

1 **Australian terrestrial environments harbour extensive RNA virus**

2 **diversity**

3

4

5 Sabrina Sadiq¹, Erin Harvey¹, Jonathon C. O. Mifsud¹, Budiman Minasny², Alex. B.
6 McBratney², Liana E. Pozza², Jackie E. Mahar¹, Edward C. Holmes¹

7

8

9 ¹Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of
10 Sydney, Sydney, NSW 2006, Australia.

11 ²School of Life and Environmental Sciences & Sydney Institute of Agriculture, Faculty of
12 Science, The University of Sydney, Sydney, NSW 2006, Australia.

13

14

15 *Corresponding author. E-mail: edward.holmes@sydney.edu.au

16

17

18 Keywords: RNA virus, environmental, metatranscriptomics, soil, sediment, Australia,
19 ecology, phylogenetics

20 **ABSTRACT**

21 Australia is home to a diverse range of unique native fauna and flora. To address whether
22 Australian ecosystems also harbour unique viruses, we performed meta-transcriptomic
23 sequencing of 16 farmland and sediment samples taken from the east and west coasts of
24 Australia. We identified 2,562 putatively novel viruses across 15 orders, the vast majority of
25 which belonged to the microbe-associated phylum *Lenarviricota*. In many orders, the novel
26 viruses identified here comprised entirely new clades, such as the *Nodamuvirales* and
27 *Ghabrivirales*. Novel viruses also fell between established genera or families, such as in the
28 *Cystoviridae* and *Picornavirales*, while highly divergent lineages were identified in the
29 *Martellivirales* and *Ghabrivirales*. Viral abundance and alpha diversity were influenced by
30 sampling site, soil type and land use, but not by depth from the surface. In sum, Australian
31 soils and sediments are home to remarkable viral diversity, reflecting the biodiversity of local
32 fauna and flora.

33 **INTRODUCTION**

34 RNA viruses are ubiquitous, diverse, and can play important roles in multiple ecological
35 processes. Yet a strong focus on viruses of clinical or agricultural significance has limited our
36 understanding of RNA viruses as potentially key components of global ecosystems (French
37 and Holmes, 2020). Similarly, studies of environmental viruses have largely considered
38 marine systems and typically characterised DNA viromes (Trubl *et al.*, 2020), leaving the
39 terrestrial RNA virome understudied (Starr *et al.*, 2019; Chen *et al.*, 2022; Hillary *et al.*,
40 2022).

41

42 Soil environments are complex and diverse, host to an intricate network of macro- and micro-
43 organisms that form unique ecosystems with crucial global functions. An estimated 10^{10}
44 microbes are present in one gram of soil, with species diversity up to the tens of thousands
45 (Raynaud and Nunan, 2014). Microbial community compositions both affect and depend on
46 factors such as the physicochemical properties of soil (Singh *et al.*, 2009; Dequiedt *et al.*,
47 2011), land use (Tian *et al.*, 2017), and depth (Xue *et al.*, 2022). The abundance and diversity
48 of organisms in soil implies that there must also be abundant and diverse viruses infecting
49 these hosts, which may play their own roles in soil cycles and maintenance. Indeed, viruses in
50 soil have been estimated from below detection limits in hot deserts to over $10^{10}/\text{g}$ soil in
51 wetlands (Williamson *et al.*, 2017). Viruses have documented roles in carbon metabolism
52 (Trubl *et al.*, 2018; Jin *et al.*, 2019; Starr *et al.*, 2019) and phosphorus metabolism (Han *et al.*,
53 2022), as well as gene transfer to their bacterial hosts, aiding in host extremotolerance and
54 adaptation to environmental stressors (Hwang *et al.*, 2021; Huang *et al.*, 2021).

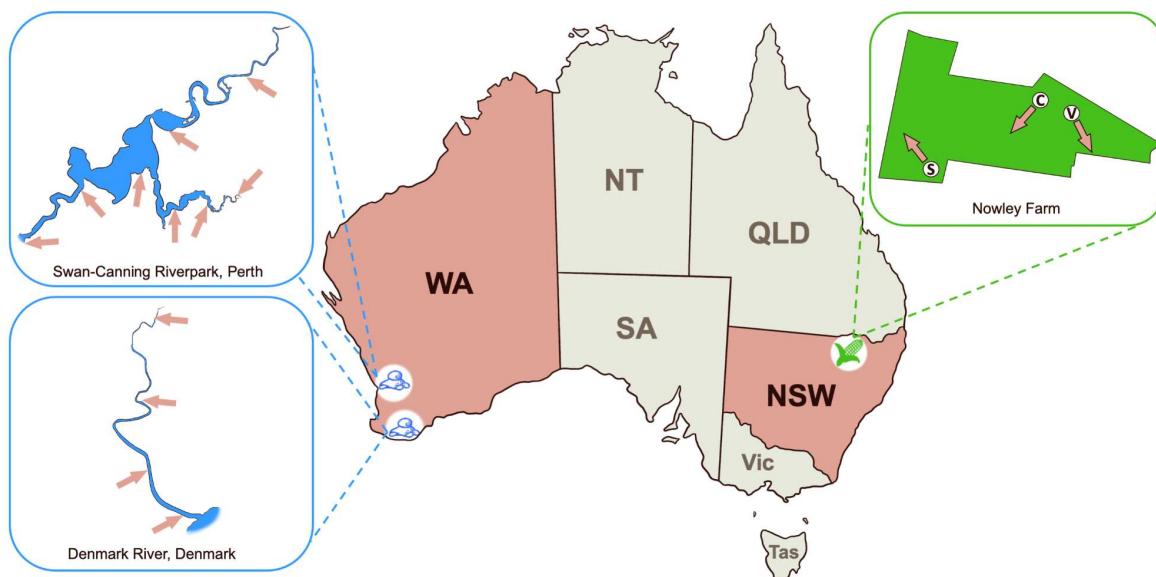
55

56 Recent metatranscriptomic (i.e., total RNA-sequencing) studies have led to the discovery and
57 characterisation of novel viruses from diverse ecosystems, including aquatic environments
58 (Wolf *et al.*, 2020) and soil (Chen *et al.*, 2022; Hillary *et al.*, 2022). In particular,
59 metatranscriptomic analyses of diverse soils and freshwater sediments have shown that non-
60 marine environments are a rich source of viral diversity, with thousands of novel RNA
61 viruses identified in every major lineage of RNA viruses (Chen *et al.*, 2022; Hillary *et al.*,
62 2022). Hence, soils provide a valuable means to characterise more of the terrestrial RNA
63 virome. These studies have also led to a deeper understanding of RNA viruses in a broader
64 ecological context, revealing the impacts of human land use, physicochemical properties, and
65 geographical features of the sampling environment on viral abundance and diversity (French
66 *et al.*, 2022; Chen *et al.*, 2022; Hillary *et al.*, 2022).

67
68 Australia has been isolated from other continents for tens of millions of years and, as such,
69 has developed many diverse and unique biomes. Flora and fauna have adapted to the
70 continent's flat, dry, fire-prone, and nutrient-poor landmass, resulting in a remarkable level of
71 biodiversity that is unique to Australia (Steffen, 2009). For example, many native Australian
72 plants have hardened foliage (sclerophyll) and evergreen characteristics, causing herbivores
73 to have slower metabolisms and reptiles to have predominantly invertebrate-based diets
74 (Steffen, 2009). Insects play an active role in the dispersal of seeds and are key consumers of
75 leaves in the absence of any native ruminant species (Steffen, 2009). The majority of
76 Australia's mammals (87%), reptiles (93%), frogs (94%), and vascular plants (92%) found
77 across the country are endemic (Chapman, 2009). Australia is also a "megadiverse" country,
78 one of 17 that together comprise over 70% of the world's total biodiversity (Williams *et al.*,
79 2001). With so much diversity in its animals, plants, and environments, it can be assumed
80 that Australian microbes - including viruses - harbour similar levels of diversity.

81
82 Little is known about the RNA viromes of Australian soil and sediment systems. Herein, we
83 aimed to provide an initial snapshot of the diversity, abundance, and composition of RNA
84 viruses in Australian environmental samples. In particular, we asked whether the unique flora
85 and fauna of Australia is reflected in a unique soil virome. Accordingly, we performed meta-
86 transcriptomic sequencing of 16 geographically and ecologically distinct farmland soil and
87 riverbank sediment samples taken from New South Wales (NSW) and Western Australia
88 (WA), respectively, two Australian states separated by approximately 3,000 kilometres.

89


90 2 MATERIALS AND METHODS

91 2.1 Sample collection

92 Soil samples from NSW were collected in December 2021 from vertosol, sodosol, and
93 chromosol soil types (Isbell, 2016) in cropping/pasture fields and native vegetation at depths
94 of 0-5 cm, 5-15 cm, and 15-30 cm at each site. NSW samples were collected from the
95 University of Sydney-owned 'Nowley Farm' on the Liverpool plains due to the presence of
96 multiple soil types and land uses across the farm. In the case of WA, sediment samples were
97 collected in triplicate during April and May 2022 from four points along the riverbanks of the
98 Swan River, Canning River, and Denmark River. Maps of the NSW and WA sampling sites
99 are shown in Fig. 1, with more detail on the properties of the sampling sites provided in Table

100 S1. All samples were packed into sterile 50 ml conical tubes and either stored on ice (NSW
101 samples) or between -30°C and -15°C (WA samples) until transported to a -80°C freezer for
102 long-term storage.

103

104

105 **Figure 1.** Map of Australia showing riverbank sediment sampling sites along the Swan-
106 Canning Riverpark (Perth, WA) and Denmark River (Denmark, WA), as well as farmland
107 soil sampling sites in Nowley Farm, NSW. In the inset boxes, each sampling site is indicated
108 by an arrow. In the case of the Nowley Farm samples, soil type is indicated by a letter: V -
109 vertosol, C - chromosol, S - sodosol.

110

111 **2.2 RNA extraction, library construction, and sequencing**

112 Total RNA was extracted from the samples using the RNeasy PowerSoil Total RNA Kit
113 (Qiagen) as per the manufacturer's instructions. Extracted RNA was quantified using the
114 Qubit RNA high sensitivity (HS) Assay Kit on the Qubit Fluorometer v3.0 (Thermo Fisher
115 Scientific) and stored at -80°C prior to library construction and sequencing. Libraries were
116 constructed using the Illumina Stranded Total RNA library preparation protocol and rRNA
117 was removed using the Ribo-Zero Plus rRNA depletion kit (Illumina). Libraries were
118 sequenced on the Illumina NovaSeq 6000 platform (paired-end, 150 bp). Library preparation
119 and sequencing was performed by the Australian Genome Research Facility (AGRF).

120

121 **2.3 Data processing and abundance measurements**

122 Sequence reads were adaptor- and quality-trimmed using Trimmomatic (v0.38) (Bolger *et al.*,
123 2014), then assembled into contigs using MEGAHIT (v1.2.9) (Li *et al.*, 2015) employing
124 default assembly parameters. No eukaryotic or bacterial reads were filtered prior to assembly.
125 Sequence quality was checked for both raw reads and trimmed reads using FastQC (v0.11.8)
126 (Andrews, 2010). Assembled contigs were then compared to an in-house curated database of
127 viral sequences from NCBI's protein sequence database (created in 2019, updated in 2022)
128 using DIAMOND BLASTX (v2.0.9) (Buchfink *et al.*, 2015) with an e-value of 1×10^{-5} for
129 sensitivity. Contigs returning positive hits were compared to the non-redundant (nr) protein
130 database as of June 2022, using DIAMOND BLASTX to identify false positives. Contigs
131 with hits to viral sequences were retained and sorted by the taxonomy of the closest relative
132 to the level of virus family (or to the most specific available taxonomic level for divergent
133 and unclassified taxa).

134

135 Viral abundance within each library was estimated using RSEM (v1.3.1) (Li and Dewey,
136 2011), calculated as the expected count of viral contigs divided by the total raw read count x
137 100. Virome compositions for each library were calculated as the expected count of contigs
138 aligning to each viral family/order/phylum as a proportion of the total expected count of
139 contigs aligning to sequences from the *Riboviria* (RNA viruses). Alpha diversity was
140 described by: (i) richness, or the number of viral taxa in each library, (ii) Shannon diversity,
141 which accounts for both richness and the evenness of their distribution, and (iii) "true"
142 diversity or effective Shannon diversity, calculated as the exponential of each respective
143 Shannon diversity index. These indices were calculated in RStudio (v4.1.1717) (RStudio
144 Team, 2019), R (v4.1.0) (R Core Team, 2021) using an adaptation of the Rhea alpha diversity
145 script (Lagkouvardos *et al.*, 2017; Wille *et al.*, 2019). Abundance and alpha diversity figures
146 were generated in R using ggplot2 (v3.3.3) (Wickham, 2016). Soil characteristics were tested
147 for their influence on viral abundance and alpha diversity using generalised linear models.
148 The significance of these models was evaluated using χ^2 tests and significant differences
149 between pairs of groups within each ecological property were determined using post-hoc
150 Tukey tests. To determine if soil virus abundance and alpha diversity were shaped by soil
151 type, land use, or both, we conducted a best-subsets regression analysis. Models were
152 evaluated using the Akaike information criterion (AIC) and the model with the lowest AIC
153 was selected as the best-fit model. Soil characteristics included soil type (chromosol versus
154 sodosol), land use (native vegetation, cropping, and pasture), environment (a combination of

155 soil type and land use) and depth from the surface. As sequence data was obtained from only
156 one depth measurement for chromosol and sediment environments, only sodosol libraries
157 were included in the comparison of viral abundance and alpha diversity across different
158 depths. Viral abundance and alpha diversity were compared between the different sampling
159 sites for sediment libraries. Due to the numerous confounding factors that may influence
160 virus abundance and alpha diversity, including the surrounding environment, geographical
161 location, climate, and storage conditions prior to extraction, detailed comparisons between
162 the NSW farmland soil and WA sediment samples were not conducted.

163

164 **2.4 Identification of novel viruses and phylogenetic analysis**

165 Contigs with DIAMOND BLASTX hits to the viral RNA-dependent RNA polymerase
166 (RdRp) that were greater than 600 nucleotides (nt) in length (arbitrarily set so as to minimise
167 inaccurate classification) and with less than 99% amino acid identity to their closest
168 previously published relative were translated to amino acid sequences. The standard genetic
169 code (i.e., code table 1) was used in most cases, with the exception of 126 sequences from the
170 family *Mitoviridae* (phylum *Lenarviricota*) for which the mitochondrial genetic code (i.e.,
171 code table 4) is more likely to be biologically accurate, and indeed provided ORFs of
172 expected lengths where the standard code led to truncation. Translated sequences were
173 checked for the presence of the conserved A, B, and C motifs that characterise viral RdRp.
174 Contigs fulfilling these conditions were included for phylogenetic analysis as these likely
175 represent RNA virus sequences.

176

177 Potentially novel virus sequences were aligned with members of the family, order, or multi-
178 family clade of their respective closest DIAMOND BLASTX hit using MAFFT (v7.402)
179 (Katoh and Standley, 2013). Sequence alignments were trimmed using trimAl (v1.4.1)
180 (Capella-Gutierrez *et al.*, 2009) to retain only the most conserved amino acid positions
181 (between 695-777 residues in length) and to remove ambiguously aligned regions (see Table
182 1). Alignments were also visually assessed to identify and remove poorly aligned sequences.
183 Maximum likelihood phylogenetic trees were then estimated on each of these alignments
184 using IQ-TREE (v1.6.12) (Nguyen *et al.*, 2015), employing the Le-Gascuel (LG) model of
185 amino acid substitution – determined using ModelFinder within IQ-TREE – with 1,000 SH-
186 aLRT replicates (Anisimova and Gascuel, 2006) to assess node support. All trees were
187 visualised in R using packages ‘ape’ (v5.5) (Paradis and Schliep, 2019) and ‘ggtree’ (v3.0.2)

188 (Yu *et al.*, 2017). Probable host organisms for novel viruses were predicted based on the
189 hosts of the established viruses with which they clustered most closely.

190

191 **3. RESULTS**

192

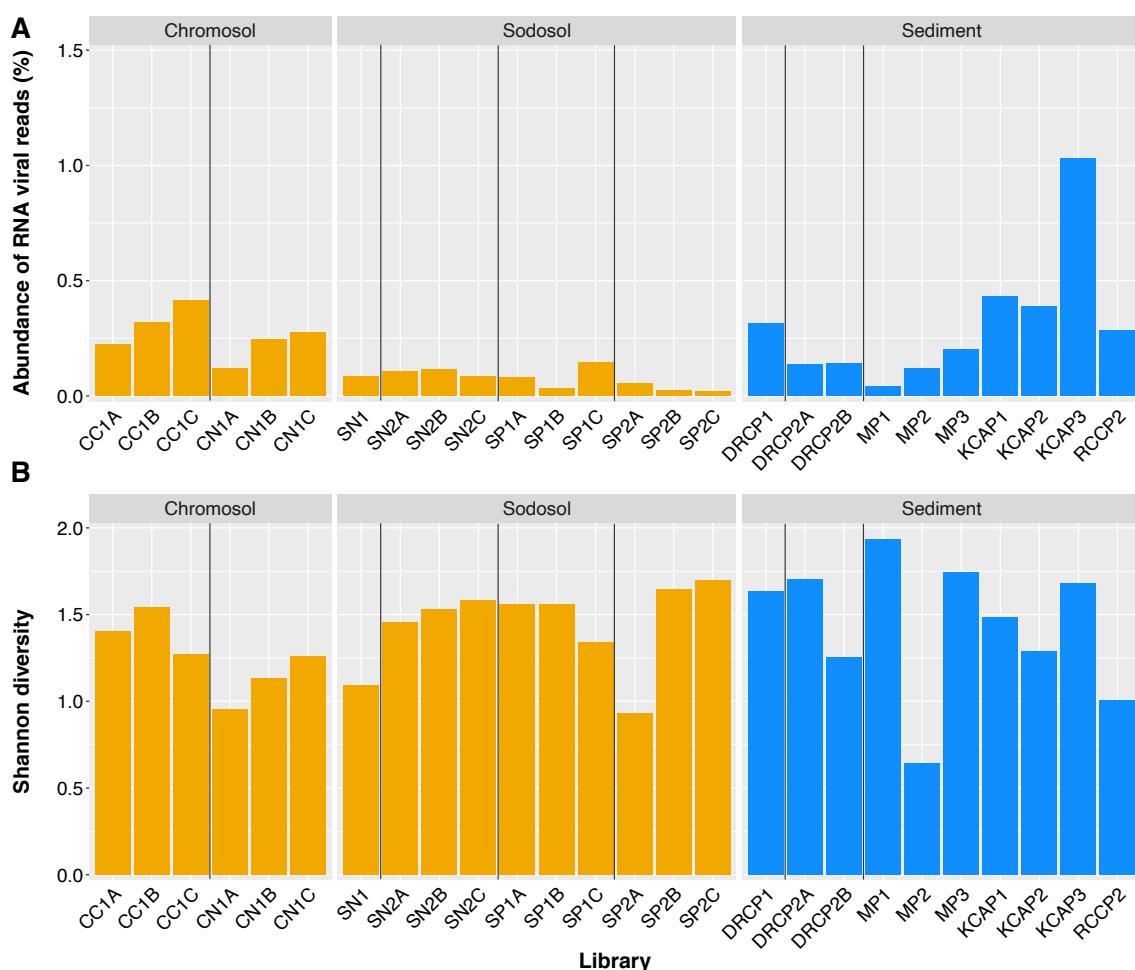
193 **3.1 Data generation**

194 We generated 26 sequencing libraries, 16 of which were from NSW farmland soil samples,
195 with the remaining 10 from sediment taken from Denmark River in WA. Eighteen soil
196 samples, representing three distinct soil types (vertisol, chromosol, and sodosol), two
197 categories of land use (native vegetation or agricultural), and three depths (0-5 cm, 5-15 cm,
198 and 15-30 cm), were taken from NSW farmland environments (Table S1). Vertisol, which is
199 high in smectitic clay and has high agricultural potential, and chromosol, which has a loamy
200 texture and moderate agricultural potential, were both collected from sites containing native
201 vegetation or crops. Sodosol has a sandy surface texture with a high concentration of sodium
202 and is nutrient poor. Due to the generally low capacity for crop growth, sodosol samples were
203 taken from pasture and native vegetation sites. We were able to successfully extract RNA
204 from six of these 18 samples, five of which we extracted in technical triplicates, totalling 16
205 RNA libraries for metatranscriptomic sequencing. No RNA was able to be extracted from
206 vertisol or the 15-30 cm depths, and success in chromosol samples was restricted to the 0-5
207 cm depth despite multiple attempts on each sample.

208

209 The success of RNA extraction was similarly limited in the WA riverbank sediment samples.
210 The 24 samples taken from a total of eight sites in the Swan-Canning Riverpark system
211 (Perth, WA) were generally coarse and sandy in texture, while the 12 samples taken from
212 four sites along Denmark River (Denmark, WA) were finer and muddier in comparison. No
213 extractions from the Swan-Canning Riverpark system were successful, and RNA was only
214 extracted from all three biological replicates in two of the four sites along Denmark River, for
215 a total of 10 libraries able to be sequenced. Samples from which RNA was successfully
216 extracted and sequenced are described in Table S1.

217


218 We generated approximately 2.68 billion paired-end reads from the 26 libraries successfully
219 sequenced in this study, ranging from 66.7 million reads (native chromosol, NSW; library
220 CN1A) to 198 million reads (native sodosol, NSW; library SN2A) per library. From these
221 data, 6.7 million contigs were assembled, with contig numbers from individual libraries

222 ranging from 90,913 (native sodosol, NSW; library SN2A) to 731,343 (riverbank sediment,
223 WA; library KCAP1), with a median value of approximately 196,000.

224

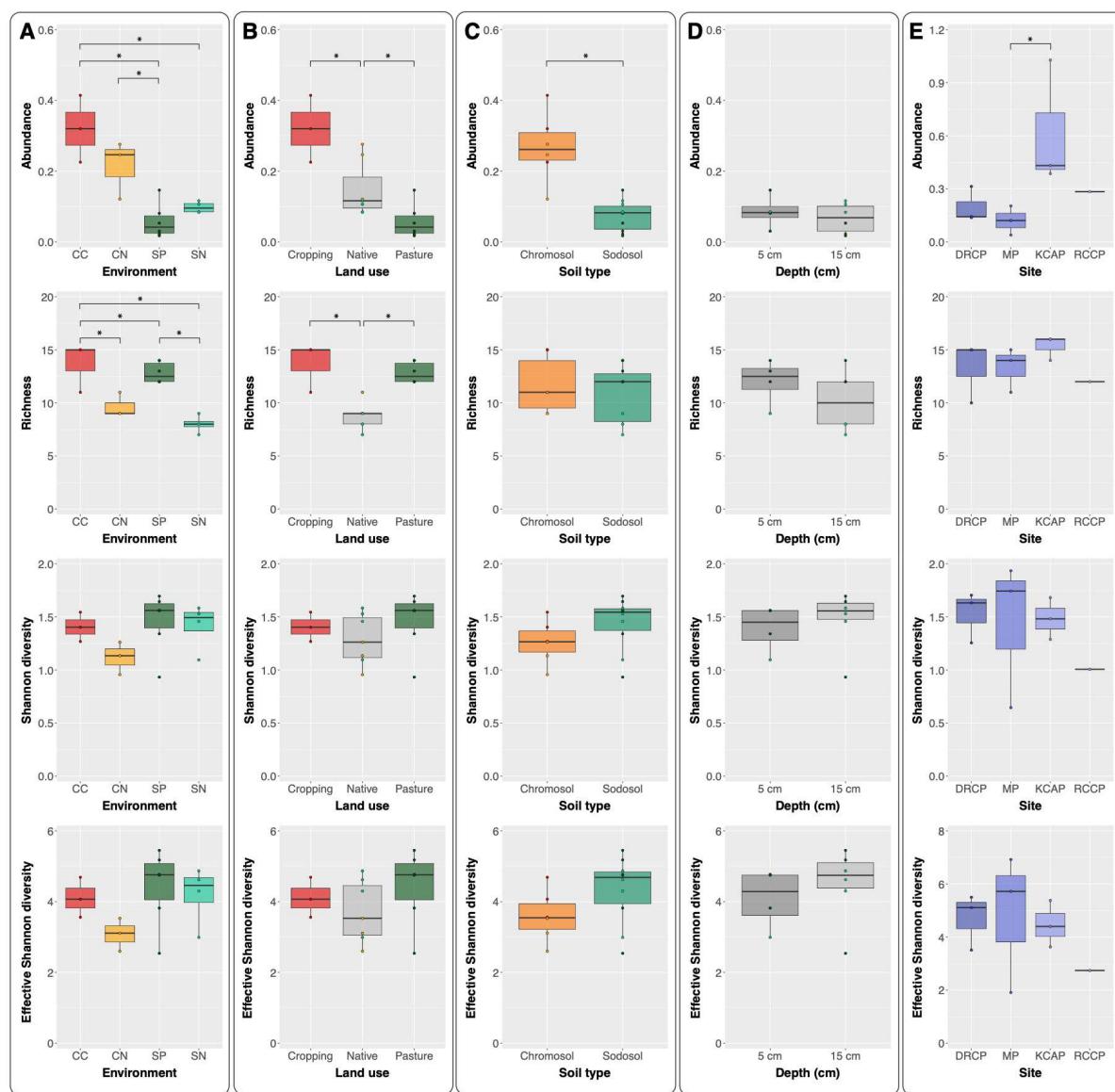
225 **3.2 RNA virome composition**

226 Across the data set as a whole there were 12,292 contigs greater than 600 nucleotides (nt) in
227 length that had DIAMOND BLASTX hits to sequences from the *Riboviria* (i.e., RNA
228 viruses). However, a large proportion of contigs did not robustly align to reference sequences
229 and could not be reliably assigned to any RNA virus taxa. Thus, a subset of 6,977 viral
230 contigs was retained for analyses. The number of viral contigs per library ranged from 59
231 (native sodosol, NSW; SN2A) to 981 (riverbank sediment, WA; KCAP3) and the majority of
232 contigs (5,209 out of 6,977) had less than 50% amino acid identity to reference sequences
233 (Table S2). The sample with the lowest RNA viral abundance was NSW sodosol pasture
234 (library SP2C) at 0.017%, while the highest abundance of 1.023% was found in WA
235 riverbank sediment (library KCAP3) (Fig. 2A). Interestingly, the libraries with the lowest and
236 highest diversity, MP2 and MP1, respectively, were both from the same WA riverbank site
237 (Fig. 2B). While viral abundance differed significantly between sampling locations ($p =$
238 0.012), Shannon diversity did not ($p = 0.458$).

239

240 **Figure 2.** (A) Abundance of RNA virus reads as a proportion of the number of total reads and
 241 (B) RNA virus Shannon diversity indices of the meta-transcriptomic sequencing libraries
 242 generated from samples taken from NSW farmland soil (left and middle, in orange) and WA
 243 riverbank sediment (right, in blue). Letters (A, B, C) at the end of each library name indicate
 244 technical replicate extractions of the same sample and are grouped within vertical lines.

245


246 Sampling environment refers to the combination of soil type (chromosol, sodosol) and land
 247 use (native, cropping, pasture), which we found to be associated with soil virus abundance
 248 and richness ($p < 0.001$ in both cases) (Fig. 3A). To explore which factors were most likely to
 249 contribute to this effect, best-fit models were estimated considering soil type and land use
 250 separately. Only land use was included in the best fit model describing richness ($p < 0.001$),
 251 with agricultural soils (cropping and pasture) harbouring greater species richness than native
 252 soils in both chromosol and sodosol soil types (Fig. 3B). Soil type did not have a significant
 253 effect on richness ($p = 0.58$). Land use was also associated with viral abundance ($p < 0.001$),
 254 in which cropping soil had the highest abundance, pasture soil had the lowest, with native

255 soils falling in the middle (Fig. 3B). However, it is difficult to determine if the agricultural
256 purpose of the soil (i.e., cropping or pasture) was truly impacting viral abundance as soil type
257 also had a significant influence on viral abundance ($p < 0.001$), which was higher in
258 chromosol than in sodosol (Fig. 3C). As the cropping soils were only chromosol and the
259 pasture soils were only sodosol, the pattern of abundance observed in Fig. 3C may have been
260 due to the influence of soil type rather than agricultural purpose. However, while native
261 chromosol had lower viral abundance than cropping chromosol, native sodosol had higher
262 viral abundance than its counterpart used for pasture (Fig. 3A). This suggests an influence of
263 both soil type and the purpose of agricultural land use, supported by the inclusion of both
264 variables in the best-fit model for viral abundance. No ecological factors were associated with
265 the Shannon and effective Shannon diversity indices ($p = 0.14-0.61$ and $p = 0.10-0.51$,
266 respectively) (Fig. 3A-D). Finally, sampling depth did not significantly impact any
267 abundance or alpha diversity indices of sodosol viruses ($p = 0.13-0.79$) (Fig. 3D), although it
268 should be noted that soil depth affected our ability to extract quality RNA.

269

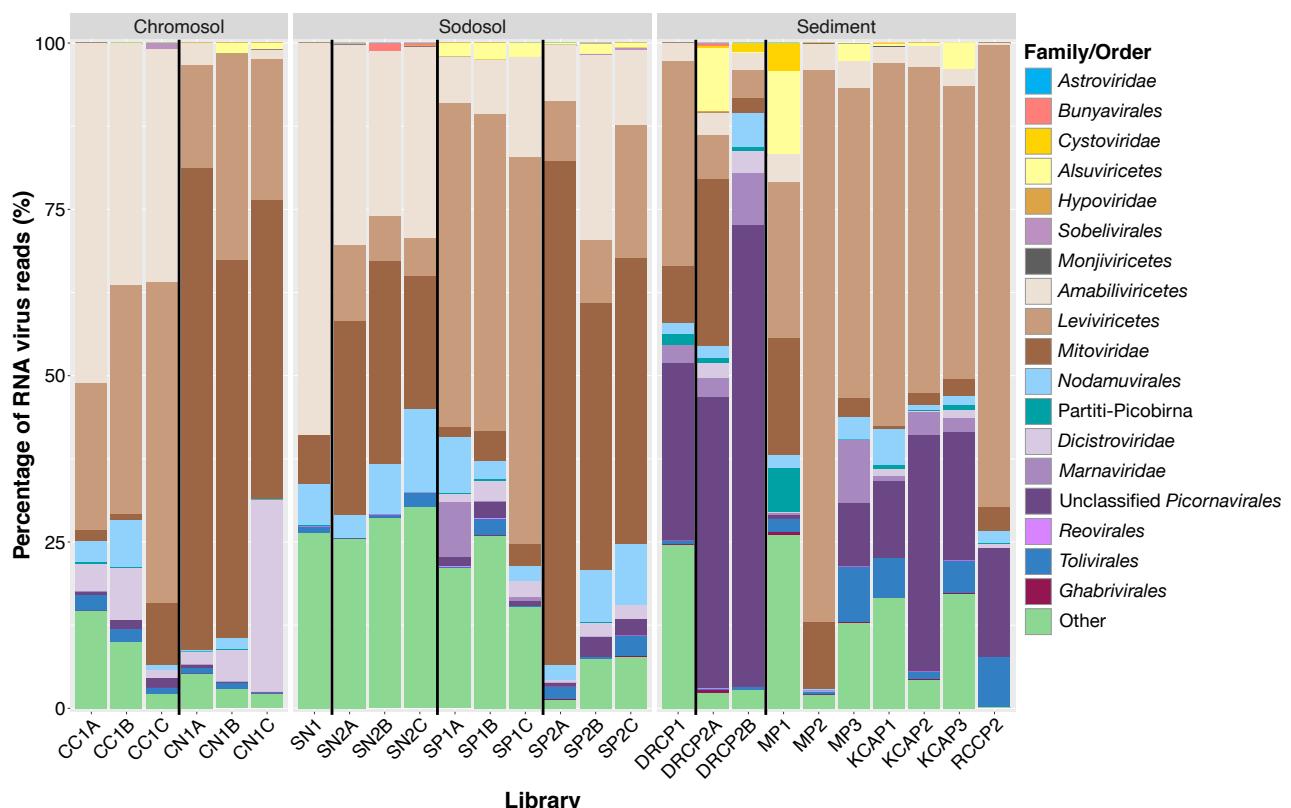
270 In the case of the sediment libraries, we measured the effect of sampling site on abundance,
271 richness, Shannon diversity, and effective Shannon diversity (Fig. 3E). Only sampling site
272 influenced viral abundance ($p = 0.003$), with libraries from the densely vegetated KCAP site
273 having significantly higher abundance than the other sediment sites, and higher than any soil
274 libraries (Fig. 2, Fig. 3E).

275

276

277 **Figure 3.** Abundance, richness, Shannon diversity, and effective Shannon diversity indices of
278 NSW farmland soils plotted against (A) environment as a combination of soil type and land
279 use, (B) soil type, (C) land use, (D) depth, and the same indices of WA riverbank sediments
280 plotted against (E) sampling site. Asterisks indicate significant differences ($p < 0.05$) between
281 pairs of ecological properties as determined by post hoc Tukey tests. Shorthand labels for
282 environment indicate CC = cropping chromosol, CN = native chromosol, SP = pasture
283 sodosol, and SN = native sodosol. Circles representing each library in columns B-D are
284 coloured by sampling environment as per column A.

285


286 Relative virus abundances (i.e., the abundance of each viral group as a proportion of all
287 *Riboviria* reads in each library) are shown in Fig. 4. The phylum *Lenarviricota* and orders
288 *Tolivirales* and *Nodamuvirales* were present in all libraries, with the *Lenarviricota* generally

289 comprising a large proportion, if not the majority, of reads. A notable exception was library
290 DRCP2B (riverbank sediment, WA) where unclassified *Picornavirales* sequences comprised
291 the majority of reads. As they were the most abundant groups, we classified the virome
292 compositions of the phylum *Lenarviricota* and order *Picornavirales* to the class and family
293 level, respectively (Fig. 4). In general, *Picornavirales* sequences comprised a greater
294 proportion of reads in sediment libraries than in soil libraries. Furthermore, these sequences
295 were mostly unclassified *Picornavirales* in sediment libraries, whereas in the soil libraries,
296 the majority of *Picornavirales* sequences were from the family *Dicistroviridae*. Marnaviruses
297 also appeared more frequently in the sediment libraries than in the soil libraries, likely due to
298 their typically aquatic hosts, although pasture sodosol library SP1A had a high proportion of
299 marnaviruses relative to the other *Picornavirales* groups and other soil libraries.

300

301 The *Lenarviricota* were abundant in all libraries. However, there was an overall decrease in
302 the proportion of fungal-associated class *Amabiliviricetes* and family *Mitoviridae* in the
303 sediment libraries compared to the soil libraries. Sediment libraries were instead dominated
304 by bacteriophage of the class *Leviviricetes*, suggesting a switch in microbial community
305 composition towards bacteria in sediment environments (Fig. 4). It is interesting to note that
306 pasture sodosol samples taken 0-5 cm from the surface (libraries SP1A-C) were an exception
307 to this trend, in which the *Leviviricetes* represented a much higher proportion of
308 *Lenarviricota* sequences than seen in the other soil libraries (Fig. 4).

309

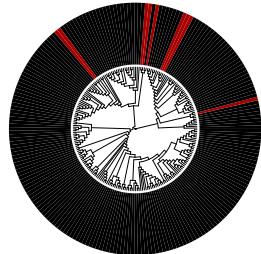
310

311 **Figure 4.** Virome compositions (family/order/phylum) for each sampling library. Relative
 312 proportions were determined by the total number of reads corresponding to contigs with
 313 DIAMOND BLASTX hits in each virus clade. Letters (A, B, C) at the end of each library
 314 name indicate technical replicate extractions of the same sample and are grouped within
 315 vertical lines. The more abundant phylum/order, *Lenarviricota* and *Picornavirales*, are
 316 further broken down into families or classes and are represented in shades of the same colour.
 317

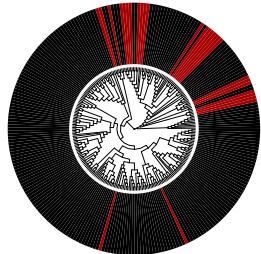
318 3.3 Phylogenetic analysis of novel virus species

319 We identified 2,562 novel virus RdRp sequences across all five RNA virus phyla, including
 320 those with positive-sense single-stranded RNA genomes (*Astroviridae*, *Picornavirales*,
 321 *Sobelivirales*, from the phylum *Pisuviricota*; *Alsuviricetes*, *Nodamuvirales*, and *Tolivirales*
 322 from the phylum *Kitrinoviricota*; and the phylum *Lenarviricota*), negative-sense single-
 323 stranded RNA genomes (*Bunyavirales* and *Monjiviricetes* from the phylum *Negarnaviricota*),
 324 and double-stranded RNA genomes (*Hypoviridae*, *Partitiviridae*, and *Picobirnaviridae* from
 325 the phylum *Pisuviricota*; and *Cystoviridae*, *Reovirales*, and *Ghabrivirales* from the phylum
 326 *Duplornaviricota*) (Table 1, Fig. 5, Supplementary Table 2). By predicting host organisms
 327 based on phylogenetic clustering, we suggest that viruses with bacterial, fungal, and protist
 328 hosts comprised 40.5%, 37.7%, and 8.3% of novel sequences, respectively, and those with
 329 plant and invertebrate hosts comprised 1.1% and 9.5% of novel sequences, respectively. We

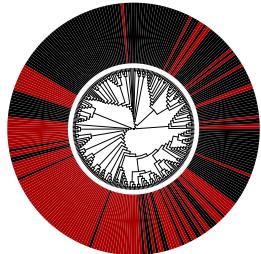
330 were unable to confidently assign a host organism for 2.9% of novel sequences, as these did
331 not cluster closely enough to any reference sequences with a known host. Notably, no likely
332 vertebrate-associated viruses were observed. The majority of novel sequences (1,807) fell
333 into the microbe-associated phylum *Lenarviricota*. We now describe each of these groups in
334 turn.

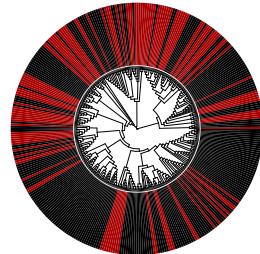

335

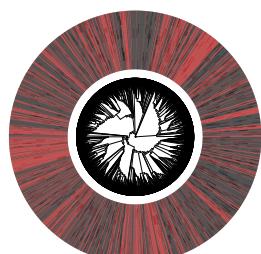
336 **Table 1.** Sequence data sets used for phylogenetic analysis (Figures 6-8; Supplementary
337 Figures 1-17).

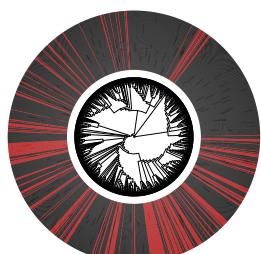

Virus group	Number of sequences			Alignment length	
	Total	Novel	Reference	Untrimmed	Trimmed
<i>Hepelivirales + Tymovirales</i> (Figs. 6A, S1)	222	9	213	8393	776
<i>Martellivirales</i> (Figs. 6B, S2)	257	28	229	12517	726
<i>Nodamuvirales</i> (Fig. S3)	289	125	154	6674	734
<i>Nodaviridae</i> (<i>Nodamuvirales</i> sub-tree) (Fig. 6C)	120	14	106	3007	731
<i>Tolivirales</i> (Fig. S4)	359	125	234	8476	704
<i>Leviviricetes</i> (Fig. S5)	2380	943	1437	15418	771
<i>Mitoviridae</i> (Fig. S6)	1029	393	646	8638	777
<i>Narnaviridae, Botourmiaviridae, Narliviridae</i> (Fig. S7)	1202	471	731	12328	740
<i>Marnaviridae</i> (Fig. S8)	543	191	352	13513	743
<i>Picornaviridae, Polycipiviridae, Solinviviridae</i> (Figs. 7A, S9)	261	28	233	14298	715
<i>Dicistroviridae, Secoviridae, Iflaviridae</i> (Figs. 7B, S10)	327	39	288	11523	749
<i>Sobelivirales</i> (Fig. S11)	119	12	107	3460	695
<i>Hypoviridae</i> (Fig. S12)	61	5	56	8094	728
<i>Partiti-Picobirna</i> (Fig. S13)	1423	121	1302	4684	703
<i>Picobirnaviridae</i> sub-tree (Fig. 8A)	76	38	38	1252	751
<i>Monjiviricetes</i> (Fig. S14)	115	2	113	4480	717
<i>Bunyavirales</i> (Fig. S15)	31	10	21	4415	706
<i>Cystoviridae</i> (Fig. S16)	56	10	46	4493	699
<i>Reovirales</i> (Fig. S17)	75	4	71	2504	701
<i>Ghabrivirusales</i> (Fig. S18)	274	46	228	4150	706
<i>Giardiovirus</i> -like clade (<i>Ghabrivirusales</i> sub-tree) (Fig. 8B)	88	33	55	2384	715

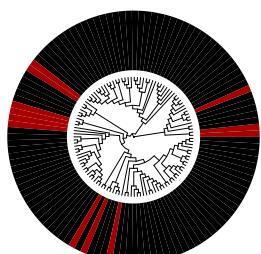
338

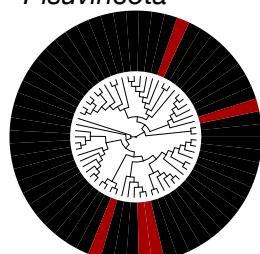

Hepelivirales,
Tymovirales
Alsuviricetes, Kitrinoviricota

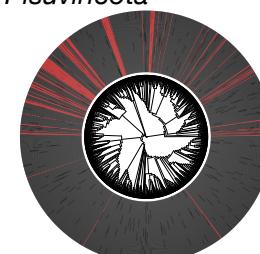

Martellivirales
Alsuviricetes,
Kitrinoviricota

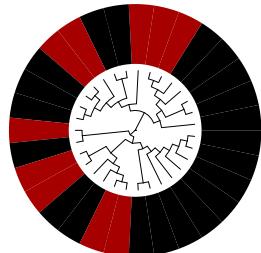

Nodamuvirales
Magsaviricetes,
Kitrinoviricota

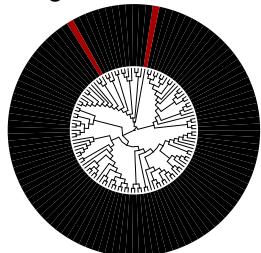

Tolivirales
Tolucaviricetes,
Kitrinoviricota

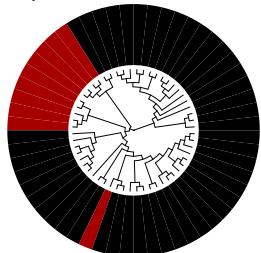

Lenarviricota

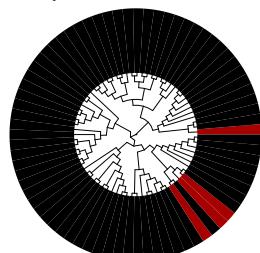

Picornavirales
Pisoniviricetes,
Pisuviricota

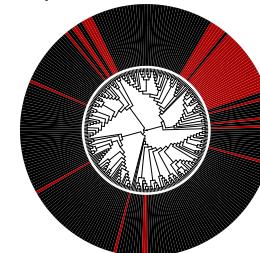

Sobelivirales
Pisoniviricetes,
Pisuviricota


Hypoviridae
Durnavirales,
Duplopriviricetes,
Pisuviricota


Partiti–Picobirna
Durnavirales,
Duplopriviricetes,
Pisuviricota


Bunyavirales
Ellioviricetes,
Negarnaviricota


Monjiviricetes
Negarnaviricota


Cystoviridae
Mindivirales, Vidaverviricetes,
Duplornaviricota

Reovirales
Resentoviricetes,
Duplornaviricota

Ghabrivirales
Chrymotiviricetes,
Duplornaviricota

340 **Figure 5.** Phylogenetic trees of the RdRp protein sequences of viruses identified in this study, with reference sequences. Known viruses are
341 shown in black, while putative novel viruses identified here are shown in red. All trees are midpoint rooted for clarity only. Individual
342 phylogenetic trees for each clade are shown in Supplementary Figures 1–17. Details on the alignments used to estimate these phylogenies are
343 shown in Table 1. Phylogenies of the phylum *Lenarviricota* and order *Picornavirales* were estimated for the purposes of visualising novel
344 viruses but contain too much sequence divergence for robust alignments such that the phylogenies presented in the supplement are divided into
345 multiple, smaller groups containing 1-3 related families each.

346 **3.3.1 Positive-stranded RNA viruses – phyla *Kitrinoviricota*, *Lenarviricota*, and**
347 ***Pisuviricota***

348

349 **Class *Alsuviricetes* (*Kitrinoviricota*) and bastroviruses (*Pisuviricota*)**

350 Five novel sequences clustered within the order *Tymovirales* (Fig. 6A, Supplementary Fig. 1).

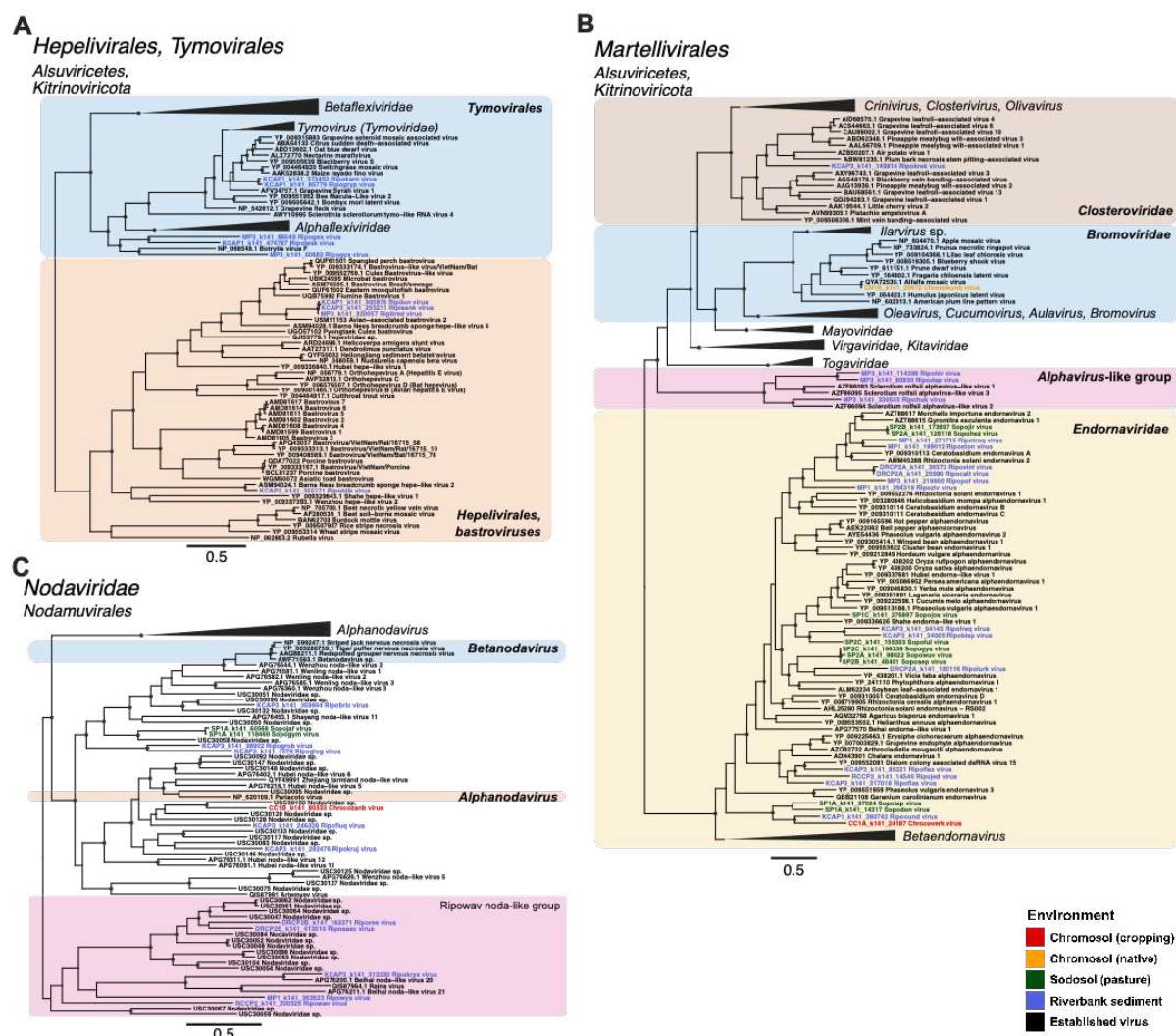
351 Two appeared to be novel marafiviruses (*Tymoviridae*), while the other three clustered with
352 the divergent mycoflexivirus *Botrytis* virus F (*Gammaflexiviridae*). A single virus clustered
353 within the *Hepelivirales*. All six novel viruses from the *Tymovirales* and *Hepelivirales* were
354 identified from riverbank sediment samples.

355

356 Despite being classified as members of the *Astroviridae*, bastroviruses encode a *Hepeviridae*-
357 like RdRp protein due to a recombination event (Oude Munnink *et al.*, 2016). Three novel
358 bastrovirus-like sequences were identified in riverbank sediment, forming a divergent sister
359 group to avian-associated bastrovirus 2 (USM11153) (Fig. 6A, Supplementary Fig. 1). Given
360 the broad host range of bastroviruses, the host of these novel bastroviruses cannot be
361 confidently inferred.

362

363 Several novel sequences were identified in the order *Martellivirales* (Fig. 6B, Supplementary
364 Fig. 2). These included an ampelovirus (*Closteroviridae*), an ilarvirus (*Bromoviridae*), and 19
365 alphaendornaviruses (*Endornaviridae*). Notably, three novel viruses – Ripohir virus, Ripodep
366 virus, and Ripohuk virus – had 27-31% sequence similarity to and clustered with three
367 divergent mycoviruses – *Sclerotium rolfsii* alphavirus-like virus 1-3 (AZF86093-5). This
368 clade fell as a sister-group to the plant-infecting families *Closteroviridae*, *Bromoviridae*,
369 *Mayoviridae*, *Virgaviridae*, *Kitaviridae*, and the animal-infecting, insect-borne *Togaviridae*.


370

371 ***Nodamuvirales* (*Kitrinoviricota*)**

372 Our phylogenetic analysis of the *Nodaviridae* revealed a conflict with the current taxonomy
373 (Fig. 6C). A clade including the alphanodavirus species Pariacoto virus (NP_620109) formed
374 a sister group to the genus *Betanodavirus* rather than clustering with the remaining
375 alphanodaviruses. This clade comprised several environmental noda-like viruses, including
376 the novel noda-like viruses Ripofluq virus, Chrocozanb virus, and Ripokruj virus, and may
377 represent the existence of a third genus within the *Nodaviridae*.

378

379 A total of nine viruses fell within the *Nodaviridae*, and another five sequences fell within a
 380 group of noda-like viruses forming a sister clade to the *Nodaviridae* (Fig 6C, Supplementary
 381 Fig. 3). This sister clade – provisionally named Ripowav noda-like group – may represent a
 382 fourth genus within the *Nodaviridae*. However, the largest expansion of virus diversity was in
 383 a sister clade to the *Nodaviridae* that likely comprises a new family. This putative family
 384 included Lake Sinai virus 1 and 2 (*Sinhaliviridae*), many noda-like viruses previously
 385 identified from soil (Chen *et al.*, 2022) and invertebrates (Shi *et al.*, 2016) in China, and
 386 novel viruses from all environments sampled (Supplementary Fig. 3).
 387

388 **Figure 6.** Phylogenetic trees of RdRp sequences from (A) the orders *Hepelivirales* and
 389 (B) the order *Martellivirales*, and (C) the family *Nodaviridae*. Known viruses
 390 are shown in black, while putative novel viruses identified here are coloured by sampling
 391 environment. Trees are midpoint rooted for clarity only and branch lengths are scaled
 392 according to the number of amino acid substitutions per site. Black circles represent node
 393

394 support $\geq 80\%$ using 1,000 SH-aLRT replicates. Phylogenies with collapsed branches
395 expanded are shown in Supplementary Figures 1-3.

396

397 ***Tolivirales (Ktrinoviricota)***

398 Novel *Tolivirales* sequences were also identified in all environments sampled, although those
399 clustering within the plant-associated *Tombusviridae* were predominantly identified in
400 riverbank sediment libraries (Supplementary Fig. 4). A total of 29 sequences (27 from
401 riverbank sediments) formed sister lineages to the subfamilies *Procedovirinae* and
402 *Calvusvirinae*, and 12 formed sister lineages to the entire family *Tombusviridae*.

403

404 All sampling environments were represented in the 20 novel sequences clustering within a
405 clade of diverse tombus-like viruses (Supplementary Fig. 4). This clade also included the sole
406 species within the *Carmotetraviridae* - Providence virus (AMQ67162) - a unique virus
407 isolated from arthropod (lepidopteran) tissue that is also capable of replicating in plant and
408 mammalian cell lines (Jiwaji *et al.*, 2019). Finally, 38 novel sequences fell into the most
409 divergent clade in this phylogeny, which largely comprised previously identified
410 environmental viruses, as well as some sourced from invertebrates and animal faecal samples
411 (Supplementary Fig. 4).

412

413 ***Lenarviricota***

414 A remarkable 1,807 novel sequences were identified within the phylum *Lenarviricota*,
415 comprising the majority of novel viruses found in this study. Novel sequences were sourced
416 from sediment and both farmland soil types and land uses. Due to the high level of sequence
417 divergence across the *Lenarviricota*, phylogenetic trees were estimated on sub-alignments of
418 (i) the class *Leviviricetes* (i.e., bacteriophage; Supplementary Fig. 5), (ii) the family
419 *Mitoviridae* (Supplementary Fig. 6), and (iii) the families *Narnaviridae*, *Botourmiaviridae*
420 and the newly proposed *Narliviridae* (Supplementary Fig. 7).

421

422 In total, 943 novel leviviruses were identified and every sampling environment was
423 represented in this group of viruses. In many large clades, the majority of viruses were novel
424 sequences identified in this study (Supplementary Fig. 5). Similarly, several clades mainly
425 comprising novel mitoviruses were identified in soil environments. Of particular interest was
426 the clade of seven native chromosol, five pasture sodosol, and two sediment viruses that
427 clustered with a mitovirus - *Kinsynterms vitus* (QQM15243) - identified in a termite,

428 although their use of the mitochondrial genetic code suggests they likely infect the fungal
429 hosts that are typical of mitoviruses (Supplementary Fig. 6). Eight sediment and two pasture
430 sodosol mitoviruses formed a sister clade to viruses likely associated with the microbiomes of
431 arthropods and vertebrates, although as these viruses were obtained from metagenomic
432 studies their true host association is unclear.

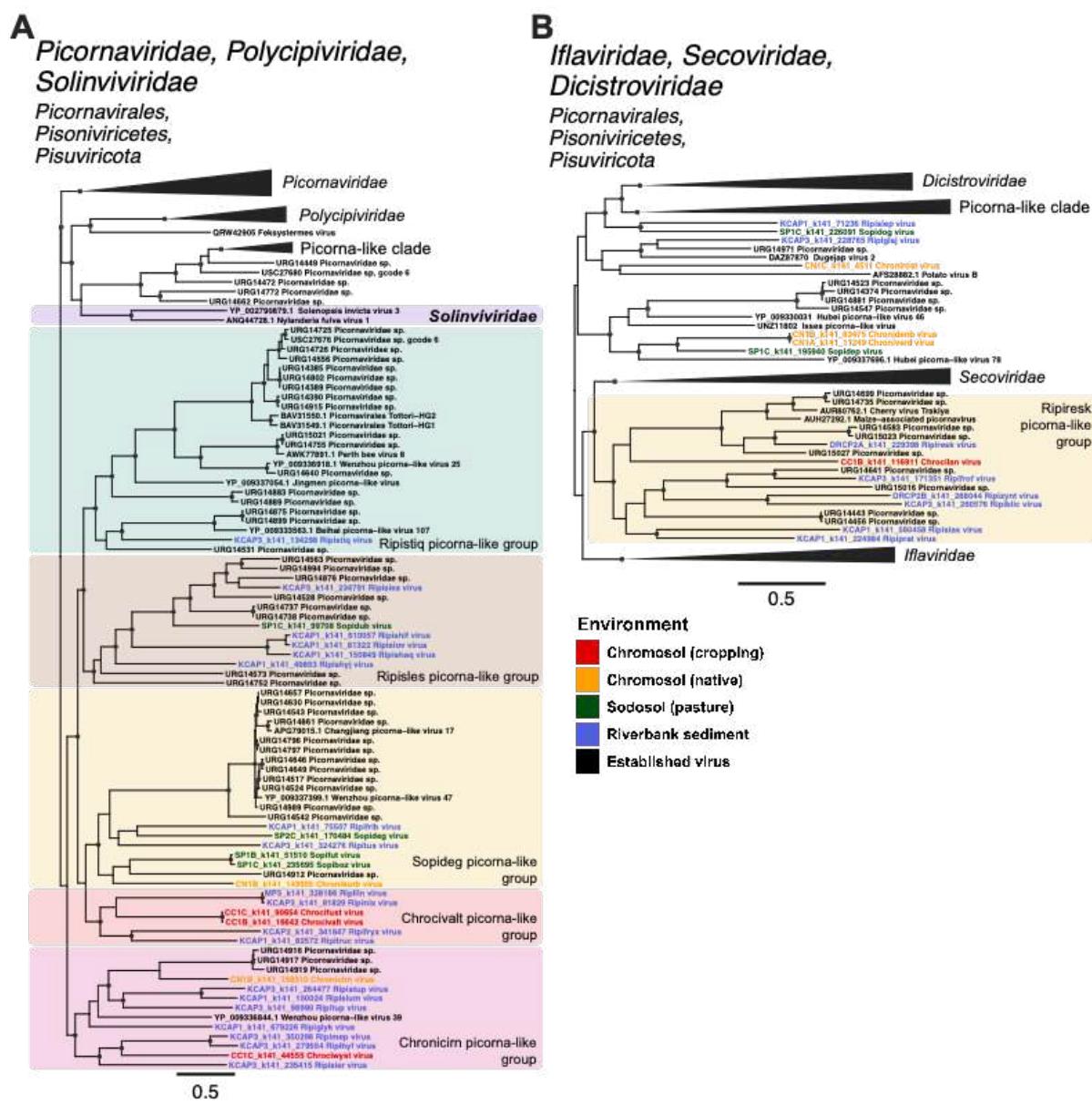
433

434 In the *Narnaviridae-Botourmiaviridae-Narliviridae* phylogeny multiple new, distinct clades
435 comprising viruses from different sampling sources were observed, typically biased towards
436 sediment or soil environments. These novel viruses typically shared <50% amino acid
437 identity with any reference sequence. One clade of 124 entirely new viruses was identified
438 within the *Narliviridae*, potentially representing a genus within this family (Supplementary
439 Fig. 7). The viruses comprising this group included 30 from sediment, 27 and 17 from pasture
440 and native sodosol, respectively, and 42 and 8 from cropping and native chromosol,
441 respectively (Supplementary Fig. 7). Most of the novel *Botourmiaviridae* identified here were
442 associated with soil samples. This contrasted with most of the viruses detected from other
443 families within the *Lenarviricota* that were predominantly associated with sediments
444 (Supplementary Fig. 7). Indeed, only three of the 62 novel botourmiaviruses were identified
445 in sediment, and only from a single sediment library (MP3). A tendency for soil over
446 sediment has previously been observed in the *Botourmiaviridae* (Chen *et al.*, 2022). We also
447 identified 35 novel *Narnaviridae* species in sediment, 10 and 8 in pasture and native sodosol,
448 respectively, and 19 and 7 in cropping and native chromosol, respectively. Notably, the
449 majority of the novel viruses identified in the *Lenarviricota* occurred in lineages that were
450 divergent from known viral families, including viruses from all five sampling environments
451 (Supplementary Figs. 5-7).

452

453 ***Picornavirales (Pisuviricota)***

454 The main expansion of novel sequences in this order was in the *Marnaviridae* and
455 *Dicistroviridae*, as well as several unclassified *Picornavirales* species that fell outside of
456 defined families. Again, the scale of novel diversity in this order warranted splitting it into
457 smaller groups of 1-3 families for robust phylogenetic analysis: (i) the *Marnaviridae*
458 (Supplementary Fig. 8), (ii) the *Picornaviridae*, *Polycipiviridae*, *Solinviviridae* (Fig. 7A,
459 Supplementary Fig. 9), and (iii) the *Dicistroviridae*, *Secoviridae*, *Iflaviridae* (Fig. 7B,
460 Supplementary Fig. 10). Each phylogeny also included several clades of unclassified
461 *Picornavirales*.


462

463 A total of 191 novel viruses with sequence similarity (22-98%) to the *Marnaviridae* were
464 identified. The majority were sourced from riverbank sediment, which is unsurprising given
465 that marnaviruses are typically associated with marine organisms and environments. At the
466 genus level, 17 viruses from sediment clustered with the sogarnaviruses, 33 with the
467 salisharnaviruses, and one with the *bacillarnaviruses* (Supplementary Fig. 8). Eleven
468 sequences clustering in the genus *Marnavirus* were also identified in sediment, grouping with
469 Antarctic picorna-like virus 3 (AKG93964) and *Picornaviridae* sp. (URG14782, URG14392,
470 URG14815). These sequences formed a sister clade to the group containing the sole member
471 of the genus *Marnavirus* - Heterosigma akashiwo RNA virus (YP_009047193)
472 (Supplementary Fig. 8). Novel sequences from soil and sediment environments were also
473 identified in the genera *Kusarnavirus*, *Locarnavirus*, and *Labyrnavirus*. Finally, several
474 unclassified virus lineages fell between certain genera: four clades between *Bacillarnavirus*
475 and *Marnavirus*, three between *Kusarnavirus* and *Locarnavirus*, and three falling basal to all
476 genera except for *Labyrnavirus* (Supplementary Fig. 8).

477

478 A group of 28 novel picorna-like viruses fell in a divergent sister clade to the established
479 families *Picornaviridae*, *Polycipiviridae*, and *Solinviviridae* (Fig. 7A., Supplementary Fig. 9).
480 The majority of published sequences in this sister clade were metagenomically sourced from
481 environmental or invertebrate samples. The diversity within this clade suggests that the
482 creation of several new virus families may be warranted, with five well-supported clusters
483 able to be identified (Fig. 7A, Supplementary Fig. 9). Eighteen novel viruses were identified
484 in the *Dicistroviridae*, and a further fourteen novel picorna-like viruses fell in lineages of
485 diverse, unclassified *Picornavirales* that fell as sister lineages to the *Dicistroviridae*
486 (Supplementary Fig. 10). Another clade of interest – provisionally named the Rpiresk
487 picorna-like group – fell between the plant-infecting *Secoviridae* and insect-associated
488 *Iflavirusidae* (Fig. 7B, Supplementary Fig. 10). This group included six novel viruses from
489 sediment, one from cropping chromosol, several previously identified environmental picorna-
490 like viruses, and two picornaviruses identified in plants (Fig. 7B, Supplementary Fig. 10).

491

492

493 **Figure 7. Phylogenetic trees of the RdRp sequences from the order *Picornavirales*,**

494 displaying the expansion of novel, unclassified picorna-like clades surrounding (A) the

495 *Picornaviridae, Polycipiviridae, Solinviridae* and a clade of previously identified picorna-

496 like sequences, and (B) the *Dicistroviridae, Iflavirusidae*, and *Secoviridae*. Known viruses are

497 shown in black, while putative novel viruses identified here are coloured by the sampling

498 environment. Trees are midpoint rooted with branch lengths scaled according to the number

499 of amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000

500 SH-aLRT replicates. Phylogenetic trees with collapsed branches expanded are shown in

501 Supplementary Figures 9 and 10.

502

503 ***Sobelivirales (Pisuviricota)***

504 Three viruses fell within the fungi-associated family *Barnaviridae*, while another two
505 sequences formed a clade with the sole member of the dinoflagellate-associated
506 *Alvernaviridae* and three divergent sobemo-like viruses (Supplementary Fig. 11). Several
507 other sobeli-like viruses fell in clades of unclassified *Sobeliviridae*. Of note, were three novel
508 soil – Sonifin virus, Sopibym virus, and Sopibym virus – which formed a cluster with
509 solemoviruses predominantly associated with insects including termites, rabbit fleas, and flies
510 (Supplementary Fig. 11).

511

512 ***Hypoviridae (Pisuviricota)***

513 Four novel *Hypoviridae* sequences were identified in sediment and one in cropping
514 chromosol. These sequences were highly divergent and had low node support, such that their
515 true phylogenetic placement could not be robustly determined (Supplementary Fig. 12).

516

517 ***Partiti-Picobirnaviruses (Pisuviricota)***

518 Novel sequences were identified in both the *Partitiviridae* and *Picobirnaviridae*
519 (Supplementary Fig. 13). The majority of novel picobirnaviruses were found in divergent,
520 unclassified clades. The largest cluster of novel sequences were sampled from riverbank
521 sediment and grouped with a clade including termite microbiome-associated picobirnaviruses
522 identified by Le Lay *et al.* (2020) (Fig. 8A). Of these, 20 novel sediment picobirnaviruses
523 formed a single monophyletic group.

524

525 **3.3.2 Negative-stranded RNA virus families (*Negarnaviricota*)**

526 It is striking that only twelve putative novel species of negative-sense RNA viruses were
527 identified, two of which fell within the class *Monjiviricetes*. These viruses – Ripivex virus
528 and Ripivax virus - were identified from a single riverbank sediment library (MP3). Ripivex
529 virus clustered within the family *Mymonaviridae* (although with low bootstrap support),
530 while Ripivax fell basal to the family (Supplementary Fig. 14).

531

532 The remaining ten negative-stranded RNA viruses fell in two clades of plant pathogenic
533 fungi-associated *Bunyavirales*. The first clade, denoted the Sonekey bunya-like group,
534 included four sequences related to bunyaviruses found in grapevine downy mildew lesions
535 caused by *Plasmopara viticola* (Supplementary Fig. 15). In the second clade, the Soperolo
536 bunya-like group, five sequences clustered with bunyaviruses associated with *Phytophthora*
537 *cactorum* and *Halophyophthora* species. The final sequence, Chrocemuse virus, fell between

538 the Sonekey and Soperolo bunya-like groups (Supplementary Fig. 15). It is interesting that
539 five of the six viruses in Soperolo bunya-like group were identified in soil, given that several
540 of their relatives are associated with predominantly marine-inhabiting host organisms
541 (*Halophytophthora* species).

542

543 **3.3.3 Double-stranded RNA virus families (*Duplornaviricota*)**

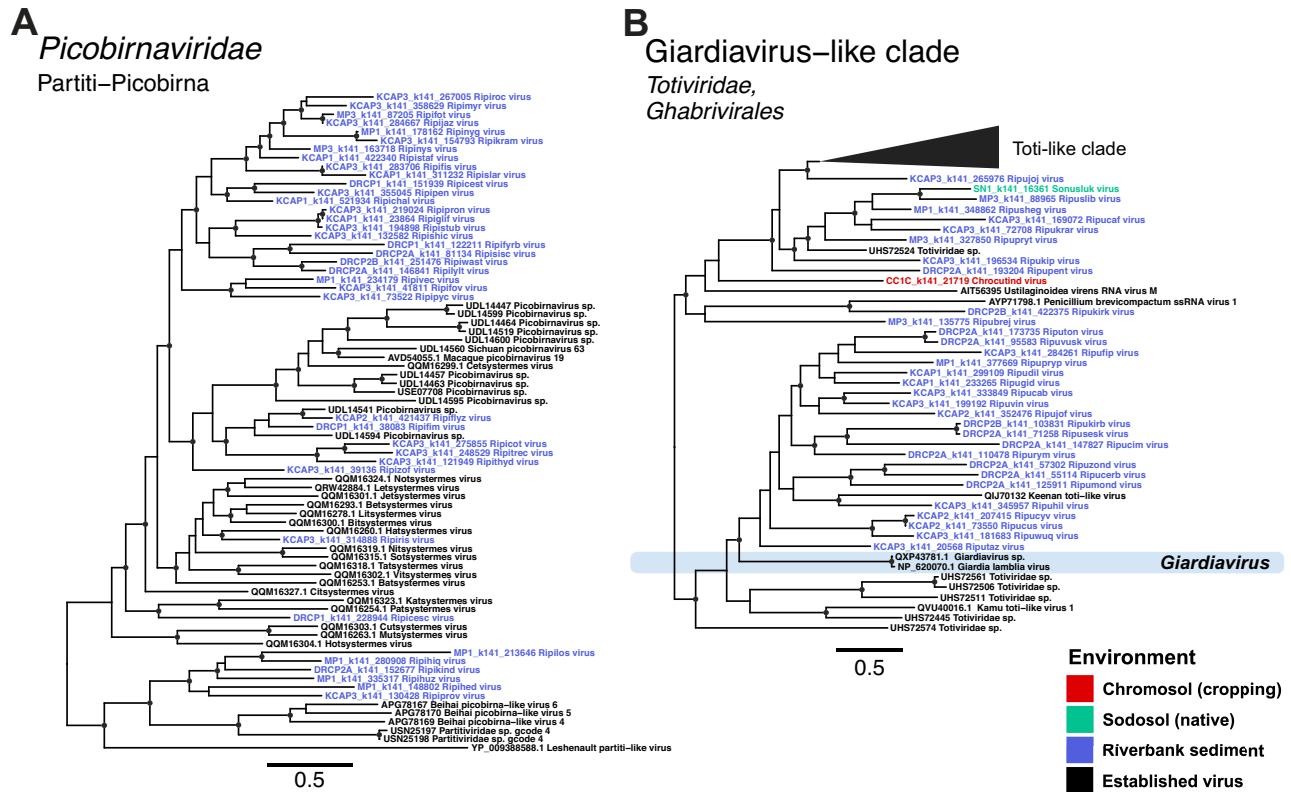
544 ***Cystoviridae***

545 All ten novel cysto-like viruses were identified from WA riverbank sediment samples. One
546 sequence (Ripucork virus) fell within a clade including the formally ratified species
547 *Cystovirus phi13*, *Cystovirus phiYY*, and *Cystovirus phi6*. The remaining nine sequences
548 formed two intermediate lineages between the two major clades in this family and clustered
549 by sampling site (Supplementary Fig. 16). The first clade comprised five viruses identified in
550 libraries from sediment samples taken further inland than the other four viruses, which, along
551 with Jiangsu sediment cystovirus (QYF49681) and *Cystovirus phi8* (NP_524561), comprised
552 the second clade.

553

554 ***Reovirales***

555 One divergent reo-like virus in sodosol pasture (denoted Soputhoc virus) grouped with Hubei
556 reo-like virus 10 and 11 (APG79149 and APG79051), falling as a sister lineage to the genus
557 *Rotavirus* (a vertebrate-associated genus) in the *Sedoreoviridae*, although with low node
558 support (Supplementary Fig. 17). The three other novel reo-like sequences (one identified in
559 sodosol pasture, the others in riverbank sediment) fell in a small sister clade to the genus
560 *Fijivirus* within the family *Spinareoviridae* (Supplementary Fig. 17).


561

562 ***Ghabrivirales***

563 Novel species in this order were identified predominantly in sediment, with a small number
564 from both sodosol environments and cropping chromosol (Supplementary Fig. 18). Of note,
565 22 novel toti-like sequences sourced from sediment greatly expanded a clade that previously
566 only included *Giardia lamblia* virus (NP_620070), *Giardiavirus* sp. (QXP43781), and Keenan
567 toti-like virus (QIJ70132) (Fig. 8B). This may represent an expansion of the *Totiviridae*
568 genus *Giardiavirus*, which currently contains only one accepted species – *Giardia lamblia*
569 virus. Other novel species in the *Totiviridae* included a victori-like and a totivirus from
570 cropping chromosol and pasture sodosol, respectively, as well as two sequences identified
571 from sediment samples that clustered with one of several lineages of unclassified *Totiviridae*

572 (Supplementary Fig. 18). A novel alphachryso-like virus (Riputesc virus) and a divergent
 573 megabirna-like virus (Ripusarb virus) were also identified in sediment (Supplementary Fig.
 574 18).

575

576

577 **Figure 8.** Phylogenetic trees of RdRp sequences from (A) a subset of the *Picobirnaviridae*,
 578 and (B) a clade of *Giardiavirus*-like sequences from the *Totiviridae*. Known viruses are
 579 shown in black, while putative novel viruses identified here are coloured by the sampling
 580 environment. Trees are midpoint rooted with branch lengths scaled according to the number
 581 of amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000
 582 SH-aLRT replicates. Phylogenetic trees with collapsed branches expanded are shown in
 583 Supplementary Figures 13 and 17.

584

585 DISCUSSION

586 Numerous novel RNA viruses have been identified in Australia's unique ecosystems
 587 (Geoghegan *et al.*, 2021; Harvey *et al.*, 2018; Le Lay *et al.*, 2020; Mahar *et al.*, 2020; Mu *et*
 588 *al.*, 2018; Pyke *et al.*, 2021; Chang *et al.*, 2021; Van Brussel *et al.*, 2022; Wille *et al.*, 2018).
 589 While efforts have been made to characterise the overall microbial communities of Australian
 590 soils (Bowd *et al.*, 2022; Xue *et al.*, 2022; Pino *et al.*, 2023), little work has been done on the
 591 Australian soil virome. We generated meta-transcriptomic data on 26 libraries from 16 soil

592 and sediment samples taken from eastern (NSW) and western (WA) Australia. From these,
593 we identified a remarkable 2,562 novel viral RdRp sequences across all five RNA virus
594 phyla, of which 1,807 belonged to the phylum *Lenarviricota*, classically associated with
595 microbial species. The discovery of 2,562 putative viruses from such a small number of meta-
596 transcriptomic sequence libraries showcases the extensive, untapped diversity of RNA
597 viruses in Australian soil and sediment environments. Viruses were detected across 15 viral
598 orders and, in many cases, were so diverse that they would constitute new viral genera and
599 even families.

600

601 A relationship between virome composition and land use has been previously observed for
602 both DNA viruses (Narr *et al.*, 2017; Liao *et al.*, 2022) and RNA viruses (Hillary *et al.*, 2022)
603 in soil on other continents. Likewise, local sampling environment has been shown to be
604 associated with viral abundance and diversity (Chen *et al.*, 2022; Durham *et al.*, 2022). We
605 found land use and sampling environment to be significantly associated with the abundance
606 and richness of RNA viruses in Australian soils. However, more specific soil factors such as
607 pH and soil nutrient levels have been identified as determinants of viral abundance and
608 diversity (Narr *et al.*, 2017; Chen *et al.*, 2022; Liao *et al.*, 2022). These factors also determine
609 the community compositions of soil-dwelling microbial hosts (Wang *et al.*, 2019; He *et al.*,
610 2022), and are therefore likely play a role in the viral abundance and diversity trends
611 observed in this study. Revealing the precise relationships between Australian soil
612 ecosystems and the viruses within them will not only rely on expansive sampling of diverse
613 environments, but also the generation of thorough ecological metadata.

614

615 Despite a small sample size, we detected viruses that spanned the entire diversity of the
616 *Lenarviricota*. Such remarkable genetic diversity, as well as the presence of bacterial- and
617 eukaryote-associated families (Hillman and Cai, 2013) and an often very simple genome
618 structure, suggests that this phylum may comprise the oldest extant RNA viruses. Meta-
619 transcriptomic studies of diverse ecosystems have consistently detected members of the
620 *Lenarviricota*, such that the diversity of this phylum has greatly increased in recent years.
621 Despite their microbial association, these viruses have been detected in studies of both
622 vertebrates (Mahar *et al.*, 2020; Wille *et al.*, 2020) and invertebrates (Shi *et al.*, 2016; Kondo
623 *et al.*, 2020; Le Lay *et al.*, 2020; Thongsripong *et al.*, 2021). Although they are unlikely to be
624 infecting these animals directly, it is clear that these highly diverse viruses are present in
625 virtually all environments (Starr *et al.*, 2019; Wolf *et al.*, 2020; Chen *et al.*, 2022; Neri *et al.*,

626 2022). Hence, it is no surprise that 1,807 novel *Lenarviricota* sequences were identified from
627 both soil types and land uses sampled here, as well as a considerable number from riverbank
628 sediment.

629

630 Within the *Lenarviricota*, the *Narnaviridae* and *Botourmiaviridae* are currently placed in
631 different virus classes but have been proposed to comprise a single taxonomic class along
632 with the newly proposed *Narliviridae* (Sadiq *et al.*, 2022). The phylogeny generated here,
633 with an additional 1,807 viral sequences expanding the known *Lenarviricota* diversity,
634 supports the proposal of Sadiq *et al.* (2022) that the *Narliviridae* and *Botourmiaviridae* form
635 sister clades to the exclusion of the *Narnaviridae*. Furthermore, the genus *Ourmiaivirus* did
636 not fall within the *Botourmiaviridae*, where it is currently classified, but instead clustered
637 with the *Narliviridae*. This corroborates previous findings that these three ourmiaviruses are
638 more closely related to the narliviruses than the botourmiaviruses (Sadiq *et al.*, 2022).

639

640 Based on the nature of the samples (soil and sediment) and the known host ranges of families
641 with which these novel viruses share sequence similarity, the majority of host taxa evaluated
642 in this study were most likely associated with plant or microbial rather animal hosts. The
643 limited proportion of viruses that were predicted to have animal hosts (less than 10%) were
644 also most likely associated with invertebrates such as insects rather than vertebrates. The
645 novel mitoviruses identified here appeared to utilise the mitochondrial genetic code, which
646 changes the UGA codon from a stop codon to Tryptophan and is typical of fungi-infecting
647 mitovirus genomes, suggesting that these mitoviruses also infect fungi (Cole *et al.*, 2000). As
648 the *Leviviricetes* and *Cystoviridae* are a class and family of bacteriophage (King *et al.*, 2013;
649 Poranen *et al.*, 2017), the 953 novel viruses within them are also likely bacteriophage. The
650 detection of large numbers of picobirnaviruses in environmental samples supports the
651 hypothesis that these viruses do not infect vertebrate hosts (as is routinely assumed when
652 associated with vertebrate faecal samples [Malik *et al.*, 2014; Delmas *et al.*, 2019]), but are
653 instead associated with microflora present in animal gastrointestinal systems or components
654 of their diet (Ghosh and Malik, 2021). Novel species in the *Tombusviridae* were likely to be
655 associated with plants due to their phylogenetic proximity to established plant viruses.

656 Similarly, the four novel viruses that clustered within the established dicistroviruses are likely
657 to be insect-associated. Therefore, while the metagenomic nature of this study makes it
658 inherently difficult to confidently determine the hosts of the novel viruses identified,
659 assuming similar host ranges to their closest phylogenetic relatives reveals a remarkable

660 variety of potential host organisms ranging from microbes to plants to invertebrates. Hence,
661 viruses are infecting the majority, if not all, key players in the ecological processes of
662 terrestrial and aquatic soil systems.

663

664 A limitation of this study was the initial extraction of genetic material. Of 90 potential
665 sequencing libraries (including technical triplicates for the NSW farmland soil samples),
666 RNA was only successfully extracted from 26 samples at low but detectable concentrations
667 of 0.26-10 ng/µL. This prevented us from conducting robust statistical analyses on the
668 various ecological factors that might shape RNA viral abundance and diversity. The inability
669 to extract RNA from any samples collected 15-30 cm from the soil surface may be a result of
670 the reduction in host organisms at this depth as deeper layers of soil have been shown to
671 harbour limited microbial diversity compared to surface layers (Hao *et al.*, 2021; Zhao *et al.*,
672 2021). We were also unable to extract RNA from the vertosol, even from surface level soil
673 which was successful in both chromosol and sodosol. This is likely due to the high clay
674 content of vertosol, which has a negative effect on RNA yield under a variety of extraction
675 protocols (Novinscak and Fillon, 2011). Yields may have also been impacted due to
676 limitations in sample preservation, indicating a clear need for a more refined sampling and
677 storage cold chain to effectively extract RNA from remote soil and sediment environments.

678

679 The discovery of 2,562 novel viruses spanning all five RNA viral phyla and a potential host
680 range of bacteria, protists, fungi, plants, and invertebrates shows that Australian terrestrial
681 environments are evidently an untapped resource for RNA virus diversity. These
682 environments may harbour entire families of ecological and evolutionary importance, likely
683 reflecting the vast array of flora and fauna that is unique to the continent. Our work provides
684 an initial view of the Australian terrestrial RNA virosphere, as well as the broad
685 environmental properties such as land use and soil type that may be driving viral
686 composition.

687

688 **Data Availability**

689 The raw sequence read data for this study are available in the NCBI Sequence Read Archive
690 (SRA) database under the BioProject PRJNA981585 and SRA accession numbers
691 SRR26298330-SRR2629835. All genome sequences used in the phylogenetic analysis are
692 available in NCBI GenBank under the accession numbers XXXX-YYYY.

693

694 **Funding**

695 This work was funded by an Australian Research Council Australian Laureate Fellowship to
696 E.C.H. (FL170100022).

697

698 **Declaration of Competing Interest**

699 The authors declare that they have no known competing financial interests or personal
700 relationships that could have appeared to influence the work reported in this paper.

701

702 **CRediT authorship contribution statement**

703 Sabrina Sadiq: Conceptualization, Formal analysis, Investigation, Methodology, Writing –
704 original draft, Writing – review & editing, Visualization.

705

706 Erin Harvey: Investigation, Writing – review & editing.

707

708 Jonathon C. O. Mifsud: Investigation, Writing – review & editing.

709

710 Budiman Minasny: Data curation, Writing – review & editing.

711

712 Alex. B. McBratney: Data curation, Writing – review & editing.

713

714 Liana E. Pozza: Data curation, Investigation, Writing – review & editing.

715

716 Jackie E. Mahar: Investigation, Writing – original draft, Writing – review & editing.

717

718 Edward C. Holmes: Conceptualization, Resources, Writing – original draft, Writing – review
719 & editing.

720

721 **Acknowledgments**

722 We thank Dr Michelle Wille for previously providing the modified Rhea alpha diversity
723 script sets. We also thank Dr Edward Jones for assisting with sample collection at the Nowley
724 Farm sites.

725

726 **SUPPLEMENTARY INFORMATION**

727 **Supplementary Figure S1.** Phylogeny of RdRp sequences from the orders *Hepelivirales* and
728 *Tymovirales* (class *Alsuviricetes*). Known viruses are shown in black, while putative novel
729 viruses identified here are coloured by sampling environment. The tree was midpoint rooted
730 for clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles
731 represent node support $\geq 80\%$ using 1,000 SH-aLRT replicates.

732 **Supplementary Figure S2.** Phylogeny of RdRp sequences from the order *Martellivirales*
733 (class *Alsuviricetes*). Known viruses are shown in black, while putative novel viruses
734 identified here are coloured by sampling environment. The tree was midpoint rooted for
735 clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent
736 node support $\geq 80\%$ using 1,000 SH-aLRT replicates.

737 **Supplementary Figure S3.** Phylogeny of RdRp sequences from the order *Nodamuvirales*.
738 Known viruses are shown in black, while putative novel viruses identified here are coloured
739 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
740 0.5 amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000
741 SH-aLRT replicates.

742 **Supplementary Figure S4.** Phylogeny of RdRp sequences from the order *Tolivirales*.
743 Known viruses are shown in black, while putative novel viruses identified here are coloured
744 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
745 0.5 amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000
746 SH-aLRT replicates.

747 **Supplementary Figure S5.** Phylogeny of RdRp sequences from the class *Leviviricetes*
748 (phylum *Lenarviricota*). Known viruses are shown in black, while putative novel viruses
749 identified here are coloured by sampling environment. The tree was midpoint rooted for
750 clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent
751 node support $\geq 80\%$ using 1,000 SH-aLRT replicates.

752 **Supplementary Figure S6.** Phylogeny of RdRp sequences from the family *Mitoviridae*
753 (phylum *Lenarviricota*). Known viruses are shown in black, while putative novel viruses
754 identified here are coloured by sampling environment. The tree was midpoint rooted for
755 clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent
756 node support $\geq 80\%$ using 1,000 SH-aLRT replicates.

757 **Supplementary Figure S7.** Phylogeny of RdRp sequences from the class *Amabiliviricetes*
758 (phylum *Lenarviricota*). Known viruses are shown in black, while putative novel viruses
759 identified here are coloured by sampling environment. The tree was midpoint rooted for
760 clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent
761 node support $\geq 80\%$ using 1,000 SH-aLRT replicates.

762 **Supplementary Figure S8.** Phylogeny of RdRp sequences from the family *Marnaviridae*
763 (order *Picornavirales*). Known viruses are shown in black, while putative novel viruses
764 identified here are coloured by sampling environment. The tree was midpoint rooted for
765 clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent
766 node support $\geq 80\%$ using 1,000 SH-aLRT replicates.

767 **Supplementary Figure S9.** Phylogeny of RdRp sequences from the families *Picornaviridae*,
768 *Polycipiviridae*, and *Solinviviridae* (order *Picornavirales*). Known viruses are shown in
769 black, while putative novel viruses identified here are coloured by sampling environment.
770 The tree was midpoint rooted for clarity only. Scale bar represents 0.5 amino acid
771 substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000 SH-aLRT
772 replicates.

773 **Supplementary Figure S10.** Phylogeny of RdRp sequences from the families
774 *Dicistroviridae*, *Iflaviridae*, and *Secoviridae* (order *Picornavirales*). Known viruses are
775 shown in black, while putative novel viruses identified here are coloured by sampling
776 environment. The tree was midpoint rooted for clarity only. Scale bar represents 0.5 amino
777 acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000 SH-aLRT
778 replicates.

779 **Supplementary Figure S11.** Phylogeny of RdRp sequences from the order *Sobelivirales*.
780 Known viruses are shown in black, while putative novel viruses identified here are coloured
781 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
782 0.5 amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000
783 SH-aLRT replicates.

784 **Supplementary Figure S12.** Phylogeny of RdRp sequences from the family *Hypoviridae*.
785 Known viruses are shown in black, while putative novel viruses identified here are coloured
786 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
787 0.5 amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000
788 SH-aLRT replicates.

789 **Supplementary Figure S13.** Phylogeny of RdRp sequences from the Partiti-Picobirna clade.
790 Known viruses are shown in black, while putative novel viruses identified here are coloured
791 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
792 0.5 amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000
793 SH-aLRT replicates.

794 **Supplementary Figure S14.** Phylogeny of RdRp sequences from the class *Monjiviricetes*
795 (phylum *Negarnaviricota*). Known viruses are shown in black, while putative novel viruses
796 identified here are coloured by sampling environment. The tree was midpoint rooted for
797 clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent
798 node support $\geq 80\%$ using 1,000 SH-aLRT replicates.

799 **Supplementary Figure S15.** Phylogeny of RdRp sequences from the order *Bunyavirales*.
800 Known viruses are shown in black, while putative novel viruses identified here are coloured
801 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
802 0.5 amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000
803 SH-aLRT replicates.

804 **Supplementary Figure S16.** Phylogeny of RdRp sequences from the family *Cystoviridae*.
805 Known viruses are shown in black, while putative novel viruses identified here are coloured
806 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
807 0.5 amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000
808 SH-aLRT replicates.

809 **Supplementary Figure S17.** Phylogeny of RdRp sequences from the order *Reovirales*.
810 Known viruses are shown in black, while putative novel viruses identified here are coloured
811 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
812 0.5 amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000
813 SH-aLRT replicates.

814 **Supplementary Figure S18.** Phylogeny of RdRp sequences from the order *Ghabrivirales*.
815 Known viruses are shown in black, while putative novel viruses identified here are coloured
816 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
817 0.5 amino acid substitutions per site. Black circles represent node support $\geq 80\%$ using 1,000
818 SH-aLRT replicates.

819 **REFERENCES**

820 Andrews, S. (2010) FastQC: A quality control tool for high throughput sequence data.
821 *Babraham Bioinformatics*. <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

822 Anisimova, M. and Gascuel, O. (2006) Approximate likelihood-ratio test for branches: a fast,
823 accurate, and powerful alternative. *Systems Biology* **55**: 539-552.

824 Bolger, A.M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for
825 Illumina sequence data. *Bioinformatics* **30**: 2114–2120.

826 Bowd, E.L., Banks, S.C., Andrew, A., May, T.W. (2022). Disturbance alters the forest soil
827 microbiome. *Molecular Ecology* **31**: 419-447.

828 Buchfink, B., Xie, C., and Huson, D.H. (2015) Fast and sensitive protein alignment using
829 DIAMOND. *Nature Methods* **12**: 59–60.

830 Capella-Gutierrez, S., Silla-Martinez, J.M., and Gabaldon, T. (2009) trimAl: a tool for
831 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**:
832 1972–1973.

833 Chang, W.-S., Rose, K., and Holmes, E.C. (2021) Meta-transcriptomic analysis of the virome
834 and microbiome of the invasive Indian myna (*Acridotheres tristis*) in Australia. *One Health*
835 **13**: 100360.

836 Chapman, A.D. (2009) *Numbers of living species in Australia and the world*. 2nd ed.,
837 Australian Govt., Dept. of the Environment, Water, Heritage, and the Arts, Parkes, ACT.

838 Chen, Y.-M., Sadiq, S., Tian, J.-H., Chen, X., Lin, X.-D., Shen, J.-J., *et al.* (2022) RNA
839 viromes from terrestrial sites across China expand environmental viral diversity. *Nature*
840 *Microbiology* **7**: 1312–1323.

841 Cole, T.E., Hong, Y., Brasier, C.M., and Buck, K.W. (2000) Detection of an RNA-dependent
842 RNA polymerase in mitochondria from a mitovirus-infected isolate of the Dutch Elm Disease
843 fungus, *Ophiostoma novo-ulmi*. *Virology* **268**: 239–243.

844 Delmas, B., Attoui, H., Ghosh, S., Malik, Y.S., Mundt, E., Vakharia, V.N., *et al.* (2019)
845 ICTV virus taxonomy profile: *Picobirnaviridae*. *Journal of General Virology* **100**: 133-134.

846 Dequiedt, S., Saby, N.P.A., Lelievre, M., Jolivet, C., Thioulouse, J., Toutain, B., *et al.* (2011)
847 Biogeographical patterns of soil molecular microbial biomass as influenced by soil

848 characteristics and management: biogeography of soil microbial biomass. *Global Ecology*
849 and *Biogeography* **20**: 641–652.

850 Durham, D.M., Sieradzki, E.T., Ter Horst, A.M., Santos-Medellín, C., Bess, C.W.A.,
851 Geonczy, S.E., *et al.* (2022) Substantial differences in soil viral community composition
852 within and among four northern California habitats. *ISME Communications* **2**: 100.

853 French, R., Charon, J., Lay, C.L., Muller, C., and Holmes, E.C. (2022) Human land-use
854 impacts viral diversity and abundance in a New Zealand river. *Virus Evolution* **8**: veac032.

855 French, R.K., and Holmes, E.C. (2020) An ecosystems perspective on virus evolution and
856 emergence. *Trends in Microbiology* **28**: 165–175.

857 Geoghegan, J., Pirotta, V., Harvey, E., Smith, A., Buchmann, J., Ostrowski, M., *et al.* (2018)
858 Virological sampling of inaccessible wildlife with drones. *Viruses* **10**: 300.

859 Geoghegan, J.L., Di Giallondo, F., Wille, M., Ortiz-Baez, A.S., Costa, V.A., Ghaly, T., *et*
860 *al.* (2021) Virome composition in marine fish revealed by meta-transcriptomics. *Virus*
861 *Evolution* **7**: veab005.

862 Ghosh, S., and Malik, Y.S. (2021) The true host/s of picobirnaviruses. *Frontiers in*
863 *Veterinary Science* **7**: 615293.

864 He, Z., Yuan, C., Chen, P., Rong, Z., Peng, T., Farooq, T.H., *et al.* (2023) Soil microbial
865 community composition and diversity analysis under different land use patterns in Taojia
866 River Basin. *Forests* **14**: 1004.

867 Hillary, L.S., Adriaenssens, E.M., Jones, D.L., and McDonald, J.E. (2022) RNA-viromics
868 reveals diverse communities of soil RNA viruses with the potential to affect grassland
869 ecosystems across multiple trophic levels. *ISME Communications* **2**: 34.

870 Hillman, B. I., and Cai, G. (2013) The Family Narnaviridae. *Advances in Virus Research*, **86**:
871 149–76.

872 Huang, D., Yu, P., Ye, M., Schwarz, C., Jiang, X., and Alvarez, P.J.J. (2021) Enhanced
873 mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced
874 environmental stress. *Microbiome* **9**: 150.

875 Hwang, Y., Rahlff, J., Schulze-Makuch, D., Schloter, M., and Probst, A.J. (2021) Diverse
876 viruses carrying genes for microbial extremotolerance in the Atacama desert hyperarid soil.
877 *mSystems* **6**: e00385-21.

878 Isbell, R.F. (2016) *The Australian soil classification*. CSIRO Publishing, Victoria, Australia.

879 Jin, M., Guo, X., Zhang, R., Qu, W., Gao, B., and Zeng, R. (2019) Diversities and potential
880 biogeochemical impacts of mangrove soil viruses. *Microbiome* **7** 58.

881 Jiwaji, M., Matcher, G.F., Bruyn, M.-M. de, Awando, J.A., Moodley, H., Waterworth, D., *et*
882 *al.* (2019) Providence virus: An animal virus that replicates in plants or a plant virus that
883 infects and replicates in animal cells? *PLoS ONE* **14**: e0217494.

884 Katoh, K., and Standley, D.M. (2013) MAFFT multiple sequence alignment software version
885 7: improvements in performance and usability. *Molecular Biology and Evolution* **30**: 772–
886 780.

887 King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz E.J. (2012) *Leviviridae*. In *Virus
888 Taxonomy*. 1st ed., Elsevier.

889 Kondo, H., Fujita, M., Hisano, H., Hyodo, K., Andika, I.B., and Suzuki, N. (2020) Virome
890 analysis of aphid populations that infest the barley field: the discovery of two novel groups of
891 nege/kita-like viruses and other novel RNA viruses. *Frontiers in Microbiology* **11**: 509.

892 Lagkouvardos, I., Fischer, S., Kumar, N., and Clavel, T. (2017) Rhea: a transparent and
893 modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. *Peer J* **5**:
894 e2836.

895 Le Lay, C., Shi, M., Buček, A., Bourguignon, T., Lo, N., and Holmes, E. (2020) Unmapped
896 RNA virus diversity in termites and their symbionts. *Viruses* **12**: 1145.

897 Li, B., and Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA-Seq data
898 with or without a reference genome. *BMC Bioinformatics* **12**: 323.

899 Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015) MEGAHIT: an ultra-fast
900 single-node solution for large and complex metagenomics assembly via succinct de Bruijn
901 graph. *Bioinformatics* **31**: 1674–1676.

902 Liao, H., Li, H., Duan, C.-S., Zhou, X.-Y., Luo, Q.-P., An, X.-L., *et al.* (2022) Response of
903 soil viral communities to land use changes. *Nature Communications* **13**: 6027.

904 Mahar, J.E., Shi, M., Hall, R.N., Strive, T., and Holmes, E.C. (2020) Comparative analysis of
905 RNA virome composition in rabbits and associated ectoparasites. *Journal of Virology* **94**:
906 e02119-19.

907 Malik, Y.S., Kumar, N., Sharma, K., Dhama, K., Shabbir, M.Z., Ganesh, B., *et al.* (2014) 908 Epidemiology, phylogeny, and evolution of emerging enteric picobirnaviruses of animal 909 origin and their relationship to human strains. *BioMed Research International* **2014**: 780752.

910 Mu, F., Xie, J., Cheng, S., You, M.P., Barbetti, M.J., Jia, J., *et al.* (2018) Virome 911 characterization of a collection of *S. sclerotiorum* from Australia. *Front in Microbiology* **8**: 912 2540.

913 Narr, A., Nawaz, A., Wick, L.Y., Harms, H., and Chatzinotas, A. (2017) Soil viral 914 communities vary temporally and along a land use transect as revealed by virus-like particle 915 counting and a modified community fingerprinting approach (fRAPD). *Frontiers in* 916 *Microbiology* **8**: 1975.

917 Neri, U., Wolf, Y.I., Roux, S., Camargo, A.P., Lee, B., Kazlauskas, D., *et al.* (2022) 918 Expansion of the global RNA virome reveals diverse clades of bacteriophages. *Cell* **185**: 919 4023-4037.e18.

920 Nguyen, L.-T., Schmidt, H.A., Haeseler, A. von, and Minh, B.Q. (2015) IQ-TREE: a fast and 921 effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular* 922 *Biology and Evolution* **32**: 268–274.

923 Nibert, M.L. (2017) Mitovirus UGA(Trp) codon usage parallels that of host mitochondria. 924 *Virology* **507**: 96–100.

925 Novinscak, A., and Filion, M. (2011) Effect of soil clay content on RNA isolation and on 926 detection and quantification of bacterial gene transcripts in soil by quantitative reverse 927 transcription-PCR. *Applied Environmental Microbiology* **77**: 6249–6252.

928 Oude Munnink, B.B., Cotton, M., Canuti, M., Dejin, M., Jebbink, M., van Hemert, F.J., *et al.* 929 (2016) A novel astrovirus-like RNA virus detected in human stool. *Virus Evolution* **2**: 930 vew005.

931 Paradis, E., and Schliep, K. (2019) ape 5.0: an environment for modern phylogenetics and 932 evolutionary analyses in R. *Bioinformatics* **35**: 526–528.

933 Pino, V., Fajardo, M., McBratney, A., Minasny, B., Wilson, N., and Baldock, C. (2023) 934 Australian soil microbiome: A first sightseeing regional prediction driven by cycles of soil 935 temperature and pedogenic variations. *Molecular Ecology*. <https://doi.org/10.1111/mec.16911>

936 Poranon, M.M., Mäntynen, S., and ICTV Report Consortium. (2017) ICTV: virus taxonomy 937 profile: *Cystoviridae*. *Journal of General Virology* **98**: 2423-2424.

938 Pyke, A.T., Shivas, M.A., Darbro, J.M., Onn, M.B., Johnson, P.H., Crunkhorn, A., *et al.*
939 (2021) Uncovering the genetic diversity within the *Aedes notoscriptus* virome and isolation
940 of new viruses from this highly urbanised and invasive mosquito. *Virus Evolution* **7**:
941 veab082.

942 Raynaud, X., and Nunan, N. (2014) Spatial ecology of bacteria at the microscale in soil.
943 *PLoS ONE* **9**: e87217.

944 RStudio Team (2019) *RStudio: Integrated Development for R*. RStudio, Inc., Boston, MA.

945 R Core Team (2021) R: A language and environment for statistical computing. R Foundation
946 for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

947 Sadiq, S., Chen, Y.-M., Zhang, Y.-Z., and Holmes, E.C. (2022) Resolving deep evolutionary
948 relationships within the RNA virus phylum *Lenarviricota*. *Virus Evolution* **8**: veac055.

949 Shi, M., Lin, X.-D., Tian, J.-H., Chen, L.-J., Chen, X., Li, C.-X., *et al.* (2016) Redefining the
950 invertebrate RNA virosphere. *Nature* **540**: 539–543.

951 Singh, B.K., Dawson, L.A., Macdonald, C.A., and Buckland, S.M. (2009) Impact of biotic
952 and abiotic interaction on soil microbial communities and functions: A field study. *Applied
953 Soil Ecology* **41**: 239–248.

954 Starr, E.P., Nuccio, E.E., Pett-Ridge, J., Banfield, J.F., and Firestone, M.K. (2019)
955 Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon
956 cycling in soil. *Proceedings of the National Academy of Sciences* **116**: 25900–25908.

957 Steffen, W. (2009) *Australia's Biodiversity and Climate Change*. CSIRO Publishing.
958 <https://ebooks.publish.csiro.au/content/ISBN/9780643098190>.

959 Thongsripong, P., Chandler, J.A., Kittayapong, P., Wilcox, B.A., Kapan, D.D., and Bennett,
960 S.N. (2021) Metagenomic shotgun sequencing reveals host species as an important driver of
961 virome composition in mosquitoes. *Scientific Reports* **11**: 8448.

962 Tian, Q., Taniguchi, T., Shi, W.-Y., Li, G., Yamanaka, N., and Du, S. (2017) Land-use types
963 and soil chemical properties influence soil microbial communities in the semiarid Loess
964 Plateau region in China. *Scientific Reports* **7**: 45289. 9

965 Trubl, G., Hyman, P., Roux, S., and Abedon, S.T. (2020) Coming-of-age characterization of
966 soil viruses: a user's guide to virus isolation, detection within metagenomes, and viromics.
967 *Soil Systems* **4**: 23.

968 Trubl, G., Jang, H.B., Roux, S., Emerson, J.B., Solonenko, N., Vik, D.R., *et al.* (2018) Soil
969 viruses are underexplored players in ecosystem carbon processing. *mSystems* **3**:
970 10.1128/msystems.00076-18.

971 Van Brussel, K., Mahar, J.E., Ortiz-Baez, A.S., Carrai, M., Spielman, D., Boardman, W.S.J.,
972 *et al.* (2022) Faecal virome of the Australian grey-headed flying fox from urban/suburban
973 environments contains novel coronaviruses, retroviruses and sapoviruses. *Virology* **576**: 42–
974 51.

975 Wang, C., Zhou, X., Guo, D., Zhao, J., Yan, L., Feng, G., *et al.* (2019) Soil pH is the primary
976 factor driving the distribution and function of microorganisms in farmland soils in
977 northeastern China. *Annals of Microbiology* **69**: 1461–1473.

978 Wickham, H. (2016) *ggplot2: elegant graphics for data analysis*. Springer-Verlag
979 <https://ggplot2.tidyverse.org>.

980 Wille, M., Eden, J., Shi, M., Klaassen, M., Hurt, A.C., and Holmes, E.C. (2018) Virus–virus
981 interactions and host ecology are associated with RNA virome structure in wild birds.
982 *Molecular Ecology* **27**: 5263–5278.

983 Wille, M., Harvey, E., Shi, M., Gonzalez-Acuña, D., Holmes, E.C., and Hurt, A.C. (2020)
984 Sustained RNA virome diversity in Antarctic penguins and their ticks. *ISME J* **14**: 1768–
985 1782.

986 Williams, J., Read, C., Norton, A., Dovers, S., Burgman, M., Proctor, W., and Anderson, H.
987 (2001) *Biodiversity, Australia State of the Environment Report 2001 (Theme Report)*. CSIRO
988 Publishing on behalf of the Department of the Environment and Heritage, Canberra,
989 Australia.

990 Williamson, K.E., Fuhrmann, J.J., Wommack, K.E., Radosevich, M. (2017) Viruses in soil
991 ecosystems: an unknown quantity within an unexplored territory. *Annual Review of Virology*
992 **4**: 201–219.

993 Wolf, Y.I., Silas, S., Wang, Y., Wu, S., Bocek, M., Kazlauskas, D., *et al.* (2020) Doubling of
994 the known set of RNA viruses by metagenomic analysis of an aquatic virome. *Nature*
995 *Microbiology* **5**: 1262–1270.

996 Xue, P., McBratney, A.B., Minasny, B., O'Donnell, T., Pino, V., Fajardo, M., *et al.* (2022)
997 Soil bacterial depth distribution controlled by soil orders and soil forms. *Soil Ecology Letters*
998 **4**: 57–68.

999 Yu, G., Smith, D.K., Zhu, H., Guan, Y., and Lam, T.T. (2017) ggtree: an R package for
1000 visualization and annotation of phylogenetic trees with their covariates and other associated
1001 data. *Methods in Ecology & Evolution* **8**: 28–36.