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ABSTRACT

The Cingulo-Opercular network (CON) is an executive network of the human brain that
regulates actions. CON is composed of many widely distributed cortical regions that are
involved in top-down control over both lower-level (i.e., motor) and higher-level (i.e.,
cognitive) functions, as well as in processing of painful stimuli. Given the topographical
and functional heterogeneity of the CON, we investigated whether subnetworks within
the CON support separable aspects of action control. Using precision functional
mapping (PFM) in 15 participants with > 5 hours of resting state functional connectivity
(RSFC) and task data, we identified three anatomically and functionally distinct CON
subnetworks within each individual. These three distinct subnetworks were linked to
Decisions, Actions, and Feedback (including pain processing), respectively, in
convergence with a meta-analytic task database. These Decision, Action and Feedback
subnetworks represent pathways by which the brain establishes top-down goals,
transforms those goals into actions, implemented as movements, and processes critical

action feedback such as pain.
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INTRODUCTION

The human brain is organized into a set of large-scale functional networks that are
reproducibly identifiable across populations, datasets, and analysis techniques '~”. One
of the most functionally complex large-scale networks is the Cingulo-Opercular network
(CON). The CON is composed of a set of functionally coupled regions in dorsal anterior
cingulate cortex (dACC), dorsomedial prefrontal cortex (dmPFC), anterior insula (al),
supramarginal gyrus (SMG), pars marginalis of the cingulate gyrus, and the anterior
prefrontal cortex (aPFC) >68-1°, The CON exhibits strong functional connectivity to a
highly diverse set of brain networks, including cognitive, sensory, and somatomotor
networks 258 This intrinsic connectivity structure suggests that CON may exert
influence over a wide variety of brain processes, from high-level cognition to basic

motor outputs.

The CON has been primarily characterized as a network critical for exerting top-down
cognitive control over other purely cognitive functions. Large signals are observed in the
CON when complex cognitive tasks are initiated, and it also exhibits sustained task
signals to maintain goals and prevent distraction . CON regions also respond
strongly to feedback in order to provide more effective top-down control in the future.
The CON exhibits large responses when errors are made or when reaction times are
slow, and CON signals are elevated when stimuli are ambiguous or multiple possible

responses are in conflict 819

Other lines of work suggest that some CON regions enable top-down motor control 2°.
Recent work has demonstrated direct connections between the CON and Somato-
cognitive action network (SCAN) regions that alternate with effector-specific regions in
primary motor cortex (M1); these connections are thought to represent a mechanism by
which the CON implements whole-body action plans within the motor system 2. Further,
prolonged dominant arm immobilization results in both substantial changes in motor
behavior and strengthened functional connectivity between disused M1 and the CON,

suggesting an important role in motor control 2223, In non-human primates, three


https://doi.org/10.1101/2023.10.10.561772
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.10.561772; this version posted October 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cingulate areas have been identified as critical for motor planning (termed the rostral,
ventral, and dorsal cingulate motor areas) 242%; their human homologues
(anterior/posterior rostral cingulate zone, and caudal cingulate zone) are likely located
within the anterior cingulate portion of the CON.

The CON also plays a role in processing painful stimuli. The dACC and the al are
commonly reported as brain regions most active during application of painful stimuli 26
28 This pattern is generally consistent across both somatic and visceral pain 2°, is
spatially distinct from representations of negative affect or social pain 28, and partially
overlaps with CON regions involved in cognitive control *.

The substantial functional heterogeneity exhibited by the CON, including control over
cognitive processes, control over action plans, and processing of painful stimuli,
suggests that the CON is not well represented as a single brain system with a unitary
label. Instead, it is likely that the apparently unitary CON is a representation of network
structure at just one level of a functional hierarchy 3'-3% that could be further divided into
functionally divergent substructures. Indeed, recent work has suggested at least a
bipartite division of CON, with one CON subdivision linked to top-down cognitive control
and another linked to motor and interoceptive functions 3¢, though these divisions were

identified using a priori ROls in group-averaged data, and so are necessarily imprecise.

To improve precision of network delineation, our group has developed a technique
called precision functional mapping (PFM) that uses repeated fMRI scanning to reliably
characterize brain networks within individual highly sampled participants 23647, By
characterizing networks at the individual level, detailed subdivisions within large-scale
networks have been identified, including within the DMN3548, striatum*°, and primary

motor cortex 21,

Here, we implemented a similar approach in 15 participants with > 5 hours of RSFC
data and additional task data, in order to identify and characterize discrete

substructures within the CON that could explain the organization and integration of
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various functional domains. We hypothesized that multiple distinct subnetworks would
be identified in each participant that would be specialized for controlling complex
cognitive functions and adjudicating among multiple options, developing and controlling

motor actions, and processing pain-related and other feedback.
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RESULTS

Three Distinct CON Subnetworks in Each Individual

Undifferentiated CON CON Subnetworks

D
o

Anterior Central . Lateral

Figure 1: Three Cingulo-Opercular Subnetworks. The undifferentiated CON (left) and CON
subnetworks (right) in an exemplar participant (P01) with 356 minutes of resting-state fMRI data.
Three distinct subnetworks were consistently identified in every individual: an Anterior
subnetwork in dorsal anterior cingulate, dorsal anterior insula, and anterior PFC (green); a
Central subnetwork in more posterior dorsal anterior cingulate extending up to dmPFC,
middle/posterior insula, and regions just anterior and posterior of the central sulcus (yellow); and
a Lateral subnetwork in middle insula, supramarginal gyrus, and the pars marginalis of the
cingulate (blue). See Figure S1 for all individual participants.

The subnetwork structure of each individual’s CON was identified following previously
described methods using the data-driven Infomap community detection algorithm 213549,
Three spatially distinct subnetworks were identified within the large-scale CON. An
example participant is shown in Figure 1. These three subnetworks were topologically
consistent across participants (Figure 2). All three subnetworks were identified in each
of the 15 PFM data sets (Figure S1). Subnetworks were initially labeled according to
their locations on the cortex as the Anterior, Central, and Lateral subnetworks of CON.
Together, these subnetworks included representations in each of the major areas of the

CON, including: 1) the dorsal anterior cingulate, dorsal anterior insula, and anterior PFC
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(Anterior); 2) the posterior dorsomedial prefrontal cortex, inferior supramarginal gyrus,
posterior middle insula, and dorsal postcentral gyrus (Central); 3) the anterior middle
insula, anterior lateral frontal cortex, inferior frontal gyrus, dorsal supramarginal gyrus,

and pars marginalis of the cingulate (Lateral).
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Figure 2: Cortical and subcortical distribution of CON subnetworks across participants.
A-C) Density maps illustrate the number of participants with overlapping subnetwork
representations at each point in cortex (left), thalamus and striatum (top right), and cerebellum
(bottom right), for the A) Anterior, B) Central, and C) Lateral subnetworks. Maps were
thresholded to retain points at which at least three participants exhibited overlap. Differential
scaling of density maps in cortex and subcortex was employed because of increased cross-
participant variability (due to lower SNR) in subcortex. D) A winner-take-all map illustrates the
relative topographies of all three subnetworks.

The Anterior and Central subnetworks had representation in ventral and dorsal anterior
putamen, respectively, though the Central subnetwork had more extensive putamen

representation, and in central thalamus (Fig 2A-B). By contrast, almost no voxels were
consistently identified as part of the Lateral subnetwork within striatum or thalamus. All
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three subnetworks were represented in the cerebellum, though overlap across
participants was lower in cerebellum than in cortex or striatum, suggesting greater

anatomical heterogeneity across individuals.

CON subnetworks are functionally dissociated by Meta-Analytic Network
Annotation
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Figure 3: Meta-Analytic Network Annotation of Cingulo-Opercular subnetworks.
Subnetworks from the cross-participants winner-take-all analysis (Fig 2D) were matched to
spatial activation distributions that had task descriptor terms in the Neurosynth database *°.
Word clouds illustrate terms more associated with activation patterns of each Cingulo-Opercular
subnetwork compared to the other subnetworks (tested for each term via one-way ANOVA).
Larger font size indicates higher frequency of the term. Terms shown in black are significant at p
< 0.05 (unc.); colored terms are significant at p < 0.05, FDR corrected for the 742 terms tested.

The functional role of each CON subnetwork was determined by matching the
subnetwork to distributed activation patterns within the Neurosynth meta-analysis
database 0. We term this novel connectome annotation method Meta-Analytic Network
Annotation.

For each CON subnetwork, we first identified all articles in the database that reported
multiple activation peaks that were at least partially congruent with the spatial
distribution of that subnetwork (see Methods). Then, for each of the 742 cognition-
related terms in the database, a one-way ANOVA tested whether the weighting of that
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term within matched articles was significantly different across the three subnetworks.
Each term with significant differences across the subnetworks was associated with the
subnetwork for which it had the highest weighting. Word clouds illustrate the terms
associated with each subnetwork, with word size scaled to the magnitude of differences
among subnetworks (Figure 3). Terms shown in black exhibited differences between
subnetworks that were significant at p < 0.05 (unc.); colored terms were significant at p
< 0.05, FDR corrected for the total number of terms tested. It should be noted that while
this analysis identifies which subnetwork is most strongly associated with each term,
such results should not be misinterpreted as an absence of association for other
subnetworks. For example, while the Lateral subnetwork is most strongly associated
with “pain”, the Anterior and Central subnetworks were also pain associated, though

less strongly.

The Anterior subnetwork was significantly more associated with terms such as
‘decision’, ‘cognitive control’, ‘conflict’, ‘semantic’, and ‘working memory’ than the other
subnetworks. It was also most associated with terms such as ‘reward’, ‘risk’, and ‘error’,
though these tests did not survive correction for multiple comparisons. Together, these
terms suggest a circuit that integrates information from multiple sources to decide on a
course of action. Thus, we functionally annotate the Anterior CON as the Decision

subnetwork.

The Central subnetwork was associated with motor terms; it included pure motor terms
such as ‘movement’, ‘hand’, and ‘finger’, as well as motor control terms such as
‘actions’, ‘motor control’, ‘execution’, and ‘motor imagery’. It also included sensory
feedback terms such as ‘somatosensory’. These terms suggest a circuit that generates
an action plan and receives sensory feedback about that action. We annotate this as
the Action subnetwork.

The Lateral subnetwork was associated with terms such as ‘pain’ and ‘noxious’, but also
with terms such as ‘action observation’. These terms suggest a circuit that processes
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multiple somatic, non-cognitive feedback modalities resulting from actions, such as

visual feedback and pain. We annotate this as the Feedback subnetwork.

CON subnetworks exhibit differential connectivity with other large-scale networks

Large Scale Networks
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Figure 4: Functional connectivity of CON subnetworks. A) A spring embedded plot in an
exemplar participant (P01) illustrates the preferential connectivity of Cingulo-Opercular
subnetworks to large-scale functional networks. For clarity of visualization, only networks most
closely associated with the subnetworks are shown. See Figure S2 for all individual participants.
B) Across participants, individual-specific Cingulo-Opercular subnetworks demonstrate
preferential connectivity to other individual-specific large-scale networks. The radial axis
indicates the strength of functional connectivity Z(r) between each CON subnetwork and each
large-scale functional network. Negative connectivity values are not represented. Colors and
spatial locations of CON subnetworks (left) and other large-scale networks (right) are shown in
the exemplar participant at the bottom.

Spring-embedded graph visualizations (following methods from %21-53; example
participant shown in Figure 4A; all participants in Figure S2) suggest that the three CON
subnetworks exhibit preferential connectivity to distinct large-scale networks.

Quantification of average connectivity to each network showed that the Action CON
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subnetwork was most closely linked to motor networks, the Decision CON subnetwork
was most closely linked to the Salience network, and the Feedback CON subnetwork
was most closely linked to the Dorsal Attention Networks (Figure 4B).

Paired t-tests were used to statistically compare the strength of functional connectivity
between pains of CON subnetworks to a given large-scale network. Reported findings
all survived FDR correction for the number of comparisons run at g < 0.05. Across
participants, the Decision subnetwork exhibited stronger connectivity with the Salience
Network than did any other subnetwork (ts(14) > 2.9, ps(unc) < 0.012). The Feedback
subnetwork exhibited stronger connectivity with the Dorsal Attention Network (ts(14) >
3.2, ps(unc) < 0.007) than any other network. The Action subnetwork exhibited stronger
connectivity with SCAN (ts(14) > 5.8, ps(unc) < 0.001) as well as Somatomotor Foot,
Hand, and Face networks (ts(14) > 5.4, ps(unc) < 0.001). The Action subnetwork also
exhibited significantly stronger negative connectivity with the Default network compared
to the other two subnetworks (ts(14) > 3.1, ps(unc) < 0.008). All subnetwork-network t-

tests can be found in Supplementary Table 1.

Rs-fMRI signals from CON subnetworks are temporally ordered
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Figure 5: Temporal ordering of CON signals in the action output hierarchy. Temporal
ordering of subnetwork fMRI signals for each individual-specific CON subnetwork, as well as for
the SCAN and the Somatomotor-hand networks. Values are averaged across vertices within
each subnetwork and across participants. Standard error across participants is indicated by
error bars. A one-way ANOVA indicated a significant main effect of subnetwork/network identity
(p =0.0007). * indicates p < 0.05 for post-hoc paired t-tests. Inset shows subnetwork and
network topography for an example participant (P01). Prior electrophysiology work suggests
that later infra-slow activity (here, the Feedback subnetwork) corresponds to earlier delta-band
(0.5-4Hz) activity *2.

Previously, we have shown that low-frequency rs-fMRI signals exhibit different timings
within different subnetworks of the Default Mode and action and motor networks 2135,
Here, lag analyses demonstrate the temporal order of low-frequency BOLD signals
within networks of the putative action output processing stream, including CON
subnetworks, SCAN, and effector-specific hand motor networks (Figure 5). A one-way
ANOVA found a significant main effect of subnetwork/network identity (F(4,74) = 5.49, p
= 0.0007). Post-hoc t-tests indicated that signals in the Feedback subnetwork occurred
later than those in the Action, SCAN, and Somatomotor Hand networks (ts(14) > 2.62,
ps < 0.02). Signals in the Decision subnetwork occurred later than those in the
Somatomotor Hand (ts(14) > 2.44, p = 0.02), as did signals in the Action subnetwork,
though only at trend level (1(14) = 1.76, p = 0.09). All temporal lag t-tests can be found
in Supplementary Table 2. Previous reports have associated inter-regional lags in infra-
slow (<0.1 Hz) signals with propagation of higher-frequency delta activity (0.5-4 Hz) in
the opposite direction 2. Thus, these results suggest that high-frequency activity
propagates from Feedback and Decision subnetworks to the Action subnetwork, and
then to SCAN and effector-specific Somatomotor networks.

CON subnetworks exhibit differential evoked responses during cognitive and

motor tasks
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Figure 6: Differentiation of Cingulo-Opercular subnetworks based on task activations.
Ten participants performed motor tasks® (including flexure of right and left toes, open/closing of
right and left hand, and left-right movement of the tongue), as well as a Spatial and a Verbal
Discrimination task®. The radial axis indicates the z-score of each condition relative to baseline
fixation, averaged across all participants and across all vertices in each individual-specific CON
subnetwork. Inset shows subnetwork topography for an example participant (P01).

Task data collected in 10 of the 15 participants across five motor task conditions (HCP
motor task 53: Tongue, Left Hand, Right Hand, Left Leg, Right Leg) and two cognitive
conditions (spatial discrimination and verbal discrimination 2) confirmed differences in

evoked activity between CON subnetworks.

Paired t-tests (FDR-corrected for all comparisons run) revealed that CON subnetworks
were differentially activated across the seven task conditions (Figure 6). In the Tongue
movement condition, the Decision and Action subnetworks were more activated than
the Feedback subnetwork (ts(9) > 3.56, ps(unc) < 0.007). For all Hand and Leg
movement conditions, the Action subnetwork was more activated than either of the
Decision or Feedback subnetworks (ts(9) > 3.80, ps(unc) < 0.005). For each of the two
cognitive conditions (spatial and verbal discrimination), the Decision subnetwork was
more active than either of the other two subnetworks (ts(9) > 4.42, ps(unc) < 0.002).
These results demonstrate that CON subnetworks are distinguished by within-

participant differences in task activation that are consistent with the Neurosynth-based
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Meta-Analytic Network Annotation. Specifically, the Action CON subnetwork is more
active during motor conditions, and the Decision CON subnetwork is more active during
this particular set of cognitive conditions. The Feedback subnetwork was not strongly
activated during any condition, suggesting that this specific set of task conditions was
not well-suited to highlight its function. T-tests for all subnetworks, for all tasks, can be

found in Supplementary Table 3.
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DISCUSSION

We identified three distinct subnetworks within the large-scale Cingulo-Opercular
network. Broadly, these subnetworks appear to support the various known functions of
the CON. Based on the connections, meta-analytic network annotation, and prior
descriptions of each subnetwork’s constituent regions in the literature, we argue that
these three subnetworks can be conceptualized as a Decision subnetwork, an Action
subnetwork, and a Feedback subnetwork. Together, identification of these network
substructures helps inform how the human brain develops goals and implements
actions to serve those goals.

A Decision subnetwork for action selection, maintenance, and control

The Decision subnetwork described here converges closely with the most well-
described functions of the classic CON. The functional core of the classic description of
CON 810 js centered in bilateral dJACC, al, and aPFC, which exactly converges with the
Decision subnetwork described here. The preferentially cognitive nature of functions
associated with the Decision subnetwork here also converges with previous reports of
CON functionality, including involvement in task maintenance, error processing, conflict
monitoring, and ambiguity processing to decide among competing options 914171955,
The Decision subnetwork had representation in the anterior ventral putamen,
convergent with dACC-ventral anterior putamen projections in non-human primates

argued to be related to selecting among different actions®®.

Notably, the Decision subnetwork was most strongly connected to the Salience network
57, Salience network regions have been associated with reward valuation and motivation
in meta-analyses %8, and dorsal anterior cingulate regions corresponding with the
Decision subnetwork have been argued to evaluate reward information in order to make
decisions %9, guide behavior ¢°6' and produce actions 2. This suggests that the
Salience network inputs to the Decision subnetwork enable it to select decisions, exert
control, and produce actions in ways that are guided by the reinforcement value of that
decision. The outputs of the Decision subnetwork may be abstract—exerting control
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over working memory or attention functions—or they may be physical actions. In the
latter case, the temporal ordering of signals (Fig 5) suggests that Decision network
outputs are projected to the Action subnetwork.

An Action subnetwork for initiation and top-down control over physical actions
Action control can be understood as a cascade of executive functions that proceed from
abstract to concrete action plans, and then to execution of movement 8. The CON in
particular has been shown to exhibit strong connectivity to SCAN in the precentral gyrus
21 and to exert influence over motor functions 2384, Further, non-human primate
research has demonstrated that the regions at the top of this motor control hierarchy are
the rostral and caudal cingulate motor zones in the dorsal medial prefrontal cortex 24:2°,
which initiate a chain of neuronal projections backwards to supplementary motor area,
premotor area, and finally to primary motor cortex. These cingulate motor zones appear
homologous with the dorsomedial prefrontal portion of the CON, and they are most
likely identified here as the Action subnetwork, which exhibited strong connectivity with
motor networks, and strong activation—in both participant-specific tasks and in Meta
Analytic Network Annotion—during motor function.

The Action subnetwork was particularly strongly connected to the recently identified
SCAN 2!, which has been argued to implement action control on a whole-body level,
including regulation of posture and internal physiology (e.g., blood pressure, adrenaline
release), to maintain body allostasis. The action subnetwork had substantial
representation in dorsal anterior putamen, which is the potion of striatum associated
with motor planning and learning, and receiving projections from premotor areas in non-
human primates®®. Further, several Action subnetwork regions were directly proximal to
either primary somatosensory cortex (S1) on the postcentral gyrus, or secondary
somatosensory cortex (S2) in the dorsal posterior insula. Further, meta-analytic network
annotation indicated somatosensory functions in the Action subnetwork. Thus, the
Action subnetwork may also receive fast sensory feedback from somatosensory
functions about the immediate results of executed actions. Given these postulated
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functions, it is possible that the Action subnetwork also represents visceral sensation,

which has localization in middle insula convergent with this subnetwork®s.

A Feedback subnetwork for evaluating action outcomes

Unlike the Decision and Action subnetworks, the Feedback subnetwork is notable in
exhibiting a paucity of striatal or thalamic representation. Cortico-striato-thalamo-cortical
loops are argued to be critical for the motivation, development, planning, and execution
of goal-directed actions %¢. The absence of such loops in the Feedback subnetwork
suggests that this circuit is not directly involved in the feedforward hierarchy of action

production and control.

Instead, we hypothesize that the Feedback subnetwork provides more temporally
extended feedback to the Decision subnetwork to evaluate the efficacy of generated
plans. This subnetwork did not strongly activate during performance of either motor or
cognitive tasks, but was strongly associated with meta-analytic terms reflecting
processing of painful and noxious stimuli. Further, the subnetwork’s representation in
the middle section of the anterior insula is consistent with known distributions of pain-
related brain activity 2”-?°. Nociceptive somatosensory stimulation has been shown to
increase functional connectivity between CON, sensorimotor, and emotional networks.
This suggests a role for the CON, and specifically the Feedback subnetwork, in
attending to, integrating, and transmitting sensory information related to pain 6. Notably,
cortical processing of pain information may operate on a different timescale than the
immediate spinal-mediated reflexive responses to pain, reflecting a slower, more

cognitive interpretation of pain.

However, the Feedback subnetwork cannot be conceptualized as purely pain-related. In
addition to pain, the Feedback subnetwork was also associated with meta-analytic
terms reflecting observation of actions; and further, it exhibited uniquely strong
connectivity to the Dorsal Attention Network, which helps direct eye movements and
processes attention-directed visuospatial information 67-¢8, Together, we hypothesize

that the Feedback subnetwork processes multiple types of post-action feedback,
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including both pain and visual information about the results of an executed action. Most
interestingly, Feedback subnetwork-associated terms included “empathy”, “tom [theory
of mind]”, and “mirror neuron,” suggesting this system may also process painful and

visual feedback information about the results of actions taken by others.

The Feedback subnetwork may not be as primary in processing another type of
feedback, task errors (i.e. incorrect choices). Here, the “Error” term was associated
most with the Decision subnetwork in meta-analytic network annotation, though this
difference only passed an uncorrected threshold. Prior work has shown that the
strongest error-related signals are in Decision subnetwork regions such as dACC and
al, but weaker error signals can also observed in some Feedback regions such as
inferior parietal and inferior frontal gyri 8134, We hypothesize that task errors, being
more complex and context-dependent than pain or visual feedback, may require more
integrated cross-subnetwork processing, and ultimately adjudication by the Decision

subnetwork.

Information flow through the action hierarchy

Differences in rs-fMRI relative signal timings among the subnetworks suggest that
information primarily flows from Feedback to Decision to Action subnetworks, and then
to the SCAN and the motor system and likely back to Feedback completing the cycle.
Infra-slow rs-fMRI signals were detected relatively later in Feedback and Decision CON
subnetworks than in motor systems (SCAN and effector-specific). However, the
“sender-receiver” model argues that infra-slow activity (<0.1 Hz) propagates in the
opposite direction from the higher frequency (i.e. delta-band, 0.5-4 Hz) cortical activity
reflective of neural processing, in order to coordinate the timing of high-frequency
information exchange via phase-amplitude coupling 52°. This result expands findings
from our prior work, which described a CON->SCAN->effector-specific M1 ordering of
signals 2, but assumed homogeneity of CON itself. Here, the distinct ordering of signals
we observed propagating within and beyond CON converge with prior work conducting
invasive recordings in macaques, which found that signals in more rostral cingulate

regions occur much earlier before a movement than those in caudal cingulate 7°.
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A hierarchy of goal establishment and action implementation

Salience
(Reward
Valuation)

Physical
action

Figure 7: Model of CON subnetworks within a hierarchical organization of goal and action
control. Our proposed model represented on the cortex (left) and in schematic form (right).
Reward-driven valuations from the Salience network feed into CON subnetworks, which
establish goals (Decision subnetwork) and goal-related action plans (Action subnetwork), and
project those action plans to the SCAN and to effector-specific M1 to execute an action. Fast
somatosensory information resulting from the action is processed by the Action subnetwork,
which modifies action plans. Slower goal-related visual and painful outcomes of the action are
processed by the Feedback subnetwork, which modifies goals represented by the Decision
subnetwork. Red arrows indicate feedforward projections; blue arrows indicate feedback.

Together, these findings suggest a hierarchical model of goal and action control in the
brain (Figure 7). In this model, the Decision subnetwork receives connections reflecting
valuations from regions in the Salience network that process reward and incorporates
this information to perform judgments, adjudicate between alternatives, and initiate and
maintain a goal. If the goal can be expressed as a physical action, it is projected
backwards to the Action subnetwork where a series of operations transform the abstract
goal into a concrete action plan. This action plan is projected to the Somato-Cognitive
Action Network to prepare the whole body to implement the plan 2, and finally to
effector-specific M1 where it is transformed into movement. Feedback about the action’s
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outcomes (including salient visual stimuli and pain) is provided through the Feedback
subnetwork to the Decision subnetwork, which processes these signals, as well as goal-
incompatible errors, to modify maintained goals and future planned actions. Delineation
of this functionally heterogeneous network substructure has critical implications for the
characterization of neurological and psychiatric patients with disruptions along the
hierarchy of action control, including ADHD, abulia, OCD, and Parkinson’s disease.
Further, the ability to specifically identify this individually variable subnetwork structure
in every single individual could set the stage for important advances in personalized,
precision-targeted neuromodulatory treatments for these disorders.
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METHODS
Data for this project was compiled from three preexisting datasets.
Dataset 1: Plasticity dataset

Participants:
Data were collected from 3 healthy, right-handed adult participants (ages 35, 25, and

27; one female; identified here as P01-P03) as part of a study investigating effects of
arm immobilization on brain plasticity (data previously published in 2'-2371, Two
participants are authors (NUFD and ANN). The remaining participant (male, 27 years
old) was recruited from the Washington University community. Informed consent was
obtained from all participants. The study was approved by the Washington University
School of Medicine Human Studies Committee and Institutional Review Board. All data
employed here was collected either prior to the immobilization intervention (Participants
P01-03) or two years afterwards (Participant P02), and so we do not report details of

that intervention.

MRI image acquisition:

Participants were scanned every day for twelve consecutive days using a Siemens
Prisma 3T scanner on the Washington University Medical Campus. Every session
included a 30-minute resting-state fMRI scan collected as a blood oxygen level-
dependent (BOLD) contrast sensitive gradient echo-planar sequence (TE=33 ms, flip
angle=84°, resolution=2.6 mm isotropic, TR=1100 ms, multiband 4 acceleration). During
this scan, participants were instructed to hold still and look at a white fixation crosshair
presented on a black background. A pair of spin echo EPI images with opposite phase
encoding directions (AP and PA) but identical geometrical parameters to the BOLD data

were acquired to correct spatial distortions.

For all fMRI data, head motion was tracked in real time using Framewise Integrated
Real-time MRI Monitoring software (FIRMM 72). An eye-tracking camera (EyeLink,
Ottawa) was used to monitor participants for drowsiness.


https://doi.org/10.1101/2023.10.10.561772
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.10.561772; this version posted October 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

For Participant 01 and 03, every session also included collection of a high-resolution
T1-weighted MP-RAGE (TE=2.22ms, TR=2400ms, flip angle=8°, 208 slices with
0.8x0.8x0.8mm voxels) and a T2-weighted spin-echo image (TE=563ms, TR=3200ms,
flip angle=120°, 208 slices with 0.8x0.8x0.8mm voxels).

For Participant 02, the structural images used were collected as part of Dataset 2 and
consisted of four T1-weighted images (sagittal, 224 slices, 0.8 mm isotropic resolution,
TE=3.74 ms, TR=2400 ms, TI=1000 ms, flip angle = 8°) and four T2-weighted images
(sagittal, 224 slices, 0.8 mm isotropic resolution, TE=479 ms, TR=3200 ms) collected on
a Siemens TRIO 3T scanner.

Dataset 2: Midnight Scan Club Dataset

Participants:
Data were collected from 10 healthy, right-handed, young adult participants (5 females;

age: 24-34; identified here as P08-P15). The participants were recruited from the
Washington University community. Other findings using these participants have been
previously reported in 24045:46.73 Two participants were excluded because they were
also participants in the Plasticity dataset. One participant is an author (SMN). Informed
consent was obtained from all participants. The study was approved by the Washington
University School of Medicine Human Studies Committee and Institutional Review
Board.

MRI image acquisition:

Imaging for each participant was performed on a Siemens TRIO 3T MRI scanner over
the course of 12 sessions conducted on separate days, each beginning at midnight.
Structural MRI was conducted across two separate days. In total, four T1-weighted
images (sagittal, 224 slices, 0.8 mm isotropic resolution, TE=3.74 ms, TR=2400 ms,
T1=1000 ms, flip angle = 8 degrees), four T2-weighted images (sagittal, 224 slices, 0.8
mm isotropic resolution, TE=479 ms, TR=3200 ms), four MRA (transverse, 0.6 x 0.6, x
1.0mm, 44 slices, TR=25ms, TE=3.34ms) and eight MRVs, including four in coronal and
four in sagittal orientations (sagittal: 0.8 x 0.8 x 2.0 mm thickness, 120 slices, TR=27
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ms, TE=7.05ms; coronal: 0.7 x 0.7 x 2.5 mm thickness, 128 slices, TR=28ms TE=7.18
ms), were obtained for each participant. Analyses of the MRA and MRV scans are not
reported here. On ten subsequent days, each participant underwent 1.5 hours of
functional MRI scanning beginning at midnight. In each session, we first collected thirty
contiguous minutes of resting state fMRI data, in which participants visually fixated on a
white crosshair presented against a black background. Each participant was then
scanned during performance of three separate tasks: motor (2 runs per session, 7.8
minutes combined); mixed design including both a spatial and a verbal discrimination
condition (2 runs per session, 14.2 minutes combined); and incidental memory (3 runs
per session, 13.1 minutes combined). Preliminary analysis of the incidental memory
task indicated that CON subnetworks were not active during this task, so we do not
report results in detail here. Across all sessions, each participant was scanned for 300
total minutes during the resting state and approximately 350 total minutes during task
performance. All functional imaging was performed using a gradient-echo EPI sequence
(TR=2.2 s, TE=27 ms, flip angle=90°, voxel size=4 mm x 4 mm x 4 mm, 36 slices). In
each session, one gradient echo field map sequence was acquired with the same
prescription as the functional images. An EyeLink 1000 eye-tracking system
(http://www.sr-research.com) allowed continuous monitoring of participants’ eyes in
order to check for periods of prolonged eye closure, potentially indicating sleep. Only

one participant (P13) demonstrated prolonged eye closures.

Task design:
Motor task design: The motor task was adapted from that used in the Human

Connectome Project 3. Participants were presented with visual cues that directed them
to close and relax their hands, flex and relax their toes, or wiggle their tongue. Each
block started with a 2.2 s cue indicating which movement was to be made. After this
cue, a centrally-presented caret replaced the instruction and flickered once every 1.1 s
(without temporal jittering). Each time the caret flickered, participants executed the
proper movement. 12 movements were made per block. Each task run consisted of 2
blocks of each type of movement as well as 3 blocks of resting fixation, which lasted
154 s.
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Mixed block/event-related design task: This task was adapted from experimental
conditions reported by 5. One task was a spatial coherence discrimination task, which
used concentric dot patterns 74 that were either 0% or 50% coherent. During this task,
participants had to identify each pattern as concentric or random. The other task was a
verbal discrimination task. Participants were presented with nouns and verbs and had to
identify which type of word was being presented on the screen. Task blocks began with
a 2.2 s cue screen indicating which task was to be conducted in the following block.
Blocks consisted of 30 trials (half concentric/half nonconcentric for coherence, half
noun/half verb for verbal). Stimuli were presented for 0.5 s with a variable 1.7-8.3 s ISI.
A stop cue displayed for 2.2 s signaled the end of each task block. Each scan run
consisted of two blocks of each task. Task blocks were separated by 44 s periods of
rest. For each task, the finger used for each response was counterbalanced within

participants across sessions.

MRI Processing: Dataset 1 & 2

Structural Processing:

Structural images (T1- and T2-weighted) were corrected for gain field inhomogeneity
using FSL Fast 7° and aligned to the 711-2B implementation of Talairach atlas space
using the 4dfp MRI processing software package
(https://readthedocs.org/projects/4dfp/). The 711-2B template conforms to the 1988
Talairach atlas 7 according to the method of /7. Relative to MNI152, 711-2B space is
about 5% smaller and 2° anteriorly rotated about the ear-to-ear axis. Mean T1- and T2-
weighted images (T1w and T2w) were computed by coregistration and averaging

multiple acquisitions.

Generation of cortical surfaces from the MRI data followed a procedure similar to that
previously described in 5. First, anatomical surfaces were generated from the
participant’s average T1-weighted image in native volumetric space using FreeSurfer’s
default recon-all processing pipeline (version 5.3). This pipeline first conducted brain
extraction and segmentation. After this step, segmentations were hand-edited to
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maximize accuracy. Subsequently, the remainder of the recon-all pipeline was
conducted on the hand-edited segmentations, including generation of white matter and
pial surfaces, inflation of the surfaces to a sphere, and surface shape-based spherical
registration of the participant’s original surface to the fsaverage surface 737°. The
fsaverage-registered left and right hemisphere surfaces were brought into register with
each other using deformation maps from a landmark-based registration of left and right
fsaverage surfaces to a hybrid left-right fsaverage surface (‘fs_LR’; &°). These fs_LR
spherical template meshes were input to a flexible Multi-modal Surface Matching (MSM)
algorithm using sulcal features to register templates to the atlas mesh 8'. These newly
registered surfaces were then down-sampled to a 32,492 vertex surface (fs_LR 32k) for
each hemisphere. These various surfaces in native stereotaxic space were then
transformed into atlas space (711-2B) by applying the previously calculated T1-to-atlas

transformation.

fMRI Preprocessing:

Functional data were preprocessed to reduce artifacts and to maximize cross-session
registration. All sessions underwent correction of odd vs. even slice intensity differences
attributable to interleaved acquisition, intensity normalization to a whole brain mode
value of 1000, and within run correction for head movement. Atlas transformation was
computed by registering the mean intensity image from a single BOLD session to atlas
space via the average high-resolution T2-weighted image and average high-resolution
T1-weighted image. All subsequent BOLD sessions were linearly registered to this first
session. This atlas transformation, mean field distortion correction (see below), and
resampling to 3-mm isotropic atlas space were combined into a single interpolation
using FSL’s applywarp tool. All subsequent operations were performed on the atlas-

transformed volumetric time series.

Distortion Correction:

A mean field map was generated based on the field maps collected in each participant
43, This mean field map was then linearly registered to each session and applied to that
session for distortion correction. To generate the mean field map the following
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procedure was used: (1) 4 Field map magnitude images were mutually co-registered.
(2) Transforms between all sessions were resolved. Transform resolution reconstructs
the n-1 transforms between all images using the n(n-1)/2 computed transform pairs. (3)
The resolved transforms were applied to generate a mean magnitude image. (4) The
mean magnitude image was registered to an atlas representative template. (5)
Individual session magnitude image to atlas space transforms were computed by
composing the session-to-mean and mean-to-atlas transforms. (6) Phase images were
then transformed to atlas space using the composed transforms, and a mean phase
image in atlas space was computed. Application of mean field map to individual fMRI
sessions: (1) For each session, field map uncorrected data were registered to atlas
space, as above. (2) The generated transformation matrix was then inverted and
applied to the mean field map to bring the mean field map into the session space. (3)
The mean field map was used to correct distortion in each native-space run of resting
state and task data in the session. (4) The undistorted data were then re-registered to
atlas space. (5) This new transformation matrix and the mean field map then were
applied together to resample each run of resting state and task data in the session to

undistorted atlas space in a single step.

RSFC Preprocessing:

Additional preprocessing steps to reduce spurious variance unlikely to reflect neuronal
activity were executed as recommended in 8283, First, temporal masks were created to
flag motion-contaminated frames. Motion estimate time courses were filtered retain
effects occurring below 0.1 Hz in order to eliminate “pseudomotion” induced by
breathing-related motion of the chest altering the BO field 8. Motion contaminated
volumes were then identified by frame-by-frame displacement (FD). Frames with FD >

0.2mm were flagged as motion-contaminated.

After computing the temporal masks for high motion frame censoring, the data were
processed with the following steps: (i) demeaning and detrending, (ii) linear interpolation

across censored frames using so that continuous data can be passed through (iii) a
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band-pass filter (0.005 Hz < f < 0.01 Hz) without re-introducing nuisance signals & or

contaminating frames near high motion frames.

Next, the filtered BOLD time series underwent a component-based nuisance regression
approach 5. Nuisance regression using time series extracted from white matter and
cerebrospinal fluid (CSF) assumes that variance in such regions is unlikely to reflect
neural activity. Variance in these regions is known to correspond largely to physiological
noise (e.g., CSF pulsations), arterial pCO2-dependent changes in T2*-weighted
intensity and motion artifact; this spurious variance is widely shared with regions of
interest in gray matter. We also included the mean signal averaged over the whole brain
as a nuisance regressor. Global signal regression (GSR) has been controversial.
However, the available evidence indicates that GSR is a highly effective de-noising
strategy 8286

Nuisance regressors were extracted from white matter and ventricle masks, first
segmented by FreeSurfer &, then spatially resampled in register with the fMRI data.
Voxels surrounding the edge of the brain are particularly susceptible to motion artifacts
and CSF pulsations 8; hence, a third nuisance mask was created for the extra-axial
compartment by thresholding the temporal standard deviation image (SDt > 2.5%),
excluding a dilated whole brain mask. Voxelwise nuisance time series were
dimensionality reduced as in CompCor %, except that the number of retained
regressors, rather than being a fixed quantity, was determined, for each noise
compartment, by orthogonalization of the covariance matrix and retaining components 5
ordered by decreasing eigenvalue up to a condition number of 30 (max eigenvalue / min
eigenvalue > 30). The retained components across all compartments formed the
columns of a design matrix, X, along with the global signal, its first derivative, and the
six time series derived by retrospective motion correction. The columns of X are likely to
exhibit substantial co-linearity. Therefore, to prevent numerical instability owing to rank-
deficiency during nuisance regression, a second-level SVD was applied to XXT to
impose an upper limit of 250 on the condition number. This final set of regressors was
applied in a single step to the filtered, interpolated BOLD time series, with censored
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data ignored during beta estimation. Censored frames were then excised from the data
for all subsequent analyses.

Surface processing and CIFTI generation of BOLD data:

Surface processing of BOLD data proceeded through the following steps. First, the
BOLD fMRI volumetric timeseries (both resting-state and task) were sampled to each
participant’s original mid-thickness left and right-hemisphere surfaces (generated as the
average of the white and pial surfaces) using the ribbon-constrained sampling
procedure available in Connectome Workbench 1.0 °'. This procedure samples data
from voxels within the gray matter ribbon (i.e., between the white and pial surfaces) that
lie in a cylinder orthogonal to the local mid-thickness surface weighted by the extent to
which the voxel falls within the ribbon. voxels with a timeseries coefficient of variation
0.5 standard deviations higher than the mean coefficient of variation of nearby voxels
(within @ 5 mm sigma Gaussian neighborhood) were excluded from the volume to
surface sampling, as described in °2. Once sampled to the surface, timecourses were
deformed and resampled from the individual’s original surface to the 32k fs_LR surface
in a single step using the deformation map generated above (in “Cortical surface
generation”). This resampling allows point-to-point comparison between each individual
registered to this surface space.

These surfaces were then combined with volumetric subcortical and cerebellar data into
the CIFTI format using Connectome Workbench, creating full brain timecourses
excluding nongray matter tissue. Subcortical (including accumbens, amygdala, caudate,
hippocampus, pallidum, putamen, and thalamus) and cerebellar voxels were selected
based on the FreeSurfer segmentation of the individual participant’s native-space
average T1, transformed into atlas space, and manually inspected. Finally, the BOLD
timecourses were smoothed with a geodesic 2D (for surface data) or Euclidean 3D (for

volumetric data) Gaussian kernel of ¢ = 2.55 mm.

Regression of adjacent cortical tissue from RSFC BOLD:
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Many subcortical areas, such as dorsal cerebellum and lateral putamen, are in close
anatomical proximity to cortex, resulting in spurious functional coupling between the

cortical vertices and adjacent subcortical voxels. To reduce this artifact, RSFC BOLD
time series from all vertices falling within 20mm Euclidean distance of a source voxel
were averaged and then regressed from the voxel time series 45739394 The resulting

residual timeseries were used for all subsequent analyses.

Dataset 3: Multi-echo dataset

Participants:
Data were collected from 4 healthy, right-handed adults (0O female; ages 29, 39, 24, and

31; identified here as P04-P07). Other findings using these participants have been
previously reported in 2.9, Informed consent was obtained from all participants. The
study was approved by the Weill Cornell School of Medicine Institutional Review Board.

MRI Acquisition:
Data were acquired on a Siemens Magnetom Prisma 3T scanner at the Citigroup

Biomedical Imaging Center of Weill Cornell’s medical campus using a Siemens 32-
channel head coil. Multi-echo, multi-band resting-state fMRI scans were collected using
a T2*-weighted echo-planar sequence covering the full brain (TR: 1355 ms; TE1: 13.40
ms, TE2: 31.11 ms, TE3: 48.82 ms, TE4: 66.53 ms, and TE5: 84.24 ms; FOV: 216 mm;
flip angle: 68; 2.4mm isotropic; 72 slices; AP phase encoding direction; in-plane
acceleration factor: 2; and multi-band acceleration factor: 6) with 640 volumes acquired
per scan for a total acquisition time of 14 min and 27 s. This sequence was generously
provided by the Center for Magnetic Resonance Research (CMRR) at the University of
Minnesota. A pair of spin echo EPI images with opposite phase encoding directions (AP
and PA) but identical geometrical parameters and echo spacing were acquired to
correct spatial distortions. High-resolution (MPRAGE) T1-weighted image (TR: 2400
ms; TE: 2.28 ms; FOV: 256; flip angle: 90, and 208 sagittal slices with a 0.8 mm
thickness) and T2-weighted anatomical images (TR: 3200 ms; TE: 563 ms; FOV: 256;
flip angle: 8, and 208 sagittal slices with a 0.8 mm thickness) were acquired. Custom
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headcases were obtained from Caseforge (https://ipira.berkeley.edu/caseforge-inc) for

each participant to improve comfort and minimize head motion during scanning .

MRI Processing: Dataset 3
Cortical Surface Generation:

The average T1- and T2-weighted images were cropped to a smaller field of view
(170mm in z plane), co-registered using FSL'’s epi_reg tool (via a boundary-based cost
function with 6 DOF), and corrected for intensity inhomogeneities °’. The T1- and T2-
weighted images were co-registered to an MNI atlas (hereafter referred to as “ACPC”
alignment) using a rigid 6 DOF FLIRT transformation. Cortical surfaces were generated
using Freesurfer’'s “recon-all.v6.hires” pipeline. Pial surface placement was refined
using the co-registered T2-weighted image by specifying the “-T2pial” option.
Midthickness surfaces were obtained by averaging the pial and white surfaces.
Fsaverage-registered left and right hemisphere surfaces (pial, white, and midthickness)
were brought into register with each other in fs_LR space 8 and resampled to the
computationally tractable resolution of 32k vertices using Connectome Workbench

command line utilities.

fMRI Preprocessing:

Preprocessing of multi-echo data minimized spatial interpolation and volumetric
smoothing while preserving the alignment of echoes. The single-band reference (SBR)
images (five total; one per echo) for each scan were averaged. The resultant average
SBR images were aligned, averaged, co-registered to the ACPC aligned T1-weighted
anatomical image, and simultaneously corrected for spatial distortions using FSL’s
topup and epi_reg programs. Freesurfer’s bbregister algorithm °¢ was used to refine this
co-registration. For each scan, echoes were combined at each time point and a unique
6 DOF registration (one per volume) to the average SBR image was estimated using
FSL’s MCFLIRT tool ® using a 4-stage (sinc) optimization. All of these steps (co-
registration to the average SBR image, ACPC alignment, and correcting for spatial
distortions) were concatenated using FSL’s convertwarp tool and applied as a single
spline warp to individual volumes of each echo after correcting for slice time differences
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using FSL’s slicetimer program. All denoising was performed on these preprocessed,
ACPC-aligned images.

Multi-echo denoising:

Multi-echo ICA (ME-ICA; 199107 denoising designed to isolate spatially structured T2x-
(neurobiological; “BOLD-like”) and SO-dependent (non-neurobiological; “not BOLD-like”)
signals was performed using a modified version of the “tedana.py” workflow
(https://tedana.readthedocs.io/en/latest/). In short, the preprocessed, ACPC-aligned
echoes were first combined according to the average rate of T2x decay at each voxel
across all time points by fitting the monoexponential decay, S(t) = SOe -t / T2+, using the
“nlinfit.m” function in MATLAB with least-squares optimization and the initial coefficient
values obtained from a linear model fit to the log of the data. From these T2+ values, an
optimally combined multi-echo (OC-ME) time-series was obtained by combining echoes
using a weighted average (WTE = TE * e -TE/ T2x), as in %2, The covariance structure
of all voxel time-courses was used to identify major signals in the resultant OC-ME time-
series using principal component and independent component analysis. Components
were classified as either T2x-dependent (and retained) or SO-dependent (and
discarded), primarily according to their decay properties across echoes following the
decision tree described in '%°. Mean gray matter time-series regression was
subsequently performed to remove spatially diffuse noise. Temporal masks were
generated for censoring high motion time-points using a frame-wise displacement (FD;
193 threshold of 0.3 mm and a backward difference of two TRs (2 = 1.355 = 2.77 s), for
an effective sampling rate comparable to historical FD measurements (approximately 2
to 4 s; %. Prior to the FD calculation, head realignment parameters were filtered using a

stopband Butterworth filter (0.2 - 0.35 Hz) to attenuate the influence of respiration .

Surface processing and CIFTI generation of BOLD Data:

The denoised fMRI time-series was mapped to the midthickness surfaces (using the “-
ribbon-constrained” method), combined into the Connectivity Informatics Technology
Initiative (CIFTI) format, and spatially smoothed with geodesic (for surface data) and
Euclidean (for volumetric data) Gaussian kernels (o = 2.55 mm) using Connectome
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Workbench command line utilities (Glasser et al., 2013). Signals were normalized (z-
scored). This yielded time courses representative of the entire cortical surface,
subcortex (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and
thalamus), and cerebellum, but excluding non-gray matter tissue. Signals from adjacent
cortex were regressed from subcortical voxels, as in Datasets 1 and 3.

Analysis
Mapping Subnetwork Structure:

The network organization of each participant’s brain was delineated following 3° using
the graph-theory based Infomap algorithm for community detection '°. In this approach,
we calculated the cross-correlation matrix of the time courses from all brain vertices (on
the cortical surfaces) and voxels (in subcortical structures), concatenated across
sessions. Correlations between vertices/voxels within 30 mm of each other were set to
zero in this matrix to avoid basing network membership on correlations attributable to
spatial smoothing. Geodesic distance was used for within-hemisphere surface
connections and Euclidean distance for subcortical-to-cortical connections. Connections
between subcortical structures were disallowed, as we observed extremely high
correlation values within nearly the entire basal ganglia that would prevent network
structures from emerging. Interhemispheric connections between the cortical surfaces

were retained, as smoothing was not performed across the midsagittal plane.

We observed that connectivity patterns within regions known to have low BOLD signal
due to susceptibility artifact dropout (e.g., ventral anterior temporal lobe and portions of
orbitofrontal cortex) were unstructured and inconsistent across individuals. To avoid
having the delineated network structures distorted by regions with poor signal,
connections to regions with average mode-1000 normalized BOLD signal <750 were set

to zero (as in 105.106),

The cross-correlation matrix was then thresholded to retain at least the strongest 0.1%
of connections to each vertex and voxel 2:354° _ Note that this thresholding approach
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differs from previous approaches for forming brain graphs from functional connectivity
data (e.g., 2°). The typical procedure applies a uniform edge density threshold to alll
functional connectivity values in the brain. The weakness of the uniform threshold
approach is that subcortical structures generally have decreased BOLD signal-to-noise
relative to cortex due to their greater distance from the MR head coil. The result is that
functional connectivity patterns seeded from striatal voxels have weaker peak
connectivity strengths, even though they may appear well organized and coherent with
known cortical networks. Thus, with a uniform threshold, these regions are frequently
not identified as being networked with cortical regions.

By contrast, the current approach thresholds the connectivity maps seeded from each
cortical or subcortical point in the brain separately, always retaining at least the 0.1%
strongest connections. Previous validation of this procedure 3% has shown that the 0.1%
density threshold identifies subnetwork divisions in resting data that best explain task

activations in these participants.

The thresholded matrices were used as inputs for the Infomap algorithm, which
calculated community assignments separately for each threshold. The resulting
communities represent subnetworks in the brain. Small networks with 10 or fewer
vertices/voxels were considered unassigned and removed from further consideration.

The above analysis was conducted in each individual participant.

Identifying Matched CON Subnetworks in Individuals

For each participant, we considered only subnetworks that had at least some
representation within the traditional distribution of the cingulo-opercular network
including the insula, anterior cingulate cortex extending dorsally into dorsomedial
prefrontal cortex, and supermarginal gyrus 2%88-19_ Following 25, we visually examined
the cortical and subcortical topographies of each subnetwork with CON representation,
as well as their topological arrangement relative to each other. After careful
consideration of the subnetworks observable in this population, we initially identified four
potential discrete CON subnetworks. However, we observed that 1) one of the
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subnetworks (in middle insula and dorsal postcentral gyrus) could not be separately
delineated in all participants; and 2) that same subnetwork was not dissociable from the
Central subnetwork in its connectivity, lag ordering, or task responses. See
Supplementary Figure S3 for details. Thus, we concluded that the CON was best
described by three discrete subnetworks. These matched subnetworks were identified
based on the following heuristic rules:

The Anterior (Decision) subnetwork was present bilaterally with representations in the

dorsal anterior cingulate, anterior insula, and anterior prefrontal cortex.

The Central (Action) subnetwork was present posterior to the Anterior subnetwork in the
more posterior aspect of the dorsal anterior cingulate and extended into posterior dorsal
medial prefrontal cortex, as well as in middle insula, and anterior superior parietal

cortex.

The Lateral (Feedback) subnetwork was present in the supermarginal gyrus, posterior
anterior insula, anterior and posterior inferior frontal gyrus, and anterior prefrontal

cortex.
After identifying subnetworks on the cortex, we examined subcortical areas (basal
ganglia, thalamus, and cerebellum) for representation of our selected subnetworks in

these regions.

Visualizing Subnetwork Overlap across Participants

For each matched subnetwork, the number of individuals with each subnetwork present
was calculated for each cortical vertex. For subcortical voxels, some participants
(Plasticity and MSC) were in Talaraich space. To represent overlap, we first
transformed each of these participants into MNI space. Overlap was then calculated
across MNI-space participant subnetworks as the number of individuals with the
subnetwork present in each MNI-space voxel. This procedure produced maps of the
density of each subnetwork across participants.


https://doi.org/10.1101/2023.10.10.561772
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.10.561772; this version posted October 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Meta-Analytic Network Annotation analysis

We investigated functions associated with each subnetwork by leveraging text-mining
and meta-analyses techniques in the brain mapping Neurosynth database
(https://github.com/neurosynth/neurosynth-data). Neurosynth compiles neuroimaging

studies and generates probabilistic mappings based on article term frequencies and
term-to-activation correlations °. Neurosynth functionality natively includes mapping
single [X, Y, Z] coordinates to meta-analytic descriptor terms common in the
neuroimaging literature. This is accomplished by automatically text-mining both activity
peaks and descriptor terms from a huge corpus of neuroimaging papers. Then, papers
can be identified in which a reported activity peak falls within a short distance of the
target coordinate. At the time the Neurosynth database was downloaded, it contained
over 500,000 activation peaks from over 14,000 fMRI papers. Each paper is labeled
with at least one term automatically mined from its text, and each term has a weighting

for each paper reflecting the prevalence of that term in the text.

Here, we expanded this functionality by mapping not just a single coordinate, but
instead simultaneously mapping the multiple regions within each subnetwork. We first
identified the congruent clusters of each subnetwork present in the group. This was
accomplished by thresholding the subnetwork density maps (representing cross-
participant overlap, described above) to retain all cortical vertices in which >10% of
participants had the subnetwork. For each subnetwork, we then identified all studies
within the Neurosynth database with a collection of activation peaks that “matched” the
subnetwork. Specifically, the study had to report an activation peak <2mm from at least
30% of subnetwork regions. Thus, a given study must have elicited activity near a
substantial number of the subnetwork’s regions in order to match that subnetwork.
Varying these parameters did not substantially alter findings reported here.

All terms associated with matching studies that were related to mental or task-related

function (e.g., “effort”, “oddball”, “language”, “delay”, “covert”), were retained, while all

terms related to aspects of the participant population (e.g. “male”), brain location (e.g.
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“occipital”’, “network”), or anything unrelated (e.g. “voxel”, “peripheral”, “extra”) were
excluded. This restricted the database to 742 terms.

Terms in the Neurosynth database have “weights” for each study ranging from 0O to 1,
indicating the prevalence of that term within the text-mined paper. For each term, we
tested whether that term’s weights differed significantly across different subnetworks.
Specifically, the weights found for that term in each study matched to each subnetwork
were all entered into a one-way ANOVA testing for effects of the identity of the matching
subnetwork. Significance in this test indicates significant differences in the weight of that
term across subnetworks. If the ANOVA was significant, that term was associated with
the subnetwork exhibiting the largest average weight. Significance was tested both at
p<.05, FDR-corrected for the number of terms tested, as well as (for exploratory
purposes) at p<.05 uncorrected.

Mapping Individual-Specific Large-Scale Networks

We identified the set of canonical large-scale networks using the individual-specific
network matching approach described in 2. Briefly, the Infomap algorithm was applied to
each participant’s correlation matrix thresholded at a range of edge densities spanning
from 0.01% to 5%. At each threshold, the algorithm returned community identities for
each vertex and voxel. Communities were labeled by matching them at each threshold
to a set of independent group average networks described in 2. The matching approach
proceeded as follows: 1) At each density threshold, all identified communities were
compared with the independent group networks using the Jaccard Index of spatial
overlap. 2) The community with the best match (highest overlap) to one of the
independent networks was assigned that network identity, and then not considered for
further comparison with other independent networks within that threshold. Matches
lower than Jaccard = 0.1 were not considered (to avoid matching based on only a few
vertices). Matches were first made with the large, well-known networks (in order:
default, lateral visual, motor hand, motor mouth, frontoparietal, and dorsal attention,
language), and then to the smaller networks (salience, parietal memory, contextual

association, medial visual, motor foot, and somato-cognitive action). In each individual
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and in the average, a “consensus” network assignment was derived by collapsing
assignments across thresholds, giving each node the assignment it had at the sparsest
possible threshold at which it was successfully assigned to one of the known group

networks.

Calculating Connectivity to Other Networks / Subnetwork-Network Relationships

For each CON subnetwork matched across participants, we calculated the average
fMRI time course across subnetwork voxels/vertices. We then calculated the average
time course across voxels/vertices of the large-scale Default Mode, Visual, Fronto-
Parietal, Dorsal Attention, Language, Salience, Somatomotor Hand, Somatomotor
Face, Somatomotor Foot, Auditory, Parietal Memory, Context, and Somato-Cognitive
Action networks. Voxels/vertices that overlapped with that subnetwork were excluded
from these averages. We then calculated the functional connectivity between each CON
subnetwork and each of the 12 large-scale networks as the Fisher-transformed

correlation of the two-time courses.

For each large-scale network, we compared the connectivity strengths of the
subnetworks against each other using paired t tests (subnetwork vs. subnetwork) and
applying FDR correction for multiple comparisons across all network / pairwise

subnetwork tests.

We calculated pairwise functional connectivity strengths between the CON subnetworks
themselves to better understand the integration of these subnetworks within the larger-
scale CON. We directly compared connectivity between different pairs of CON

subnetworks using paired t-tests.

Visualization of subnetwork-network relationships in individual participants was
conducted using spring-embedded plots °, as implemented in Gephi (https://gephi.org/).
In each participant, nodes were defined as contiguous cortical subnetwork or network
clusters larger than 20 mm? from each matched CON subnetworks, as well as from
within the other large-scale networks shown to be strongly connected to CON
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subnetworks. Pairwise connectivity between nodes was calculated as the Z-transformed
correlation of their mean time courses. For visualization purposes, graphs were
constructed by thresholding node-to-node connectivity matrices at 15% density. These
graphs were then imported into Gephi. For three participants (P05, P07, and P13),
whole networks (always either Salience or Dorsal Attention) were disconnected from the
rest of the graph at this density threshold. Since the goal was to visualize connectivity
with these networks, in these cases we systematically increased the density threshold in
5% increments until all networks were connected to the graph. For these three
participants, the graph became connected and was visualized at 45%, 30%, and 20%
densities, respectively.

Calculating Subnetwork Time Delays

We computed Time Delay (TD) estimates using an adaptation of a previously published
method %7, Briefly, the method of %7 computes a lagged cross-covariance function
(CCF) between timecourses for each session. We observed that these cross-covariance
functions were more stable and consistent across participants when they were restricted
to timepoints with large signal fluctuations in the regions of interest. This observations
follows recent work suggesting that large-amplitude fluctuations allow more precise
estimation of individual-specific functional connectivity patterns'%®-11°_ Thus, we
restricted timepoints of interest to those in which at least 0.1% of the vertices within the
CON subnetworks exhibited a large signal fluctuation (> 5 standard deviations above
the vertex mean), as well as six seconds before and after that large fluctuation. For
each of these time segments, we computed the lagged CCF between each pair of
cortical vertex time courses. To account for censored frames, we computed CCFs over
blocks of contiguous frames and averaged these CCFs, weighted by block duration, to
obtain a single segment CCF. We excluded TDs greater than 4 s as, in our experience,
these tend to reflect sampling error or artifact. Thus, CCFs were computed over three
TR shifts in the positive and negative directions, making the minimum block duration [3
(TR shifts) + 1 (zero-lag)] x TR = 8.8 s (Dataset 1 & 2); 5.42 s (Dataset 3). Lags were
then more precisely determined by estimated the cross-covariance extremum of the
session CCF using three-point parabolic interpolation. The resulting lags were
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assembled into an antisymmetric matrix capturing all pairwise TDs (TD matrix) for each
time segment, which was averaged across time segments to yield participant-level TD

vertexwise matrices.

Each participant’s TD matrix was averaged across rows to summarize the average time
shift from each vertex to all other vertices. These average time shifts were then
averaged across vertices for each subnetwork and network of interest. A one-way
ANOVA tested whether there were any differences in row-average TD across the
subnetworks, as well as the SCAN and the Somatomotor Hand network. Post-hoc t-
tests determined the relative temporal ordering of networks.

Task Analysis

Task evoked activations were modeled individually for each vertex and voxel with a
general linear model (GLM) ', using in-house image analysis software written in IDL
(Research Systems, Inc.). First level GLM analyses were conducted separately for each
session in a given participant, and second level within-participant analyses were run on
the session-wise beta values of a single participant. Planned second-level contrasts
were evaluated as paired voxel/vertex-wise t-tests comparing these beta values, and
the resulting t-values in each voxel/vertex were then Z-transformed for further analysis.

We included tasks that had two different types of designs (motor = block design,
spatial/verbal discrimination = mixed block/event-related design). In the block design
motor task, a block regressor was convolved with a canonical hemodynamic response
to model the five experimental conditions: tongue, left hand, right hand, left foot, right
foot.

The spatial and verbal discrimination tasks were jointly modeled in a mixed block-event
related design. Events were modeled with an FIR model (as above, with 8 timepoints for
each event); separate event regressors were included for the start and end cues in each
task, and for the different trial types (noun, verb, 50% coherence, 0% coherence). The
block (sustained activity) was modeled with a square block regressor, with separate
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regressors for sustained activity in the semantic and coherence task. Given the low
number of error trials, errors were not modeled in any task. In addition to these terms,

constant and linear effects were modeled for each run.

The task contrasts of interest included: 1) Tongue > baseline, 2) Left Hand > baseline,
3) Right Hand > baseline, 4) Left Leg > baseline, 5) Right Leg > baseline, 6) Spatial
Discrimination Task > baseline, 7) Verbal Discrimination Task > baseline. We calculated
the average activation (z-scores) for each subnetwork in the vertices involved in each of

the tasks.
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