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High-throughput sequencing of full-length transcripts using long reads has paved the way for the discovery of thousands of

novel transcripts, even in well-annotated mammalian species. The advances in sequencing technology have created a need

for studies and tools that can characterize these novel variants. Here, we present SQANTI, an automated pipeline for the

classification of long-read transcripts that can assess the quality of data and the preprocessing pipeline using 47 unique de-

scriptors. We apply SQANTI to a neuronal mouse transcriptome using Pacific Biosciences (PacBio) long reads and illustrate

how the tool is effective in characterizing and describing the composition of the full-length transcriptome. We perform ex-

tensive evaluation of ToFU PacBio transcripts by PCR to reveal that an important number of the novel transcripts are tech-

nical artifacts of the sequencing approach and that SQANTI quality descriptors can be used to engineer a filtering strategy

to remove them.Most novel transcripts in this curated transcriptome are novel combinations of existing splice sites, resulting

more frequently in novel ORFs than novel UTRs, and are enriched in both general metabolic and neural-specific functions.

We show that these new transcripts have a major impact in the correct quantification of transcript levels by state-of-the-art

short-read-based quantification algorithms. By comparing our iso-transcriptome with public proteomics databases, we find

that alternative isoforms are elusive to proteogenomics detection. SQANTI allows the user to maximize the analytical out-

come of long-read technologies by providing the tools to deliver quality-evaluated and curated full-length transcriptomes.

[Supplemental material is available for this article.]

Alternative splicing (AS) and alternative polyadenylation (APA) are

among the most fascinating and challenging aspects of eukaryotic

transcriptomes. AS and APA are considered to be the major mech-

anisms of generating transcriptome complexity and thus the ex-

pansion of proteome diversity of higher organisms (Lu et al.

2010;Mudgeet al. 2011; Frankish et al. 2012). Thesepost-transcrip-

tional mechanisms have been reported to play critical roles in dif-

ferentiation (Wang et al. 2009; Martinez and Lynch 2013; Raj and

Blencowe 2015; Teichroeb et al. 2016), speciation (McGuire et al.

2008; Mudge et al. 2011), and multiple human diseases such as

cancer (Ladomery 2013; Liu and Cheng 2013; Chen and Weiss

2014), diabetes (Eizirik et al. 2012; Tang et al. 2015), and neurolog-

ical disorders (Yang et al. 1998; D’Souza et al. 1999; Kanadia et al.

2003; Ladd 2013; Lee et al. 2016) and therefore may play a funda-

mental role in the establishment of organismal complexity (Black

2003; Mudge et al. 2011; La Cognata et al. 2014). The genome-

wide analysis of AS has been done primarily using exon microar-

rays first and, more recently, short-read RNA-seq. These twometh-

ods are effective for the identification of AS events such as exon

skipping or intron retention andhave established the involvement

of AS in many biological processes. However, both technologies

have serious limitations for the reconstruction of the actual ex-

pressed transcripts, as short reads break the continuity of the tran-

script sequences and fail to resolve assembly ambiguities at

complex loci (Steijger et al. 2013; Tilgner et al. 2014). This impairs

any studies that would catalog specific transcriptomes, investigate
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cis-acting mechanisms within transcripts, infer open reading

frames, or understand functional aspects of isoform diversity.

There has been increasing interest in the application of sin-

gle-molecule sequencing to obtain full-length transcripts in ani-

mals and plants, as long reads allow direct sequencing and

eliminate the need for short-read assembly and transcript recon-

struction. Currently, there are three different long-read transcrip-

tome sequencing platforms: Pacific Biosciences (PacBio) (Sharon

et al. 2013; Tilgner et al. 2014; Li et al. 2016), Moleculo (Tilgner

et al. 2015), and Nanopore (Oikonomopoulos et al. 2016). Here,

we have used the popular PacBio Iso-Seq protocol, which consists

of full-length cDNA enrichment using the Clontech SMARTer kit

followed by building single-molecule SMRTbell libraries with spe-

cific PacBio linkers that are subsequently sequenced. PacBio reads

are typically longer than the full-length cDNA sequence, which

means that each molecule can go through several passes of se-

quencing. The consensus of these passes is called a Read of Insert

(RoI), which is the current standard PacBio output. RoIs where

both cDNA primers and the poly(A) can be identified are called

Full-length (FL) reads, while those that miss any of these tags are

deemed non-Full-length (non-FL) reads. PacBio sequencing suf-

fers, however, from a relatively high raw error rate (∼15%)

(Carneiro et al. 2012) and a lower throughput compared to

Illumina. There are several describedmethods for PacBio error cor-

rection and transcript identification. Hybrid error correction

methods such as LoRDEC (Salmela and Rivals 2014) and IDP (Au

et al. 2013) were the first to appear. While LoRDEC corrects long

sequences by traversing paths in de Bruijn graphs representing

short-reads, IDP calls transcripts by using a combination of direct

detection and prediction with short-reads that involves long-

read correction by the computationally intensive LSC algorithm

and genome alignment (Au et al. 2012). The TAPIS pipeline does

not need Illumina reads but performs several rounds of mapping

and correction of RoIs on the reference genome, with apparently

similar error correction efficiency as a short-read-based method

(Abdel-Ghany et al. 2016). Finally, the ToFU PacBio pipeline

(Gordon et al. 2015) obtains auto-clusters of FL and non-FL RoIs

and then computes a consensus transcript sequence where errors

are significantly reduced. In all cases, comparison to the reference

gene models serves to call known and novel transcripts.

All PacBio transcriptome papers discover thousands of new

transcripts, propose classification schemes by comparing to a refer-

ence annotation, and find that the majority of novel transcripts

appear in known genes (Au et al. 2013; Sharon et al. 2013;

Tilgner et al. 2015; Abdel-Ghany et al. 2016; Wang et al. 2016).

However, details on the number, quality, and characteristics of

these new calls can vary greatly. Sequencing the transcriptome

of hESCs by long reads followed by IDP analysis identified over

2000 novel transcripts (∼30%) and discovered new genes that

were proven to be functional (Au et al. 2013). Tilgner et al.

(2015) found about 12,000 novel transcripts fully supported by

previous splice site annotations or Illumina reads using PacBio se-

quencing of the GM12878 cell line but did not study novel junc-

tions in detail. For the sorghum transcriptome, 11,342 (40%)

novel transcripts were found by PacBio from a total of nearly 1mil-

lion reads using a filter on splice junction quality (SpliceGrapher)

(Rogers et al. 2012), and 6/6 random transcripts were confirmed by

PCR. Finally, a maize multitissue transcriptome analysis identified

over 111,151 transcripts from3.7million RoIs,most of themnovel

and tissue-specific (Wang et al. 2016). The authors found that be-

tween 10% and 20% of the PacBio junctions lacked coverage by

Illumina reads and that <1% were noncanonical (Wang et al.

2016), but they did not report on the number of affected tran-

scripts or carry out any validation. In all these cases, an in-depth

characterization of the novel transcripts and junctions that would

reveal potential biases and justify analysis choices wasmissing.We

believe that such analysis is important, as a great variety of FL

andnon-FL RoIs typicallymap at each genome locus, and different

processing pipelines can result in significantly different final

transcript calls. As an example, sequencing the mouse neural tran-

scriptome with PacBio, we obtained ∼90,000, 13,000, and 16,000

different transcripts when applying the TAPIS, IDP, or ToFU pipe-

lines, respectively. Implementing a comprehensive, quality-aware

analysis of single-molecule sequencing is fundamental at a time

when long-read methods are becoming more popular and impor-

tant conclusions on transcriptome diversity will be drawn from

these data.

In this work, we present SQANTI (Structural and Quality

Annotation of Novel Transcript Isoforms), a pipeline for the anal-

ysis of long-read transcriptomics data that creates a wide range of

summary graphs to aid in the interpretation of the sequencing out-

put, defines up to 47 different descriptors of transcript and junc-

tion properties, and uses these descriptors to implement a

machine learning algorithm that removes artifactual transcripts.

Results

Overview of SQANTI analysis workflow

The SQANTI pipeline was developed for an in-depth characteriza-

tion and curation of long-reads transcriptomes. SQANTI takes as

input a transcripts data set, together with genome annotation

and, if available, quantification data, to return a reference correct-

ed transcriptome together with a wide set of transcript and junc-

tion descriptors which are further analyzed in several diagnostic

plots (Fig. 1A). Supplemental Tables 1 and 2 describe in detail

the set of descriptors computed by SQANTI at the transcript and

junction levels, respectively. When necessary, the software can

also filter out potential artifact transcripts using a SQANTI descrip-

tor-based machine learning classifier.

Transcript and junction annotation

A feature of the SQANTI pipeline is that it can reveal the nature and

magnitude of the novelty found by long-read sequencing by clas-

sifying transcripts based on the comparison between their splice

junctions and the reference transcriptome provided (Fig. 1B).

PacBio transcriptsmatching a reference transcript at all splice junc-

tions are labeled as Full Splice Match (FSM), while transcripts

matching consecutive, but not all, splice junctions of the reference

transcripts are designated as Incomplete SpliceMatch (ISM). Those

ISM transcripts with 95% or more of their sequence within the

UTR3 sequence of their cognate reference transcript are labeled

UTR3 Fragment. Monoexonic transcripts matching a monoexonic

reference are included in the FSM category, whereas those match-

ing a multiexonic reference are placed in the ISM group.

Furthermore, SQANTI classifies novel transcripts of known

genes into two categories: Novel in Catalog (NIC) and Novel Not

inCatalog (NNC).NIC transcripts containnewcombinations of al-

ready annotated splice junctions or novel splice junctions formed

from already annotated donors and acceptors. NNC transcripts use

novel donors and/or acceptors. Note that this transcript classifica-

tion scheme captures the intron-based definition described by

Tilgner et al. (2013), but SQANTI goes a step further by describing

and subclassifying the type of novelties introduced by transcripts
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not matching the splice pattern of annotated references.

Transcripts in novel genes are classified as “Intergenic” if lying out-

side the boundaries of an annotated gene and as “Genic Intron” if

lying entirely within the boundaries of an annotated intron. In ad-

dition, the “Genic Genomic” category encompasses transcripts

with partial exon and intron/intergenic overlap in a known gene

(Fig. 1B). Finally, SQANTI labels transcripts as Fusion (transcript

spanning two annotated loci) and Antisense (poly[A] containing

transcripts overlapping the complementary strand of an annotat-

ed transcript). Additionally, SQANTI annotates transcript length,

number of exons, and, for the FSM class, length of the reference

transcript and distance of transcript 3′/5′ ends to the reference

transcript 3′/5′ ends.

SQANTI analyzes transcripts in relation to their splice junc-

tions. Splice junctions can be divided into canonical and nonca-

nonical according to the two pairs of dinucleotides present at

the beginning and end of the introns encompassed by the junc-

tions. The combination of GT at the beginning and AG at the

end of the intron is found in 98.9% of all the introns in the human

genome (Parada et al. 2014). We considered GT-AG as well as GC-

AG and AT-AC as canonical splicing (altogether, found in more

than 99.9% of all human introns [Cocquet et al. 2006; Parada

et al. 2014]) and all the other possible combinations as noncanon-

ical splicing. SQANTI also allows users to provide their own set of

canonical junctions. Further, SQANTI subdivides splice junctions

between known, if they are present in the reference, and novel,

if they are not. When matching FL and short-read quantification

data are provided, SQANTI will also quantify the number of sup-

porting FL reads, transcript expression, and coverage of junctions

by short-read data.

Two other important QC features calculated by SQANTI are

reverse transcriptase (RT) template switching and off-priming. RT

switching is an intrinsic property of RTs that allows them to

jump within or across template positions without terminating

DNA synthesis. Secondary structures in RNA templates have

been shown to enhance RT switching activity (Cocquet et al.

Figure 1. Overview of the experimental model and SQANTI analysis. (A) SQANTI workflow. Twomain functions are part of SQANTI. sqanti_qc.py uses as
input files a FASTA file with transcript sequences, the reference genome in FASTA format, a GTF annotation file, and optionally, full-length and short-read
expression files. The function returns a reference-corrected transcriptome, transcript-level and junction-level files with structural and quality descriptors,
and a QC graphical report. sqanti_filter.py takes the reference-corrected transcriptome and the transcript-level descriptors file to return a curated transcrip-
tome from which artifacts have been removed. (B) SQANTI classification of transcripts according to their splice junctions and donor and acceptor sites.
Splice donors and acceptors are indicated in red and blue, respectively. (SJ) splice junction, (FSM) Full Splice Match, (ISM) Incomplete Splice Match,
(NIC) Novel in Catalog, (NNC) Novel Not in Catalog. (C) Experimental system and data processing pipeline. RNA isolated from neural progenitor cells
(NPCs) and oligodendrocyte precursor cells (OPCs) was retrotranscribed separately into cDNA and sequenced both by long-read PacBio and short-read
Illumina technologies. All PacBio RoIs were joined and processed by the ToFU pipeline to obtain consensus transcripts. Residual (indel) errors were elim-
inated by comparison to the reference genome to generate a corrected transcriptome, and false transcripts were removed using a SQANTI filter to result
in a curated transcriptome. Illumina short reads were mapped against the RefSeq murine transcriptome annotation, the corrected, and the curated PacBio
transcriptomes.
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2006; Houseley and Tollervey 2010) and to cause gaps during

cDNA synthesis. These gaps are interpreted as splicing events,

which, due to their nonsplicing origin, are enriched for noncanon-

ical junctions (Cocquet et al. 2006; Houseley and Tollervey 2010).

A hallmark of RT switching is the presence of a direct repeat be-

tween the upstream mRNA boundary of the noncanonical intron

and the intron region adjacent to the downstream exon boundary

(Cocquet et al. 2006). SQANTI incorporates an algorithm to locate

these direct repeats. SQANTI also evaluates possible off-priming of

the oligo(dT) in A-rich regions of the mRNA template. Annealing

of the oligo(dT) primer used in the first-strand synthesis of the

cDNA to non-poly(A) tail adenine stretches present in not yet dis-

carded intron-lariats or (pre)-messenger RNAs results in false cDNA

molecules (Nam et al. 2002; Spies et al. 2013). SQANTI investigates

these events by calculating the percentage of adenines (A) within a

window of nucleotides downstream from the genetic coordinates

corresponding to transcripts’ 3′ ends.

Finally, SQANTI implements the GeneMarkS-T (GMST) algo-

rithm (Tang et al. 2015) to predict ORFs from transcript sequences

(Supplemental Methods and Supplemental Fig. 1C–E).

Diagnostic graphs

Supplemental Table 3 lists the set of diagnostics plots returned by

SQANTI, which include distribution of transcript lengths, expres-

sion level, number of exons, position of junctions, full-lengthness,

and different quality features such as the proportion of noncanon-

ical junctions, RT switching evidence, and junction coverage by

short reads. In addition, SQANTI provides most of these graphs

with a transcript category breakdown in order to facilitate quality

assessment of the transcriptome obtained by the single-molecule

sequencing.

SQANTI filtering

After reference-guided error correction, artifacts might still present

in the resulting transcriptome. SQANTI removes artifactual tran-

scripts by applying a machine learning classifier based on

SQANTI features and sets of true and artifact transcripts provided

by the user or inferred by the application. The SQANTI filter also

includes an option to discard transcripts flagged as intra-priming

candidates. The resulting curated transcriptome can be checked

again with the SQANTI QC function to verify improvement in

quality parameters.

Experimental design and transcriptome sequencing

SQANTI was evaluated on a mouse neural differentiation PacBio

data set. Full-length cDNA from neural progenitor cells (NPCs)

and oligodendrocyte progenitor cells (OPCs), two biological repli-

cates each, was obtained and split to prepare Illumina and PacBio

sequencing libraries (Fig. 1C). PacBio sequencing was performed

according to the Iso-Seq protocol to generate around 0.6 million

RoIs per sample for a total of 2.2million RoIs. Illumina sequencing

resulted in approximately 60 million reads per sample. All PacBio

RoIs were joined and processed by the ToFU pipeline (Gordon

et al. 2015) to obtain a total of 16,104 primary transcripts.

Alignment of the ToFU transcripts against the mouse reference ge-

nome (GMAP, assemblymm10) (Wu andWatanabe 2005) showed

an average percentage of coverage and identity above 99.8%, sug-

gesting that the PacBio nominal high raw read sequencing error

is corrected by the ToFU clustering approach, as reported

(Gordon et al. 2015). However, small indels (average size ∼1.2 nt)

were still detected in 56.2% of the transcripts. These small indels

did not affect the overall long-read mappability, as long reads

with and without indels had no significant differences in the

GMAP quality of mapping and occurred with no particular se-

quence context bias (Supplemental Fig. 1A), which is in agreement

with the random profile of PacBio sequencing errors (http://www.

pacb.com/uncategorized/a-closer-look-at-accuracy-in-pacbio/;

Loomis et al. 2013). We first attempted to correct indels with

matching Illumina short reads using proovread (Hackl et al. 2014)

and LSC (Au et al. 2012). Although the number of transcripts

with at least one indel decreased to 16%, this was still unsatisfacto-

ry for ORF prediction. Instead, transcripts were corrected using the

reference genome sequence (Fig. 1C). By virtue of this strategy, all

indels were removed and we obtained the corrected PacBio tran-

scriptome. This corrected PacBio transcriptome contained a total

of 16,104 transcripts resulting from the expression of 7704 differ-

ent genes. Following the SQANTI classification, transcripts map-

ping a known reference (FSM, ISM) accounted for 60% of the

transcriptome, and novel transcripts of known genes (NIC, NNC)

made up 35.6% of our sequences. Transcripts in novel genes

(Intergenic and Genic Intron categories) represented about 2.3%

of our data while transcripts in the Antisense and Fusion classes

amounted to 1.1% and 0.3%, respectively (Supplemental Fig.

1B). We found 11,999 nonredundant ORFs within a total of

14,395 coding transcripts, while 1709 transcripts were predicted

to be “ORF-less.” The great majority of FSM, ISM, NIC, and NNC

transcripts were predicted to have ORFs (97%, 90%, 87.8%, and

92.8%, respectively), while the remaining categories were mostly

noncoding.

Descriptive analysis of transcriptome complexity and transcript

full-length made easy by SQANTI

A fundamental goal of long-read transcriptome sequencing is to

capture the extent of transcriptome complexity and to obtain

full-length transcripts. SQANTI includes all basic graphics to read-

ily study these aspects. As analyses are providedwith the transcript

classification breakdown, this adds an extra layer of understanding

to the quality of the sequencing results. For example, we hypoth-

esized that ISM transcripts were a combination of potentially real

shorter versions of long reference transcripts along with partial

fragments resulting from incomplete retrotranscription or mRNA

decay. Indeed, the SQANTI analysis showed that PacBio transcripts

classified as ISM matched reference transcripts that were longer

(Fig. 2A) and had more exons (Supplemental Fig. 2A) than FSM se-

quences. Moreover, UTR3 Fragment transcripts matched the lon-

gest reference transcripts (Fig. 2A), suggesting their enrichment

in retrotranscription fragments. All transcript classes had similar

median length (Fig. 2B), except for Genic Intron which was signif-

icantly lower (t-test P-value = 1.421 × 10−15), while this class and all

novel gene categories except Fusion transcripts were almost entire-

ly composed of monoexon transcripts (Supplemental Fig. 2B). In

terms of full-lengthness, themajority of our FSM transcripts, as ex-

pected, showed a complete or close to complete 3′-end overlap

with the 3′ end of the matched reference transcript: 76% had an

exact 3′-endmatch and 16%werewithin 20 nt upstream of the an-

notated 3′ end (Fig. 2C). This contrasted with the 35%of FSM tran-

scripts showing a complete overlap with their reference 5′ ends

and 50% falling short by 40–100 nt (Fig. 2D). This result is in agree-

ment with the strategy used in cDNA library preparation and ToFU

analysis parameters that require identification of poly(A) tails to

call FL reads but have less control over completeness at 5′ ends.
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Interestingly, 851 and 1361 FSM transcripts had 3′-end and 5′-end

positions that extended beyond the matched reference transcript,

while 1610 and 1439 of our FSM sequences were shorter by

more than 100 nt at their 3′ and 5′ ends, respectively. These cases

might represent alternative polyadenylation/alternative TSS

events. Regarding novel genes, only 13.8% of them had splice

junctions (Fig. 2E), andmost (98.2%) expressed just one transcript

(Supplemental Fig. 2C).

Finally, SQANTI descriptive graphs

revealed differences in expression fea-

tures between transcript categories at

expression features. For example, tran-

script expression level and number of

supporting FL reads were significantly

lower for ISM, NIC, and NNC than for

FSM transcripts (t-test P < 2.2 × 10−16 for

all comparisons) (Fig. 2F; Supplemental

Fig. 2D) and were significantly lower for

novel genes compared to annotated

genes (t-test P < 2.2 × 10−16 for both com-

parisons) (Supplemental Fig. 2E,F),which

showed that novel transcripts had gener-

ally lower expression levels than those al-

ready identified in reference databases.

In summary, thedescriptiveanalysis

framework provided by SQANTI readily

indicates that our neural mouse tran-

scriptome, obtained by PacBio single-

molecule sequencing, recovered full-

length transcripts and had an important

level of novelty (∼40%) with respect to

the reference mouse transcriptome both

because of novel splicing events and due

to 3′-/5′-end length variation. Transcript

diversity was more important than the

presenceofnovel genes,which represent-

ed only a small fraction of the expressed

mRNAs.However, novel transcripts tend-

ed to be less expressed than annotated

transcripts, indicating that, generally,

less novelty is to be expected for major

transcripts.

Evaluation of transcripts according

to their splice junctions

In our mouse neural data, the ratio of ca-

nonical versus noncanonical splicing

events fitted the expected genome pro-

portions when looking at known splice

junctions: Out of 141,332 known splice

junctions, 99.9% were canonical and

0.1% (185)were noncanonical. However,

novel splice junctions showed a very

different distribution: Out of 3837 novel

splice junctions, 69%were canonical and

31% (1188) were noncanonical. When

analyzed across the different SQANTI cat-

egories, noncanonical splicingwasmain-

tained at low rates in FSM (0.1%) and ISM

(0.25%) transcripts, which was expected

as both are formed purely by known

splicing events (Fig. 3A). InNIC transcripts,made up of novel com-

binations of known splice junctions or novel splice junctions de-

riving from annotated donors or acceptors, the percentage of

noncanonical splicing was 0.15% (Fig. 3A). In all cases, these non-

canonical junctionswere already known in the reference, and con-

sequently all novel junctions found in this transcript category

were canonical. However, in NNC transcripts, characterized by

the introduction of alternative donors and/or acceptors, we found

A B

C

E F

D

Figure 2. SQANTI characterization of the corrected PacBio transcriptome. (A) Length of the reference
transcripts to which FSM, ISM, and UTR3 Fragment PacBio transcripts matched. (B) Length of PacBio
transcripts by SQANTI categories. (C) Overlap at 3′ and (D) 5′ ends between the FSM transcripts and their
respective matched reference transcripts. (TTS) transcription termination site, (TSS) transcription start
site. (E) Percentage of monoexonic and multi-exonic transcripts for transcripts belonging to novel genes
and annotated genes. (F ) Transcript expression distribution across SQANTI categories.
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1155 novel noncanonical junctions, which represented 4.5% of

the total. Moreover, Genic Genomic, Intergenic, Genic Intron,

and Antisense transcripts, despite rarely being multiexonic,

showed relatively high percentages of noncanonical splice junc-

tions, with 2.32%, 7.28%, 21.57%, and 32.65%, respectively (Fig.

3A). This unusually high level of noncanonical junctions suggests

that experimental artifacts might be accumulating in these catego-

ries. Furthermore, when the percentage of transcripts showing at

least one noncanonical splice junction was considered, the pro-

portion of affected NNC compared to NIC transcripts became

more evident, 41.5% vs. 1.47%, respectively (Fisher’s exact test

[FET] P < 2.2 × 10−16), strongly indicating that this category of tran-

scripts needed deeper inspection.

We found, that although novel junctions could appear at any

position in novel transcripts, there was a higher concentration of

occurrences toward 5′ ends which is not observed for known—

whether canonical or not—junctions (FET P < 2.2 × 10−16) (Fig.

3B). This could either be the consequence of unannotated variabil-

ity at 5′ ends or higher accumulation of errors due to lower se-

quence support. The ToFU pipeline is more permissive with

clustering conditions at transcript ends (E Tseng, pers. comm.),

which accounts for a higher probability of errors at these areas.

Coverage by Illumina has been used to support novel junc-

tions called by PacBio (Au et al. 2013). However, Illumina reads

are not always equally distributed along the transcript length

and are often less abundant toward 5′ ends, providing less sup-

port for junction validation. We found that, as suspected, splice

junction support by short reads decreased toward the 5′ end of

the transcripts but was significantly higher for known junctions

(Wilcoxon rank-sum test [WRS] P < 2.2 × 10−16) (Fig. 3C). Novel

canonical junctions were in general less frequently covered but

still significantly more supported than novel noncanonical junc-

tions, which had hardly any supporting reads if located within

the first 120 nt of the transcript 5′ end (WRS P < 2.2 × 10−16)

(Fig. 3C).

Another possible explanation for noncanonical splicing is RT

switching. SQANTI analysis confirmed the enrichment of RT

switching in novel splice junctions (FET P < 2.2 × 10−16) (Fig. 3D)

and in NNC compared to NIC transcripts (7.24% versus 1.98%;

FET P < 2.2 × 10−16). Described RT switching events affect minor

isoforms of genes co-expressed with a major isoform that serves

as the template for the intra-molecular switching (Cocquet et al.

2006). Accordingly, we found that NNC transcripts are enriched

for being minor transcripts of highly expressed genes (Supple-

mental Fig. 2G,H). Finally, A-rich genomic DNA regions down-

stream from the TTS were concentrated in the relatively minor

SQANTI categories (Supplemental Fig. 2I) and were enriched in

noncoding and monoexonic transcripts (WRS P < 2.2 × 10−16 for

all tests) (Supplemental Fig. 2J). A total of 601 transcripts were

found to be intra-priming candidates, which affected the Anti-

sense and Genic Intron categories in particular (∼50% and∼ 30%

of their transcripts were flagged). Remarkably, Incomplete Splice

Match transcripts that were versions of the reference transcripts

shortened at the 3′ end and monoexon NIC transcripts with

A B

C D

Figure 3. Splice junction characterization in the corrected PacBio transcriptome. (A) Distribution of splice junction (SJ) types across SQANTI categories.
NNC, Genic Genomic, Antisense, Intergenic, and Genic Intron are enriched in noncanonical SJs. n = 76,757 SJ for FSM, n = 13,802 for ISM, n = 27,368 for
NIC, n = 26,509 for NNC, n = 51 for Genic Genomic, n = 49 for Antisense, n = 494 for Fusion, n = 86 for Intergenic, and n = 55 for Genic Intron. (B)
Distribution of the SJs according to their distance to the transcription start site. (C) Relative coverage by short reads of SJs as a function of their class
and distance to the TSS. (a.u.) Arbitrary units. (D) Detection of RT switching direct repetitions by SQANTI algorithm across SJ types.
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intron retention events were also significantly enriched in intra-

priming candidates (WRS P < 2.2 × 10−16 for all tests) (Supplemen-

tal Fig. 2I).

Altogether, the SQANTI framework analyses suggest that a

fraction of the novel transcripts found by the ToFU pipeline could

be technical artifacts that originated at the cDNA library construc-

tion step or via less confident sequencing data at the 5′ ends of

transcripts.

PCR validation of PacBio transcripts

To shed light on whether the transcripts detected by the ToFU

analysis were correct or not, we performed RT-PCR amplifications

for a total of 67 mRNAs encompassing different SQANTI catego-

ries: 23 FSM (three with noncanonical splice sites), 12 NIC, 30

NNC canonical (11 of them containing at least one noncanonical

splice junction), and three Fusion (Supplemental Fig. 3). Impor-

tantly, we performed RT-PCRs both on the Clontech oligo(dT)-en-

riched full-length cDNAs used for PacBio sequencing and, for

positive NIC/NNC/Fusion and four FSM transcripts, on new

cDNA retrotranscribed at 42°C and 50°C using random hexamers

rather than oligo(dT). The rationale behind this approach was to

test whether novel transcripts could have been spuriously generat-

ed by RT switching-like mechanisms at the retrotranscription step

of the PacBio protocol. Since higher temperature and/or the use of

random hexamers would complicate the formation of secondary

structures in the RNA template, retrotranscription artifacts would

be less favored in these conditions.

We validated by RT-PCR for all of the 23 FSM, including the

three cases with noncanonical junctions (Fig. 4A1), highlighting

the high level of confidence supporting these transcripts. Novel

transcripts showed lower validation rates: 8/12 NIC, 1/3 Fusion,

and 6/30 NNC, highlighting the low detection rate within the

NNC category (Fig. 4A2). Importantly, nine of these nonvalidated

NNC transcripts were amplified by oligo(dT) PCR but were lost

when random hexamers and higher temperatures were used (Fig.

4A3), suggesting the possible occurrence of retrotranscription arti-

facts. Table 1 summarizes the results of the PCR validation exper-

iment. Details can be found in Supplemental Table 4. These

results indicated that an additional filtering strategy was impor-

tant to remove artifactual transcripts from the ToFU transcriptome

output.

Using SQANTI features to build a quality control filter for ToFU

artifacts

Previous work applied different criteria to discard artifacts from

transcriptome sequencing, including support by short reads (Au

et al. 2012), removal of transcripts with noncanonical splicing

(Tilgner et al. 2013), or filtering based on sequence features

(Rogers et al. 2012). However, we found that these approaches do

not fully capture the complexity of the data. For example, a few

known and NIC transcript junctions lack Illumina coverage (148

out of 67,610, and 20 out of 437, respectively), while most of the

novel noncanonical junctions did have supporting Illumina reads

(543 out of 597). We found that additional features such as RT

switching direct repeats and low expression values accumulated

in NNC transcripts but were not exclusive to them. Moreover, our

RT-PCR analysis revealed an important number of transcripts (16)

having a full set of canonical junctions but failing validation.

We hypothesized that the set of SQANTI descriptors ought to

be informative of transcript quality and could be used to define a

composite filter to remove artifact transcripts efficiently.Wedecid-

ed to train a machine learning (ML) classifier based on these fea-

tures. To obtain a generally applicable filter, we trained our

classifier with a “best guess” of true (positive set) and artifact (neg-

ative set) transcripts within the genome-corrected ToFU output:

We defined as the positive set Full Splice Match transcripts (n =

7774) and as the negative set Novel Not in Catalog transcripts

with at least one noncanonical junction (NNC-NC; n = 1110).

Note we trained the classifier without providing this structural in-

formation (Methods). We used Random Forest (Breiman 2001)

with an 80/20 training/test set split, random down-sampling for

class balance, and 10× cross-validation, and called predicted tran-

scripts those with a probability for positive classification higher

than 0.75. As a note, the RT-PCR instances mentioned in the pre-

vious section were excluded from the classifier build. We obtained

an area under the curve (AUC) of 99.54% for the ROC curve of the

test set (Fig. 4B, blue line), while the AUC for the set of NIC/NNC

transcripts assayed by RT-PCR was 82.41% (Fig. 4B, red line, and

Supplemental Table 5). This result indicates that our classifier built

on SQANTI descriptors faithfully captures differences between our

ground truth set of positive and negative transcripts, and this can

be efficiently applied to discriminate true transcripts from artifacts

within the set of long-read defined novel sequences. Figure 4C

shows howwell the RT-PCR data of the SQANTI classifier performs

against two previous approaches used to remove artifacts, namely

the “noncanonical splice junction” filter and SpliceGrapher. Data

indicate that the classifier approachhas a higher F1 score (71.7 ver-

sus 57.9 and 41.1, respectively) and lower FDR (11% versus 53.3%

and 58.8%, respectively) than alternative methods. These notable

FDR differences are mostly due to a high rate of false canonical

junction transcripts that are not discarded by the prior approaches.

Moreover, SQANTIwas the only filtering strategy that succeeded in

lowering both the noncanonical SJ and the no short-read coverage

quality features in NNC transcripts to levels similar to those of the

high-confidence FSM category (Fig. 4D).

Features selected by the SQANTI classifier are shown in order

of importance in Supplemental Figure 4. The feature ranked first in

order of importance (Bite) flags transcripts that skip consecutive

exons and have donor/acceptor sites inside a known exon, which

we interpret as an indication of novel splice junctions caused by

secondary RNA structures. Five out of the eight top variables (low-

est Illumina coverage at junction, minimum sample coverage,

number of FL reads, expression of the gene, expression of the tran-

script, and ratio of transcript versus gene expression) were associat-

ed with transcript expression, suggesting that expression patterns

arewithin themost useful characteristics for calling bona fide nov-

el transcripts.

Following these results, we incorporated a function for tran-

scriptome curation into SQANTI.When applied to themouse neu-

ral transcriptome, the combination of the SQANTI ML and intra-

priming filters removed 4134 novel transcripts (2462 NNC, 1281

NIC, 32 Genic Genomic, 36 Fusion, 116 Antisense, 25 Intergenic,

129 Genic Intron, and 53 ISM). In our final curated transcriptome,

the adjusted percentages of each category were: 66.3% FSM, 14.1%

ISM, 15.7% NIC, 2% NNC, 0.5% Genic Genomic, 0.5% Antisense,

0.2% Fusion, 0.3% Intergenic, and 1.4% Genic Intron (Fig. 4E).

The transcript category inwhich our filter has the strongest impact

is NNC, that went from 14% to 2%, while FSM increased conse-

quently from 49% to 66% in the curated transcriptome (Fig. 4E).

In our final data set, 9626 transcripts (80.4%) are in the known cat-

egories, 2344 (19.6%)arenovel transcripts, ofwhich207 (1.7%) fall

within novel genes. These transcripts were the product of 7167

genes and resulted in 9269 different ORFs.

Tardaguila et al.

402 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on October 10, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222976.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222976.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222976.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222976.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222976.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222976.117/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


Table 1. Summary RT-PCR validation

Transcript type

Oligo(dT) Random hexamers

Overall validationPositive Negative Total Positive Negative Total

FSM 23 (3 nc) 0 23 4 (3 nc) 0 4 100%
NIC 10 1 11 8 2 10 67%
NNC 15 (3 nc) 15 (8 nc) 30 6 9 (3 nc) 15 20%
Fusion 1 2 3 1 0 1 33%

(nc) Transcript with noncanonical junctions.

A1 C

D

A2

A3

B
E

Figure 4. SQANTI filter performance on mouse data set. (A) Representative examples of RT-PCR validation experiments. Three PCR conditions were as-
sessed: oligo(dT) template at 42°C and random hexamers (RH) template at 42°C and at 50°C. (A1) Example of a FSM transcript with a noncanonical SJ
successfully amplified at each PCR condition. (A2) Example of a NNC transcript with a noncanonical SJ that failed to be amplified in the oligo(dT) condition.
(A3) Example of NNC transcript with noncanonical SJ amplified at oligo(dT) but not at RH conditions. (B) ROC curves of the SQANTIML filter for the test set
(blue line) and for the set of novel isoforms assayed by RT-PCRs (red line). (C) Summary of the performances of the SQANTI filter, the noncanonical filter,
and the SpliceGrapher filter for the set of novel isoforms assayed by RT-PCR. (nc filter) Noncanonical filter, (TP) True Positive, (TN) True Negative, (FP) False
Positive, (FN) False Negative, (FDR) False Discovery Rate. (D) Comparison of quality features in the FSM and NNC categories after the SQANTI, nc, and
SpliceGrapher filters. Statistical differences by Fisher’s exact test (FET), (∗∗∗) P < 0.001, (ns) not significant. (E) Composition of SQANTI transcript categories
in the mouse before and after the SQANTI filter.
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Generalization of the SQANTI approach

To assess the general utility of SQANTI, we applied our approach to

alternative analysis pipelines and data sets. We processed our raw

mouse PacBio readswith the IDP andTAPIS pipelines and analyzed

resulting transcriptomes with SQANTI (Supplemental Fig. 5A,B).

IDP, which relies heavily on a high-quality reference annotation

and on short-reads correction, returned a total of 13,525 tran-

scripts, the great majority belonging to the FSM category (96%).

Only 509 transcripts were novel in this approach (358 NIC, 158

NNC), yet they still showed significant enrichments in RT switch-

ing and no short-read coverage in a junction (Supplemental Fig.

5A). IDP fails to return any of the 16 novel transcripts validated

by PCR, suggesting that this method is highly restrictive for novel

isoform calling. On the contrary TAPIS, that, like ToFU, works

without short-read data, returned a significantly larger set of tran-

scripts (91,428), with an overwhelming majority of them belong-

ing to the NNC class (66%), which were strongly enriched in low-

quality features (Supplemental Fig. 5B).

We next evaluated our analysis pipeline using additional

data sets, namely the maize ear (Wang et al. 2016) and the human

MCF-7 cells (http://www.pacb.com/blog/data-release-human-

mcf-7-transcriptome/), both publicly available. Transcriptome

composition in these data sets was substantially similar to what

we observed for our mouse transcriptome, with a significant num-

ber of novel transcripts in known genes that were enriched in low-

quality features (Supplemental Fig. 5C,D).We applied the SQANTI

filtering approach to these data sets by training ourML classifier in

each casewith their sets of FSM andNNC-NC transcripts and using

default values for removing of intra-priming events. As with the

mouse data, we obtained high AUC values in the test sets (99.3%

for maize ear and 99.7% for MCF-7) and succeeded in removing

a considerable amount of low-quality novel transcripts while con-

trolling their enrichment in low-quality features (Supplemental

Fig. 5C,D).

Additionally, we analyzed the importance of SQANTI descrip-

tors for theMLclassifier in these data setswith respect to themouse

data. Although we observed an overall agreement in top-ranked

classification features (i.e., the top three variables were shared

among data sets), we also found some noticeable differences

(Supplemental Fig. 4). For example, the number of FL reads was

not a highly ranked feature for the maize ear data, probably due

to the lower sequencing depth of this data set, and was absent for

theMCF-7 data set, as the valuewas not available. Still, in both cas-

es, the SQANTI classifier achieved high classification performance.

We conclude that our SQANTI filtering approach based on the

composite utilization of quality descriptors is a robust but versatile

approach for effectively removing artifacts in long-read transcrip-

tome data sets that can be applied to a wide range of organisms.

Altogether, this section shows that the SQANTI quality con-

trol framework is a very useful tool to reveal the structural compo-

sition of transcriptomes obtained from long-read sequencing and

to compare quality across preprocessing pipelines and experi-

ments. We show that our choice of ToFU read clustering plus

SQANTI filtering for transcriptome curation is a good trade-off be-

tween discovery and high quality for novel transcript calls and can

be efficiently applied to different PacBio long-read data sets provid-

ed that a reference genome and short-read data are available.

Functional insights from novel and alternative transcripts

Most of the novel transcripts from themouse neural transcriptome

belong to existing genes. To further understand the biological rel-

evance of these new calls, we analyzed the cellular processes where

they participate. Genes with novel transcripts were enriched in

metabolic processes, regulation of neurogenesis, oligodendroglial

lineage, behavior, and regulation of potassium ion transport (Fig.

5A), suggesting that unannotated isoform diversity may impact

fundamental energy utilization and specific neural biology path-

ways, both key for neural differentiation (Cai et al. 2004; Amaral

et al. 2016; Shih et al. 2017). The availability of a full-length cor-

rected and curated transcriptome allows us to predict ORFs with

high confidence and annotate 3′ and 5′ UTRs. We studied to

what extent alternative splicing modifies coding and noncoding

regions of transcripts and impacts the principal isoform (PI) of

the gene. PIs are defined by the APPRIS (Rodriguez et al. 2013) da-

tabase as the protein isoform with highest functional load and

cross-species conservation. Approximately, 36% of the genes ex-

pressed in our system were multi-isoform genes. Of these, 1836

genes expressed the transcript corresponding to the principal iso-

form (Rodriguez et al. 2013) of the gene and in 592 cases (32%), the

PI transcripts were expressed with multiple, distinct UTR regions.

Transcripts corresponding to predicted alternative ORFs were ex-

pressed for 1429 genes (79%). In contrast, these non-PI transcripts

were much less variable at UTRs, with only 9% of them showing

multiple 3′ or 5′ UTR variants, and about 27% of the novel tran-

scripts extended existing TSSs or TTSs. This result suggests that,

at least in the mouse neural transcriptome, multi-isoform expres-

sion would mostly result in a change in the predicted protein

and to a lesser extent in the alternative processing of UTRs.

However, alternative ORFs rarely were expressed as more than

one transcript, suggesting further transcriptional regulation of

these alternative forms might not be required to modulate their

functionality.

Peptide support of novel and alternative transcripts

As most of the novel transcripts were predicted to have ORFs that

contained novel amino acid stretches when compared to PIs, we

sought to investigate whether peptide data present in public prote-

omics databases could support these findings. In order to do this,

we first created a nonredundantORF database of publicmouse pro-

teins and the predicted proteins in our neural data and classified

each protein as a Principal IsoformORF (PI-ORF; n = 4579) if anno-

tated as such by APPRIS (Rodriguez et al. 2013), Alternative ORF

(Alt-ORF; n = 2127) if present in Ensembl or RefSeq but not being

PI, and Novel ORF (Novel-ORF; n = 1194), if the protein would be

coded by NIC or NNC transcripts present only in our mouse

PacBio data. For each predicted protein, we performed an in silico

trypsin digestion and selected unique peptides that would un-

equivocally identify each ORF. We analyzed theoretical peptides

for those genes identified in our mouse transcriptome that had

more than one isoform annotated in Ensembl (v80). The percent-

age of ORFs predicted to be identifiable by unique peptides was

highest for the PI-ORFs (56.3%, or 2577), followed by the Novel-

ORFs (42.6%, or 509) and was lowest for Alt-ORFs (30.1%, or

641). The majority of Novel-ORFs and Alt-ORFs were predicted to

have only one unique peptide, while this was only the case for

14.2% of the PI-ORFs (Supplemental Fig. 6A). Conversely, most

PI-ORFs were predicted to contain six or more discriminating pep-

tides and this was true for only 7% of Alt-ORFs and 9.8% of Novel-

ORFs. This higher rate of unique peptides in PI-ORFs was expected

as the mouse genome contains a significant number of genes in

which alternative isoforms are incompletely annotated and have

only partial sequences and the APPRIS PI is often the longest
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Figure 5. Functional diversity associatedwith genes with novel transcripts, variability of 3′ UTR in PI-ORFs transcripts, and comparative analysis of protein
differences between PI and non-PI-ORFs. (A) Gene Ontology enrichment analysis for genes expressing novel transcripts. Analysis of the type of protein
changes introduced by (B) Alternative ORFs and (C) Novel ORFs with respect to the PI-ORF of the gene. Blue: ORFs computationally predicted in the curated
transcriptome; red: ORFs predicted to be identifiable by unique peptides; green:ORFs detected in proteomics databases with at least two peptide spectrum
matches (PSMs). (D) Example of 3′ UTR variability in a PI-ORF that leads to a quantification error. (D1) Transcripts associated with the Spcs2 gene according
to PacBio sequencing (green) and by RSEM quantification using RefSeq (red). The profile of mapping short reads at the Spcs2 locus is shown in gray. The
positions of transcript-specific primers are indicated by arrows, and differences at the transcription termination sites are highlighted by a red dashed box; 0
indicates splice junctions lacking any short-read support. (D2) Short-reads-based average transcript expression levels of Spcs2 transcripts using either
RefSeq or PacBio-T references. (D3) Validation of Spcs2 transcript expression by RT-PCR: PB.6460.1/ NM_025668 but not XM_006508117 was amplified.
(E) Analysis of the most expressed transcript (MET) in genes with MET differences between PacBio-T and RefSeq quantifications. Kruskal-Wallis Test, (K-W),
(∗∗∗) P < 0.001, (ns) not significant. (E1) Lowest SJ coverage by short reads in METs. (E2) Lowest mean exon coverage by short reads in METs. (E3) Distance
between the TTS of the METs and their FSM references. Same MET means both PacBio-T and RefSeq select the same MET; Different MET means RefSeq
selects a MET that is not manually curated and PacBio-T selects a MET that is manually curated.
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ORF in a gene. Consequently, proteins deemed as PIs are expected

to be easier to detect by protein digestion approaches than alterna-

tive isoforms.

We then screened public databases for the presence of unique

peptides associated with our set of ORFs. Two separate approaches

were conducted: a Neural tissue approach, comprising one proteo-

mics study of mouse neural tissue and another study of the mouse

neural secretome, and an All tissue approach comprising peptides

from 36 proteomics studies carried out on a variety of murine tis-

sues but excluding the two used in the first approach. Overall,

we detected at least one unique peptide for 77.9% of the PI-ORFs

predicted to be identifiable, while this percentage went down to

20.56% and 8% for Alt-ORFs and Novel-ORFs, respectively. Most

Alt- and Novel-ORFs had single unique peptide matches, while

most PI-ORFs were found with multiple peptides (Supplemental

Fig. 6B). In part, this is to be expected; the success of detection

was significantly lower when the ORF was predicted to have only

one unique theoretical peptide, and this was the case for the ma-

jority of Alt-ORFs and Novel-ORFs (Supplemental Fig. 6C).

Interestingly the agreement between the two proteomics screen-

ing approaches was much stronger for those proteins detected

with two or more peptides (Supplemental Fig. 6B). When ORFs

were identified by a single peptide, the peptide was almost always

present in just one of the two studies. Note that ORF detection by

single peptide matches, similarly to transcript detection by single

read counts, falls into the area of unreliable protein identification,

and therefore false discovery in these cases is not controlled

(Deutsch et al. 2016). Combined with the fact that many of the al-

ternative isoforms could only be discriminated by a single peptide,

the result confirms that the lower number of discriminating pep-

tides in Alt and Novel ORFs versus their PI ORF counterparts im-

pairs their detection by proteogenomics approaches.

Alt/Novel ORFs had lower unique peptide detection rates

across all unique peptide ranges (Supplemental Fig. 6C), so other

factors are also contributing. To understand whether expression

levels were playing a role, we evaluated the number of studies

(PSM counts) supporting each ORF to find that, on average,

Alt- and Novel-ORFs had five to six supporting studies (median

= 2) per detected unique peptide, while this number was nearly

10 for PI-ORFs (median = 4.5), which is in agreement with the no-

tion that PI-ORFs are ubiquitously expressed across tissues

(Rodriguez et al. 2013). We found that PI-ORFs detected by

unique peptides in fewer than five proteomics studies had a sig-

nificantly lower expression in our system than those found in

more than 10 projects and had similar expression levels as the

transcripts coding for Alt- and Novel-ORFs (Supplemental Fig.

6D). Altogether, our results indicate that direct detection in pub-

lic proteomics databases of predicted coding products of novel

and alternative transcripts is hampered by their lower expression

pattern and an overall lower identifiability by unique peptides.

Finally, we evaluated the types of protein differences between

alternative and principal isoforms for which peptide support was

conclusive (minimum of two PSM counts per ORF, n = 59 Alt-

ORFs, and n = 14 Novel-ORFs) and compared them to the compo-

sition of our predicted transcriptomes. While our set of curated

transcripts predicted that most alternative and novel ORFs distrib-

uted between N-terminal truncations, microexons (indels/substi-

tutions up to 9 amino acids [aa]), and major changes (indels/

substitutions of more than 9 aa with or without N-Ter/C-Ter trun-

cations), the proteogenomics analysis, as expected, failed to reveal

these N-terminal differences and mostly found the major changes

both for Alt- and Novel-ORFs (Fig. 5B,C), which is in agreement

with a detection approach that relies on positive detection of

unique peptides. Microexons were found mostly in Alt-ORFs

(Fig. 5B), while Novel-ORFswith no overlap to their PIs were found

in the proteomics databases more than expected (Fig. 5C); howev-

er, this finding is supported by just a few ORFs and hence cannot

be conclusive. Although there was more than a 10-fold difference

between the number of identifiable ORFs and those consistently

identified in our proteomics screenings, there was a general agree-

ment between the relative abundance of each type of protein dif-

ference among the two ORF sets, which suggests that the ORFs

confidently identified by unique peptide matches could represent

the actual diversity range of the alternative proteome.

Novel transcripts have a major impact on accurate transcriptome

quantification by short reads

Previous studies have shown that the utilization of a reduced, ex-

pressed transcriptome as reference for short-read mapping instead

of the total reference dramatically impacts transcriptome quantifi-

cation (Mezlini et al. 2013; Soneson et al. 2016) and improves rep-

licability of expression level estimates (Au et al. 2013). We sought

to investigate how the new transcripts impact quantification by

short reads. As one important aspect of transcript-resolved analysis

is the identification of the transcript that captures most of the ex-

pression in each gene (most expressed transcript, MET), we con-

centrated our study in the comparison of METs when using the

total RefSeq (∼160,000 transcripts) or the curated PacBio transcrip-

tome (11,970 transcripts, aka PacBio-T) as reference for short-read

mapping. For 3976 genes, the MET was identical in PacBio-T and

RefSeq, meaning that the PacBio-T MET was a Full Splice Match

of the RefSeq MET. This was not the case for 1433 genes, and, in

996 of them, the PacBio-T MET was a different FSM transcript pre-

sent in RefSeq. For example, the Signal PeptidaseComplex Subunit

2 gene (Spcs2) was expressed as one transcript in our PacBio neural

transcriptome (PB.6460.1) and had two transcripts in RefSeq quan-

tification (NM_025668 andXM_006508117) (Fig. 5D1). PB.6460.1

is a FSM transcript ofNM_025668 andboth codify for the PI-ORFof

the gene, but the 3′ exon of PB.6460.1 is smaller, resulting in a 3′

UTR shorter by 1340 nt (Fig. 5D1, red dashed box). This shorter

3′ exon is actually the annotated exon of the RefSeq transcript,

XM_006508117, which also uses two alternative 5′ exons (Fig.

5D1). XM_ 006508117 was the MET in the RefSeq quantification,

while NM_025668 was estimated as poorly expressed (Fig. 5D2).

Upon RT-PCR amplification with transcript discriminating prim-

ers, we confirmed the PacBio-T- and not the RefSeq-based

quantification scheme (Fig. 5D3). When inspecting read coverage

at this locus, we observed that neither the unique 5′ junctions of

XM_006508117 nor the extra exonic sequence at the 3′exon of

NM_025668 were covered by Illumina short reads, while the

short-read pattern nicely fits the PacBio transcriptmodel.We spec-

ulate that this variability at the 3′ UTRs creates a conflict when re-

solving transcript quantification in the RefSeq gene model that

was decided in favor of transcript XM_006508117 by RSEM (Li

and Dewey 2011; Zhang et al. 2017), as this transcript has a more

consistent 3′-end coverage. In summary, the transcript quantifica-

tion error of the Spcs2 gene when using a reference transcriptome

as mapping template was due to a discrepancy in the 3′-end anno-

tation between the reference and the actual expressed transcripts.

Similar disagreement patterns were observed for two additional

genes, Dhrs7b and Bdkrb2, with similar outcomes in terms of

MET selection (Supplemental Fig. 6E,F). To estimate how general

this pattern was, for all the MET discrepant genes, we investigated
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the RefSeq curation status. The majority of the discrepant genes

(57.2%, n = 470 genes) corresponded to situations where the

PacBio-T MET was a FSM of a manually curated RefSeq transcript

and the RefSeq MET was not manually curated, as in the Spcs2

gene. Furthermore, in these cases, the RefSeq-based MET had sig-

nificantly worse lowest splice junction coverage and lowest mean

exon coverage than the MET called by the PacBio-T quantification

(Fig. 5E1,E2). Similarly to Spcs2, we found that, for these 470 genes,

the differences in the length at the 3′ end between the MET select-

ed at PacBio-T quantification and their matched RefSeq transcripts

were significantly higher than in geneswhere both quantifications

selected equivalent METs (Fig. 5E3). Moreover, these differences

were also observed for transcripts codifying for the PI-ORF of the

genes, indicating that the extensive variability in the 3′ ends that

is not annotated in a global reference such as RefSeq is not restrict-

ed to secondary/alternative transcripts. These results demonstrate

the relevance of using a full-length reference transcriptome updat-

ed with novel expressed transcripts for correct quantification

estimates.

Discussion

SQANTI as a critical tool to analyze whole

transcriptome quality

Long-read sequencing technologies, such as the PacBio platforms,

as well as Illumina’s Moleculo and Oxford Nanopore, have

brought novel excitement into the challenge of describing the

complexity of the transcriptome of higher eukaryotes by provid-

ing new means for sequencing full-length transcript models.

While early papers concentrated on demonstrating the dramatic

enrichment in full-length transcripts achieved by long reads

(Sharon et al. 2013; Tseng and Underwood 2013), there is an in-

creasing number of publications that describe thousands of new

transcripts discovered by this technology. Accordingly, we found

that, when sequencing the mouse neural transcriptome using

PacBio, a large number of novel transcripts could be detected.

However, close inspection of these new transcripts revealed signs

of potential errors that required a thorough and systematic analy-

sis of these sequences before making any new transcript calls. This

motivated the development of SQANTI, a new software for the

structural and quality analysis of transcripts obtained by long-

read sequencing.

The three basic aspects of the SQANTI QC pipeline are (1) the

classification of transcripts according to the comparison of their

junctions to a reference annotation in order to dissect the origin

of transcript diversity, (2) the computation of a wide range of de-

scriptors to chart transcript characteristics, and (3) the generation

of graphs from descriptors data, frequently with a transcript-type

breakdown, to facilitate interpretation of the sequencing output

and reveal potential biases in the novel sequences. Using this anal-

ysis framework, wewere able to show that, at least in ourmouse ex-

periment, novel transcripts—especially those in the NNC category

—are typically poorly expressed transcripts of known genes, con-

sistent with previous reports (Sharon et al. 2013; Tilgner et al.

2014, 2015). We also observed that novel junctions accumulate

at the 5′ end of transcripts, have lower coverage by Illumina reads,

and are enriched in noncanonical splicing and direct repeats typ-

ical of RT switching.

However, none of these features are exclusive of any of the

novel transcripts categories, which invites the question on how

best to remove transcript artifacts. This has been solved in the

past by either eliminating all novel transcripts with at least one

junction not supported by short reads (Sharon et al. 2013), by sys-

tematically discarding transcripts with noncanonical splicing (Au

et al. 2013), or by developingmodels to estimate the likelihood of a

certain splicing event (Abdel-Ghany et al. 2016). In our case, we

performed an extensive PCR validation of transcripts belonging

to different known and novel types. We found a significant num-

ber of transcripts, both with canonical and noncanonical junc-

tions, that had complete junction support by Illumina and that

were amplified by RT-PCR of the sequenced cDNA library but

that failed to be validated when PCR conditions were adjusted to

avoid secondary RNA structures. We concluded that these might

be cases of retrotranscription artifacts, which would have escaped

filtering solely based on short-read support. This result may sug-

gest that a revision of library preparation protocols is needed,

which goes beyond the scope of this study. As an alternative, we

were able to combine our set of SQANTI descriptors with a ma-

chine learning strategy to build a filter that discards poor quality

transcripts with better performance than alternative existing

approaches.

The SQANTI filter is data-adaptive, and we showed that it can

be successfully applied to other long-read transcriptomics data

sets. Note that SQANTI is designed to leverage genome annotation

data to characterize and filter the long-read transcriptome. Where

no genome is available or the assembly is low-quality, reference-

guided correction of transcript sequences will be compromised

and therefore also the accurate translation into ORFs. If, addition-

ally, the gene content annotation is poor, this will impact SQANTI

transcript classification, leading to enrichment in novel isoforms

and genes. In these conditions, it might be difficult to define ro-

bust FSM positive and NNC-NC negative training sets for the

SQANTI classifier: the first set, because of the low number of

known transcripts, and the second, because of poor correction

of PacBio sequences. Subsampling experiments showed that

150–200 training set transcripts would be sufficient to obtain

comparable performance to that in Figure 4B, indicating that

the SQANTI filter can be used confidently even when reduced

training sets are available. Furthermore, the SQANTI set of quality

descriptors will be extremely useful in these cases, as they will pro-

vide a comprehensive characterization of the quality of the tran-

script calls in situations where little additional data is available.

Finally, note that SQANTI is agnostic to the sequencing technolo-

gy that generated the transcripts and simply requires sequences in

FASTA format. Hence, the software can accept transcript sequenc-

es from other long-read approaches such as Nanopore and

Moleculo. Obviously, the results of the quality assessment will

vary as a function of the characteristics of the underlying

technology.

Novel insights in transcriptome complexity from single-molecule,

full-length transcriptome sequencing

The fundamental advantage of single-molecule, long-read tech-

nologies over short reads is their direct detection of full-length iso-

formdiversity and of novel transcripts. The availability of a curated

full-length transcriptome data set of our mouse neural tissue al-

lowed us to explore these aspects confidently.We found that genes

with novel transcripts are enriched inmetabolic processes and spe-

cific neural functions related to neurogenesis and oligodendroglial

lineage. This is remarkable because both the narrow control of

metabolic programming and the expression of genes involved in

cell identity are key players in differentiation courses (Cliff and
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Dalton 2017), and the finding that most novel transcripts concen-

trate in these categories suggests that important untapped tran-

script/regulatory diversity could be revealed by long-read

sequencing technologies.

We find it interesting that, while most of the transcript diver-

sity is in the form of novel ORFs, an important fraction of the al-

ternative transcripts are UTR variations of the principal isoform

transcript. However, alternative transcripts of the same PI rarely

show variable UTRs among them, and novel transcripts infre-

quently extend annotated TSSs and TTSs. This suggests that

gene expression regulation by alternative transcripts either con-

trols the expressed protein or the transcript stability, but the inter-

action of the two might not be as critical. We also show how high

variability at transcript ends is a source of quantification errors

that can be alleviated when an expressed full-length reference

transcriptome is used. Our data suggests that unannotated

alternative polyadenylation events are frequent in mammalian

genomes, which, in turn, induce incorrect quantification esti-

mates. Full-length sequencing of the expressed transcriptome

readily identifies this 3′-end diversity to provide the correct tem-

plates for transcript quantification. On the other hand, variability

at the 5′ end is still an issue for full-length transcriptome sequenc-

ing, as biological variability cannot be unequivocally differentiat-

ed from technical artifacts in cDNA library preparation protocols.

The SMARTer protocol typically used in PacBio sequencing may

not always capture the full extension of the 5′ ends due to tran-

script degradation or incomplete retrotranscription. This may ac-

count for the lack of 5′-end coverage observed in FSM and

ISM transcripts. Trapping of the 5′ CAP prior to the synthesis

of the secondary cDNA strand has been shown to increase the

overlap of the 5′ end without seriously compromising the yield

of long reads (Cartolano et al. 2016) and in the future may repre-

sent the preferred form of library preparation to study 5′-end

diversity.

Finally, we investigated whether the transcriptome diversity

found by long-read sequencing was mirrored by proteogenomics

data. We concluded that the low expression and identifiability by

single peptides of Alt and Novel ORFs hampered their detection

by proteomics. Detection of alternative protein isoforms has

proved to be difficult, and while some authors claim that limited

detection in proteomics databases might indicate low translation-

al or stability rates (Ezkurdia et al. 2015; Tress et al. 2016), other

studies identify a significant proportion of alternative exons asso-

ciated with ribosomes as evidence of active translation (Sterne-

Weiler et al. 2013; Weatheritt et al. 2016). While it is not the

scope of this work to resolve these issues, we turned our attention

to the analysis of protein differences for those cases of confident

peptide detection. We found that the distribution of the type of

protein differences in the non-PI-ORFs with respect to the main

isoforms is similar to the predictions based on the PacBio se-

quencing data, except for N-terminal truncations that are at a dis-

advantage in a standard peptide detection approach. Most of

detected alternative ORFs showed major peptide changes com-

pared to the PI-ORFs of their respective genes, which could po-

tentially have an impact on functionality of the alternative

protein. While a detailed analysis of these functional differences

requires further computational and experimental approaches, the

results presented in this paper indicate that long-read technolo-

gies, provided adequate quality control is applied, are effective

tools for describing the isoform-resolved transcriptome and can

aid in the study of the biological significance of alternative

splicing.

Methods

Differentiation of NPCs and OPCs from neonatal mice

Neonatal C57/BL6mice (4 d old) were sacrificed and neural precur-

sor cells (NPCs) were isolated from the subventricular zone.

Neurospheres were obtained by culturing the progenitors inmedia

supplemented with EGF and bFGF and oligodendrocyte precursor

cells were derived from them by adding ATRA (All Trans Retinoic

Acid) as described in the Supplemental Methods section.

Transcriptome generation and quantification

Sequenced PacBio subreads were pooled together, and ToFU soft-

ware was used to obtain nonredundant transcripts. Default param-

eters were set to obtain Read of Insert, full-length classification of

RoIs, and ICE (Iterative Clustering for Error Correction) steps. The

Quiver option was turned on to improve consensus accuracy of

previously generated ICE clusters by using non-full-Length read

information. Generated HQ polished transcripts (>99% accuracy

after polishing) were collapsed to eliminate transcript redundancy

(5′ differences were not considered when collapsing transcripts).

This set of 5′ merged nonredundant transcripts was defined as

the ToFU transcriptome. TAPIS was run with default parameters,

except for the maximum intron length used by GMAP (version

2016-05-01), which was set to 200,000. Apart from the reference

genome, TAPIS requires the input of a transcriptome annotation

file, in this case, the RefSeq murine transcriptome. IDP corrects

long sequences through the incorporated LSC (Au et al. 2012)

module thatmaps high quality short reads to Iso-Seq long reads us-

ing Bowtie 2 (version 2.3.2) (Langmead and Salzberg 2012). The

parameters were set to default except for the aligner (GMAP; see

command line in Supplemental Methods) and the minimum iso-

form fraction value to accept a predicted transcript, which was

set to 5%. Transcript quantification using short reads was obtained

using STAR (Dobin et al. 2013) as the mapper and RSEM (Li and

Dewey 2011; Zhang et al. 2017) as the quantification algorithm

(parameters available at Supplemental Methods). Expression esti-

mates were obtained as transcript per million (TPM). Long-read

quantification was computed as the number of full-length reads

of each transcript divided by the total number of FLs of the sample.

Themost expressed transcript was defined as the transcript of each

gene that obtained the highest average TPM value across all the

samples. The relative coverage of a splice junction was defined as

the sum of all the reads mapped to the junction divided by the

sum of the expression of all the transcripts in which it is present.

Verification of transcripts by reverse transcription PCR

PCR amplification of selected transcripts was performedwith both

the sequenced full-length cDNA and newly synthesized cDNA

from the same RNA extractions. For new cDNA reactions, 1 µg of

total RNA was used to synthesize the first-strand cDNA using

SuperScript III (Life Technologies) primed with random hexamers

in a reaction volume of 20 µL, according to the manufacturer’s in-

structions. Each random hexamer cDNA synthesis reaction was

carried out at two temperature conditions: 42°C and 50°C. RT-

PCR reactions used 1 µL of sequenced full-length cDNA or 2 µL

of random hexamers cDNA, together with Biotools DNA

Polymerase (1U/µL) in a reaction volume of 50 µL. Primers were

designed to span the predicted splicing event using Primer-

BLAST (Supplemental Table 3; http://www.ncbi.nlm.nih.gov/

tools/primer-blast; Ye et al. 2012). PCR conditions were 5 min

at 94°C, followed by 35 cycles of 30 sec at 94°C, primer-specific an-

nealing temperature for 30 sec, and 72°C for 1min or 1min 30 sec,
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depending on the predicted product size. PCR amplification was

monitored on 1.5% agarose gel.

RT switching prediction

SQANTI contains an algorithm that implements the RT switching

(RTS) conditions described in Cocquet et al. (2006), namely, an

exon skipping pattern due to a retrotranscription gap caused by

secondary structures in expressed transcripts. The algorithm looks

at all the junctions for possible RTS (both canonical and nonca-

nonical junctions) and checks for a direct repeat pattern match

at defined sequence locations: The pattern at the end of the splice

junction’s 5′ exon must match the pattern at the 3′ end of the

splice junction’s intron. There are three parameters that control

pattern matching: (1) the minimum number of nt required to

match (4–10); (2) the number of nt of wiggle allowed from the ide-

al pattern location (0–3); and (3) whether to allow for a single mis-

match, indels or not. SQANTI uses as default parameters: a

minimum of 8-base-long repeat sequences, a maximum wiggle

of 1, and no mismatches. FSM transcripts with the highest mean

expression in each gene are assumed to serve as templates for

RTS and are excluded from the analysis.

ORF prediction and functional annotation

TheGMSTalgorithm (Tang et al. 2015)was applied to predictORFs

in PacBio transcripts, setting parameters to consider just the direct

strand of the cDNA and AUGs as the initial codon. As GeneMarkS-

T allows prediction in incomplete transcripts, lack of coverage at

the 5′ end caused some truncated ORFs starting in codons other

than methionine. In these instances, the ORF started at the first

in-frame methionine, shortening the N terminus. GMST was

benchmarked as shown in SupplementalMethods. GO annotation

of novel transcripts was done by Blast2GO (Conesa et al. 2005)

with default parameters and a query-hit overlap requirement of

90% of the hit sequence (Götz et al. 2008). Enrichment analysis

was performed with the hypergeometric test of the GOseq

(Young et al. 2010) R package.

Characterization of Alt-ORFs and Novel-ORFs with respect to PI-

ORFs and UTR/ORF variability

Microexon definition was restricted to novel amino acid stretches

obtained by in-frame indels or substitutions of nomore than 27 nt

(9 aa), following Irimia et al. (2014). ORFs showing exclusively N-

terminal or C-terminal deletions were labeled as N-Ter Deletion or

C-Ter Deletion ORFs. ORFs with indels and substitutions greater

than 9 aa, combined or not with N-Ter and C-Ter deletions, were

labeled as Major Change ORFs. ORFs that could not be aligned

against the PI-ORF of their respective genes were deemed as No

align ORFs. Two UTRs were considered to be different if they start-

ed in different genomic coordinates or if they shared a common

start point but had a length difference of more than 30 nt.

Machine learning classifier of artifacts based on SQANTI features

A machine learning approach was developed to discriminate arti-

facts from true novel transcripts utilizing SQANTI features. FSM

transcripts were used to define the set of positive transcripts, while

NNC-noncanonical transcripts were taken as the negative set. By

definition, the labeled sets (FSM and NNC-NC) contain only mul-

ti-exonic transcripts, and hence the classifier can only be applied

to this type of transcripts. From the total set of SQANTI transcript

descriptors, 16 variables defined for both novel and known tran-

scripts sequences were selected (Supplemental Table 1). SQANTI

transcript descriptors that relate to reference transcripts, structural

category classification, and canonical junction status were exclud-

ed because either they are irrelevant to the classification or they

were used to define the positive and negative transcript sets.

Variables with near zero variance or a correlation higher than 0.9

in the labeled sets were removed. The labeled set was divided

into a training set (80%) and a test set (20%) and algorithms

were run using down-sampling to equilibrate positive and negative

sets and 10×10 cross-validation. Several machine learning meth-

ods were tested (Adaboost [Schwenk and Bengio 2000], CART

[Breiman et al. 1984], Random Forest [Breiman 2001], SVM

[Cortes and Vapnik 1995], and Treebag [Loh and Shih 1997]) on

the mouse data that employed 7774 FSM, 1100 NNC-NC tran-

scripts, and 14 SQANTI descriptors (RTS_stage and coding vari-

ables were excluded in this data set due to low variability).

Random Forest (RF) was selected as the best performing approach

and run using 500 trees. This RF approach was also applied to the

PacBio maize ear (Wang et al. 2016) and human MCF-7 (PacBio)

data sets. For all data sets, we assessed the quality of the predictions

by ROC analysis and evaluated SQANTI quality descriptor perfor-

mance on the filtered transcriptome obtained after the application

of the classifier to the novel transcripts. For our mouse data

set, SQANTI filter performance was also evaluated on the 67 tran-

scripts tested by RT-PCR by computing ROC, F1-score, and FDR

values. The F-score was calculated as 2∗(Specificity∗Sensitivity/

[Specificity+Sensitivity]). The FDR was calculated as 100∗(FP/[TP

+FP]). Note that transcripts evaluated by RT-PCR were excluded

from the training set used to build the classifier.

SQANTI pipeline

SQANTI is implemented in Python with calls to R (R Core Team

2016) for statistical analyses and generation of descriptive plots.

The SQANTI program has two major functions: sqanti_qc.py and

sqanti_filter.py. The sqanti_qc.py function performs different tasks:

(1) It corrects transcript sequences based on the provided reference

and returns a corrected transcriptome; (2) it compares sequenced

transcripts with the current genome annotation to generate gene

models and classify transcripts according to splice junctions (a

full description of structural classification of isoforms can be found

in the Results section); (3) it predicts ORFs using GeneMarkS-T; (4)

it runs our algorithm to predict RT switching; and (5) it returns a

transcript level and junction level descriptive file. These files con-

tain 33 and 20 fields, respectively, where the three first fields iden-

tify the transcript in the reference genome and the remaining

fields describe different transcript/junction properties, making a

total of 47 SQANTI descriptors (Supplemental Tables 1, 2). sqanti_

filter.py uses the SQANTI features output to perform filtering of ar-

tifacts by two different approaches. The intra-priming filter option

removes transcripts with adenine stretches in the genomic posi-

tion downstream from their 3′ ends. The machine learning filter

trains a Random Forest classifier based on the user’s data following

the strategy described above. sqanti_filter.py returns a curated tran-

scriptome where artifact transcripts are removed. For the mouse,

maize (Wang et al. 2016), and MCF-7 (PacBio) data sets, the refer-

ence genomes used were mm10, AGPv4, and hg38, respectively.

Analysis of peptide support

We performed an in silico analysis of the peptide support for the

predicted ORFs in our neural transcriptome by analyzing public

proteomics databases. A nonredundant database composed of pre-

dicted ORFs from our murine transcriptome experiments and all

the murine ORFs annotated in Ensembl (v80) was created. These

ORFs were subjected to in silico tryptic digestion (Proteogest, com-

plete digestion). Unique peptideswere identified, andORFswith at
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least one unique peptide of 7 aa or more were annotated as identi-

fiable ORFs. We then used two different approaches to detect ex-

perimental Peptide to Spectrum Matches (PSMs) that match

unique peptides from our ORFs. The first approach made use of a

pipeline built on Pladipus (Verheggen et al. 2016), a platform

that allows for distributed and automated execution of bioinfor-

matics-related tasks, and performed an all-tissue search of mouse

proteomic studies (n = 36). The pipeline consists of pride-asap, a

tool designed to automatically extract optimal search parameters,

SearchGUI (Vaudel et al. 2011), a tool that manages the execution

of several search engines, and PeptideShaker (Vaudel et al. 2015), a

tool that allows for the merging of the results produced by the

search engines. For this study, X! Tandem (Craig and Beavis

2004), MyriMatch (Tabb et al. 2007), and MS-GF+ (Kim et al.

2008) algorithms were applied. The input spectra were obtained

from 36 murine projects in the PRIDE (Martens et al. 2005) data-

base. The second approach was based on the Sequest algorithm

(Eng et al. 1994) and screened large-scalemouse proteomics exper-

iments of brain tissue (Sharma et al. 2015) and astrocyte-secreted

proteins (Han et al. 2014). A more detailed description of these ap-

proaches is available in Supplemental Methods.

RNA extraction, full-length cDNA library preparation,

and sequencing

Total RNA isolation from cultured cells (two biological replicas per

cell type) was donewith theNucleospin RNA kit (Macherey-Nagel)

obtaining RINs (RNA IntegrityNumbers) between10 and 9.7 for all

samples. The synthesis of full-lengthcDNAwasperformedwith the

SMARTer PCR cDNA Synthesis kit (Clontech, version 040114) fol-

lowing PacBio recommendations. The cDNA synthesis protocol

used 1 µg of total RNA, 42°C for retrotranscription, and 13 PCR am-

plification cycles to control for overamplification of small frag-

ments. For each sample, we performed two first-strand cDNA

synthesis reactions and nine PCR reactions using 10 µL of first

strand cDNA (diluted 1:5 in TE-buffer) to obtain ∼14–16 µg full-

length cDNA per sample. Each sample was submitted to the ICBR

sequencing facility (University of Florida) for PacBio sequencing

(P4-C2 chemistry). Three cDNA fractions were obtained with

BluePippin and sequenced on the RSII instrument using two

SMRT cells for the 1–2 kb fraction, and three SMRT cells for 2–3

and 3–6 kb fractions, for a total of eight SMRT cells per sample.

Additionally, the same samples were sequenced with the

Illumina NextSeq instrument using Nextera tagmentation and

2×50 paired-end sequencing.

Data access

Sequencing data from this study have been submitted to the NCBI

Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra)

under study accession number SRP101446.
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Corrigendum: SQANTI: extensive characterization of long-read transcript sequences for
quality control in full-length transcriptome identification and quantification
Manuel Tardaguila, Lorena de la Fuente, CristinaMarti, Cécile Pereira, Francisco Jose Pardo-Palacios, Hector del
Risco, Marc Ferrell, Maravillas Mellado, Marissa Macchietto, Kenneth Verheggen, Mariola Edelmann,
Iakes Ezkurdia, Jesus Vazquez, Michael Tress, Ali Mortazavi, Lennart Martens, Susana Rodriguez-Navarro,
Victoria Moreno-Manzano, and Ana Conesa

The authors would like to correct the omission of a funding source in the Acknowledgments sectionwhichwas
inadvertently excluded from the initial publication of this article. The additional text is as follows andhas been
updated online:

“This project has received funding from the Marie Curie International Research Staff Exchange Scheme
within the 7th European Community Framework Program under grant agreement No 612583-DEANN.”

The authors apologize for the inconvenience.

doi: 10.1101/gr.239137.118
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