of detectably expressed genes per cell. By
leveraging this measure of transcriptional diversity, which was noisy at the single-cell level, we
developed a new unsupervised framework for determining ordered differentiation states from
single-cell transcriptomes, called CytoTRACE (Cellular (Cyto) Trajectory Reconstruction
Analysis using gene Counts and Expression). We show that our approach (1) substantially
outperforms leading computational methods and 18,706 molecular signatures for predicting
differentiation states in 53 experimentally-confirmed developmental trajectories, (2) reveals
cellular hierarchies in whole tissues and whole organisms, and (3) identifies key genes
associated with stemness and differentiation in both healthy tissues and human cancer. Our
results suggest that CytoTRACE can complement existing lineage trajectory tools and aid the
identification of immature cells in diverse multicellular systems.

Results

RNA-based correlates of single-cell differentiation states

We sought to identify robust, RNA-based determinants of developmental potential without the
need for a priori knowledge of developmental direction or intermediate cell states marking cell

fate transitions. Toward this end, we evaluated ~19,000 potential correlates of cell potency in
scRNA-seq data, including all available gene sets in the Molecular Signatures Database (n =
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17,810)2, 896 gene sets covering transcription factor binding sites from ENCODE# and
ChEAZ, an mRNA-expression-derived stemness index (MRNAsi)?, and three computational
techniques that infer stemness as a measure of transcriptional entropy (StemID, SCENT,
SLICE®2%), We also explored the utility of ‘gene counts’, or the number of detectably expressed
genes per cell, which has been anecdotally observed to correlate with differentiation status?-2,

but not yet comprehensively evaluated (Methods).

To assess these features, we compiled a training cohort consisting of nine gold standard
scRNA-seq datasets with experimentally-confirmed differentiation trajectories. These datasets
were selected to prioritize commonly used benchmarking datasets from prior studies!218-2026.29
and to ensure a broad sampling of unique developmental states from the mammalian zygote to
terminally differentiated cells®2%. Overall, the training cohort encompassed 3,174 single cells
spanning 49 phenotypes, six tissue types, and three scRNA-seq platforms (Fig. 1A; Methods).
To determine performance, the mean value of each feature for all previously annotated cellular
phenotypes was calculated and correlated against ground-truth differentiation states. The
resulting coefficients (Spearman) were then averaged across the nine training datasets to yield
a final score and rank for every feature (Fig. 1B; Methods).

This systematic screen revealed many known and unexpected correlates of differentiation
status (Fig. 1C; Fig. S1A). However, one feature in particular showed surprisingly strong
performance — the number of detectably expressed genes per cell (‘gene counts’). Appearing in
the top 1% of the ranked list (104 out of 18,711), this data-driven feature compared favorably to
well-established stemness programs, including cell cycle and pluripotency signatures?:22, yet
also showed evidence of unique biology and broader applicability. For example, regardless of
whether we examined cycling cells, non-cycling cells, or the earliest stages of human
embryogenesis prior to the upregulation of pluripotency factors, gene counts generally
decreased with successive stages of differentiation (Fig. 1D, left; Fig. S2). Pluripotency genes,
by contrast, showed an arc-like pattern during human development, characterized by
progressively increasing expression until the emergence of embryonic stem cells, followed by
decreasing expression (Fig. 1D, right).

These findings suggested that gene counts might extend beyond isolated experimental systems
to recapitulate the full spectrum of cellular ontogeny. To formally test this possibility, we
compiled, remapped, and normalized a set of mouse lineage trajectories profiled in vivo by five
plate-seq experiments encompassing 5,059 cells and 30 phenotypes that together span all
major potency levels®! (Methods). Indeed, when averaged by known phenotypes and assessed
across independent studies, the relationship between gene counts and differentiation was
robustly maintained (R? = 0.89, P < 0.0001; Fig. 1E; Methods).

Given these striking results, we performed a series of experiments to better understand the
biological basis of gene counts and the factors that influence its measurement.

Robustness and biological basis of gene counts

We started by characterizing the robustness of gene counts to variation in two key technical
parameters: (1) sparsity in single-cell gene expression data and (2) the number of sequenced
reads per cell. To investigate the former, we compared gene counts derived from single-cell
transcriptomes with gene counts derived from bulk RNA-seq profiles®2, pooled single-cell
transcriptomes, and single-cell transcriptomes following missing value imputation®3. Regardless
of the approach, we observed significantly reduced performance for predicting differentiation
states when attempting to overcome sparsity (Fig. S3A-D). This suggests that sparsity in
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scRNA-seq data is driven by real biological heterogeneity in addition to technical noise. Such
heterogeneity, while informative for gene counts as a measure of developmental potential, is
lost or severely degraded at the population level (Fig. S3B, E).

We next examined the relationship between gene counts and the number of reads per cell.
Reanalysis of seven scRNA-seq experiments profiled by plate-based protocols showed that
even when down-sampling to 10,000 reads per cell, the predictive performance of gene counts
was largely maintained (Fig. S4A-C). Moreover, the mean number of detectably expressed
genes per dataset was linearly related to the logarithm of the mean number of reads (mean R? =
0.99; Fig. S4D). As a result, for most datasets, variation in gene counts due to fluctuations in
the number of reads was minimal. Furthermore, predictive performance was only modestly
impacted when varying the expression threshold for calculating the number of expressed genes
per cell and was unaffected by the removal of potential doublets (Fig. S5A, B).

To investigate potential biological correlates of gene counts, we next compared it with the
number of detectable mMRNA molecules per cell, as measured by unique molecular identifiers
(UMls), external spike-in standards (ERCCs), and Census, a statistical approach to infer the
number of MRNA transcripts that are available for capture following cell lysis®*. By analyzing
UMI (n = 14 datasets) and ERCC (n = 7 datasets) data from previously published droplet-based
and plate-based experiments, respectively, we found that a large proportion of the variance in
gene counts could be attributed to single-cell mMRNA content alone (UMI: mean R? = 0.84;
ERCC: mean R? = 0.29; Fig. S6A, B). This relationship was further confirmed in 17 non-UMI
datasets that lack external standards using Census®, which produced estimates that were
nearly perfectly correlated with the number of unique detectable genes (i.e., canonical
transcripts) per cell (mean R? ~ 1) (Fig. S6C; Methods). We also measured the linear
association between gene counts and the number of unique protein-coding splice isoforms per
cell. As expected, across 10 plate-seq datasets, gene counts and mRNA diversity were tightly
interrelated (mean R? = 0.98; Fig. 2A; Fig. S6D).

Since the transcriptional output of a cell is associated with its genome-wide chromatin profile,
we hypothesized that single-cell gene counts might ultimately be a surrogate for global
chromatin accessibility, which has been previously shown to decrease with differentiation
To test this, we compared single-cell gene counts derived from scRNA-seq data with paired bulk
ATAC-seq (assay for transposase-accessible chromatin sequencing) profiles obtained from a
recent study of in vitro mesodermal differentiation from human embryonic stem cells (hRESCs)*2
(Fig. 2B; Fig. S7A). In support of our hypothesis, genome-wide chromatin accessibility was
observed to progressively decrease with differentiation of hESCs into paraxial mesoderm and
lateral mesoderm lineages (Fig. 2B; Fig. S7A). Moreover, when segregated by developmental
lineage, we observed strong concordance between the number of accessible peaks and the
mean number of detectably expressed genes per phenotype (Fig. 2C; Fig. S7B, C).

35-38

Development of CytoTRACE

Although gene counts generally showed robust performance when averaged by known
phenotypes, in some datasets, such as the in vitro differentiation of hESCs into the gastrulation
layers®, it exhibited considerable intra-phenotypic variation (Fig. 3A, left). In fact, when
evaluated at a single-cell level, 412 predefined gene sets from our in silico screen outperformed
gene counts (Fig. S1B). Since scRNA-seq was designed to capture single-cell gene expression,
we reasoned that genes whose expression patterns correlate with gene counts might better
capture differentiation states. Remarkably, by simply taking the geometric mean of genes that
were most correlated with gene counts in each dataset (Fig. S8A-C; Methods), the resulting
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dataset-specific ‘gene counts signature’ (GCS) became the top-performing measure in the
screen, outranking every pre-defined molecular profile and computational tool that we assessed
(Fig. S1B).

Although GCS is likely to be influenced by multi-lineage priming in some settings, it is derived
from all detectably expressed genes per cell in a given dataset. It is therefore inherently robust
to drop-out events, agnostic to prior knowledge of developmentally regulated genes, and not
solely attributable to a previously defined molecular signature (e.g., pluripotency; Fig. 1D).
Nevertheless, GCS was still moderately noisy in some datasets (e.g., Fig. 3A, center; Fig.
S8A-C). We therefore implemented a novel two-step procedure to directly smooth GCS on the
basis of transcriptional covariance among single cells (Fig. 3A, right; Fig. S8A-D; Methods).
The resulting method, which we call CytoTRACE (Cellular (Cyto) Trajectory Reconstruction
Analysis using gene Counts and Expression), not only significantly outperformed GCS and gene
counts (Fig. S8A), but also outperformed all evaluated features by a considerable margin (Fig.
S1B).

Performance evaluation across tissues, species, and platforms

To validate our findings, we assembled a greatly expanded compendium of 33 additional
scRNA-seq datasets. These data were selected to represent diverse experimentally-confirmed
developmental lineages and consisted of 141,267 single cells spanning 266 phenotypes, 11
tissue types, five species, nine scRNA-seq platforms (three droplet-based and six plate-based
protocols, ranging from an average of ~10,000 to ~1M UMIs or reads per cell, respectively; Fig.
S4A), and 26 studies (Fig. 3B; Methods). As before, performance was determined using
Spearman correlations to determine concordance against ground truth data at the single-cell
level and by phenotype (Methods).

When assessed at the single-cell level, CytoTRACE markedly outperformed existing methods
and gene sets (Fig. 3C, D; Fig. S9A), and was positively correlated with the direction of
differentiation in 88% of datasets (P = 7 x 107, Binomial test). These results were consistent
with our findings in the training cohort (Fig. 3C; Fig. S9B). Moreover, comparable results were
obtained on datasets with discontinuous developmental processes lacking transitional cells (Fig.
S10A, C). These data distinguish CytoTRACE from RNA velocity, a recently described kinetic
model that can predict future cell states, but is limited to scRNA-seq data with continuous fate
transitions and genes with mRNA half-lives on the order of hours®® (Fig. S10B, D). Importantly,
no significant biases in CytoTRACE performance were observed in relation to tissue type,
species, the number of cells analyzed, time-series experiments versus snapshots of
developmental states, or plate-based versus droplet-based technologies (Fig. S11).

Differentiation-associated genes and cellular hierarchies

Given CytoTRACE'’s ability to faithfully recover the direction of differentiation in nearly every
evaluated dataset, we asked whether it might prove useful for discovering genetic markers of
immature cells without prior knowledge of cellular phenotypes. Toward this end, we rank-
ordered all genes in each benchmarking dataset based on their correlation with CytoTRACE
and defined ‘ground truth’ gene sets that marked the least and most differentiated cells as
annotated in the original studies. In 86% of datasets, these gene sets were significantly skewed
in the correct direction toward the extreme ends of the ranked transcriptome (adjusted P < 0.05,
GSEA%; Fig. 3E; Fig. S12). Moreover, CytoTRACE automatically prioritized well-established
stem and progenitor markers, including Kit and Stmn1 in the mouse bone marrow*? and Axin2
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and Lgr5 in mouse intestinal crypts*3, underscoring the utility of CytoTRACE for the de novo
discovery of developmentally-regulated genes (Fig. 3E).

We next explored the potential of CytoTRACE to complement existing techniques for trajectory
visualization and branch detection. By combining it with a two-dimensional force-directed layout
algorithm to analyze 39,505 cells from zebrafish embryos, CytoTRACE readily revealed
complex branching patterns arising during whole organism development from a fertilized egg
(Fig. $13)*. Likewise, when applied to 3,427 unselected mouse bone marrow cells*2,
CytoTRACE enabled reconstruction of the directionality and lineage structure of hematopoietic
development (Fig. 4A).

Complex lineage relationships in scRNA-seq data can also be determined by dedicated branch
detection tools!, such as Monocle 2, however these approaches do not predict the starting
point of the biological process. For example, when applied to 4,442 bone marrow cells?,
Monocle 2 identified 23 possible “roots” from which to calculate pseudotime values (Fig. 4B,
left). Only 1 of these 23 states is correct (4% of possibilities), which we define as the state that
is most enriched for previously annotated stem and progenitor cells (state 12 in Fig. 4B). By
integrating CytoTRACE with Monocle 2, the correct root was readily identified without user input
(Fig. 4B, right; Fig. S14A, B). This facilitated identification of lineage-specific regulatory factors
and marker genes during granulocyte, monocyte, and B cell differentiation (Fig. S14C).
Similarly, when CytoTRACE and Monocle 2 were applied to 4,581 mouse intestinal cells®, we
were able to automatically determine the root, developmental ordering, and branching
processes of stem and progenitor cells differentiating into enterocyte and secretory lineages
(Fig. S14D-E).

Dissection of stem cell and progenitor populations

We next asked whether CytoTRACE could distinguish cycling and long-term/quiescent stem
cells from their downstream progenitors*>4¢. As these populations are well-characterized in the
bone marrow?, we investigated this question in the mouse hematopoietic system. While both
cycling and quiescent hematopoietic stem cell (HSC) subpopulations?>4¢ were correctly
predicted to be less differentiated, only proliferative HSCs were significantly ranked above early
progenitors (Fig. 4C). This result was not unexpected, however, since quiescentcells have
reduced metabolic activity and low RNA content!. By devising a simple approach to visualize
inferred RNA content as a function of CytoTRACE, we observed a distinct valley in RNA
abundance that coincided with elevated expression of Hoxb5, a recently described marker of
long-term/quiescent HSCs*. (Fig. 4D, E). This analysis further confirms the value of
CytoTRACE and suggests a novel approach for elucidating tissue-specific stem cells from
scRNA-seq data.

Application to neoplastic disease

Having validated CytoTRACE's technical performance, we next applied it to a system where
developmental trajectories are less well-characterized. A growing body of evidence suggests
that human breast tumors are hierarchically organized and originate from subpopulations of
cancer cells, called tumor-initiating cells, which are less differentiated, resistant to therapy, and
implicated in relapse and metastasis*42. In breast cancer, subpopulations of tumor cells within
the luminal progenitor (LP) epithelium are thought to give rise to aggressive basal-like breast
cancers, such as triple-negative breast cancer (TNBC)2!, and possibly also to estrogen
receptor positive (ER+) breast cancers®.. However, the differentiation states and tumor-initiating
properties of LP subsets remain incompletely understood®3.
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To test whether CytoTRACE can facilitate new insights into immature LP cells and their
associated genes in breast cancer, we performed scRNA-seq profiling of breast tumor epithelial
cells and adjacent normal epithelial cells from 8 patients with basal-like (n = 2) or luminal-like (n
= 6) breast cancer. Using a Smart-seq2 protocol combined with fluorescence-activated cell
sorting (FACS), we index-sorted and sequenced cells from three major human epithelial
subpopulations: basal (CD49f""EPCAM™°") ‘juminal progenitor (CD49f""EPCAM""), and
mature luminal subpopulations (ML) (CD49f*"EPCAM"") (Fig. S15A). After removing low
quality cells and applying principal component analysis to visualize the data, we confirmed three
well-separated clusters of basal, LP, and ML cells, each with characteristic expression patterns
of previously described lineage markers (Fig. 5A; Fig. S15B). No obvious clustering was
observed for tumor/normal differences or by patient (Fig. 5A).

To validate the ability of CytoTRACE to define LP differentiation states, we started by rank-
ordering genes in adjacent normal LPs by their correlation with CytoTRACE (Fig. 5B, top). We
found that previously described marker genes of less differentiated normal LPs (ALDH1A3 and
MFGEB8)***° and more differentiated normal LPs (GATA3, FOXA1, and AR**2¢) were
successfully enriched by this approach (Fig. 5B, bottom). Moreover, genes that were
upregulated in highly clonogenic normal LPs** were skewed toward genes predicted to mark
less differentiated cells (Fig. 5B, bottom).

Given these favorable results, we next sought to identify LP genes associated with
tumorigenesis. By rank-ordering LP genes in malignant cells by their correlation with
CytoTRACE (Fig. 5C, top), we observed a highly significant enrichment of genes whose
knockdown by RNA interference (RNAI) led to decreased viability of tumor cells in patient-
derived xenograft (PDX) models of TNBC* (Q = 0.002, GSEA; Fig. 5C, bottom; Fig. S16).
Moreover, when we applied CytoTRACE to prioritize genes in tumor LPs as compared to tumor
MLs, the latter of which are developmentally downstream of LPs in normal breast®*2, the top 15
genes included known members of tumorigenic pathways in breast cancer (e.g., MET, JAKT,
and XBP12%%%) as well as novel candidates (e.g., GULP1) (Fig. 5D, top). To further refine this
list, we focused on genes that were (1) more highly expressed in tumor LPs than MLs and (2)
expressed in a subpopulation of tumor LPs (<20% of cells) (Fig. 5D, bottom). After applying
this filter, GULP1 emerged as the top candidate (Fig. 5D, bottom right).

GULP1 is an engulfment adaptor protein and is the human homolog of Drosophila Ced6.
Moreover, the murine homolog of GULP1 is a specific marker of mouse HSCs, suggesting a
possibly conserved role of this gene in other immature cell states (Fig. S17A). Since the role of
GULP1 in human breast cancer has not been established, we measured the effect of GULP1
knockdown on the proliferation of metastatic TNBC cell lines, MDA-MB-231 and MDA-MB-468,
compared to an empty vector control (Fig. S17B-E). GULP1 knockdown significantly reduced
proliferation of MDA-MB-231 and MDA-MB-468 as measured by a colorimetric assay for
metabolic activity (Fig. S17E). Next, we tested the effect of GULP1 knockdown in PDXs from
ER+ and TNBC patients from our single-cell cohort (Fig. 5E). We found that knockdown of
GULPT1 significantly reduced tumor growth in the TNBC sample and completely abrogated the
ER+ tumor compared to empty vector control (Fig. 5F).

Taken together, these data suggest a novel role for GULP1 in human breast cancer
tumorigenesis and demonstrate the promise of CytoTRACE for the discovery of malignant cell
differentiation states and new therapeutic targets.
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Discussion

Efforts to characterize single-cell transcriptomes in diverse tissues, organs, and whole
organisms*2 have underscored the need for robust RNA-based determinants of
developmental potential. In our analysis of ~19,000 features across 42 developmental
processes and nearly 150,000 single cells, we found that gene counts, or the number of
detectably expressed genes per cell, powerfully associates with transcriptional diversity and
differentiation status. Although anecdotally observed in specific experimental systems (mouse
alveolar epithelial development, zebrafish thrombopoiesis, and neuron differentiation from
hESCs%28), we demonstrate for the first time that this association (1) outperforms most
stemness inference tools and pre-defined molecular signatures from a compendium of nearly
19,000 RNA-based features, (2) is generally independent of species, platform, and tissue type,
and (3) is broadly applicable throughout cellular ontogenesis.

Although previous studies have demonstrated a global reduction in chromatin accessibility
and/or plasticity during lineage commitment in specific developmental settings (e.g. embryonic
stem cells, intestinal stem cells, and neural stem cells3>238%%) oyr quantitative findings extend
the scope of this result. Moreover, as has been previously shown®, our data indicate that
variability in gene counts between phenotypically identical single cells is not exclusively due to
drop-out events, but also due to differential sampling of the transcriptome (Fig. $3). Our data
are therefore consistent with a model in which less mature cells maintain looser chromatin to
permit wider sampling of the transcriptome, while more differentiated cells generally restrict
chromatin accessibility and transcriptional diversity as they specialize (Fig. S6C)%. Future
studies will be needed to further confirm the validity of this model and assess its relevance
across diverse tissue compartments, developmental time points, and phenotypic states.

The identification of gene counts as a leading measure of cellular differentiation status
motivated the development of CytoTRACE, a computational framework that leverages and
significantly improves upon gene counts for resolving differentiation states at the single-cell
level. Unlike most existing methods for lineage trajectory analysis®'®, however, CytoTRACE can
predict both the relative state and direction of differentiation in a manner that is independent of
specific timescales or the presence of continuous developmental processes in the data.
CytoTRACE is also agnostic to tissue type, species, and scRNA-seq platform.

We anticipate that these advantages will enable significant applications. For example, by using
CytoTRACE to analyze scRNA-seq profiles of human breast tumors, we identified new
candidate genes associated with less-differentiated luminal progenitor cells and established a
novel role for GULP1 in breast tumorigenesis. These data emphasize the utility of CytoTRACE
for characterizing tumor differentiation hierarchies and for discovering novel biomarkers and
therapeutic targets. Furthermore, by integrating RNA content with CytoTRACE, we
demonstrated, for the first time to our knowledge, that quiescent adult stem cells can be
distinguished from downstream progenitors using an unsupervised in silico approach. Given the
immense regenerative potential of quiescent stem cells, their identification in human tissues has
broad implications in regenerative medicine and cancer treatment.

While CytoTRACE can recapitulate developmental orderings from single lineages to whole
organisms, several challenges remain. For example, although the direction of differentiation was
predicted correctly in nearly all datasets, 12% of cases were mischaracterized. These datasets
also proved problematic for other approaches, suggesting there may be opportunities for future
enhancements. In addition, CytoTRACE is currently expressed in rank space, which is not
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directly comparable across different datasets. Efforts to overcome these challenges are
underway.

In summary, we conclude that the number of expressed genes per cell is a hallmark of
developmental potential. By exploiting this data-driven property of scRNA-seq data, we
developed a broadly applicable framework for resolving single-cell differentiation hierarchies.
We envision that our approach will complement existing scRNA-seq analysis strategies, with
implications for the identification of immature cells and their developmental trajectories in
complex tissues throughout multicellular life.

10
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Figure 1 RNA-based determinants of developmental potential. (A-C) /n silico screen for
correlates of cellular differentiation status in scRNA-seq data. (A) Composition of the training
cohort. (B) Left: Summary of evaluated features (top) and gold standard scRNA-seq datasets
from the training cohort (bottom). In total, 17,810 gene sets from MSigDb, 896 transcription
factor (TF) binding sites from ENCODE and ChEA, three measures of transcriptional entropy
(StemlID, SCENT, and SLICE), a machine learning model (mRNAsi), and gene counts (number
of detectably expressed genes per cell) were assessed. Right: Depiction of the scoring scheme.
Each phenotype was assigned a rank based on its known differentiation status (less
differentiated = lower rank) and the values of each feature were mean-aggregated by rank for
each dataset (higher value = lower rank). Performance was calculated as the mean Spearman
correlation between known and predicted ranks across all nine training datasets. (C)
Performance of all features for predicting differentiation states in the training cohort, ordered by
mean Spearman correlations. (D) The developmental ordering of 12 human cell phenotypes
during early embryogenesis, shown as a function of single-cell gene counts (/eft) and the
expression of pluripotency genes?! (right). Points and error bars denote means and 95%
confidence intervals, respectively. Phenotypes are ranked according to their known
developmental potential relative to other cell types (phenotype labels are provided in Methods).
The coefficient of determination (R?) is shown for gene counts (leff) and a smooth spline is
shown for pluripotency gene enrichment scores (right). ssGSEA, single sample gene set
enrichment analysis. (E) Same as in D (left panel) but showing the ontological ordering of 30
mouse cell phenotypes across 17 developmental stages versus single-cell gene counts. For
further details and information on datasets, see Methods.
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Figure 2 Association between gene counts, RNA diversity, and chromatin accessibility.
(A-C) Analysis of the association between single-cell gene counts, transcriptional diversity, and
chromatin accessibility in cells from an in vitro differentiation series of purified phenotypes from
the human paraxial mesoderm lineage (Methods; also see Figure S7). (A) Scatterplot showing
the association of gene counts with the number of unique protein-coding splice isoforms
detected per cell. (B) Top: Scatterplot showing the association of gene counts (y-axis) with
paraxial mesoderm differentiation at the single-cell level (x-axis). Each point represents a cell
colored by known phenotype (below). Center: Heat map depicting each single-cell transcriptome
in the above scatterplot, but ordered from top-to-bottom by decreasing gene expression (log:
TPM). Cells are ordered left to right by increasing differentiation status. Bottom: Heat map
showing chromatin accessibility profiles (bulk ATAC-seq) for the same cell phenotypes as
above. Peaks are centered by their summit, defined as the base with maximum coverage,
shown within a window of 1 kb (0.5 kb), and ordered top to bottom within each phenotype by
decreasing total signal per peak. (C) Scatterplot showing the concordance between the average
number of single-cell gene counts per phenotype and the number of ATAC-seq peaks per
phenotype. Points indicate cell types and are colored as in B. Linear relationships in A and C
were evaluated by linear regression (R?) and corresponding P values were determined by a t-
test. hESC, human embryonic stem cell; APS, anterior primitive streak; PXM, paraxial
mesoderm; SMTRS, somitomeres; ESM, early somites; SCLRT, sclerotome.
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Figure 3 Development and validation of CytoTRACE. (A) Schematic overview of the
CytoTRACE framework applied to the in vitro differentiation of hESCs into the gastrulation
layers®® (Methods). (B-D) Validation and benchmarking of CytoTRACE. (B) Composition of the
validation cohort. In total, 33 scRNA-seq datasets with known differentiation states were
analyzed. (C) Scatterplot showing predictive performance of 18,706 gene sets, four stemness
inference methods®222| gene counts, and CytoTRACE, in the training cohort (y-axis) and
validation cohort (x-axis). Results reflect the average single-cell performance per cohort. (D)
Boxplots showing the single-cell level performance of CytoTRACE against the features and
methods from Fig. 1B in the validation cohort (n = 33 datasets). Each point represents the
Spearman correlation, weighted by number of cells per phenotype, between predicted and
known differentiation states for a given dataset, calculated as described in Methods. Features
and computational methods are ordered from left to right by median. Statistical significance was
assessed by a one-sided paired Wilcoxon signed-rank test against CytoTRACE. (E)
Developmental marker gene prioritization without prior knowledge of cellular phenotypes. Plots
showing the enrichment of key stemness-associated (red) and differentiation-associated (blue)
genes by CytoTRACE in bone marrow (n = 4,897 cells), intestine (n = 7,216 cells), pancreatic
alpha cells; (n = 338 cells), and peripheral glia (n = 369 cells) (source data are described in
Methods). Select markers of differentiation are indicated for each dataset. Also see Figure
S$12.
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Figure 4 Characterization of developmental hierarchies and quiescent stem cells using
CytoTRACE. (A-E) Application of CytoTRACE to dissect the mouse hematopoietic hierarchy by
integrative analysis. (A) Mouse bone marrow scRNA-seq data visualized by CytoTRACE versus
a force-directed layout (FD1 vs. FD2). (B) Combined application of CytoTRACE and Monocle 2
to delineate complex branches during mouse bone marrow differentiation without any prior
information of the root. Multi-lineage tree inferred by Monocle 2 showing all 23 possible
pseudotimes when the root is unknown (left) and automatic selection of the correct root by
CytoTRACE (right). (C-E) Prioritization of quiescent and cycling hematopoietic stem cells
(HSCs) in index-sorted scRNA-seq data of hematopoietic stem and progenitors (KIT*'SCA1*LIN-
) and developing B cells (TER1197B220"). All plots are identically ordered, left to right, by
CytoTRACE. (C) Boxplots showing CytoTRACE values for candidate cycling HSCs (n = 31) and
long-term/quiescent HSCs (n = 30) versus early immature B cells (n = 285), late immature B
cells (n = 863), and mature B cells (n = 700). HSC subgroups were defined based on
expression of Fgd5, a reporter gene for HSCs®., Hoxb5, a reporter gene for long-term HSCs?*.,
and Mki67, a marker of proliferation. Although boxplots represent all analyzed cells, for clarity, a
maximum of 50 cells per phenotype are displayed as points. Statistical significance was
assessed by an unpaired Wilcoxon signed-rank test. **P<0.01. (D) Relative RNA content per
cell, shown as a function of CytoTRACE (‘Analysis of total RNA content and transcriptional
diversity’ in Methods) and displayed as the moving average of 200 cells. (E) Expression of Fgd5
and Hoxb5 ordered by CytoTRACE and displayed as a smoothing spline over the moving
average of 200 cells. Data from monocytes and granulocytes (TER119"-MAC1*GR1"9") are
consistent with the above results. Data in A and B-E are from ‘Bone marrow (10x)’ and ‘Bone
marrow (Smart-seq2) datasets generated by Tabula Muris*2, respectively (Methods).
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Figure 5 Identification of immature cell markers in normal and malignant human breast
luminal progenitor cells using CytoTRACE. (A) Principal component analysis (PCA) plots
showing scRNA-seq profiles of human basal cells (n = 660 cells), luminal progenitors (n = 532
cells) and mature luminal cells (n = 710 cells) from 8 breast cancer patients (2 basal-like and 6
luminal-like), colored by epithelial subpopulations (top), tumor vs. paired adjacent normal
tissues (center), and patient (bottom). (B) Prediction of differentiation-associated genes in
normal luminal progenitors (LPs) profiled by scRNA-seq. Top: Heat map showing normal LP
genes ordered by their Pearson correlation with CytoTRACE. Bottom: Heat map depicting the
association of each gene in the above plot with a ‘clonogenicity index’, defined as the log»-fold
change in expression between highly and lowly clonogenic LPs from normal human breast>
(Methods). The clonogenicity index is displayed as a moving average of 200 genes. Key genes
associated with less (ALDH1A3, MFGES8) and more (GATA3, FOXA1, AR) differentiated normal
LPs are indicated. (C) Prediction of differentiation-associated genes in malignant luminal
progenitors profiled by scRNA-seq. Top: Same as panel B (top) but showing genes from
malignant rather than normal LPs. Bottom: Pre-ranked gene set enrichment analysis® of 43
genes found to decrease human breast tumorigenesis in an RNAi dropout viability screen®’ in
relation to LP genes ranked by CytoTRACE (same order as above). NES, normalized
enrichment score; ES, enrichment score. (D) Identification of candidate tumorigenic genes
associated with less differentiated malignant human LPs. Top: Genes rank-ordered by the
difference in their correlations with CytoTRACE in malignant LPs versus malignant mature
luminal cells (MLs). The top 15 genes that are predicted to be specifically associated with less
differentiated LPs are indicated (left). Bottom: Schema for the identification of genes that are
ranked as above, but that are also more highly expressed in malignant LPs than MLs (log- fold
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change > 0; Benjamini-Hochberg adjusted P < 0.05, unpaired two-sided t-test) and that are
expressed by a subpopulation of LPs (<20% of cells). The top 5 filtered genes are shown (right).
(E) Schema for shRNA knockdown of GULP1 in a human breast cancer xenograft model.
Lineage-depleted breast cancer epithelia cells from patient-derived xenografts were transduced
with lentivirus containing either an empty vector control or shRNA targeting GULP1 and
transplanted into immunodeficient NSG mice in triplicates. Tumors were monitored weekly until
control tumors reached a size of 1500-2000 mm?. (F) Growth of human breast cancer
xenografts from two patients, one with ER+ luminal-type cancer (left) and one with triple-
negative breast cancer (right) after lentiviral transduction with empty vector or shRNA targeting
GULP1. Mean tumor volume with 95% confidence interval is shown for 6 time points (n =3
mice). **** P < 0.0001.
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