

1 **Complex genomic landscape of inversion polymorphism in Europe's most destructive forest**
2 **pest**

3
4 Anastasiia Mykhailenko^{1,2}, Piotr Zieliński¹, Aleksandra Bednarz¹, Fredrik Schlyter^{3,4}, Martin N.
5 Andersson⁵, Bernardo Antunes¹, Zbigniew Borowski⁶, Paal Krokene⁷, Markus Melin⁸, Julia
6 Morales-García^{1,2}, Jörg Müller^{9,10}, Zuzanna Nowak¹, Martin Schebeck¹¹, Christian Stauffer¹¹,
7 Heli Viiri¹², Wiesław Babik¹, Krystyna Nadachowska-Brzyska¹

8
9 ¹Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa
10 7, 30-387, Kraków, Poland

11 ²Doctoral School of Exact and Natural Sciences, Jagiellonian University, ul. Łojasiewicza 11,
12 30-348, Kraków, Poland

13 ³Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural
14 Sciences Alnarp, PO Box 190, 234 22 Lomma, Sweden

15 ⁴ETM, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague,
16 Kamýcká 129, 165 00, Praha, Czechia

17 ⁵Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden

18 ⁶Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090 Raszyn, Poland

19 ⁷Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research,
20 Høgskoleveien 8, Ås, 1433, Norway

21 ⁸Natural Resources Institute Finland, Yliopistonkatu 6b, 80100 Joensuu, Finland

22 ⁹Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University
23 of Würzburg, Glashüttenstrasse 5, 96181 Rauhenebrach, Germany

24 ¹⁰Bavarian Forest National Park, Freyungerstrasse 2, 94481 Grafenau, Germany

25 ¹¹Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest
26 and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-
27 Jordan-Straße 82/I, 1190, Vienna, Austria

28 ¹²UPM-Kymmene, UPM Forest, BOX 85, 33100, Tampere, Finland

29

30 Corresponding author: Krystyna Nadachowska-Brzyska

31

32 Key words: polymorphic inversions, odorant receptors, diapause, spruce bark beetle, *Ips*
33 *typographus*, forest pest
34

35 Abstract

36 In many species, polymorphic inversions underlie complex phenotypic polymorphisms and
37 appear to facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions
38 can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity
39 of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide
40 variation in one of Europe's most destructive forest pests, the spruce bark beetle *Ips typographus*,
41 scan for polymorphic inversions, and test whether inversions are involved in key adaptations in
42 this species. We sampled 244 individuals from 18 populations across the species' European range
43 and, using a whole-genome resequencing approach, identified 27 polymorphic inversions
44 covering at least 28% of the genome. The inversions vary in size and in levels of intra-inversion
45 recombination, are highly polymorphic across the species range, and often overlap, forming an
46 extremely complex genomic architecture. We show that the heterogeneous inversion landscape is
47 likely maintained by the combined action of several evolutionary forces and that inversions are
48 enriched in odorant receptor genes encoding key elements of recognition pathways for host
49 plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest
50 of growing social, political, and economic importance harbors one of the most complex inversion
51 landscapes described to date and is pushing the limits of genomic architecture complexity.

52 Introduction

53 The eight spined spruce bark beetle (*Ips typographus*; hereafter spruce bark beetle) is one of the
54 most destructive insect pests in Europe, causing mass mortality in spruce-dominated forests^{1,2}.
55 The extent of recent outbreaks is unprecedented and impacts will likely increase in the coming
56 decades in response to climate change³⁻⁵. Increasing bark beetle attacks and other forest
57 disturbances have already triggered social and political conflicts in parts of Europe and have
58 highlighted the urgent need for improved management strategies^{2,6,7}. Indeed, a rapidly growing
59 body of research focuses on the species' ecology, the causes and consequences of outbreaks, and
60 their social aspects^{2,4,8,9}. Despite this enormous interest, one aspect of the species' biology
61 remains largely unexplored: we know almost nothing about the species' genome-wide variation
62 and the evolutionary mechanisms that shape this variation. The lack of population genomics
63 studies restricts our understanding of the genomic basis of adaptation and adaptive potential in

64 the spruce bark beetle. Such information could provide a critical missing link between applied
65 and basic research and serve as a foundation for effective management. This is particularly
66 important because, as discovered and described in this study, the spruce bark beetle genome
67 harbors an extremely complex inversion polymorphism landscape that may play a critical role in
68 many evolutionary processes, including key species adaptations¹⁰⁻¹².

69 Polymorphic chromosomal inversions are chromosomal segments that occur in two orientations
70 within populations: collinear and inverted haplotypes/arrangements. Inversions have been shown
71 to be involved in speciation, local adaptation, and/or maintenance of complex phenotypes¹²⁻¹⁵.
72 This is due to a key property of inversions: they suppress recombination within heterozygotes
73 and thereby prevent separation of coadapted variants. Because of their role as recombination
74 modifiers, inversions can act as supergenes, i.e., large elements of genomic architecture with
75 multiple linked functional elements¹⁶. Supergenes keep coadapted alleles together in the face of
76 gene flow and prevent the formation of maladaptive recombinant genotypes.

77 Classic examples of supergenes include inversions associated with different mating strategies in
78 ruffs (*Calidris pugnax*)¹⁵, mimicry phenotypes in *Heliconius* butterflies¹⁷, and social organization
79 in fire ants (*Solenopsis* spp.)^{18,19}. In many other species, polymorphic inversions define locally
80 adapted ecotypes^{20,21} or exhibit spatial frequency differences, e.g. by forming geographic and
81 climatic gradients^{22,23}. While the vast majority of described cases are organisms with one or a
82 few inversions, several recent studies have reported species with many polymorphic inversions²⁴⁻²⁶.
83 These recent findings raise questions about the prevalence and evolutionary significance of
84 polymorphic inversions in natural populations. Are inversion-rich genomes the exception or the
85 rule? How much of the genome can be situated within polymorphic inversions and,
86 consequently, how large can the fraction of the genome with reduced recombination be? The
87 latter question is particularly important because, in addition to suppressing recombination and
88 keeping coadapted alleles together, inversion heterozygotes will also prevent the formation of
89 new allelic combinations and thus reduce the efficacy of natural selection²⁷.

90 Given the importance of recombination in purging deleterious mutations²⁸, the presence of
91 multiple inversions that cover a substantial fraction of the genome raises other questions. First, as
92 the degree of recombination suppression depends on the number of heterozygous genotypes, how

93 frequent are inversion haplotypes in inversion-rich species? Second, are balanced
94 polymorphisms (where both inversion arrangements are equally common across the species'
95 range) more common than inversions with one common and one rare haplotype? Third, how
96 common are mechanisms that mitigate negative consequences of reduced recombination? Such
97 mechanisms include double crossover-events and gene conversion in heterozygotes, which can
98 reshuffle allelic content between large parts of two inversion arrangements and thereby reduce
99 mutational load and create new haplotypes^{10,29}.

100 Long-term persistence of two inversion haplotypes can be facilitated by two main types of
101 selection: divergent and balancing³⁰. Divergent selection can favor different inversion genotypes
102 in different environments and, when coupled with reduced migration between divergent
103 populations, can lead to speciation. Even when intraspecific gene flow is high, divergent
104 selection can lead to divergent ecotypes associated with locally advantageous inversion
105 genotypes. Alternatively, balancing selection may maintain balanced inversion polymorphisms
106 over time via several, not mutually exclusive, mechanisms, such as overdominance, negative
107 frequency dependence, antagonistic pleiotropy, and spatially or temporally varying selection^{30,31}.
108 Importantly, regardless of the selection mechanism, inversions will accumulate mutations
109 independently since recombination is suppressed in inversion heterozygotes. This will lead to
110 differentiated allelic content and increased differentiation between inversion haplotypes over
111 time³⁰. Each inversion haplotype can be treated as a separate “population” with a size that
112 corresponds to the frequency of that arrangement within studied population or species. Rare
113 inversion arrangements will suffer from a high mutational load due to reduced recombination
114 and limited purging since homozygotes are rare. However, deleterious mutations can also
115 accumulate on more frequent inversion haplotype¹⁰ and lead to associative overdominance. This
116 contributes to the maintenance of inversion polymorphisms since independent accumulation of
117 mutations continues over the time but recessive deleterious alleles private to an inversion
118 arrangement are not visible to selection in inversion heterozygotes.

119 Here, we investigated genome-wide variation across spruce bark beetle populations with a
120 special focus on chromosomal inversion polymorphisms. We found one of the most complex
121 polymorphic inversion architectures described to date and tested several evolutionary
122 mechanisms, including directional and balancing selection, that can maintain inversion

123 polymorphisms in the genome. We also tested associations between inversion polymorphisms
124 and the two key fitness-related traits diapause and olfaction. Our results suggest that inversions
125 are involved in key species adaptations and raise questions about the prevalence and role of
126 inversion polymorphisms in species characterized by large effective population sizes, little
127 geographic subdivision, and no clear phenotypic variation across the species range.

128

129 **Results and Discussion**

130 After careful filtering of the whole-genome re-sequencing data, we used 240 individuals in
131 downstream analyses. The mean per individual sequencing depth was 23.2 \times (range: 5 - 53 \times).
132 Sequencing coverage on IpsContig9 was consistently lower in individuals sexed as males (on
133 average 0.57 individual coverage). Thus, we considered IpsContig 9 to be a sex (X)
134 chromosome. After quality filtering, we retained 5.245 million SNPs covering the entire genome
135 assembly but analyzed a subset of 5.067 million SNPs located on the 35 longest contigs and
136 representing 75% of the genome assembly.

137

138 ***Complex genomic inversion landscape***

139 Twenty-nine candidate inversions (“inversions” henceforth) were identified following the criteria
140 described in the Methods section (Table 1, Figure 1, Figure S1, and Figure S2). Two possible
141 inversions (Inv16.1 and Inv23.1) were most likely part of the same inversion: the same beetle
142 individuals were genotyped as both homo- and heterozygotes, which is unlikely to occur for two
143 unlinked inversions. The same situation was found for Inv16.2 and Inv23.2. No other inversions
144 were in strong linkage disequilibrium (LD) with each other, which would suggest co-segregation
145 (Figure S3). Thus, overall, we found 27 inversions in 17 contigs, including one located on the X
146 chromosome (Inv9). Inversion size varied from 0.1 to 10.8 Mb (Table 1) and inversions
147 constituted 28% of the analyzed part of the genome. Estimated inversion age ranged from 0.5 to
148 2.6 My (Table 1, assuming a mutation rate of 2.9×10^{-9} ; see Table S1 for results for different
149 mutation rates). Inversion regions exhibited a reduced population recombination rate (rho, Figure
150 S4) and moderate to high genetic differentiation between inversion arrangements (F_{ST} between
151 homozygous individuals was 0.15-0.64; Figure 1; Figure S1).

152

153 While 12 contigs contained single inversions, five contigs showed patterns consistent with
154 multiple adjacent or overlapping inversions (Figure 1, Figure S1, Figure S2). IpsContig14 and
155 IpsContig22 contained complexes of multiple adjacent and sometimes overlapping inversions
156 (Figure 1 j-o), and three other contigs contained two overlapping inversions each (IpsContigs: 7,
157 16 and 23, Figure S1). Additionally, four putative double crossover-events were identified within
158 four inversions (Inv5, Inv18, Inv22.3, Inv22.4; Figure 1, Figure S1, Figure S2). In these cases,
159 LD clusters were separated by regions of lower LD and intermediate groups of individuals were
160 visible between the main clusters along the first principal component.

161

162 It was not surprising that we detected polymorphic inversions in the spruce bark beetle genome,
163 as there are many well-known examples of polymorphic inversions in natural populations¹².
164 What was striking, however, was the extremely complex genomic landscape of polymorphic
165 inversions we found in this species. The spruce bark beetle has at least 27 large inversions
166 covering a substantial part of the genome (28% of the analyzed part of the genome, but this is
167 probably an underestimate since we focused on ca. 75% of the genome and on large inversions >
168 0.1 Mb only). Numerous (a dozen or more) polymorphic inversions have so far only been
169 described for a few species (e.g.^{26,32,33}). It is still an open question whether many polymorphic
170 inversions within species is the exception or the rule.

171

172 The exceptionally complex inversion architecture we found in the spruce bark beetle, with
173 multiple adjacent and often overlapping inversions, resembles well known examples from
174 *Heliconius* butterflies³⁴ or fire ants³⁵. In these insects multiple adjacent inversions are the basis
175 for mimicry phenotypes and complex social organization, respectively. The presence of clusters
176 of adjacent inversions and inversion overlaps are consistent with theoretical expectations of
177 stepwise extension of recombination suppression on supergenes³⁶ and with a highly polygenic
178 architecture of adaptation³⁷.

179

180 ***Genome-wide variation and its geographic structuring – collinear vs. inversion regions***

181 Analyses based on both the whole genome and collinear parts only revealed a clear latitudinal
182 structuring of genetic variation in the spruce bark beetle (Figure 2). PCA and NGSmix
183 supported the presence of two distinct genetic groups corresponding to southern and northern

184 populations, with Polish populations showing varying degrees of admixture between the two
185 clusters. Based on these results, we divided the 18 studied populations into a northern, southern,
186 and Polish group. Despite unambiguous NGSadmix-division into two genetic clusters, the
187 genome-wide genetic differentiation between the northern and southern group was extremely
188 low ($F_{ST} = 0.021$). Similarly, F_{ST} between all population pairs showed low levels of
189 differentiation, ranging from 0.000 to 0.035 (Table S2). Mean genome-wide nucleotide diversity
190 was moderate ($\pi = 0.0062$) and per population π ranged from 0.0055 to 0.0066 (Figure S5).
191 There was a weak negative correlation between nucleotide diversity and latitude ($r^2 = 0.32$, $p =$
192 0.033, Figure S6), as northern populations had slightly lower genetic variation than southern
193 populations ($\pi_{southern} = 0.0065$; $\pi_{northern} = 0.0061$; $\pi_{Polish} = 0.0066$). Southern populations had an
194 excess of rare alleles and, consequently, had more negative Tajima's D values along the genome
195 than northern populations (mean Tajima's D was -0.458 and -0.062 in the southern and northern
196 group, respectively; Figure S7). All these results are consistent with previous phylogeographic
197 studies of the spruce bark beetle that analyzed a much smaller number of genetic markers. The
198 data suggests high levels of connectivity among spruce bark beetle populations and a very recent
199 differentiation into two genetic clusters^{38–41}. More recent RADseq data confirms a very weak
200 genetic structure in the spruce bark beetle across much of Sweden⁴², as is expected in a species
201 with high dispersal⁴³ and recent divergence.

202
203 Inversion regions in the spruce bark beetle did not structure geographically into a southern and
204 northern group. Almost all identified inversions were polymorphic across the European species
205 range, except for one inversion (Inv9) that was polymorphic only within northern populations.
206 For three inversions (Inv2, Inv5, Inv16.2+Inv23.2) unambiguous genotyping was only possible
207 across part of the species range. The differentiation between inversion haplotypes was high,
208 suggesting long-term persistence of inversion polymorphisms within this species (Figure 1;
209 Figure S1). According to our age estimates, the origin of the inversions in the spruce bark beetle
210 predates the Last Glacial Period and many inversions may be several million years old, likely
211 also predating the within-species differentiation into a southern and northern group. This was not
212 unexpected, as many known inversion polymorphisms have been segregating within species for
213 hundreds of thousands or millions of years (see table in¹²), sometimes even persisting through
214 multiple speciation events⁴⁴.

215

216 ***Inversions and key fitness-related traits***

217 Inversion polymorphism is often associated with the maintenance of complex polymorphic
218 phenotypes^{15,45}. Although the spruce bark beetle does not exhibit easily identifiable phenotypes,
219 such as distinct color patterns or mating types, we were able to test for associations between
220 inversions and two complex traits of key importance for many insects: diapause and olfaction.
221 Diapause allows species to suspend development during unfavorable conditions. While multiple
222 environmental factors can influence this complex process, many aspects of diapause, such as its
223 induction and termination, are heritable⁴⁶ and may be controlled by a small number of loci or be
224 highly polygenic^{47–50}. The spruce bark beetle exhibits two diapause strategies that could be
225 associated with polymorphic inversions: a facultative photoperiod-regulated diapause and an
226 obligate photoperiod-independent diapause⁵¹. However, we found no association between
227 diapause phenotypes and inversion genotypes (exact G test, Table S3, Figure S8), nor did we
228 find any highly differentiated genomic regions between facultatively and obligately diapausing
229 individuals (Figure S9). This suggests a polygenic nature of diapause phenotypes in the spruce
230 bark beetle.

231

232 Olfaction is another key fitness-related trait in many insects, including bark beetles. Insect
233 odorant receptors (ORs) are encoded by a large and dynamically evolving gene family. Some of
234 the receptors are evolutionarily conserved across species within insect orders, however, many are
235 species- or genus-specific. In the spruce bark beetle, detection of odorants is essential for host
236 and mate finding, as well as recognition and maintenance of symbiosis with specific fungi^{52,53}.
237 We examined 73 antennally expressed ORs⁵⁴ and found that 46% of these were located within
238 inverted regions (Table 1), even though inverted regions constituted only 28% of the analyzed
239 part of the genome. A permutation test confirmed this over-representation of OR genes within
240 inversions ($p = 0.03$). In addition, several *Ips*-specific ORs (5 out of 7 ORs from an *Ips*-specific
241 OR clade⁵⁵) were located in inverted regions, specifically on *Ips*Contig13 (4 out of 7 ORs).
242 These 5 ORs (ItypOR23, ItypOR27, ItypOR28, ItypOR29, and ItypOR49) have been
243 functionally characterized, responding to selectively compounds primarily produced by beetles
244 (pheromones), the host tree, or fungal symbionts, respectively (Powell et al., 2021; Hou et al.,

245 2021). We found no difference in the OR composition (no OR deletions) between inversion
246 haplotypes.

247 Two inversions harboring multiple OR genes showed significant latitudinal variation (Figure 3;
248 Inv13 and Inv16.1+23.1, Table 1). Interestingly, one of the inversion, Inv13, include a gene
249 encoding ItypOR23, receptor that has been previously shown to primarily respond to an odor
250 from fungi⁵⁵. We hypothesize that different OR alleles associated with these inversions are
251 involved in spruce bark beetle interactions with fungal associates present in different parts of
252 Europe. Not only are spruce bark beetle populations exposed to different fungal species
253 throughout the beetle's range, but individual beetles may also have preferences for different
254 fungal species^{53,56}. German spruce bark beetles have, for example, been shown to be more
255 attracted to fungal species that are common in Germany (*Grosmannia penicillata*,
256 *Endoconidiophora polonica*) than to rarer species (*Leptographium europhiooides*). Unpublished
257 data from Swedish beetles suggests that they are more attracted to *L. europhiooides*, which is
258 common in Sweden (personal communication D. Kandasamy). Although preliminary, these
259 observations suggest that beetle preferences may be tuned to the local fungal flora and we
260 speculate that inversions may be involved in recognition of region-specific fungal species.

261
262 Several other interesting behavioral strategies are polymorphic among spruce bark beetle
263 individuals, including the existence of pioneer individuals that are the first to infest host trees,
264 and re-emergence of females after egg laying to establish so-called sister broods in new trees.
265 Other less obvious/visible phenotypes could also be associated with inversion polymorphisms.
266 Comprehensive research, both bottom-up and top-down, is needed to understand the relationship
267 between spruce bark beetle phenotypes and the inversion polymorphism landscape.

268
269 ***Evolutionary mechanisms maintaining inversion polymorphism in the spruce bark beetle***
270 Several non-mutually exclusive evolutionary processes can maintain polymorphic inversions
271 within species, particularly divergent and balancing selection^{12,30}. The importance of divergent
272 selection has been postulated based on allele frequency patterns and associations of polymorphic
273 inversions with local adaptations that persist despite extensive intraspecific gene flow⁵⁷. For
274 example, a recent study of deer mice (*Peromyscus maniculatus*)²⁶ identified multiple
275 polymorphic inversions with clinal variation across environmental gradients in two distinct

276 habitats. Such frequency changes have also been reported across hybrid zones³³ or latitudinal
277 gradients²³. Although the spruce bark beetle does not occupy distinct environmental niches, it
278 inhabits forests across a very wide latitudinal gradient (spanning at least 16 degrees). It is also a
279 species with high dispersal capacity and extensive gene flow, as indicated by low F_{ST} across its
280 range. We found a significant correlation between the frequency of inversion haplotypes in
281 populations and geographic location (latitude) for five inversions (Figure 3; r^2 ranged from 0.34
282 to 0.68). There were no significant correlations between haplotype frequencies and longitude
283 (Figure S10). In most cases, differences in inversion haplotype frequencies were small (Figure
284 3), except for the two inversions with the strongest correlations ($r^2 > 0.6$; Inv12 and Inv13). We
285 found no association between inversion genotypes and climate or land cover variables (Figure 4),
286 but several SNPs showed significant correlation with the first principal component in a PCA of
287 many environmental variables. These results indicated that there probably is selection across
288 environmental gradients in the spruce bark beetle but that this is not the only, or even a major,
289 force maintaining inversion polymorphism within the species.

290
291 While the ‘local adaptation’ hypothesis is a major hypothesis proposed to explain inversion
292 polymorphism^{26,58,59}, balancing selection and related mechanisms may also be important in
293 maintaining polymorphic arrangements^{10,30,60}. Such mechanisms include overdominance,
294 associative overdominance, frequency-dependent selection, and spatially and temporally varying
295 selection. We found no support for overdominance playing a role in the spruce bark beetle, as no
296 excess of inversion heterozygotes was detected in any of the populations, geographic regions or
297 across the whole species range. We therefore looked more closely at mutation load, which can
298 say something about the role of associative overdominance in the maintenance of inversion
299 polymorphism. Theory predicts that recessive deleterious mutations will accumulate on both
300 inversion arrangements but that most of these mutations will be private to only one
301 arrangement^{10,30,61}. This would lead to associative overdominance, as in heterozygotes the effects
302 of deleterious recessive alleles on one arrangement would be masked by the wild-type alleles on
303 the other arrangement. The result would be long-term maintenance of the inversion
304 polymorphism, resulting in strong divergence between inversion haplotypes^{10,61,62}.

305

306 Interestingly, several stable evolutionary scenarios that maintain polymorphic inversions are
307 possible (for details see Figure 4 in¹⁰). These scenarios differ in the expected mutation load,
308 fitness, and frequency of the corresponding genotypes. Given the haplotype frequencies we
309 observed in spruce bark beetle inversions, two scenarios are likely. First, that minority
310 arrangements suffer from higher mutation load (due to reduced recombination and lower
311 population size) but are maintained in the population at low frequency due to, e.g., associative
312 overdominance. Such a mechanism would favor balanced inversion polymorphisms of
313 intermediate to large sizes^{63,64} and has been shown to play a role in maintaining polymorphic
314 inversions in several insect species^{34,65}. Second, mutation load may accumulate on one or both
315 inversion arrangements but be mitigated by the haplotype structuring process, i.e., the existence
316 of multiple diverged sub-haplotypes among inversion homozygotes that reduces the mutation
317 load within homozygotes. If this process operates within one or both inversion haplotypes it may
318 result in more equal frequencies of alternative inversion haplotypes. However, such a mechanism
319 is only possible when genetic variation and mutation load is high¹⁰.

320

321 In contrast to these theoretical expectations, we observed no sign of increased mutation load
322 (measured by the π_N/π_S ratio) in inversion regions compared to the collinear part of the spruce
323 bark beetle genome (Table S4; Figure 5). We also found no sign of haplotype structuring capable
324 of reducing mutation load within inversion homozygotes (Figure S11). The only significant
325 within-homozygote clustering we observed was in a few inversion haplotypes, divided
326 individuals into southern and northern clades and suggests that divergent selection has been
327 acting on one of the inversion arrangements, rather than haplotype structuring being associated
328 with mutation load (Figure S11). These results are consistent with observations of no significant
329 mutation load in other species where inversion haplotypes are subject to divergent selection that
330 results in geographic structuring^{26,66}. In such cases, inversions facilitate adaptive divergence but
331 do not tend to accumulate a mutation load. However, geographic clustering of inversion
332 polymorphisms is weak in the spruce bark beetle, and many inversions appear to have a slightly
333 lower mutation load associated with the more common inversion haplotype (Figure 5, Table S4).
334 It is possible that accumulation of a mutation load in the spruce bark beetle is mitigated by high
335 effective population size in this species and/or gene conversion and double crossover events,
336 which despite their apparent rarity have been detected in several spruce bark beetle inversions.

337

338 Overall, the absence of heterozygote excess observed in the spruce bark beetle does not support a
339 role of overdominance in the maintenance of inversion polymorphism in this species. Likewise,
340 the absence of an elevated mutation load in inverted regions does not support a role of
341 associative overdominance either. However, since we only have genomic data available, we
342 cannot conclusively rule out that other potential mechanisms, such as negative frequency-
343 dependent selection or antagonistic pleiotropy, could maintain balanced inversion
344 polymorphisms. Additional temporal data are needed to test whether temporally varying
345 selection has affected the frequencies of inversion haplotypes in the spruce bark beetle. Our
346 results indicate that inversions in this species are maintained as polymorphic by a complex
347 interaction of different, not mutually exclusive mechanisms. Further research is essential to
348 determine the role of different mechanisms.

349

350 ***Far-reaching consequences of having an inversion-rich genome***

351 The presence of multiple polymorphic inversions can have significant consequences for the
352 evolution of a species, as well as for evolutionary inferences based on genome-wide
353 polymorphism data. Importantly, polymorphic inversions are a reservoir of genetic variation that
354 can facilitate adaptation to rapidly changing environments. Indeed, several studies have shown
355 that polymorphic inversions support rapid adaptation to changing climatic conditions^{67–69} or
356 adaptive tracking of fluctuating environments⁷⁰. Spruce bark beetle populations are subject to
357 seasonal weather changes and a rapidly changing environment due to strong anthropogenic
358 pressures. Warmer weather and drought periods have been associated with a predicted
359 intensification of bark beetle outbreaks^{3,4,6}, which may act as a strong selection factor within
360 bark beetle populations. Whether inversions are involved in rapid adaptations in the spruce bark
361 beetle is an open question that requires further investigation.

362

363 Abundant polymorphic inversions within the genome can have far-reaching consequences for
364 inferences about demographic history and selection. It is well known that non-equilibrium
365 demography and selection can leave similar genomic signatures. Traditionally, demographic
366 analyses have used non-coding parts of the genome, based on the assumption that directional
367 selection mostly affects protein-coding regions. However, growing evidence for the importance

368 of background selection in shaping genome-wide diversity is moving the field towards
369 incorporating linked selection into inferences of demographic history^{71,72}. We believe that new
370 approaches should also consider the potential influence of polymorphic inversion landscapes,
371 because variation patterns of inverted regions can be shaped by different types of balancing
372 selection. In addition, genomics scans for selection in inversion-rich genomes may be biased due
373 to reduced recombination within inversion regions. Importantly, the effect of reduced
374 recombination may extend outside inversions^{73,74}.

375

376 **Materials and methods**

377

378 *Study system*

379 The spruce bark beetle, *Ips typographus* (Coleoptera: Curculionidae: Scolytinae), plays a key
380 role in Eurasian forest ecosystems. Under normal (endemic) conditions, this forest pest attacks
381 mainly weakened Norway spruce (*Picea abies*) trees. However, if tree resistance is compromised
382 by certain abiotic disturbances (e.g. snowbreaks, windfalls, high temperatures, drought), an
383 increased availability of stressed trees can trigger mass-propagation, leading to rapid population
384 increase and devastating outbreaks. During outbreaks, the beetles attack healthy trees and cause
385 massive tree mortality with hundreds or thousands of hectares of dead spruce stands.

386

387 During the first decade of the 21st century the spruce bark beetle killed an estimated 14.5 million
388 m³ of timber per year on average, and this number is expected to increase due to climate
389 change⁷⁵. The Czech Republic provides a particularly striking example of the beetles' destructive
390 potential. During the peak outbreak years 2017-2019 the beetles killed annually 3.1-5.4% of the
391 country's growing stock of Norway spruce, which in 2019 translated to 23 million m³. In some
392 regions there was an almost total depletion of Norway spruce⁷⁶. From a socio-economic
393 perspective, bark beetle outbreaks and subsequent intensive salvage cuttings negatively affects
394 the quality of life for people living in outbreak areas and cause serious disturbances to the wood
395 market. In the Czech Republic, decreasing timber prices caused severe revenue losses for forest
396 owners and required state interventions in the amount of 260 million EUR in 2018-2019⁷⁶.

397

398 Historically, spruce forests in Central Europe have been most heavily affected by bark beetle
399 outbreaks, while in northern Europe outbreaks have been less frequent and destructive¹.
400 However, this may change with climate warming that probably will make the boreal forests of
401 northern Europe more vulnerable to bark beetle outbreaks^{3,5,7,77,78}. As an example, heatwaves and
402 severe summer drought in Sweden in 2018 initiated a bark beetle outbreak killing over 30
403 million m³ Norway spruce the next years^{79,80}.

404 *Sampling*

405 Adult spruce bark beetles were collected with pheromone-baited traps in the spring and summer
406 of 2020. In total, we sampled 18 populations throughout Europe with 13-14 individuals per
407 locality (244 individuals in total) (Figure 2; Table S5). Throughout the text, we use the term
408 ‘population’ to refer to a particular site or a collection of closely situated sites (within about 50
409 km). In Austria, we pooled individuals from three localities that were up to 120 km apart because
410 of small sample sizes (five beetles or less per site). Populations from Scandinavia will be referred
411 to as northern populations (or the northern group) and populations from central Europe will be
412 referred to as southern populations (or the southern group). Polish populations are considered
413 separately from other central European populations (due to high admixture proportions from
414 northern group identified in downstream analysis). Beetles were brought alive to the laboratory,
415 kept on a paper diet for several days, dissected, sexed based on genitalia morphology, and
416 subjected to DNA extraction (described below).

417 *DNA extraction and genome re-sequencing*

418 DNA was extracted from the whole body of dissected beetles using the Wizard Genomic DNA
419 Purification Kit (Promega). The concentration of extracted DNA was estimated using a Qubit
420 fluorometer (Thermo Fisher Scientific). Genomic libraries were prepared with NEBNext Ultra II
421 FS DNA Library Prep with Beads (New England Biolabs), with single indexes. Individual
422 libraries were combined into three pools and 2×150 bp paired-end sequenced in three lanes of a
423 S4 flowcell using the NovaSeq 6000 instrument and v1 sequencing chemistry (Illumina Inc.).
424 Sequencing was done by the National Genomics Infrastructure, SNP&SEQ Technology Platform
425 (Uppsala, Sweden). To assess the overall genotyping error, we prepared and sequenced duplicate
426 libraries for nine individuals.

427 *Data preparation and filtering*

428 Details of raw data processing and filtering are described in the Supplementary Files. Shortly,
429 raw reads were mapped to the reference genome⁸¹ using Bowtie 2⁸². Duplicated reads were
430 removed using Picard MarkDuplicates (Broad Institute 2019). To detect and correct systematic
431 errors in base quality scores, recalibration was done using the Genome Analysis Toolkit
432 (GATK), BaseRecalibrator, and ApplyBQSR^{83,84}. Variant calling and genotyping was done using
433 GATK HaplotypeCaller, CombineGVCFs, and GenotypeGVCFs. GATK VariantRecalibrator
434 and ApplyVQSR were used to calculate and filter (by variant) quality score log-odds
435 (VQSLOD). Bcftools⁸⁵ was used to remove insertions and deletions (indels) as well
436 polymorphisms five bases up- and downstream. GATK VariantFiltration was applied to mask all
437 genotypes with low sequencing depth or low genotype quality^{83,84}. Variants which were not
438 biallelic single nucleotide polymorphisms or did not meet the recommended hard filtering
439 thresholds (GATK Team, see Supplementary materials) were filtered out. To filter out
440 polymorphisms that could come from duplicated regions we removed variants located within
441 repeat-masked regions of the genome⁸¹, variants with excessive overall coverage, and variants
442 with heterozygote excess. Variants for which genotypes could be detected in less than half of the
443 individuals were also removed. We used PLINK⁸⁶ to detect sample contaminations, swaps and
444 duplications, and unknown familial relationships (e.g. sibling pairs present in the data) which
445 might bias downstream analyses. Individuals with excessive coverage were removed, as these
446 could be a result of human errors during library preparation or pooling. We focused on contigs
447 longer than 1 Mb that together constituted 78% of the genome assembly, i.e. a total of 186 Mb.
448 Since part of IpsContig33 had high similarity to mtDNA this contig was not included in the
449 downstream analysis. Genotyping error was assessed using GATK Genotype Concordance.

450

451 *Genome-wide genetic variation and its geographic structuring*

452 Genome-wide genetic structuring was explored by PCA using PLINK. The most likely number
453 of genetic clusters and admixture proportions was estimated using NG admix⁸⁷. The analysis
454 was run for five different K-values (1-5; 10 replicates per K-value), using a minor allele
455 frequency (MAF) filter of 0.05 and 10,000 iterations, and a SNP dataset that was pruned for
456 linkage disequilibrium using PLINK (-indep-pairwise 50 10 0.1 option). To choose the most
457 likely number of genetic clusters, the results were examined using CLUMPAK

458 (<http://clumpak.tau.ac.il/index.html>). To examine the influence of inversions on genetic
459 clustering and to facilitate inversion genotyping, NGSadmix was run separately for (1) all
460 autosomal contigs without potential inversions and (2) each potential inversion.

461

462 To assess genetic differentiation among different spruce bark beetle populations Weir and
463 Cockerham's⁸⁸ F_{ST} was estimated using VCFtools⁸⁹. F_{ST} was calculated between population
464 groups identified by NGSadmix, as well as among all population pairs. Additionally, we
465 summarized F_{ST} values in 100 kb overlapping windows (using 20 kb steps) along the contigs.
466 Window-based analyses were done for each contig and each population pair. In addition,
467 absolute sequence divergence (d_{xy}), nucleotide diversity, and Tajima's D statistic were estimated
468 and summarized for 100 kb non-overlapping windows using ANGSD⁹⁰. These statistics were
469 calculated for each population separately and were based on a maximum likelihood estimate of
470 the folded site frequency spectrum (SFS). We excluded sites with mapping quality below 30
471 phred, quality score below 20, and coverage less than three times the population sample size and
472 more than three times the average coverage, following the approach used in Delmore et al.⁹¹. The
473 ANGSD calculations were based on allele frequencies estimated from genotype likelihoods⁹² and
474 ngsPopGen scripts (<https://github.com/mfumagalli/ngsPopGen>).

475

476 Population recombination rates were estimated following the approach used in Jones et al.⁹³,
477 using 20 individuals from the southern and northern group (10 individuals per group). Watterson
478 theta estimates were used to create a custom likelihood lookup table using the Ldhat program
479 *complete*⁹⁴. The *Interval* program was used to estimate the population recombination rate across
480 investigated contigs in 1 Mb segments. The *interval* algorithm was run for 2 million iterations
481 and the chain was sampled every 10,000 iterations with a burn-in of 100,000 generations (*stat*
482 program in Ldhat package, block penalty = 5). Population recombination rates were estimated
483 for each contig, and the results were summarized in non-overlapping 100 kb windows using a
484 custom perl script.

485

486 *Identification of inversions, their geographic distribution, and variation patterns*

487 Potential chromosomal inversion regions were identified based on the results of per contig PCAs,
488 local PCAs, patterns of heterozygosity, and LD clustering. Per contig PCAs were performed

489 using PLINK⁸⁶. Local PCAs were performed using the *lostruct* R package⁹⁵, following the
490 approach described in Huang et al.⁹⁶. Linkage disequilibrium among SNPs (thinned by selecting
491 one SNP every 10 kb; MAF > 5%) was calculated for each contig using PLINK. We considered
492 a genomic region to be an inversion region if (1) local PCA analysis identified the region as an
493 outlier, and/or (2) the region exhibited high LD (most SNPs having $r^2 > 0.4$), and (3) PCA
494 performed on SNPs from this region separated individuals into two (or more) distinct groups
495 with heterozygosity patterns matching the expectation of at least one group having lower levels
496 of heterozygosity (i.e., the group consisting of individuals with homozygous inversion).
497 Genotyping of individual beetles with respect to the inversion haplotypes they carried was done
498 based on inversion region PCA1 loading scores and/or inversion-specific NGSadmix clustering
499 (with K = 2 inversion heterozygotes having mixed ancestry in approximate 50/50 proportions;
500 Figure S12). In a few special cases (such as overlapping inversions or complex double crossover
501 patterns) genotyping was done based on inversion region PCA2 loading scores or was limited to
502 either the southern or northern group. Contigs with less than 10,000 variants provided ambiguous
503 results and were excluded from genotyping. Putative inversion boundaries were defined based on
504 local PCAs and sharp borders detected in LD clusters.

505
506 Inversion genotype and haplotype frequencies were calculated using an in-house R-script.
507 Frequencies were calculated (1) within each population, (2) within the southern and northern
508 group, and (3) for all sampled populations combined. Deviations from Hardy-Weinberg
509 equilibrium were estimated for all three datasets. Inversions with only two haplotypes were
510 tested using exact Fisher tests. Inversions with more than two haplotypes (including recombinant
511 haplotypes between two inversion arrangements) were tested using permutation test, and sex
512 chromosome inversions were tested as described in Graffelman & Weir⁹⁷. All tests were done
513 using the R package *HardyWeinberg*⁹⁸. To investigate if inversion haplotypes differed in
514 frequency along environmental gradients, Pearson correlation coefficients between inversion
515 haplotype frequencies and latitude/longitude was calculated.

516
517 To assess levels of genetic differentiation between inversion haplotypes, F_{ST} and d_{xy} between
518 alternative inversion haplotypes (AA, BB) were estimated following the approach described

519 above. Deletions present in alternative inversion haplotypes were not included in d_{xy} calculations
520 but were summarized separately using custom scripts.

521

522 *Inversion age estimates*

523 Absolute sequence divergence between alternative inversion haplotypes was used to calculate the
524 approximate time of divergence of inverted and non-inverted haplotypes. We used the equation T
525 = $d_{xy}/2\mu$, where T is the divergence time in generations, μ is the mutation rate per site per
526 generation, and d_{xy} is a mean d_{xy} calculated based on per SNP values estimated in ANGSD.
527 Since mutation rates of the spruce bark beetle are unknown, we used a selection of mutation rate
528 estimates available for some diploid, sexually reproducing insects including *Drosophila*
529 *melanogaster*⁹⁹, *Heliconius melpomene*¹⁰⁰, and *Chironomus riparius*¹⁰¹. Per generation mutation
530 rate estimates varied from 2.1 to 11.7×10^{-9} . This approach could only give us rough inversion
531 age estimates due to the uncertainty of the mutation rate estimates, probable intraspecific
532 variation in mutation rate⁹⁹, and a (likely) substantial influence of gene flux²⁹.

533

534 *Mutation load estimation*

535 To estimate mutation load we calculated the ratio of nucleotide diversity at non-synonymous
536 sites (π_N) vs. synonymous sites (π_S). Mutation load (π_N/π_S) was calculated separately for each
537 inversion homozygote and for the collinear part of the genome. We computed nucleotide
538 diversity for each site using SNPGenie¹⁰². The π_N/π_S ratio was estimated in windows of 200 kb
539 using an in-house R script. To account for the fact that inversions can greatly suppress
540 recombination in surrounding parts of the genome⁷⁴ the collinear part of the genome was divided
541 into two groups: (1) a group including all collinear 200 kb windows outside inversions and (2) a
542 group including all collinear windows outside inversions but excluding windows that came from
543 contigs with inversions (so called strict filtering). Both collinear datasets were used to test for
544 overall differences in mutation load between inversions and the collinear part of the genome
545 (using two-sided t-test). One-sided t-tests were used to test whether minor (less frequent)
546 homokaryotypes had higher mutation loads than major (more frequent) homokaryotypes.
547 Homokaryotypes that contained fewer than four 200 kb windows and were present in few
548 individuals (two thresholds were tested: < 4 and < 10 individuals) were excluded from the

549 analysis. Additionally, windows with a small number of genes were excluded (two thresholds
550 were tested: < 5 and < 10 genes).

551
552 Haplotype structuring, i.e., the existence of two or more distinct sub-haplotypes among inversion
553 homozygote haplotypes, can halt fitness degeneration on one or both inversion haplotypes by
554 carrying partially complementary sets of deleterious recessive alleles^{10,103}. To check if any
555 inversion homozygotes exhibited haplotype structuring we first phased the data using Beagle 5.2
556 (default settings¹⁰⁴). Next, in each inverted region and homokaryotype we filtered out all variants
557 with MAF < 0.1 and used PGDSpider 2.1.1.0¹⁰⁵ to convert variant call formats (VCF) to full
558 length sequences. Finally, we constructed neighbor-joining trees for alleles within haplotypes
559 using MEGA7¹⁰⁶.

560
561 *Phenotype-genotype associations*
562 To test whether inversion polymorphisms were associated with diapause phenotypes we genome
563 sequenced 18 individuals from a spruce bark beetle diapause study by Schebeck et al.⁵¹ (10
564 beetles expressing facultative diapause and 8 beetles expressing obligatory diapause). DNA
565 sequencing was performed using the DNBseq platform (BGI Tech Solutions, Poland) to a mean
566 coverage of 20×. The data was processed in the same way as described above and combined with
567 other sequenced individuals before performing PCA in PLINK. To test for differentiation in
568 inversion haplotype frequencies between diapause phenotypes an exact G test was run using
569 Genepop 4.1.2¹⁰⁷. F_{ST} between individuals expressing facultative and obligate diapause was
570 estimated using VCFtools⁸⁹ and summarized in 100 kb overlapping windows (20 kb steps).

571
572 To check if spruce bark beetle odorant receptors (ORs) genes were associated with inversions we
573 examined 73 OR genes recently annotated by Yuvaraj et al.⁵⁴. OR sequences were mapped to the
574 bark beetle reference genome using minimap2¹⁰⁸, and 71 out of 73 ORs were located in the 186
575 Mb covered by the 36 contigs we analyzed. Three ORs mapped to more than one contig.
576 ItypOR9 and ItypOR58 mapped to the end of IpsContig16 and 23, suggesting possible assembly
577 error and duplication of end-of-contig sequences, which are difficult to assemble. ItypOR59NTE
578 mapped to three nearby locations on IpsContig6, suggesting either assembly error or recent
579 duplication. For these three ORs we used one randomly chosen location in downstream analyses.

580 To test if inversions were enriched in OR genes, we ran permutation tests (10,000 iterations;
581 permutating inversions locations). To check if alternative inversion arrangements harbored
582 different numbers of OR genes (e.g. that one arrangement carried a deletion) we compared
583 sequence coverage within ORs in individual beetles identified as inversion homozygotes.

584

585 *Genotype-environment association*

586 Genotype-environment association (GEA) analyses were done to test if allele frequency changes
587 in SNPs were associated with the beetle populations' local environmental. Many different
588 environmental variables were summarized along two principal components (see below). To
589 control for confounders due to the overall genetic differentiation, we used Latent Factors Mixed
590 Models (LFMM¹⁰⁹) as implemented in the lfmm2() function from the R package LEA¹¹⁰. We
591 used only SNPs with < 20% missing data and MAF >= 0.1, and that occurred in individuals with
592 < 30% missing data. Because LFMM cannot handle missing data, we imputed missing genotypes
593 with impute() from LEA. We ran LFMM for (1) all SNPs that passed the filters described above
594 and (2) for a dataset where each inversion was represented as a single "SNP" inversion genotype.
595 We used five latent factors (K = 5) in lfmm2(). P-values were calculated using lfmm2.test() from
596 LEA and false discovery rate (FDR)-corrected using the p.adjust() R function with method =
597 "fdr".

598

599 Each beetle population's local environment was characterized according to climate and land-
600 cover data. We used all 19 bioclimatic variables from WorldClim version 2.1.¹¹¹ with a resolution
601 of ~1 km². These variables are averaged over the years 1970-2000. Proportions of forest,
602 cropland, and built-up areas were downloaded from <https://lcviewer.vito.be/> for 2015 with a
603 spatial resolution of ~100 m²¹¹². These global land-cover maps are part of the Copernicus Land
604 Service, derived from PROBA-V satellite observations, and have an accuracy of 80% as
605 measured by the CEOS land product validation subgroup. We also included the proportion of
606 land area covered by spruce trees (genus *Picea*) at a resolution of ~1 km², as obtained by Brus et
607 al.¹¹³ using a statistical mapping approach. All environmental variables were reprojected to a
608 final resolution of ~1 km² using the Lambert azimuthal equal area method. We then extracted
609 mean values for all environmental variables (Figure S13) within a 50 km radius from each
610 population location using the R package terra¹¹⁴. Finally, PCA was used to summarize the multi-

611 scale environmental variation among populations. The first two PCA components (PC1 and PC2)
612 explained 25% and 23% of the environmental variation, respectively, and were used as the final
613 input for the GEA analyses. PC1 represented environmental variation mainly related to latitude,
614 with northern populations showing higher values indicative of higher temperature seasonality
615 and lower temperatures during the coldest months. PC2 represented environmental variation
616 mostly related to temperature and amount of cropland, with higher values representing localities
617 with higher temperatures during the warmest months and a higher proportion of cropland (and
618 conversely less forest cover and spruce) (Figure S14).

619

620 **Data Availability**

621 All DNA sequences have been deposited to the European Nucleotide Archive under the
622 BioProject ID PRJNA1013983.

623

624 **Acknowledgments**

625 We thank A. Hietala, E. Stengel, K. Zub, Å. Lindelöw, O. Langvall, M. Holmlund, E.
626 Kristensen, U. Johansson, R. Modlinger, J. Reisenberger, K. Szreder, W. Skowroński L.
627 Stanecki, and M. Ahlström for help in sampling spruce bark beetles across Europe. T. Mokrzycki
628 helped with beetle sexing and identification. We thank members of the Genomics and
629 Experimental Evolution Group at Jagiellonian University for their help in improving this
630 manuscript. We thank Tomasz Gaczkorek for the help in writing scripts and optimizing data
631 analysis. This work was funded by a Polish National Science Center 2018/30/E/NZ8/00105 grant
632 to K.N.B, and the Foundation in Memory of Oscar and Lili Lamm to M.N.A.

633

634 **Author contributions**

635 A.M., P.Z. and K.N.B. conceived the study, performed the main analyses, and wrote the
636 manuscript. A.B. managed sample shipment, sexed beetles, isolated DNA, and prepared samples
637 for sequencing. F.S., P.K. and M.N.A. provided an unpublished version of the spruce bark beetle
638 genome and valuable insights on the species' ecology and sensory biology. M.M., J.M., Z.B.,
639 M.S., P.K., and C.S. organized sampling, provided beetles for analysis and insights on sampled
640 populations. B.A. and W.B. performed GEA analysis. Z.N. analyzed diapause data. J.M. phased

641 the data. M.S. provided diapause samples. W.B. helped in data interpretation and provided
642 feedback on all manuscript versions. All authors read and approved the final manuscript.

643

644 **References**

- 645 1. Hlásny, T. *et al.* Living with bark beetles: impacts , outlook and management options.
646 *From Science to Policy* vol. 8 (2019).
- 647 2. Vega, F. & Hofstetter, R. Bark Beetles: Biology and Ecology of Native and Invasive
648 Species. Elsevier (2015).
- 649 3. Bentz, B. J., Hansen, E. M., Davenport, M. & Soderberg, D. Complexities in predicting
650 mountain pine beetle and spruce beetle response to climate change. In *Bark Beetle
651 Management, Ecology, and Climate Change*. Elsevier (2021).
- 652 4. Biedermann, P. H. W. *et al.* Bark Beetle Population Dynamics in the Anthropocene:
653 Challenges and Solutions. *Trends Ecol. Evol.* **34**, 914–924 (2019).
- 654 5. Müller, M., Olsson, P. O., Eklundh, L., Jamali, S. & Ardö, J. Features predisposing forest
655 to bark beetle outbreaks and their dynamics during drought. *For. Ecol. Manage.* **523**,
656 120480 (2022).
- 657 6. Hlásny, T. *et al.* Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward
658 for Management. *Curr. For. Reports* **7**, 138–165 (2021).
- 659 7. Müller, M. How natural disturbance triggers political conflict: Bark beetles and the
660 meaning of landscape in the Bavarian Forest. *Glob. Environ. Chang.* **21**, 935–946 (2011).
- 661 8. Wermelinger, B. & Jakoby, O. Bark beetles. in *Disturbance Ecology* (ed. Thomas
662 Wohlgemuth, Anke Jentsch, R. S.) 271–293 (2022).
- 663 9. Wermelinger, B. Ecology and management of the spruce bark beetle Ips typographus - A
664 review of recent research. *For. Ecol. Manage.* **202**, 67–82 (2004).
- 665 10. Berdan, E. L., Blanckaert, A., Butlin, R. K. & Bank, C. Deleterious mutation
666 accumulation and the long-term fate of chromosomal inversions. *PLoS Genet.* **17**, (2021).
- 667 11. Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation.
668 *Genetics* **173**, 419–434 (2006).
- 669 12. Wellenreuther, M. & Bernatchez, L. Eco-Evolutionary Genomics of Chromosomal
670 Inversions. *Trends Ecol. Evol.* **33**, 427–440 (2018).
- 671 13. Lohse, K., Clarke, M., Ritchie, M. G. & Etges, W. J. Genome-wide tests for introgression

672 between cactophilic *Drosophila* implicate a role of inversions during speciation. *Evolution*
673 **69**, 1178–1190 (2015).

674 14. Fuller, Z. L., Koury, S. A., Phadnis, N. & Schaeffer, S. W. How chromosomal
675 rearrangements shape adaptation and speciation: Case studies in *Drosophila*
676 *pseudoobscura* and its sibling species *Drosophila persimilis*. *Mol. Ecol.* **28**, 1283–1301
677 (2019).

678 15. Lamichhaney, S. *et al.* Structural genomic changes underlie alternative reproductive
679 strategies in the ruff (*Philomachus pugnax*). *Nat. Genet.* **48**, 84–88 (2015).

680 16. Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution. *Heredity* **113**, 1–
681 8 (2014).

682 17. Joron, M. *et al.* Chromosomal rearrangements maintain a polymorphic supergene
683 controlling butterfly mimicry. *Nature* **477**, 203–206 (2011).

684 18. Purcell, J., Brelsford, A., Wurm, Y., Perrin, N. & Chapuisat, M. Convergent genetic
685 architecture underlies social organization in ants. *Curr. Biol.* **24**, 2728–2732 (2014).

686 19. Gutiérrez-Valencia, J., Hughes, P. W., Berdan, E. L. & Slotte, T. The Genomic
687 Architecture and Evolutionary Fates of Supergenes. *Genome Biol. Evol.* **13**, 1–19 (2021).

688 20. Lowry, D. B. & Willis, J. H. A widespread chromosomal inversion polymorphism
689 contributes to a major life-history transition, local adaptation, and reproductive isolation.
690 *PLoS Biol.* **8**, e1000500 (2010).

691 21. Kirubakaran, T. G. *et al.* Two adjacent inversions maintain genomic differentiation
692 between migratory and stationary ecotypes of Atlantic cod. *Mol. Ecol.* **25**, 2130–2143
693 (2016).

694 22. Kapun, M., Fabian, D. K., Goudet, J. & Flatt, T. Genomic Evidence for Adaptive
695 Inversion Clines in *Drosophila melanogaster*. *Mol. Biol. Evol.* **33**, 1317–1336 (2016).

696 23. Mérot, C. *et al.* Locally Adaptive Inversions Modulate Genetic Variation at Different
697 Geographic Scales in a Seaweed Fly. *Mol. Biol. Evol.* **38**, 3953–3971 (2021).

698 24. Porubsky, D. *et al.* Recurrent inversion polymorphisms in humans associate with genetic
699 instability and genomic disorders. *Cell* **185**, 1986–2005.e26 (2022).

700 25. Todesco, M. *et al.* Massive haplotypes underlie ecotypic differentiation in sunflowers.
701 *Nature* **584**, 602–607 (2020).

702 26. Harringmeyer, O. S. & Hoekstra, H. E. Chromosomal inversion polymorphisms shape the

703 genomic landscape of deer mice. *Nat. Ecol. Evol.* **6**, 1965–1979 (2022).

704 27. Roesti, M., Gilbert, K. J. & Samuk, K. Chromosomal inversions can limit adaptation to
705 new environments. 1–16 (2022).

706 28. Keightley, P. D. & Otto, S. P. Interference among deleterious mutations favours sex and
707 recombination in finite populations. *Nature* **443**, 89–92 (2006).

708 29. Charlesworth, B. The effects of inversion polymorphisms on patterns of neutral genetic
709 diversity. *Genetics* **224**, 1–21 (2023).

710 30. Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving Inversions. *Trends
711 Ecol. Evol.* **34**, 239–248 (2019).

712 31. Connallon, T. & Clark, A. G. Balancing selection in species with separate sexes: Insights
713 from fisher's geometric model. *Genetics* **197**, 991–1006 (2014).

714 32. Tigano, A. *et al.* Chromosome-Level Assembly of the Atlantic Silverside Genome
715 Reveals Extreme Levels of Sequence Diversity and Structural Genetic Variation. *Genome
716 Biol. Evol.* **13**, 1–17 (2021).

717 33. Faria, R. *et al.* Multiple chromosomal rearrangements in a hybrid zone between *Littorina
718 saxatilis* ecotypes. *Mol. Ecol.* **28**, 1375–1393 (2019).

719 34. Jay, P. *et al.* Mutation load at a mimicry supergene sheds new light on the evolution of
720 inversion polymorphisms. *Nat. Genet.* **53**, 288–293 (2021).

721 35. Wang, J. *et al.* A Y-like social chromosome causes alternative colony organization in fire
722 ants. *Nature* **493**, 664–668 (2013).

723 36. Jay, P., Tezenas, E., Véber, A. & Giraud, T. Sheltering of deleterious mutations explains
724 the stepwise extension of recombination suppression on sex chromosomes and other
725 supergenes. *PLoS Biology* **20**, e3001698 (2022).

726 37. Schaal, S. M., Haller, B. C. & Lotterhos, K. E. Inversion invasions: When the genetic
727 basis of local adaptation is concentrated within inversions in the face of gene flow. *Philos.
728 Trans. R. Soc. B Biol. Sci.* **377**, (2022).

729 38. Stauffer, C., Lakatos, F. & Hewitt, G. M. Phylogeography and postglacial colonization
730 routes of *Ips typographus* L. (Coleoptera, Scolytidae). *Mol. Ecol.* **8**, 763–773 (1999).

731 39. Sallé, A., Arthofer, W., Lieutier, F., Stauffer, C. & Kerdelhué, C. Phylogeography of a
732 host-specific insect: Genetic structure of *Ips typographus* in Europe does not reflect past
733 fragmentation of its host. *Biol. J. Linn. Soc.* **90**, 239–246 (2007).

734 40. Bertheau, C. *et al.* Divergent evolutionary histories of two sympatric spruce bark beetle
735 species. *Mol. Ecol.* **22**, 3318–3332 (2013).

736 41. Mayer, F. *et al.* Comparative multilocus phylogeography of two Palaearctic spruce bark
737 beetles: Influence of contrasting ecological strategies on genetic variation. *Mol. Ecol.* **24**,
738 1292–1310 (2015).

739 42. Ellerstrand, S. J. *et al.* Weak population genetic structure in Eurasian spruce bark beetle
740 over large regional scales in Sweden. *Ecol. Evol.* **12**, 1–12 (2022).

741 43. Nilssen, A. C. Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera,
742 Scolytidae and Curculionidae) in northern Finland. *Ann. Entomol. Fenn.* **50**, 37–42
743 (1984).

744 44. Brelsford, A. *et al.* An Ancient and Eroded Social Supergene Is Widespread across
745 Formica Ants. *Curr. Biol.* **30**, 304-311.e4 (2020).

746 45. Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. *Curr.*
747 *Biol.* **24**, 288–294 (2014).

748 46. Roff, D. a. The Evolution of Threshold Traits in Animals. *Q. Rev. Biol.* **71**, 3–35 (1996).

749 47. Pruijscher, P., Nylin, S., Gotthard, K. & Wheat, C. W. Genetic variation underlying local
750 adaptation of diapause induction along a cline in a butterfly. *Mol. Ecol.* **27**, 3613–3626
751 (2018).

752 48. Kozak, G. M. *et al.* Genomic Basis of Circannual Rhythm in the European Corn Borer
753 Moth. *Curr. Biol.* **29**, 3501-3509.e5 (2019).

754 49. Paolucci, S., Salis, L., Vermeulen, C. J., Beukeboom, L. W. & van de Zande, L. QTL
755 analysis of the photoperiodic response and clinal distribution of period alleles in *Nasonia*
756 *vitripennis*. *Mol. Ecol.* **25**, 4805–4817 (2016).

757 50. Denlinger, D. *Insect diapause*. Cambridge University Press (2022).

758 51. Schebeck, M., Dobart, N., Ragland, G. J., Schopf, A. & Stauffer, C. Facultative and
759 obligate diapause phenotypes in populations of the European spruce bark beetle *Ips*
760 *typographus*. *J. Pest Sci.* (2004). **95**, 889–899 (2022).

761 52. Hansson, B. S. & Stensmyr, M. C. Evolution of insect olfaction. *Neuron* **72**, 698–711
762 (2011).

763 53. Kandasamy, D., Gershenzon, J., Andersson, M. N. & Hammerbacher, A. Volatile organic
764 compounds influence the interaction of the Eurasian spruce bark beetle (*Ips typographus*)

765 with its fungal symbionts. *ISME J.* **13**, 1788–1800 (2019).

766 54. Yuvaraj, J. K. *et al.* Putative ligand binding sites of two functionally characterized bark
767 beetle odorant receptors. *BMC Biol.* **19**, 1–21 (2021).

768 55. Hou, X. Q. *et al.* Functional Evolution of a Bark Beetle Odorant Receptor Clade Detecting
769 Monoterpenoids of Different Ecological Origins. *Mol. Biol. Evol.* **38**, 4934–4947 (2021).

770 56. Kandasamy, D. *et al.* Conifer-killing bark beetles locate fungal symbionts by detecting
771 volatile fungal metabolites of host tree resin monoterpenes. *PLoS Biology* **21**, e3001887
772 (2023).

773 57. Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. *Mol. Ecol.* **25**,
774 2144–2164 (2016).

775 58. Akopyan, M. *et al.* Comparative linkage mapping uncovers recombination suppression
776 across massive chromosomal inversions associated with local adaptation in Atlantic
777 silversides. *Mol. Ecol.* **31**, 3323–3341 (2022).

778 59. Christmas, M. J. *et al.* Chromosomal inversions associated with environmental adaptation
779 in honeybees. *Mol. Ecol.* **28**, 1358–1374 (2019).

780 60. Mérot, C., Llaurens, V., Normandeau, E., Bernatchez, L. & Wellenreuther, M. Balancing
781 selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly.
782 *Nat. Commun.* **11**, (2020).

783 61. Navarro, A., Barbadilla, A. & Ruiz, A. Effect of inversion polymorphism on the neutral
784 nucleotide variability of linked chromosomal regions in drosophila. *Genetics* **155**, 685–
785 698 (2000).

786 62. Guerrero, R. F., Rousset, F. & Kirkpatrick, M. Coalescent patterns for chromosomal
787 inversions in divergent populations. *Philos. Trans. R. Soc. B Biol. Sci.* **367**, 430–438
788 (2012).

789 63. Ohta, T. Associative overdominance caused by linked detrimental mutations. *Genet. Res.*
790 **18**, 277–286 (1971).

791 64. Connallon, T. & Olito, C. Natural selection and the distribution of chromosomal inversion
792 lengths. *Mol. Ecol.* **31**, 3627–3641 (2022).

793 65. Yang, Y. Y., Lin, F. J. & Chang, H. Y. Comparison of recessive lethal accumulation in
794 inversion-bearing and inversion-free chromosomes in Drosophila. *Zool. Stud.* **41**, 271–282
795 (2002).

796 66. Huang, K. *et al.* Mutation Load in Sunflower Inversions Is Negatively Correlated with
797 Inversion Heterozygosity. *Mol. Biol. Evol.* **39**, 1–17 (2022).

798 67. McCulloch, G. A. & Waters, J. M. Rapid adaptation in a fast-changing world: Emerging
799 insights from insect genomics. *Glob. Chang. Biol.* **29**, 943–954 (2023).

800 68. Rane, R. V., Rako, L., Kapun, M., Lee, S. F. & Hoffmann, A. A. Genomic evidence for
801 role of inversion 3RP of *Drosophila melanogaster* in facilitating climate change
802 adaptation. *Mol. Ecol.* **24**, 2423–2432 (2015).

803 69. Kapun, M. & Flatt, T. The adaptive significance of chromosomal inversion
804 polymorphisms in *Drosophila melanogaster*. *Mol. Ecol.* **28**, 1263–1282 (2019).

805 70. Nunez, J. C. B. *et al.* A cosmopolitan inversion drives seasonal adaptation in
806 overwintering Drosophila. *bioRxiv* 2022.12.09.519676 (2022).

807 71. Li, J. *et al.* Joint analysis of demography and selection in population genetics: Where do
808 we stand and where could we go? *Mol. Ecol.* **21**, 28–44 (2012).

809 72. Johri, P. *et al.* The Impact of Purifying and Background Selection on the Inference of
810 Population History: Problems and Prospects. *Mol. Biol. Evol.* **38**, 2986–3003 (2021).

811 73. Li, H. *et al.* Heterozygous inversion breakpoints suppress meiotic crossovers by altering
812 recombination repair outcomes. *PLoS Genet.* **19**, 1–20 (2023).

813 74. Koury, S. A. Predicting recombination suppression outside chromosomal inversions in
814 *Drosophila melanogaster* using crossover interference theory. *Heridity* **130**, 196–208
815 (2023).

816 75. Seidl, R., Schelhaas, M., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in
817 Europe and their impact on carbon storage. *Nat. Clim. Chang.* **4**, 806–810 (2014).

818 76. Hlásny, T. *et al.* Devastating outbreak of bark beetles in the Czech Republic: Drivers,
819 impacts, and management implications. *For. Ecol. Manage.* **490**, 119075 (2021).

820 77. Lange, H., Økland, B. & Krokene, P. Thresholds in the life cycle of the spruce bark beetle
821 under climate change. *Interjournal Complex Syst.* **1648**, 1–10 (2006).

822 78. Jönsson, A. M., Harding, S., Bärring, L. & Ravn, H. P. Impact of climate change on the
823 population dynamics of *Ips typographus* in southern Sweden. *Agric. For. Meteorol.* **146**,
824 70–81 (2007).

825 79. Wulff, S. & Roberge, C. Inventering av granbarkborreangrepp i Götaland och Svealand.
826 (2022).

827 80. Öhrn, P., Berlin, M., Elfstrand, M., Krokene, P. & Jönsson, A. M. Seasonal variation in
828 Norway spruce response to inoculation with bark beetle-associated bluestain fungi one
829 year after a severe drought. *For. Ecol. Manage.* **496**, 119443 (2021).

830 81. Powell, D. *et al.* A highly-contiguous genome assembly of the Eurasian spruce bark
831 beetle, *Ips typographus*, provides insight into a major forest pest. *Commun. Biol.* **4**, 1–9
832 (2021).

833 82. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods*
834 **9**, 357–359 (2012).

835 83. Depristo, M. A. *et al.* A framework for variation discovery and genotyping using next-
836 generation DNA sequencing data. *Nat. Genet.* **43**, 491–501 (2011).

837 84. McKenna, A. *et al.* The Genome Analysis Toolkit: A MapReduce framework for
838 analyzing next-generation DNA sequencing data. *Genome Res.* **20**, 1297–1303 (2010).

839 85. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, 1–4 (2021).

840 86. Purcell, S. *et al.* PLINK: A tool set for whole-genome association and population-based
841 linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

842 87. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture
843 proportions from next generation sequencing data. *Genetics* **195**, 693–702 (2013).

844 88. Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population
845 structure. *Evolution* **38**, 1358–1370 (1984).

846 89. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158
847 (2011).

848 90. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation
849 Sequencing Data. *BMC Bioinformatics* **15**, 1–13 (2014).

850 91. Delmore, K. E. *et al.* Comparative analysis examining patterns of genomic differentiation
851 across multiple episodes of population divergence in birds. *Evol. Lett.* **2**, 76–87 (2018).

852 92. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping
853 and population genetical parameter estimation from sequencing data. *Bioinformatics* **27**,
854 2987–2993 (2011).

855 93. Jones, J. C. *et al.* Extreme Differences in Recombination Rate between the Genomes of a
856 Solitary and a Social Bee. *Mol. Biol. Evol.* **36**, 2277–2291 (2019).

857 94. McVean, G., Awadalla, P. & Fearnhead, P. A coalescent-based method for detecting and

estimating recombination from gene sequences. *Genetics* **160**, 1231–1241 (2002).

Li, H. & Ralph, P. Local PCA shows how the effect of population structure differs along the genome. *Genetics* **211**, 289–304 (2019).

Huang, K., Andrew, R. L., Owens, G. L., Ostevik, K. L. & Rieseberg, L. H. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. *Mol. Ecol.* **29**, 2535–2549 (2020).

Graffelman, J. & Weir, B. S. Multi-allelic exact tests for Hardy–Weinberg equilibrium that account for gender. *Mol. Ecol. Resour.* **18**, 461–473 (2018).

Graffelman, J. Exploring diallelic genetic markers: The HardyWeinberg package. *J. Stat. Softw.* **64**, 1–23 (2015).

Krasovec, M. The spontaneous mutation rate of *Drosophila pseudoobscura*. *G3 Genes, Genomes, Genet.* **11**, (2021).

Keightley, P. D. *et al.* Estimation of the Spontaneous Mutation Rate in *Heliconius melpomene*. *Mol. Biol. Evol.* **32**, 239–243 (2015).

Oppold, A. M. & Pfenninger, M. Direct estimation of the spontaneous mutation rate by short-term mutation accumulation lines in *Chironomus riparius*. *Evol. Lett.* **1**, 86–92 (2017).

Nelson, C. W., Moncla, L. H. & Hughes, A. L. SNPGenie: Estimating evolutionary parameters to detect natural selection using pooled next-generation sequencing data. *Bioinformatics* **31**, 3709–3711 (2015).

Charlesworth, B. & Charlesworth, D. Rapid fixation of deleterious alleles can be caused by Muller’s ratchet. *Genet. Res.* **70**, 63–73 (1997).

Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. *Am. J. Hum. Genet.* **81**, 1084–1097 (2007).

Lischer, H. E. L. & Excoffier, L. PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. *Bioinformatics* **28**, 298–299 (2012).

Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol. Biol. Evol.* **33**, 1870–1874 (2016).

Raymond, M. & Rousset, F. An Exact Test for Population Differentiation. *Evolution* **49**,

889 1280 (1995).

890 108. Li, H. Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–
891 3100 (2018).

892 109. Caye, K., Jumentier, B., Lepeule, J. & François, O. LFMM 2: Fast and accurate inference
893 of gene-environment associations in genome-wide studies. *Mol. Biol. Evol.* **36**, 852–860
894 (2019).

895 110. Gain, C. & François, O. LEA 3: Factor models in population genetics and ecological
896 genomics with R. *Mol. Ecol. Resour.* **21**, 2738–2748 (2021).

897 111. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces
898 for global land areas. *Int. J. Climatol.* **37**, 4302–4315 (2017).

899 112. Buchhorn, M. *et al.* Copernicus global land service: Land cover 100m: Epoch 2015:
900 Globe. Version V2. 0.2. (2019).

901 113. Brus, D. J. *et al.* Statistical mapping of tree species over Europe. *Eur. J. For. Res.* **131**,
902 145–157 (2012).

903 114. Hijmans, R. terra: Spatial Data Analysis. R package version 1.7-18. [https://CRAN.R-
904 project.org/package=terra](https://CRAN.R-project.org/package=terra). (2023).

905

906

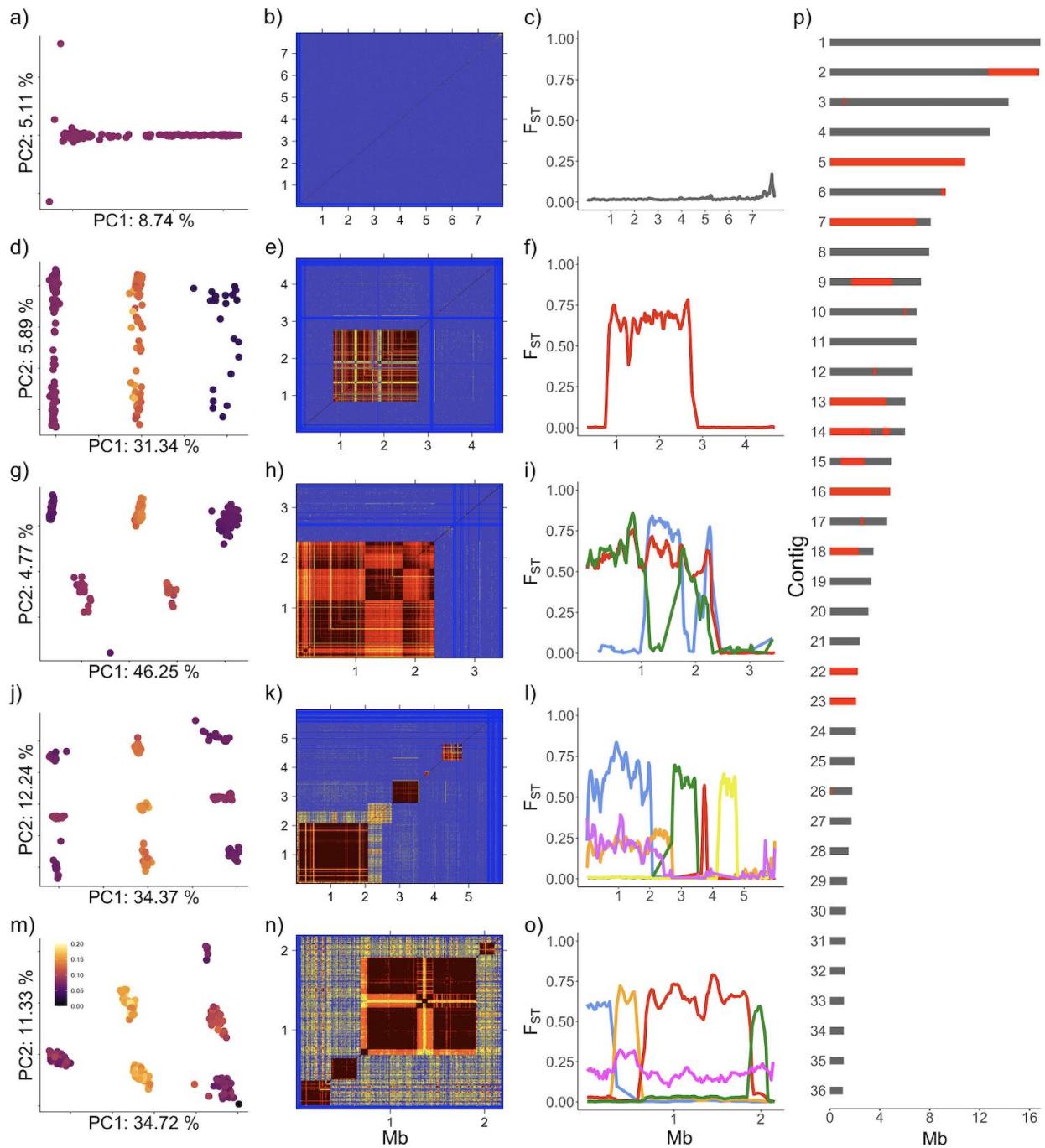
907

908 **Tables**

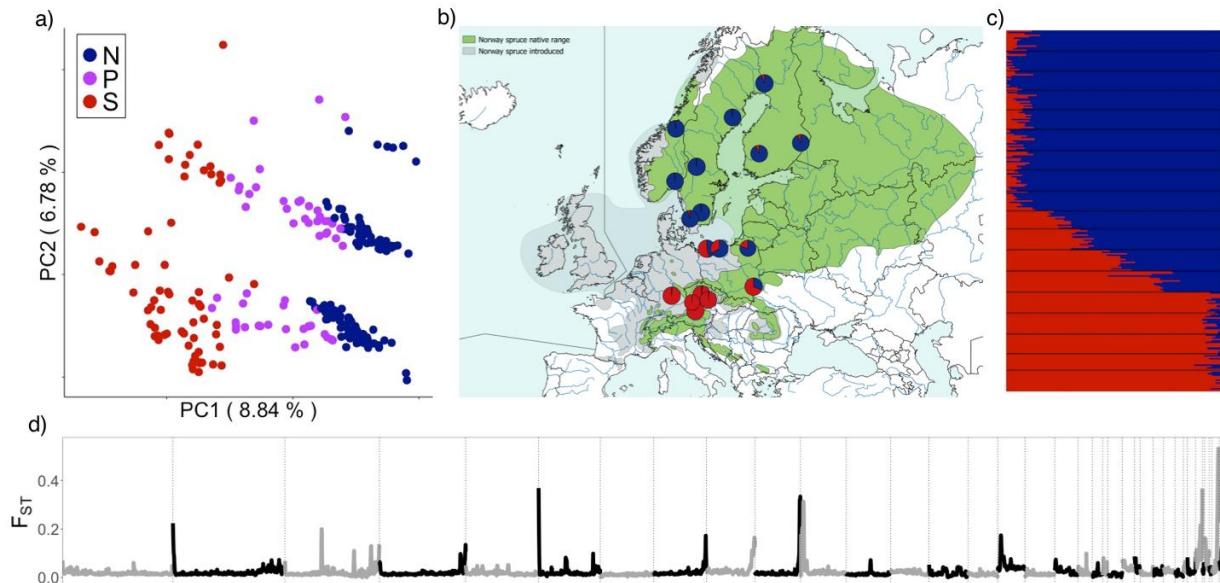
909

910 **Table 1** List of identified chromosomal inversions in the *Ips typographus* genome. ID: inversion
911 name; Contig: contig name; Size: size of the inversions (Mb); Start and End: coordinates of the
912 inversion (Mb); Age: approximate age of the inversion in Myr; Odorant receptors: odorant
913 receptors present within inversion. Note that Inv16.1 and Inv23.1 are parts of the same inversion
914 and Inv16.2 and Inv23.2 are a part of another single inversion.

ID	Contig	Size	Start	End	Age	Odorant receptors
Inv2	IpsContig2	4.04	12.67	16.71	0.5	
Inv3	IpsContig3	0.14	1.11	1.25	1.1	
						ItypOR33, ItypOR41, ItypOR40, ItypOR10, ItypOR47, ItypOR50,
Inv5	IpsContig5	10.84	0.00	10.84	1.3	ItypOR29, ItypOR43JOI, ItypOR34, ItypOR52NTE, ItypOR4, ItypOR3, ItypOR53, ItypOR2, ItypOR19
Inv6	IpsContig6	0.34	8.93	9.27	1.0	
Inv7.1	IpsContig7	0.67	0.00	0.67	1.7	
Inv7.2	IpsContig7	6.92	0.00	6.92	1.1	ItypOR1, ItypOR17
Inv9	IpsContig9	3.30	1.71	5.01	0.6	
Inv10	IpsContig10	0.08	6.05	6.13	1.8	
Inv12	IpsContig12	0.07	3.63	3.70	1.5	
Inv13	IpsContig13	4.50	0.00	4.50	1.7	ItypOR28, ItypOR23, ItypOR49, ItypOR27 ItypOR36, ItypOR44,
Inv14.1	IpsContig14	2.08	0.00	2.08	1.9	ItypOR18JF, ItypOR20NTE
Inv14.2	IpsContig14	0.67	2.08	2.75	1.0	
Inv14.3	IpsContig14	0.76	2.78	3.54	2.1	
Inv14.4	IpsContig14	0.11	3.73	3.84	2.1	
Inv14.5	IpsContig14	0.57	4.23	4.80	2.3	
Inv14.6	IpsContig14	2.48	0.00	2.48	0.6	ItypOR36, ItypOR44, ItypOR18JF, ItypOR20NTE
Inv15	IpsContig15	1.92	0.86	2.78	1.9	
Inv16.1	IpsContig16	4.83	0.00	4.83	1.6	ItypOR58, ItypOR9, ItypOR11, ItypOR31, ItypOR30, ItypOR16, ItypOR35JF
Inv16.2	IpsContig16	4.83	0.00	4.83	0.7	ItypOR58, ItypOR9, ItypOR11, ItypOR31, ItypOR30, ItypOR16,

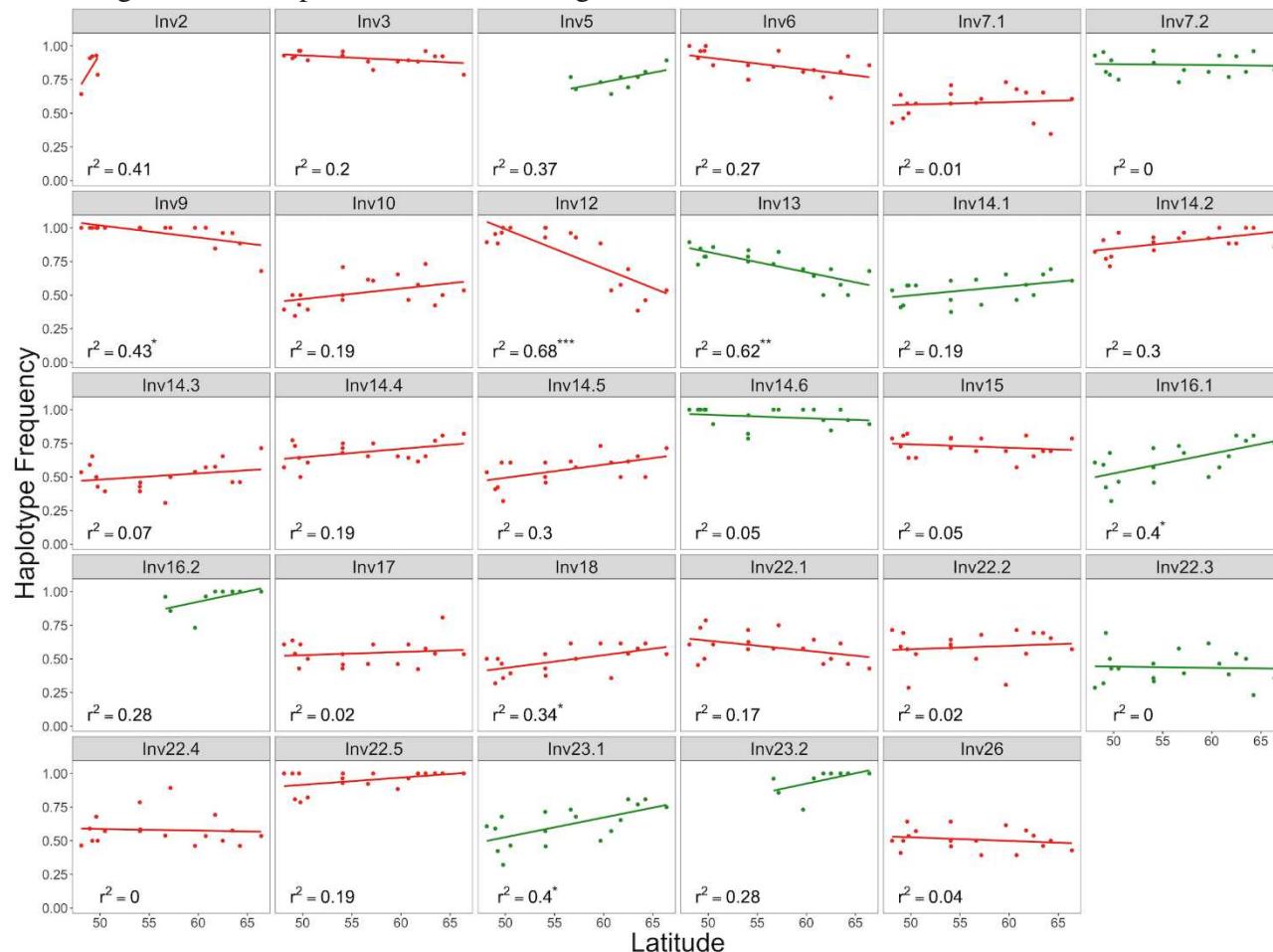

						ItypOR35JF
Inv17	IpsContig17	0.21	2.48	2.69	2.2	
Inv18	IpsContig18	2.32	0.00	2.32	2.1	
Inv22.1	IpsContig22	0.32	0.00	0.32	2.1	
Inv22.2	IpsContig22	0.23	0.42	0.65	2.1	
Inv22.3	IpsContig22	1.23	0.68	1.91	2.0	ItypOR22CTE
Inv22.4	IpsContig22	0.20	1.92	2.12	2.1	
Inv22.5	IpsContig22	2.24	0.00	2.24	0.6	ItypOR22CTE
Inv23.1	IpsContig23	2.10	0.00	2.10	1.4	ItypOR58, ItypOR9
Inv23.2	IpsContig23	1.84	0.26	2.10	0.6	ItypOR58, ItypOR9
Inv26	IpsContig26	0.10	0.12	0.22	2.6	

916 **Figures**


917

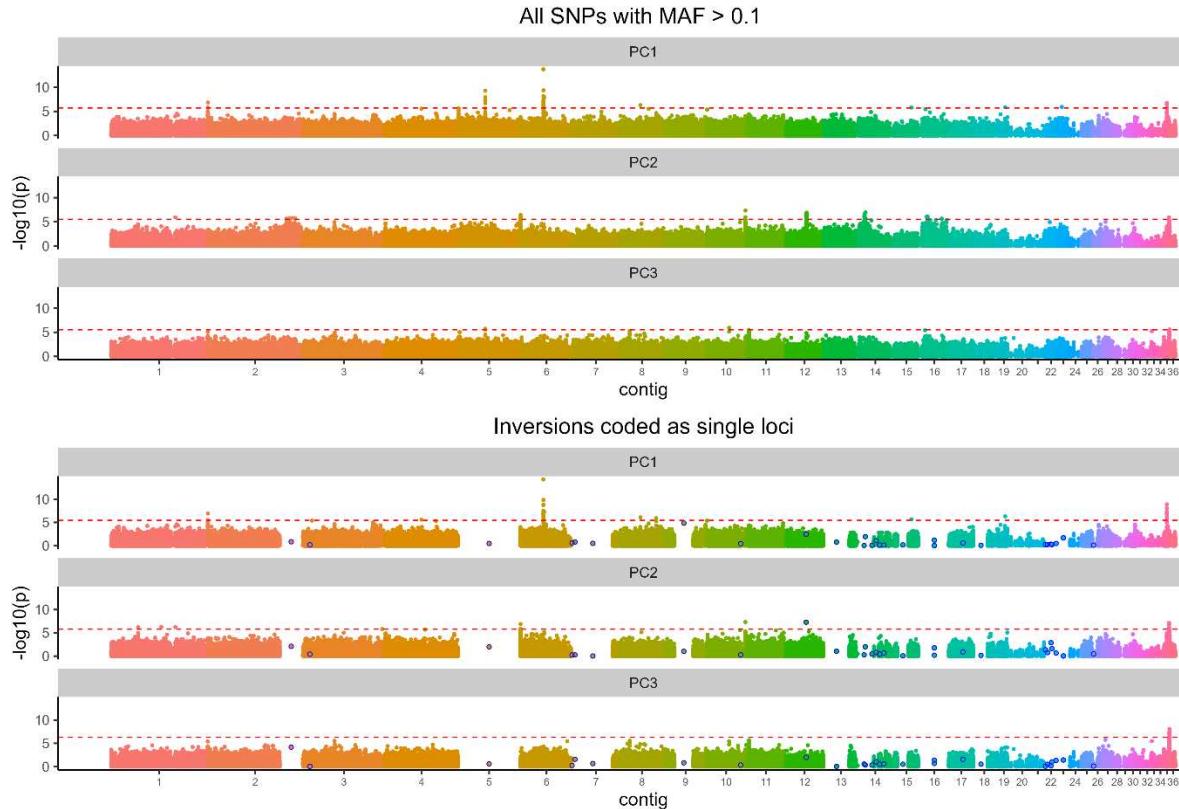
918 **Figure 1** Identification of chromosomal inversions in *Ips typographus*. Each row of figure panels
919 shows the results of per contig PCA, per contig linkage disequilibrium analysis, and genetic
920 differentiation (F_{ST}) analysis for a selected contig. Panels a-c show results for a contig with no
921 inversions (IpsContig8) and little differentiation between southern and northern populations.
922 Panels d-o show different contigs with increasingly complex inversion patterns: a single
923 inversion (d-f, Inv15); a single inversion with a double-crossover signal (g-i, Inv18); multiple
924 adjacent inversions with one inversion overlapping with the first two inversions on the contig (j-
925 l, Inv14.1, Inv14.2, Inv14.3, Inv14.4, Inv14.5, and Inv.14.6); multiple adjacent inversions with
926 one large inversion overlapping with several smaller ones (m-o, Inv22.1, Inv22.2, Inv22.3,
927 Inv22.4, and Inv22.5). The large overlapping inversion is visible as a yellow background in the
928 LD plot (n). The PCA grouping shown in (m) corresponds to genotypes of the largest inversion
929 on IpsContig22 (Inv22.3), including genotypes that include haplotypes produced with the double
930 crossover event. The last panel (p) shows the 36 largest contigs of the spruce bark beetle genome
931 with inversions indicated in red. Dots in the PCA plots represent individual beetles and are
932 colored according to the heterozygosity of the individual (darker color represents low
933 heterozygosity). Both axis on LD plots (b,e,h,k,n) represent contig's positions in megabases
934 (Mb); low levels of linkage are shown in blue and higher levels in yellow to dark red. F_{ST} values
935 in panels f,i,l,o show genetic differentiation between inversion haplotypes along the contig in
936 question.

937

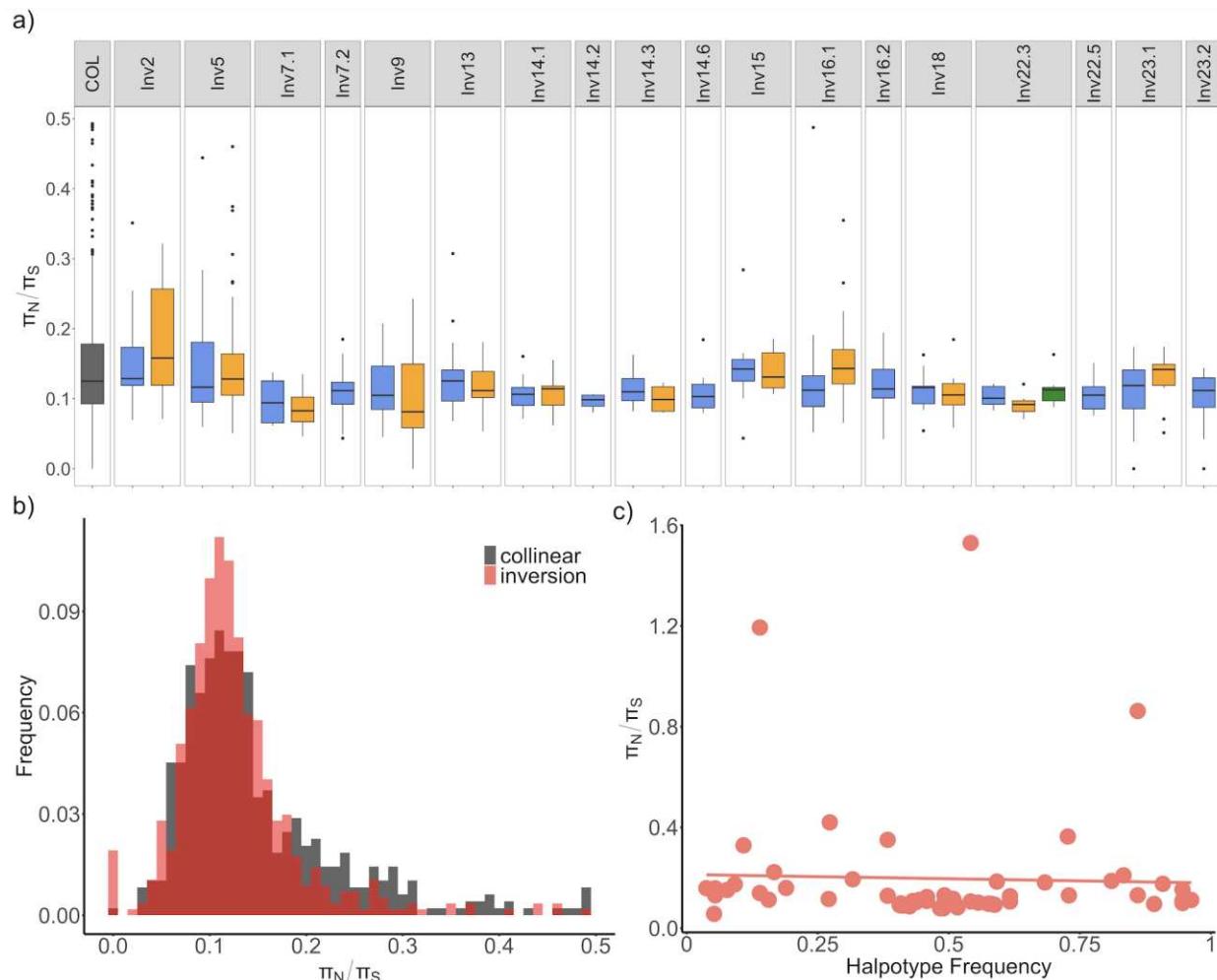


939 **Figure 2** Genomic structure and differentiation in *Ips typographus*. (a) Whole-genome PCA,
940 where colors correspond to genetic clustering of beetle individuals revealed by NGSadmix
941 analysis. (b,c) Geographical distribution and genetic differentiation of the 18 beetle populations
942 analyzed. Blue dots and bars: northern populations (N); red dots and bars: southern populations
943 (S); violet dots: Polish populations (P). (d) Genome-wide genetic differentiation (F_{ST}) calculated
944 between northern and southern populations. Vertical lines separate different contigs shown in
945 grey and black.
946

947
948


949 **Figure 3** Correlation between inversion haplotype frequency and population origin (latitude) for
950 chromosomal inversions detected in European *Ips typographus* populations. Significant
951 correlations are indicated with asterisks (*: $p < 0.05$; **: $p < 0.01$; ***: $p < 0.001$). Inversions
952 harboring odorant receptors are indicated in green.

953


954

955 **Figure 4** Genotype-environment associations across 36 contigs in the *Ips typographus* genome.
956 Different colors represent different contigs. The upper three panels show results for all SNPs and
957 the lower three panels show results using data where each inversion was coded as a single locus
958 (shown in a blue circle). MAF: Minor Allele Frequency. PC1, PC2, and PC3 represent the first
959 three of PCA used to summarize the environmental variation among populations.

962 **Figure 5** Mutation load analysis in *Ips typographus*. (a)
963 The ratio of nonsynonymous to synonymous nucleotide diversity π_N/π_S computed for 200 kb
964 windows along collinear parts of the genome (COL) and different inversion haplotypes (blue:
965 major haplotype; yellow: minor haplotype; green: haplotype produced by double crossover
966 events between minor and major haplotypes). $n = 4$ to 55 windows per inversion haplotype and n
967 = 531 for the collinear genome. Inversion haplotypes that were present in less than four
968 individuals, did not include four or more 200 kb windows or include less than five genes were
969 not included in the analysis. For better visibility, π_N/π_S outliers above 0.5 are not shown (a total
970 of 58 π_N/π_S values, 45 of them belonging to COL). The lower and upper box hinges correspond
971 to the first and third quartiles, whiskers show 1.5 * the inter-quartile range. (b) Distribution of
972 π_N/π_S values per 200 kb window (c) Correlation between mean π_N/π_S for all inversion haplotypes
973 and their frequency across spruce bark beetle populations.

974

975