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Abstract:
Coarse measures of socioeconomic status, such as parental income or parental

education, have been linked to differences in white matter development. However, these
measures do not provide insight into specific aspects of an individual’s environment and how
they relate to brain development. On the other hand, educational intervention studies have
shown that changes in an individual’s educational context can drive measurable changes in
their white matter. These studies, however, rarely consider socioeconomic factors in their
results. In the present study, we examined the unique effect of educational opportunity on
white matter development, even when controlling other known socioeconomic factors. To
explore this question, we leveraged the rich demographic and neuroimaging data available in
the ABCD study, as well the unique data-crosswalk between ABCD and the Stanford Education
Data Archive (SEDA). We find that educational opportunity is related to accelerated white
matter development, even when accounting for other socioeconomic factors, and that this
relationship is most pronounced in white matter tracts associated with academic skills. These
results suggest that the school a child attends has a measurable impact on brain development
for years to come.

Introduction:
Students who attend high-quality schools demonstrate higher academic achievement

both in terms of reading and math scores1–4, as well as long-term outcomes such as college
admissions and social mobility5–7. A common suggestion in the scientific literature8,9, and
popular press10,11, is that the relationship between educational opportunity and academic
outcomes reflects the influence that high-quality educational experiences might exert on brain
development. Despite the well-established links between school quality and academic
achievement, the specific relationship between educational opportunity and brain development
remains unexplored.
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Past studies, however, have demonstrated a relationship between brain development
and various non-academic socioeconomic and environmental factors12. For example, diffusion
MRI has revealed that higher family income predicts differences in white matter properties in
adulthood13 and that parental income moderates the relationship between cognitive flexibility
and tissue properties across a range of white matter tracts14. Furthermore, the influence of
genetic heritability on white matter structure has been shown to be higher for individuals from
high income backgrounds15. Together these findings suggest that the financial resources
available to an individual during childhood influence and interact with brain development in
complex ways that are not fully understood.

Additionally, lower levels of parental education have been linked to differences in white
matter structure across multiple fiber tracts, including those purportedly underlying academic
skills, such as the left arcuate fasciulus, left superior longitudinal fasciculus (SLF) and left
inferior longitudinal fasciculus (ILF)16–18. These studies offer a variety of different (and
sometimes conflicting) accounts of the relationship between white matter, parental education,
and cognitive skills, with some results finding a brain-behavior relationship in individuals with
lower levels of parental education17 and others suggesting that the relationship between
parental education and cognitive behaviors is completely mediated by white matter
properties16,18. What none of these studies address is why parental education affects white
matter structure. In other words, are differences in parental education a proxy for a variety of
environmental factors (broadly encompassed by the construct of SES) that influence white
matter development? Or are there specific aspects of a child’s environment that are responsible
for the link between measures of SES and brain structure?

Typical measures of socioeconomic status (SES) do not elucidate the specific aspects of
an individual’s environment that drive differences in white matter development. The hormone
cortisol has been shown to mediate the relationship between stressful life experiences and white
matter properties19, suggesting that environmental stress, which has been linked to aspects of
SES20, plays a role in white matter development. Furthermore, other specific environmental
factors, such as home language21, screen use22, early childhood nutrition23,24, and adverse
childhood events25,26 have also been linked to differences in white matter properties. Together,
these findings suggest that typical measures of SES, such as parental income or education, may
act as proxies for a confluence of other environmental factors that directly impact white matter
development.

However, across these studies examining the link between SES and white matter
development, an individual’s academic environment has gone unexplored. Although traditional
measures of SES are highly correlated with school achievement27, it remains unclear the extent
to which the specific school, and more generally the educational environment, that a child ends
up in influences white matter development above and beyond the myriad of correlated factors
that are wrapped up in indices of SES.
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It bears mentioning that educational intervention studies have demonstrated that
educational experiences can drive changes in brain structure and function over remarkably
short timescales. These studies have shown that a short-term, intensive reading intervention led
to changes across a range of white matter tracts, including left arcuate and left ILF, and that
these changes correspond to changes in reading skill28–30. In the domain of mathematics,
intensive learning experiences have been shown to “normalize'' functional activity in students
with mathematical learning difficulties31 and participation in specific math curricula drives
changes in neurotransmitter concentration in the middle frontal gyrus and predicts longitudinal
changes in mathematical reasoning32.

Although these findings serve as a proof-of-concept that educational experience can
shape brain development in a manner that facilitates the development of academic skills, the
samples used in these studies included a small number of participants in an intervention setting
and were not representative of the population at large33. Moreover, the intensive and highly
controlled interventions employed by these studies are far from representative of the typical
differences among American schools. Furthermore, these studies did not include measures of
SES in their analyses; It is possible or even likely that interventions have variable effects on
brain development and learning depending on a child’s sociodemographic background34,35.

Although careful recruitment strategies can lead to sociodeomgraphcally diverse study
populations, it is nearly impossible to capture the vast range of educational experiences of
students across the United States in a typical brain imaging study. Recent efforts to collect and
share large-scale neuroimaging datasets36–40 have now opened the door for researchers to
explore the interplay between brain development, cognitive skills, and environmental and
demographic factors. The ongoing ABCD study38 is particularly well positioned to examine the
relationship between school quality and brain development in a large and representative
sample. This study is following a cohort of approximately 10,000 children from across the
United States longitudinally to understand brain development throughout adolescence. In
addition to neuroimaging data, the ABCD study collects rich demographic and behavioral data
on each participant, including traditional measures of SES, household and neighborhood
cohesion, and educational opportunity, as measured by the Stanford Education Data Archive
(SEDA; see Methods for overview)27. This rich set of neuroimaging and demographic data
presents the first opportunity to understand the relationship between brain development and
the diversity of educational environments experienced by students across the United States.

In the current study, we test the hypothesis that differences in white matter development
are related to the quality of an individual’s educational environment, while controlling for the
multitude of factors indexed by traditional measures of SES. We first leverage the individual
white matter tract data generated through automated-fiber quantification (AFQ)41,42 to test the
hypothesis that educational opportunity relates to white matter development in specific tracts
underlying academic skill, such as reading and math. We find that FA in the bilateral arcuate
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fasciculus, left posterior arcuate, and the corpus callosum are related to educational
opportunity, even when controlling for other measures of socioeconomic status. We then train a
brain-age model to test the hypothesis that educational opportunity relates to accelerated white
matter development. This model suggests that an individual’s educational opportunity may
influence white matter development throughout the brain, though this relationship may be
more pronounced in white matter tracts associated with academic skills.

Results:
Exploring the relationship between educational opportunity and white matter development

Intervention studies have shown that an individual’s academic environment can drive
measurable changes in brain structure and function28,29,31. However, it remains unclear the extent
to which educational opportunities uniquely influence brain development above and beyond
other socioeconomic factors12,16,19. Here we operationalize educational opportunity based on
data from the Stanford Educational Data Archive (SEDA)27. SEDA leverages standardized test
scores from schools across the United States to calculate two indices of an individual’s
educational environment. “Early educational opportunities” provided by parents,
neighborhoods, pre-K, and early elementary school education43 are operationalized by the
average 3rd grade test scores for a district (SEDA intercept). Year-to-year learning opportunities
afforded by an individual school is operationalized by the average change in test scores for a
school between grade 3rd and 8th (SEDA slope). Both measures are in z-score units and relative
to national norms. Thus, a school with a SEDA intercept and slope of zero performs at the
national average in terms of third grade test scores and in terms of how quickly students grow
from year to year. A school with a SEDA intercept of -1 and slope of zero performs 1 standard
deviation below the national average, and students progress at the average rate meaning the
discrepancy in achievement is maintained throughout schooling. Because the ABCD study
begins in 4th or 5th grade, SEDA intercept is the most relevant measure of the educational
opportunity that a participant has experienced up until the first ABCD measurement.

As expected, SEDA intercept is highly correlated with traditional measures of
socioeconomic status (Figure 1A). The relationships between these various indices of SES raise
the possibility that measures such as parental education and household income could act as
proxies for other factors, like educational opportunity, that might more directly influence brain
development. To this end, we leverage the rich demographic and neuroimaging data available
in the ABCD dataset38 to separate the unique contributions made by a student’s academic
environment towards their white matter development, compared to other known
socioeconomic factors.

Diffusion Properties of the Left Arcuate are Correlated with Socioeconomic Factors
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Past studies have demonstrated a relationship between white matter development and
socioeconomic factors, such as parental income, environmental stress and home context14,19,21.
We began by attempting to replicate the results from past studies that observed univariate
relationships between white matter and socioeconomic factors. We focus these initial analyses
on the left arcuate, as past studies have shown this tract to relate to both reading skill and
measures of SES18,28,44. We first calculated the correlation between mean FA in the left arcuate
and a range of demographic and developmental factors, including age, pubertal status, sex,
family cohesion, log-transformed income-to-needs ratio, parental education, SEDA intercept,
and neighborhood cohesion (Figure 1A). This revealed small, yet significant correlations
between mean FA in the left arcuate and parental education (r = 0.085; pcorrected < 0.001 ),
income-to-needs ratio (r = 0.046 ; pcorrected = 0.019 ), SEDA intercept (r = 0.076; pcorrected < 0.001 )
and age (r = 0.096; pcorrected < 0.001).

However, these correlations do not account for individual and site-level random effects
that might relate to white matter properties. To explore univariate relationships between FA in
the left arcuate and demographic, developmental, and socioeconomic factors while controlling
for these random effects, we constructed a series of linear mixed-effects models. These models
included family structure nested within scanner site as random effects45 and either
log-transformed income-to-needs ratio, parental education, family cohesion, neighborhood
cohesion, sex, SEDA intercept or pubertal status as a sole fixed-effect predictor. As a control
measure, we also fit the same sequence of models predicting FA in the right arcuate to assess
whether these univariate relationships occur across the white matter or are specific to the left
arcuate.

Similar to the correlation analyses, these models revealed significant relationships
between mean FA in the left arcuate and parental education, SEDA intercept, and
income-to-needs ratio (all pcorrected < 0.001; Figure 1B). Additionally, these models identified a
slight yet significant relationship between home environment and mean FA in the left arcuate (B
= -0.0004, pcorrected = 0.006) . Interestingly, the models predicting FA in the right arcuate also
found significant relationships between mean FA and parental education, income-to-needs
ratio, and SEDA intercept (all pcorrected < 0.05) as well as significant effects of pubertal status (B =
0.002, pcorrected = 0.023) and biological sex (B = -0.004, pcorrected< 0.001). Taken together, these
models suggest that, in a univariate setting, FA and socioeconomic predictors, like income or
parental education, relate to white matter properties.
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Figure 1: A. Correlation matrix illustrating the univariate relationships between mean FA in the left arcuate, SEDA
intercept, and other demographic and socioeconomic factors. Coefficients in bold represent correlations where
FDR-corrected p<0.05 .B. Beta-weights for linear mixed-effects models predicting mean FA in the left and right
arcuate from a single predictor, specified on the x-axis. Each model included a random effects structure of family
structure nested within scanner site. The colors of each bar denote each predictor variable. Error bars represent the
standard error of each beta-coefficient. Bars that are bolded illustrate the beta-weights with FDR-corrected p<0.05.

The relationship between educational opportunity and tissue properties varies across the
white matter

Although univariate analyses suggest a relationship between FA and socioeconomic
factors, SES measures are also highly correlated with each other. Thus, the observed
relationship between FA and any one index of SES may actually be driven by a separate, yet
correlated measure. To test the hypothesis that there is a specific relationship between
educational opportunity and white matter properties, while accounting for other developmental
and socioeconomic effects, we modeled the relationship between SEDA intercept and tissue
properties across all the white matter tracts identified by pyAFQ (see Methods of overview).
Briefly, pyAFQ identifies 28 major white matter tracts and calculates diffusion properties at 100
nodes along the length of each tract (see Supplemental Figure 1 for overview of the tracts
identified by pyAFQ). To account for scanner differences between the 21 ABCD study
neuroimaging sites, we also performed ComBat harmonization46–48 across each node included in
the pyAFQ outputs.

Based on previous research in smaller samples linking specific white matter tracts to
academic skills, we hypothesized that educational opportunity would specifically relate to
tissue properties in the the left arcuate fasciculus (ARC), left posterior arcuate fasciculus
(pARC), bilateral inferior longitudinal fasciculus (ILF), bilateral superior longitudinal fasciculus
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(SLF), and uncinate fasciculus (UNC), as these tracts have all been previously implicated in
academic skills, such as reading and arithmetic49–52. Within each tract, we then fit a linear
mixed-effects model predicting mean harmonized fractional anisotropy (FA; averaged over the
length of tract) at the first ABCD observation from SEDA intercept while also controlling for
age, log-transformed income-to-needs ratio, parental education, family cohesion, neighborhood
cohesion, sex, and pubertal status. Family structures nested within scanner site were included
as random effects in each model45.

Figure 2: A. Renderings of the six white matter tracts significantly related to SEDA intercept. These include the left
and right arcuate fasciculus, the left posterior arcuate, and the motor, superior parietal, and temporal bundles of the
corpus callosum. Shading represents the -log10(p-value) for the beta-weight on SEDA intercept from the models
predicting FA in each tract (1.301 corresponds to a p-value of 0.05). This association was strongest in the left arcuate
(yellow in the top panel). B. Beta-coefficients for the fixed effects of the models predicting FA in each major white
matter tract. Each row in the figure refers to the fixed-effect in each model and each color represents a specific bundle.
Error bars represent the standard error of each beta-coefficient. Bars that in bold illustrate the beta-weights with
FDR-corrected p<0.05.

Examining the beta-coefficients from these models revealed significant relationships
between FA and SEDA intercept in the left and right arcuate, the left posterior arcuate, right
cingulate cingulum (CGC), and three colossal tracts. The strongest SEDA relationship between
SEDA intercept and FA was observed in the left arcuate (all FDR-corrected p < 0.05; Figure 4,
second row from bottom). All together, these tract-wise models demonstrate that the school a
child attends influences the development of some white matter tracts above and beyond the
myriad of other socioeconomic variables that characterize a child’s environment.
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However, as expected, FA in many tracts was also related to other environmental,
developmental, and demographic factors (see Figure 2 for overview of these relationships).
Parental education was linked to FA in the bilateral arcuate, CST, IFOF, ILF, right VOF, and the
right SLF, whereas pubertal status was negatively related to FA in a collection of calossal
bundles. Furthermore, age was positively related to higher FA across the entirety of the white
matter and males, on average, demonstrated lower FA compared to females across most white
matter tracts, with the exception of the left and right CGC and temporal portion of the corpus
callosum. These results illustrate that, although educational environment is uniquely linked to
FA in some tracts, other environmental and developmental factors are also related to white
matter tissue properties across the white matter.

Development of the left and right arcuate is moderated by educational opportunity
Based on the observed cross-sectional link between FA and SEDA intercept in both the

left and right arcuate, we then focused on the longitudinal development of these two white
matter tracts. Because past longitudinal studies have linked the development of left arcuate and
gains in reading skill28,44,53, we chose to center this analysis around the left arcuate and its right
hemisphere counterpart. To investigate the developmental dynamics of these two white matter
tracts, we constructed a series of linear growth models54 predicting mean FA over time
(operationalized as years since initial MRI scan). In our growth models, we again included
individuals nested within family structures nested within scanner sites as random effects. To
control for known developmental, demographic, and socioeconomic effects, we also included
initial age, pubertal status, sex, log-transformed income-to-needs ratio, parental education,
family cohesion, and neighborhood cohesion, sex as fixed-effects. Our main predictors of
interest in these models were time, SEDA intercept, tract (right or left arcuate), and their
interactions.

We began by fitting separate growth models predicting mean FA in the left and right
arcuate. These models revealed significant changes in FA in both tracts within each participant
across the two observations (both p < 0.001; See Supplemental Materials for full model outputs).
These models also revealed a significant relationship between SEDA intercept and mean FA
across both tracts, suggesting that, on average, individuals with greater educational
opportunities have higher FA in both the left and right arcuate. We then tested the hypothesis
that educational opportunity relates to interindividual differences in FA development over time.
To do so, we added a SEDA intercept by time interaction to both growth models. Wald tests
comparing the full and reduced models revealed that the addition of the interaction term
significantly improved the fit for model predicting FA in the left arcuate ( 2(1) = 35.603, p <χ
0.001) but not the right arcuate ( 2(1) = 1.773, p = 0.183), suggesting that educational opportunityχ
may have developmental effects specific to the left arcuate.
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To directly test the hypothesis that educational opportunity is related to differences in
FA development between the left and right arcuate, we then constructed a combined growth
model based on data from both the left and right arcuate fasciculus. This model included the
same fixed and random effects as the previous growth models with the addition of a three-way
hemisphere by SEDA intercept by time interaction, allowing us directly compare FA
development across the left and right arcuate. This model revealed that, on average, FA was
lower in the right arcuate compared to the left (B = -0.023; p < 0.001) and that FA increased over
time in both tracts (B = 0.002; p < 0.001). Furthermore, the average rate of FA development was
slightly, yet significantly, higher in the right arcuate compared to the left (B = 0.0004; p<0.001).
Interestingly, individuals in environments with higher SEDA intercept scores, on average,
demonstrated significantly faster rates of FA development across both the right and left arcuate
(B = 0.001; p < 0.001) and that this interaction was significantly more pronounced in the left
arcuate compared to the right (B = -0.0013; p < 0.001; Figure 3). For a full summary of the
longitudinal growth model, see Supplementary Table 1.

Figure 3: Left: Growth trajectories for Diffusion Kurtosis (DKI) FA in the left and right arcuate across the first two
observations of the ABCD study. The red and blue lines represent the average DKI FA growth trajectories for
individuals in high (Intercept = 1) or low SEDA (Intercept = -1) intercept schools, respectively. Gray lines represent
the observed changes in FA in the left and right arcuate for each individual present in the dataset. Right:Mean
residual values for the model predicting Brain-Age Gap from a reduced model that excludes SEDA intercept as a
predictor, but retains all other random and fixed-effects. Each bar represents either the top (red) or bottom (blue) 20%
of participants based on their SEDA intercept scores. Error bars represent one standard error from the mean.

Educational Opportunity Accelerates White Matter Development
Although the bundle-wise analyses suggest that educational opportunity is related to

white matter development in the left and right arcuate, cingulate cingulum, and corpus
callosum, linear-mixed effects models cannot capture these relationships while considering the
entirety of the white matter. To better understand the link between educational opportunity and
global white matter development, we trained a series of convolutional neural networks to
predict an individual’s age from the white matter properties derived using pyAFQ (see
Methods for overview of training procedure). Our brain-age model trained on white matter data
from both timepoints, was able to explain roughly 22% of the variance in age in the validation
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set with an MAE of 0.834 years. It should be noted that the variance explained by this model is
smaller than other brain age models 55 due to the restricted age range in the ABCD sample.
Nevertheless, the residuals from this model, or the difference between the model’s predicted
age and each participant's observed age, can be thought of as the brain-age gap (BAG), a relative
measure of how accelerated or delayed an individual’s brain is maturing.

After training our brain age model, we fit a sequence of linear-mixed effects models
predicting interindividual differences in BAG from a range of environmental and demographic
factors. Our baseline model included age, log-transformed income-to-needs ratio, parental
education, family cohesion, neighborhood cohesion, sex, and pubertal status as fixed-effects
(and the same random effects structure as previous models) , allowing us to control for known
demographic, socioeconomic, and developmental factors related to brain development19,56.

To test the relationship of educational opportunity and white matter development, we fit
a model including SEDA intercept as an additional predictor, and compared the full and
reduced models using a Wald test. This tests revealed that SEDA intercept significantly
improved model fit ( 2(1) = 5.483, p = 0.02). The coefficients of the SEDA intercept modelχ
revealed a significant negative relationship between BAG and age (B=-0.475; p<0.001; See
Supplemental Table 2 for full model output), suggesting that our model underestimates the
brain-age of older participants and over estimates the brain age of younger participants. This is
a known phenomenon with brain age models57 and can be interpreted as regression to the
mean. Additionally, the model revealed significant relationships between BAG and both
parental education (B=0.038; p=0.02) and pubertal status (B=0.0041; p<0.001). The effect of
parental education is in line with past findings13,16,18 suggesting that parental education is linked
with differences in white matter development and the effect of pubertal status suggests that
puberty accelerates white matter development.

Interestingly, this model also revealed a small, yet significant relationship between the
BAG and SEDA intercept (B=0.019; p=0.019; Figure 3). The observed relationship between
SEDA intercept and BAG suggests that the educational opportunities afforded to a learner
before 3rd grade are linked to global differences in white matter maturation. These results,
coupled with the insignificant coefficients on other demographic and environmental predictors
(all p>0.05), indicate that an individual’s early educational opportunities are related to global
white matter development even when accounting for factors such as income-to-need ratio,
family cohesion, and neighborhood stability.

Discussion:
In the present study, we leveraged the unique epidemiological sample from the ABCD

study to explore the relationship between an individual’s white matter development and the
educational opportunities provided by their early childhood and elementary school
environments. The scale of the ABCD study, coupled with the rich demographic measures
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present in the data, provides the very first opportunity to examine how the diverse educational
experiences found across the United States’ educational system relate to brain development,
while also accounting for other environmental factors. We leveraged data from the Stanford
Education Data Archive alongside diffusion MRI data to test the hypothesis that an individual’s
white matter development is related to the quality of their educational environment.

These analyses showed that SEDA intercept, a measure of early educational
environment, was associated with fractional anisotropy in the left and right arcuate fasciculi, left
posterior arcuate, and the corpus callosum. These relationships held even when accounting for
other socioeconomic factors known to relate to white matter, such as parental education or
household income. When examining the longitudinal relationship between white matter
properties and educational opportunity over the course of 2 years, the rate of FA development
in both the right and left arcuate was associated with SEDA intercept and this relationship was
slightly, yet significantly, more pronounced in the left arcuate. Furthermore, a global analysis of
the white matter using a brain-age modeling approach revealed a relationship between SEDA
intercept and levels of white matter maturation.

To the best of our knowledge, these results are the first to show a specific link between
educational environment and white matter development in a sample of this size. As observed in
the present study, measures of socioeconomic status are highly correlated with one another.
Thus, some indices of SES, such as household income, may confound other measures of SES in
studies of brain development. The fact that SEDA intercept predicts tissue properties of specific
white matter tracts, as well as global brain-age measures, even when controlling for other
developmental and environmental factors, demonstrates a specific relationship between an
individual’s educational environment and their white matter development.

Because SEDA intercept can be thought of as a measure of the educational opportunities
available to a learner in early childhood and elementary school43,58, these results suggest that
early educational experiences impact the development of white matter tracts throughout
elementary school and into middle school. This parallels behavioral and educational policy
research that has shown that gaps in reading and mathematics at the onset of elementary
school, on average, persist throughout the course of K-12 education59–61 and that early measures
of academic skills serve as strong predictors of later academic success and life outcomes5,6.

However, it remains unclear whether early childhood opportunities continue to
influence white matter development throughout late elementary school and into adolescence or
if the year-to-year educational opportunities afforded by a school also shape white matter later
in development. Future work with the full longitudinal ABCD sample will have to explore this
question. Nevertheless, the findings that SEDA intercept is related to both increased rates of FA
development in the left arcuate and overall brain-age indicate that differences in early
educational opportunity may not only lead to differences in academic outcomes but also
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influence the developmental trajectories of the white matter throughout childhood and into
adolescence.

Furthermore, the observed relationship between SEDA intercept and the brain-age gap
suggest that early educational opportunities may not only influence the development of the
specific white matter tracts underlying academic skills, but rather relate to white matter
development more broadly throughout the brain. Studies in animal models have shown that
environmental enrichment leads to an increase in cellular activities related to myelination, such
as the proliferation of oligodendrocyte progenitor cells and alterations of the oligodendrocyte
translatome in a broad range of brain regions62–64. Furthermore, evidence from human
neuroimaging data suggests that environmental stress and caregiving settings relate to
differences in white matter properties throughout the brain65,66. Taken together, these results
suggest that general enrichment of an individual’s educational environment may drive global
changes in white matter, whereas opportunities to meaningfully engage in specific subject areas
may impact the white matter tracts subserving academic skills.

Unfortunately, because SEDA scores are derived from school-level standardized test
scores, they do not provide any insight into specific aspects of each individual’s learning
experience within a given environment, thereby limiting the specificity of the questions we can
answer using the ABCD dataset. A student’s experience in the classroom can be impacted by
socio-cultural equity, language use, student-teacher relationships, the curriculum adopted by
the school district, and classroom organization67–70, all of which do not necessarily manifest in
their school’s standardized test scores. These factors may differentially impact global white
matter development and tissue properties in white matter connections subserving different
academic skills. Future intervention studies and additional measures of educational
environment are needed to better understand these relationships. These will serve to isolate the
white matter changes driven by opportunities to engage in an academic subject area, such as
reading or mathematics, from those due to aspects of the educational environment that are
independent of the specific academic content matter.

Furthermore, because each participant has at most two observations, our longitudinal
models are limited in the types of relationships captured by difference scores. White matter
properties have been shown to follow non-linear growth trajectories over the lifespan66,71,
however, with only two observations, one cannot effectively model non-linear relationships.
Future research using the full longitudinal ABCD sample will have to explore the
developmental dynamics of the white matter over the course of adolescence and determine
whether the observed relationship between FA development and SEDA is best described by a
linear or non-linear trajectory.

In summary, these results suggest that the educational opportunities provided to a
learner in early elementary school are related to subtle differences in white matter maturation,
even when accounting for other socioeconomic factors. We observe a brain-wide link between
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white matter development and educational environment and find that this relationship is
strongest in the white matter tracts typically associated with academic skills. Future research is
needed to inform the design of interventions and policies addressing educational inequities
from a neuroscientifically-informed perspective. The current study provides the first direct
evidence for the relationship between educational opportunity and brain development at scale
and shed light on the complex interaction between environmental factors, brain development,
and learning.

Methods
Participants

The participants in the present study come from the ABCD study, a ten-year
longitudinal study that includes both neuroimaging and behavioral data collected from children
aged 9-10 from 21 study sites across the United States38. The data used in the present analysis
come from the baseline and 2-year follow up visits of the ABCD study and can be found in the
ABCD curated annual data release 4.0 (https://nda.nih.gov/abcd/). The baseline observation
included 6,410 individuals who had the necessary neuroimaging and demographic data and the
longitudinal data included 4,770 individuals with the necessary data at both time points.

Covariates of Interest
We included a range of demographic and developmental factors as covariates including

participant age, log-tranformed income-to needs ratio, parental education, family cohesion,
neighborhood cohesion, biological sex, and pubertal status. All of these measures are readily
available or calculated using the data present in the ABCD data release 4.0.

Income-to-Needs Ratio
Log-transformed income-to-needs ratio was calculated using the approach outlined in

Wiessman et al. (2023), which combines family income and household size data. Briefly, in the
ABCD study, parents report family income on a scale of 1-10, where each interval represents an
income range. The midpoint of the reported range was then calculated for each participant. This
dollar amount was then divided by the poverty threshold for a household of a given size. The
thresholds used in this calculation come from the 2017 report by the U.S Census Bureau72. This
value was then log-transformed.

Parental Education
The ABCD study records parental reports of the highest level of education they have

completed. This is measured on an ordinal scale ranging from “Never attended school” to
“Doctoral Degree”. In the present analysis, we converted this ordinal scale into a binary variable

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.10.561784doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?hPfgUn
https://nda.nih.gov/abcd/
https://www.zotero.org/google-docs/?4rKGhA
https://doi.org/10.1101/2023.10.10.561784
http://creativecommons.org/licenses/by-nc-nd/4.0/


indicating whether or not a participant’s parent completed any sort of post-secondary education
(associates degree/bachelors degree).

Non-Academic Environment
Family home environment was measured using the average of the nine questions

present on Family Environment Scale-Family Conflict73. A higher score on this measure
indicates higher levels of conflict within an individual’s household and family environment.
Neighborhood cohesion was assessed by taking the average of the ten items present on the
ABCD Parent PhenX Community Cohesion measure74. For this measure, a higher score indicates
that the participant perceives their neighborhood and surrounding community as safer and
more cohesive.

Pubertal Status
Pubertal status was assessed using the PDS75, a measure designed to mimic the Tanner

scale to assess the development of secondary sex characteristics during the onset of puberty. In
line with past research using PDS in the ABCD sample56,76, pubertal status was calculated by
taking the average of the seven PDS items present on the parental PDS survey collected at each
time point.

Educational Opportunity
Educational opportunity was measured using linked data from the Stanford Education

Data Archive (SEDA)27. This dataset leverages standardized test scores from 3rd to 8th grade
students in nearly every single school district in the United States to generate measures of the
educational opportunities provided by a given school or district relative to the national average.
The SEDA database breaks educational opportunity into two distinct measures: intercept and
slope. SEDA intercept refers to the average standardized test score for third graders from a
given school or district relative to the national average and can be thought of as an index of the
pre-school and early elementary school educational opportunities provided by a school
catchment area43. SEDA slope is a measure of year-to-year growth in standardized scores in
students from a given school or district relative to the national average. This can be thought of
as the educational opportunity provided to students in a school or district between 3rd and 8th
grade.

Diffusion MRI Acquisition and Processing
The neuroimaging data used in this analysis come from the baseline and Year 2

follow-up sessions collected across the 21 ABCD study sites. An overview of the data
acquisition and preprocessing protocols can be found in Casey et al. (2018)38 and Hagler Jr. et al.
(2019)77. Briefly, multi-shell, high angular-resolution imaging scans were collected on each
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participant during each scan session. These data underwent manual quality control and were
then minimally preprocessed using a pipeline that included eddy-current correction, motion
correction, B0 distortion correction, and gradient warp correction77.

These preprocessed diffusion images were then processed with pyAFQ41. Briefly, fiber
orientation distributions were estimated in each voxel using constrained spherical
deconvolution78 implemented in DIPY79 before probabilistic tractography was used to generate
streamlines throughout the white matter. As originally described in Yeatman et al. (2012)42, 30
major white matter tracts were identified from these streamlines. Each tract was then sampled to
100 nodes. At each node, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity
(RD), and axial diffusivity (AD) were calculated using the diffusion kurtosis model (DKI)80,81.

To account for potential non-biological variance in the diffusion MRI signal introduced
by scanner differences across the 21 ABCD sites, ComBat harmonization46,47,82 was performed on
the diffusion metrics calculated by pyAFQ. Harmonization was performed using the
neurocombat_sklearn Python library47,82.

Brain Age Gap Analysis
To generate age predictions for the brain-age gap analysis, we trained a ResNet model83

implemented in the Python library AFQ-Insight55,84 on the harmonized pyAFQ outputs from
both the baseline and Year 2 follow-up scans. The data used to train and evaluate this model
were split into three splits: a training set, a test set, and a validation set. To prevent peeking,
longitudinal observations from the same participant were placed in the same split. The
validation set contained 20% of the observations, while the remaining 80% was distributed
across the training and test sets. To prevent overfitting, the model was then trained on varying
proportions of the training and test sets, allowing us to determine the point at which the model
performance did not improve with the addition of more training data (Supplemental Figure 2).

We found that model performance plateaued when the model was trained on 56% of the
overall sample. This model attained an R2 score of 0.22 on the unseen validation set. To prevent
data leakage in our brain age models, we then generated two additional train-test splits to
ensure that brain age predictions for each individual were generated from a model that was
trained on data that did not include that individual. We then trained two additional models on
56% of the overall sample to generate brain age predictions for the individuals used as the
training set of the initial brain age model. Across these three models, the average R2 score was
0.19 on the unseen data. We then calculated the residuals of these brain age predictions for each
individual, using the prediction from the model that was not trained on that individual’s data.
The residuals of these brain age model were then used as the outcome measure of a
linear-mixed effects model to explore the relationship between educational opportunity and
brain-age, while controlling for other developmental and socioeconomic factors. All
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linear-mixed effects models were carried out with R version 4.2.185 using the lme4 package
(version 1.1.30)86.

Growth Modeling
To investigate intraindividual change in the white matter properties of the left and right

arcuate and the relationship of this change with educational opportunity, we constructed a
series of growth models54 specified as follows:

where each participant’s FA at a given scan session, t, is modeled as a function of a participant
specific intercept (β0i), a participant specific slope (β1i), and a residual error term (eti). To examine
interindividual differences, the participant specific coefficients were modeled as:

where the coefficients on SEDA Intercept refer to, on average, how baseline FA and FA
development differ with SEDA intercept and u0jki and u1ijk refer to residual error at the individual
level. These models also included initial age, log-transformed income-to-needs ratio, parental
education, family home environment, neighborhood cohesion, and pubertal status as covariates.

Our final growth model, which examined FA development in the left and right arcuate

simultaneously, included two additional parameters, and

, which allowed us to compare FA development across the two tracts. In
this model and are modeled at the family structure level as:

where v0ij and v1ij refer to residual error at the family structure level and and are
modeled at the level of scanner site as:

where w0i and w1i refer to residual error at each scanner site and and are the mean FA
and rate of FA development, respectively, at each scanner site.
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These models were fit in R version 4.2.185 using the lme4 package (version 1.1.30)86. Code
to replicate the analyses and figures presented in this manuscript can be found at:
https://github.com/earoy/white_matter_education
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Supplemental Figures

Supplemental Figure 1: Bundle renderings of the 28 white matter tracts identified by pyAFQ
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Supplemental Figure 2: An overview of brain-age model performance trained on varying
proportions of the test split. The x-axis represents the proportion of the training set used to train
the brain age model and the y-axis represents the R2 score of each model.
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Supplemental Tables

Supplemental Table 1: Output for the growth model predicting FA development in the left
arcuate, right arcuate, and left and right arcuate together. In the bilateral model, the left arcuate
is used as the reference predictor.

Left Arcuate Right Arcuate Bilateral Arcuate

Predictors Estimates p Estimates p Estimates p

(Intercept) 0.46885 <0.001 0.45206 <0.001 0.47247 <0.001

Initial Age 0.00284 <0.001 0.00255 <0.001 0.00267 <0.001

Log(Income-to-Needs) 0.00007 0.757 0.00022 0.361 0.00014 0.503

Parental Ed. 0.00284 <0.001 0.00249 <0.001 0.00267 <0.001

Home Env. -0.00020 0.166 0.00005 0.759 -0.00009 0.500

Sex -0.00041 0.471 -0.00410 <0.001 -0.00226 <0.001

Pubertal Status -0.00019 0.661 -0.00003 0.943 -0.00014 0.733

Neighborhood Cohesion -0.00042 0.325 -0.00091 0.038 -0.00066 0.089

SEDA 0.00232 0.003 0.00243 0.002 0.00195 0.010

Age 0.00198 <0.001 0.00269 <0.001 0.00216 <0.001

SEDA× Age 0.00131 <0.001 -0.00027 0.183 0.00119 <0.001

Hemisphere -0.02340 <0.001

SEDA× Hemisphere 0.00084 0.094

Age × Hemisphere 0.00035 0.048
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(SEDA× Age) ×
Hemisphere

-0.00134 <0.001

Random Effects
σ2 0.00 0.00 0.00

τ00 0.00
subjectID:(rel_family_id:site_id_

l)

0.00
subjectID:(rel_family_id:site_id_l)

0.00
subjectID:(rel_family_id:site_id_l)

0.00 rel_family_id:site_id_l 0.00 rel_family_id:site_id_l 0.00 rel_family_id:site_id_l

0.00 site_id_l 0.00 site_id_l 0.00 site_id_l

ICC 0.81 0.85 0.70

N 6129 subjectID 6129 subjectID 6130 subjectID

5345 rel_family_id 5345 rel_family_id 5346 rel_family_id

21 site_id_l 21 site_id_l 21 site_id_l

Observations 14032 14030 28062

Marginal R2 /
Conditional R2

0.022 / 0.813 0.023 / 0.849 0.180 / 0.751
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Supplemental Table 2: Output for the growth model predicting brain-age gap

Brain-Age Gap

Predictors Estimates p

(Intercept) -0.02398 0.105

Initial Age -0.47519 <0.001

Log(Income-to-Needs) -0.00334 0.663

Parental Ed. 0.03827 0.023

Home Env. -0.00007 0.991

Age -0.64366 <0.001

Sex 0.00871 0.571

Pubertal Status 0.04126 <0.001

Neighborhood Cohesion -0.01293 0.086

SEDA Intercept 0.01929 0.019

Random Effects
σ2 0.23

τ00 subjectID:(rel_family_id:site_id_l) 0.10

τ00 rel_family_id:site_id_l 0.07

τ00 site_id_l 0.00

ICC 6201

N subjectID 5399

N rel_family_id 21

N site_id_l 0.23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.10.561784doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561784
http://creativecommons.org/licenses/by-nc-nd/4.0/


Observations 10659

Marginal R2 /
Conditional R2

0.724 / 0.854
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