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ABSTRACT

Australia is home to a diverse range of unique native fauna and flora. To address whether
Australian ecosystems also harbour unique viruses, we performed meta-transcriptomic
sequencing of 16 farmland and sediment samples taken from the east and west coasts of
Australia. We identified 2,562 putatively novel viruses across 15 orders, the vast majority of
which belonged to the microbe-associated phylum Lenarviricota. In many orders, the novel
viruses identified here comprised entirely new clades, such as the Nodamuvirales and
Ghabrivirales. Novel viruses also fell between established genera or families, such as in the
Cystoviridae and Picornavirales, while highly divergent lineages were identified in the
Martellivirales and Ghabrivirales. Viral abundance and alpha diversity were influenced by
sampling site, soil type and land use, but not by depth from the surface. In sum, Australian
soils and sediments are home to remarkable viral diversity, reflecting the biodiversity of local

fauna and flora.
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INTRODUCTION

RNA viruses are ubiquitous, diverse, and can play important roles in multiple ecological
processes. Yet a strong focus on viruses of clinical or agricultural significance has limited our
understanding of RNA viruses as potentially key components of global ecosystems (French
and Holmes, 2020). Similarly, studies of environmental viruses have largely considered
marine systems and typically characterised DNA viromes (Trubl ef al., 2020), leaving the
terrestrial RNA virome understudied (Starr et al., 2019; Chen et al., 2022; Hillary et al.,
2022).

Soil environments are complex and diverse, host to an intricate network of macro- and micro-
organisms that form unique ecosystems with crucial global functions. An estimated 10'°
microbes are present in one gram of soil, with species diversity up to the tens of thousands
(Raynaud and Nunan, 2014). Microbial community compositions both affect and depend on
factors such as the physicochemical properties of soil (Singh et al., 2009; Dequiedt et al.,
2011), land use (Tian et al., 2017), and depth (Xue et al., 2022). The abundance and diversity
of organisms in soil implies that there must also be abundant and diverse viruses infecting
these hosts, which may play their own roles in soil cycles and maintenance. Indeed, viruses in
soil have been estimated from below detection limits in hot deserts to over 101%/g soil in
wetlands (Williamson et al., 2017). Viruses have documented roles in carbon metabolism
(Trubl et al., 2018; Jin et al., 2019; Starr et al., 2019) and phosphorus metabolism (Han et al.,
2022), as well as gene transfer to their bacterial hosts, aiding in host extremotolerance and

adaptation to environmental stressors (Hwang ef al., 2021; Huang et al., 2021).

Recent metatranscriptomic (i.e., total RNA-sequencing) studies have led to the discovery and
characterisation of novel viruses from diverse ecosystems, including aquatic environments
(Wolf et al., 2020) and soil (Chen et al., 2022; Hillary et al., 2022). In particular,
metatranscriptomic analyses of diverse soils and freshwater sediments have shown that non-
marine environments are a rich source of viral diversity, with thousands of novel RNA
viruses identified in every major lineage of RNA viruses (Chen et al., 2022; Hillary et al.,
2022). Hence, soils provide a valuable means to characterise more of the terrestrial RNA
virome. These studies have also led to a deeper understanding of RNA viruses in a broader
ecological context, revealing the impacts of human land use, physicochemical properties, and
geographical features of the sampling environment on viral abundance and diversity (French

et al.,2022; Chen et al., 2022; Hillary et al., 2022).
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Australia has been isolated from other continents for tens of millions of years and, as such,
has developed many diverse and unique biomes. Flora and fauna have adapted to the
continent’s flat, dry, fire-prone, and nutrient-poor landmass, resulting in a remarkable level of
biodiversity that is unique to Australia (Steffen, 2009). For example, many native Australian
plants have hardened foliage (sclerophylly) and evergreen characteristics, causing herbivores
to have slower metabolisms and reptiles to have predominantly invertebrate-based diets
(Steffen, 2009). Insects play an active role in the dispersal of seeds and are key consumers of
leaves in the absence of any native ruminant species (Steffen, 2009). The majority of
Australia’s mammals (87%), reptiles (93%), frogs (94%), and vascular plants (92%) found
across the country are endemic (Chapman, 2009). Australia is also a “megadiverse” country,
one of 17 that together comprise over 70% of the world’s total biodiversity (Williams ef al.,
2001). With so much diversity in its animals, plants, and environments, it can be assumed

that Australian microbes - including viruses - harbour similar levels of diversity.

Little is known about the RNA viromes of Australian soil and sediment systems. Herein, we
aimed to provide an initial snapshot of the diversity, abundance, and composition of RNA
viruses in Australian environmental samples. In particular, we asked whether the unique flora
and fauna of Australia is reflected in a unique soil virome. Accordingly, we performed meta-
transcriptomic sequencing of 16 geographically and ecologically distinct farmland soil and
riverbank sediment samples taken from New South Wales (NSW) and Western Australia

(WA), respectively, two Australian states separated by approximately 3,000 kilometres.

2 MATERIALS AND METHODS

2.1 Sample collection

Soil samples from NSW were collected in December 2021 from vertosol, sodosol, and
chromosol soil types (Isbell, 2016) in cropping/pasture fields and native vegetation at depths
of 0-5 cm, 5-15 cm, and 15-30 cm at each site. NSW samples were collected from the
University of Sydney-owned ‘Nowley Farm’ on the Liverpool plains due to the presence of
multiple soil types and land uses across the farm. In the case of WA, sediment samples were
collected in triplicate during April and May 2022 from four points along the riverbanks of the
Swan River, Canning River, and Denmark River. Maps of the NSW and WA sampling sites

are shown in Fig. 1, with more detail on the properties of the sampling sites provided in Table
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S1. All samples were packed into sterile 50 ml conical tubes and either stored on ice (NSW
samples) or between -30°C and -15°C (WA samples) until transported to a -80°C freezer for

long-term storage.

4 ™

Nowley Farm

KSwan-Canning Riverpark, Perth j
4 Sy
i \

\ Denmark River, Denmark /

Figure 1. Map of Australia showing riverbank sediment sampling sites along the Swan-
Canning Riverpark (Perth, WA) and Denmark River (Denmark, WA), as well as farmland
soil sampling sites in Nowley Farm, NSW. In the inset boxes, each sampling site is indicated
by an arrow. In the case of the Nowley Farm samples, soil type is indicated by a letter: V -

vertosol, C - chromosol, S - sodosol.

2.2 RNA extraction, library construction, and sequencing

Total RNA was extracted from the samples using the RNeasy PowerSoil Total RNA Kit
(Qiagen) as per the manufacturer’s instructions. Extracted RNA was quantified using the
Qubit RNA high sensitivity (HS) Assay Kit on the Qubit Fluorometer v3.0 (Thermo Fisher
Scientific) and stored at -80°C prior to library construction and sequencing. Libraries were
constructed using the Illumina Stranded Total RNA library preparation protocol and rRNA
was removed using the Ribo-Zero Plus rRNA depletion kit (Illumina). Libraries were
sequenced on the Illumina NovaSeq 6000 platform (paired-end, 150 bp). Library preparation
and sequencing was performed by the Australian Genome Research Facility (AGRF).

2.3 Data processing and abundance measurements
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122 Sequence reads were adaptor- and quality-trimmed using Trimmomatic (v0.38) (Bolger et al.,
123 2014), then assembled into contigs using MEGAHIT (v1.2.9) (Li et al., 2015) employing

124 default assembly parameters. No eukaryotic or bacterial reads were filtered prior to assembly.
125  Sequence quality was checked for both raw reads and trimmed reads using FastQC (v0.11.8)
126  (Andrews, 2010). Assembled contigs were then compared to an in-house curated database of
127  viral sequences from NCBI’s protein sequence database (created in 2019, updated in 2022)
128 using DIAMOND BLASTX (v2.0.9) (Buchfink e al., 2015) with an e-value of 1x10° for
129  sensitivity. Contigs returning positive hits were compared to the non-redundant (nr) protein
130  database as of June 2022, using DIAMOND BLASTX to identify false positives. Contigs

131  with hits to viral sequences were retained and sorted by the taxonomy of the closest relative
132 to the level of virus family (or to the most specific available taxonomic level for divergent
133 and unclassified taxa).

134

135 Viral abundance within each library was estimated using RSEM (v1.3.1) (Li and Dewey,

136 2011), calculated as the expected count of viral contigs divided by the total raw read count x
137 100. Virome compositions for each library were calculated as the expected count of contigs
138  aligning to each viral family/order/phylum as a proportion of the total expected count of

139 contigs aligning to sequences from the Riboviria (RNA viruses). Alpha diversity was

140  described by: (i) richness, or the number of viral taxa in each library, (ii) Shannon diversity,
141 which accounts for both richness and the evenness of their distribution, and (iii) “true”

142 diversity or effective Shannon diversity, calculated as the exponential of each respective

143 Shannon diversity index. These indices were calculated in RStudio (v4.1.1717) (RStudio

144 Team, 2019), R (v4.1.0) (R Core Team, 2021) using an adaptation of the Rhea alpha diversity
145 script (Lagkouvardos et al., 2017; Wille et al., 2019). Abundance and alpha diversity figures
146  were generated in R using ggplot2 (v3.3.3) (Wickham, 2016). Soil characteristics were tested
147  for their influence on viral abundance and alpha diversity using generalised linear models.
148  The significance of these models was evaluated using ¥ tests and significant differences

149  between pairs of groups within each ecological property were determined using post-hoc

150  Tukey tests. To determine if soil virus abundance and alpha diversity were shaped by soil

151  type, land use, or both, we conducted a best-subsets regression analysis. Models were

152 evaluated using the Akaike information criterion (AIC) and the model with the lowest AIC
153 was selected as the best-fit model. Soil characteristics included soil type (chromosol versus

154 sodosol), land use (native vegetation, cropping, and pasture), environment (a combination of
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155  soil type and land use) and depth from the surface. As sequence data was obtained from only
156  one depth measurement for chromosol and sediment environments, only sodosol libraries
157  were included in the comparison of viral abundance and alpha diversity across different

158  depths. Viral abundance and alpha diversity were compared between the different sampling
159  sites for sediment libraries. Due to the numerous confounding factors that may influence

160  virus abundance and alpha diversity, including the surrounding environment, geographical
161  location, climate, and storage conditions prior to extraction, detailed comparisons between
162 the NSW farmland soil and WA sediment samples were not conducted.

163

164 2.4 Identification of novel viruses and phylogenetic analysis

165  Contigs with DIAMOND BLASTX hits to the viral RNA-dependent RNA polymerase

166  (RdRp) that were greater than 600 nucleotides (nt) in length (arbitrarily set so as to minimise
167  inaccurate classification) and with less than 99% amino acid identity to their closest

168  previously published relative were translated to amino acid sequences. The standard genetic
169  code (i.e., code table 1) was used in most cases, with the exception of 126 sequences from the
170  family Mitoviridae (phylum Lenarviricota) for which the mitochondrial genetic code (i.e.,
171  code table 4) is more likely to be biologically accurate, and indeed provided ORFs of

172 expected lengths where the standard code led to truncation. Translated sequences were

173 checked for the presence of the conserved A, B, and C motifs that characterise viral RdRp.
174  Contigs fulfilling these conditions were included for phylogenetic analysis as these likely
175  represent RNA virus sequences.

176

177  Potentially novel virus sequences were aligned with members of the family, order, or multi-
178  family clade of their respective closest DIAMOND BLASTX hit using MAFFT (v7.402)
179  (Katoh and Standley, 2013). Sequence alignments were trimmed using trimAl (v1.4.1)

180  (Capella-Gutierrez et al., 2009) to retain only the most conserved amino acid positions

181  (between 695-777 residues in length) and to remove ambiguously aligned regions (see Table
182 1). Alignments were also visually assessed to identify and remove poorly aligned sequences.
183  Maximum likelihood phylogenetic trees were then estimated on each of these alignments
184  using IQ-TREE (v1.6.12) (Nguyen et al., 2015), employing the Le-Gascuel (LG) model of
185  amino acid substitution — determined using ModelFinder within IQ-TREE — with 1,000 SH-
186  aLRT replicates (Anisimova and Gascuel, 2006) to assess node support. All trees were

187  visualised in R using packages ‘ape’ (v5.5) (Paradis and Schliep, 2019) and ‘ggtree’ (v3.0.2)
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188  (Yuetal,2017). Probable host organisms for novel viruses were predicted based on the

189  hosts of the established viruses with which they clustered most closely.

190

191 3. RESULTS

192

193 3.1 Data generation

194  We generated 26 sequencing libraries, 16 of which were from NSW farmland soil samples,
195  with the remaining 10 from sediment taken from Denmark River in WA. Eighteen soil

196  samples, representing three distinct soil types (vertosol, chromosol, and sodosol), two

197  categories of land use (native vegetation or agricultural), and three depths (0-5 cm, 5-15 cm,
198  and 15-30 cm), were taken from NSW farmland environments (Table S1). Vertosol, which is
199  high in smectitic clay and has high agricultural potential, and chromosol, which has a loamy
200  texture and moderate agricultural potential, were both collected from sites containing native
201  vegetation or crops. Sodosol has a sandy surface texture with a high concentration of sodium
202  and is nutrient poor. Due to the generally low capacity for crop growth, sodosol samples were
203  taken from pasture and native vegetation sites. We were able to successfully extract RNA
204  from six of these 18 samples, five of which we extracted in technical triplicates, totalling 16
205  RNA libraries for metatranscriptomic sequencing. No RNA was able to be extracted from
206  vertosol or the 15-30 cm depths, and success in chromosol samples was restricted to the 0-5
207  cm depth despite multiple attempts on each sample.

208

209  The success of RNA extraction was similarly limited in the WA riverbank sediment samples.
210  The 24 samples taken from a total of eight sites in the Swan-Canning Riverpark system

211 (Perth, WA) were generally coarse and sandy in texture, while the 12 samples taken from
212 four sites along Denmark River (Denmark, WA) were finer and muddier in comparison. No
213 extractions from the Swan-Canning Riverpark system were successful, and RNA was only
214  extracted from all three biological replicates in two of the four sites along Denmark River, for
215  atotal of 10 libraries able to be sequenced. Samples from which RNA was successfully

216  extracted and sequenced are described in Table S1.

217

218  We generated approximately 2.68 billion paired-end reads from the 26 libraries successfully
219  sequenced in this study, ranging from 66.7 million reads (native chromosol, NSW; library
220  CNI1A) to 198 million reads (native sodosol, NSW; library SN2A) per library. From these

221  data, 6.7 million contigs were assembled, with contig numbers from individual libraries
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222 ranging from 90,913 (native sodosol, NSW; library SN2A) to 731,343 (riverbank sediment,
223 WA, library KCAP1), with a median value of approximately 196,000.

224

225 3.2 RNA virome composition

226  Across the data set as a whole there were 12,292 contigs greater than 600 nucleotides (nt) in
227  length that had DIAMOND BLASTX hits to sequences from the Riboviria (i.e., RNA

228  viruses). However, a large proportion of contigs did not robustly align to reference sequences
229  and could not be reliably assigned to any RNA virus taxa. Thus, a subset of 6,977 viral

230  contigs was retained for analyses. The number of viral contigs per library ranged from 59

231  (native sodosol, NSW; SN2A) to 981 (riverbank sediment, WA; KCAP3) and the majority of
232 contigs (5,209 out of 6,977) had less than 50% amino acid identity to reference sequences
233 (Table S2). The sample with the lowest RNA viral abundance was NSW sodosol pasture

234 (library SP2C) at 0.017%, while the highest abundance of 1.023% was found in WA

235  riverbank sediment (library KCAP3) (Fig. 2A). Interestingly, the libraries with the lowest and
236  highest diversity, MP2 and MP1, respectively, were both from the same WA riverbank site
237  (Fig. 2B). While viral abundance differed significantly between sampling locations (p =

238 0.012), Shannon diversity did not (p = 0.458).
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Figure 2. (A) Abundance of RNA virus reads as a proportion of the number of total reads and
(B) RNA virus Shannon diversity indices of the meta-transcriptomic sequencing libraries
generated from samples taken from NSW farmland soil (left and middle, in orange) and WA
riverbank sediment (right, in blue). Letters (A, B, C) at the end of each library name indicate

technical replicate extractions of the same sample and are grouped within vertical lines.

Sampling environment refers to the combination of soil type (chromosol, sodosol) and land
use (native, cropping, pasture), which we found to be associated with soil virus abundance
and richness (p < 0.001 in both cases) (Fig. 3A). To explore which factors were most likely to
contribute to this effect, best-fit models were estimated considering soil type and land use
separately. Only land use was included in the best fit model describing richness (p < 0.001),
with agricultural soils (cropping and pasture) harbouring greater species richness than native
soils in both chromosol and sodosol soil types (Fig. 3B). Soil type did not have a significant
effect on richness (p = 0.58). Land use was also associated with viral abundance (p < 0.001),

in which cropping soil had the highest abundance, pasture soil had the lowest, with native

10
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255  soils falling in the middle (Fig. 3B). However, it is difficult to determine if the agricultural
256  purpose of the soil (i.e., cropping or pasture) was truly impacting viral abundance as soil type
257  also had a significant influence on viral abundance (p < 0.001), which was higher in

258  chromosol than in sodosol (Fig. 3C). As the cropping soils were only chromosol and the

259  pasture soils were only sodosol, the pattern of abundance observed in Fig. 3C may have been
260  due to the influence of soil type rather than agricultural purpose. However, while native

261  chromosol had lower viral abundance than cropping chromosol, native sodosol had higher
262  viral abundance than its counterpart used for pasture (Fig. 3A). This suggests an influence of
263 both soil type and the purpose of agricultural land use, supported by the inclusion of both
264  variables in the best-fit model for viral abundance. No ecological factors were associated with
265  the Shannon and effective Shannon diversity indices (p = 0.14-0.61 and p = 0.10-0.51,

266  respectively) (Fig. 3A-D). Finally, sampling depth did not significantly impact any

267  abundance or alpha diversity indices of sodosol viruses (p = 0.13-0.79) (Fig. 3D), although it
268  should be noted that soil depth affected our ability to extract quality RNA.

269

270  In the case of the sediment libraries, we measured the effect of sampling site on abundance,
271  richness, Shannon diversity, and effective Shannon diversity (Fig. 3E). Only sampling site
272 influenced viral abundance (p = 0.003), with libraries from the densely vegetated KCAP site
273 having significantly higher abundance than the other sediment sites, and higher than any soil
274 libraries (Fig. 2, Fig. 3E).

275

11
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Figure 3. Abundance, richness, Shannon diversity, and effective Shannon diversity indices of
NSW farmland soils plotted against (A) environment as a combination of soil type and land
use, (B) soil type, (C) land use, (D) depth, and the same indices of WA riverbank sediments
plotted against (E) sampling site. Asterisks indicate significant differences (p < 0.05) between
pairs of ecological properties as determined by post hoc Tukey tests. Shorthand labels for
environment indicate CC = cropping chromosol, CN = native chromosol, SP = pasture
sodosol, and SN = native sodosol. Circles representing each library in columns B-D are

coloured by sampling environment as per column A.
Relative virus abundances (i.e., the abundance of each viral group as a proportion of all

Riboviria reads in each library) are shown in Fig. 4. The phylum Lenarviricota and orders

Tolivirales and Nodamuvirales were present in all libraries, with the Lenarviricota generally
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289  comprising a large proportion, if not the majority, of reads. A notable exception was library
290  DRCP2B (riverbank sediment, WA) where unclassified Picornavirales sequences comprised
291  the majority of reads. As they were the most abundant groups, we classified the virome

292 compositions of the phylum Lenarviricota and order Picornavirales to the class and family
293 level, respectively (Fig. 4). In general, Picornavirales sequences comprised a greater

294  proportion of reads in sediment libraries than in soil libraries. Furthermore, these sequences
295  were mostly unclassified Picornavirales in sediment libraries, whereas in the soil libraries,
296  the majority of Picornavirales sequences were from the family Dicistroviridae. Marnaviruses
297  also appeared more frequently in the sediment libraries than in the soil libraries, likely due to
298 their typically aquatic hosts, although pasture sodosol library SP1A had a high proportion of
299  marnaviruses relative to the other Picornavirales groups and other soil libraries.

300

301  The Lenarviricota were abundant in all libraries. However, there was an overall decrease in
302  the proportion of fungal-associated class Amabiliviricetes and family Mitoviridae in the

303  sediment libraries compared to the soil libraries. Sediment libraries were instead dominated
304 by bacteriophage of the class Leviviricetes, suggesting a switch in microbial community

305  composition towards bacteria in sediment environments (Fig. 4). It is interesting to note that
306  pasture sodosol samples taken 0-5 cm from the surface (libraries SP1A-C) were an exception
307  to this trend, in which the Leviviricetes represented a much higher proportion of

308  Lenarviricota sequences than seen in the other soil libraries (Fig. 4).

309
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311  Figure 4. Virome compositions (family/order/phylum) for each sampling library. Relative
312 proportions were determined by the total number of reads corresponding to contigs with

313 DIAMOND BLASTX hits in each virus clade. Letters (A, B, C) at the end of each library
314  name indicate technical replicate extractions of the same sample and are grouped within

315  vertical lines. The more abundant phylum/order, Lenarviricota and Picornavirales, are

316  further broken down into families or classes and are represented in shades of the same colour.
317

318 3.3 Phylogenetic analysis of novel virus species

319  We identified 2,562 novel virus RdRp sequences across all five RNA virus phyla, including
320  those with positive-sense single-stranded RNA genomes (A4stroviridae, Picornavirales,

321 Sobelivirales, from the phylum Pisuviricota; Alsuviricetes, Nodamuvirales, and Tolivirales
322 from the phylum Kitrinoviricota; and the phylum Lenarviricota), negative-sense single-

323 stranded RNA genomes (Bunyavirales and Monjiviricetes from the phylum Negarnaviricota),
324  and double-stranded RNA genomes (Hypoviridae, Partitiviridae, and Picobirnaviridae from
325  the phylum Pisuviricota; and Cystoviridae, Reovirales, and Ghabrivirales from the phylum
326  Duplornaviricota) (Table 1, Fig. 5, Supplementary Table 2). By predicting host organisms
327  based on phylogenetic clustering, we suggest that viruses with bacterial, fungal, and protist
328  hosts comprised 40.5%, 37.7%, and 8.3% of novel sequences, respectively, and those with

329  plant and invertebrate hosts comprised 1.1% and 9.5% of novel sequences, respectively. We
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330  were unable to confidently assign a host organism for 2.9% of novel sequences, as these did
331  not cluster closely enough to any reference sequences with a known host. Notably, no likely
332 vertebrate-associated viruses were observed. The majority of novel sequences (1,807) fell
333  into the microbe-associated phylum Lenarviricota. We now describe each of these groups in
334 turn.

335
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336 Table 1. Sequence data sets used for phylogenetic analysis (Figures 6-8; Supplementary
337  Figures 1-17).

Virus group Number of sequences Alignment length

Total | Novel | Reference Untrimmed | Trimmed

Hepelivirales + Tymovirales 222 9 213 8393 776
(Figs. 6A, S1)

Martellivirales (Figs. 6B, S2) 257 28 229 12517 726
Nodamuvirales (Fig. S3) 289 125 154 6674 734
Nodaviridae (Nodamuvirales 120 14 106 3007 731
sub-tree) (Fig. 6C)

Tolivirales (Fig. S4) 359 125 234 8476 704
Leviviricetes (Fig. S5) 2380 | 943 1437 15418 771
Mitoviridae (Fig. S6) 1029 | 393 646 8638 777
Narnaviridae, Botourmiaviridae, | 1202 | 471 731 12328 740
Narliviridae (Fig. S7)

Marnaviridae (Fig. S8) 543 191 352 13513 743
Picornaviridae, Polycipiviridae, | 261 28 233 14298 715
Solinviviridae (Figs. TA, S9)

Dicistroviridae, Secoviridae, 327 39 288 11523 749
Iflaviridae (Figs. 7B, S10)

Sobelivirales (Fig. S11) 119 12 107 3460 695
Hypoviridae (Fig. S12) 61 5 56 8094 728
Partiti-Picobirna (Fig. S13) 1423 | 121 1302 4684 703
Picobirnaviridae sub-tree 76 38 38 1252 751
(Fig. 8A)

Monjiviricetes (Fig. S14) 115 2 113 4480 717
Bunyavirales (Fig. S15) 31 10 21 4415 706
Cystoviridae (Fig. S16) 56 10 46 4493 699
Reovirales (Fig. S17) 75 4 71 2504 701
Ghabrivirales (Fig. S18) 274 46 228 4150 706
Giardiavirus-like clade 88 33 55 2384 715
(Ghabrivirales sub-tree)

(Fig. 8B)
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Figure 5. Phylogenetic trees of the RdRp protein sequences of viruses identified in this study, with reference sequences. Known viruses are
shown in black, while putative novel viruses identified here are shown in red. All trees are midpoint rooted for clarity only. Individual
phylogenetic trees for each clade are shown in Supplementary Figures 1-17. Details on the alignments used to estimate these phylogenies are
shown in Table 1. Phylogenies of the phylum Lenarviricota and order Picornavirales were estimated for the purposes of visualising novel
viruses but contain too much sequence divergence for robust alignments such that the phylogenies presented in the supplement are divided into

multiple, smaller groups containing 1-3 related families each.
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346  3.3.1 Positive-stranded RNA viruses — phyla Kitrinoviricota, Lenarviricota, and

347  Pisuviricota

348

349  Class Alsuviricetes (Kitrinoviricota) and bastroviruses (Pisuviricota)

350  Five novel sequences clustered within the order Tymovirales (Fig. 6A, Supplementary Fig. 1).
351  Two appeared to be novel marafiviruses (7ymoviridae), while the other three clustered with
352 the divergent mycoflexivirus Botrytis virus F (Gammaflexiviridae). A single virus clustered
353  within the Hepelivirales. All six novel viruses from the Tymovirales and Hepelivirales were
354  identified from riverbank sediment samples.

355

356  Despite being classified as members of the Astroviridae, bastroviruses encode a Hepeviridae-
357  like RdRp protein due to a recombination event (Oude Munnink et al., 2016). Three novel
358  bastrovirus-like sequences were identified in riverbank sediment, forming a divergent sister
359  group to avian-associated bastrovirus 2 (USM11153) (Fig. 6A, Supplementary Fig. 1). Given
360  the broad host range of bastroviruses, the host of these novel bastroviruses cannot be

361  confidently inferred.

362

363  Several novel sequences were identified in the order Martellivirales (Fig. 6B, Supplementary
364  Fig. 2). These included an ampelovirus (Closteroviridae), an ilarvirus (Bromoviridae), and 19
365 alphaendornaviruses (Endornaviridae). Notably, three novel viruses — Ripohir virus, Ripodep
366  virus, and Ripohuk virus — had 27-31% sequence similarity to and clustered with three

367  divergent mycoviruses — Sclerotium rolfsii alphavirus-like virus 1-3 (AZF86093-5). This

368 clade fell as a sister-group to the plant-infecting families Closteroviridae, Bromoviridae,

369  Mayoviridae, Virgaviridae, Kitaviridae, and the animal-infecting, insect-borne Togaviridae.
370

371  Nodamuvirales (Kitrinoviricota)

372 Our phylogenetic analysis of the Nodaviridae revealed a conflict with the current taxonomy
373 (Fig. 6C). A clade including the alphanodavirus species Pariacoto virus (NP_620109) formed
374  asister group to the genus Betanodavirus rather than clustering with the remaining

375  alphanodaviruses. This clade comprised several environmental noda-like viruses, including
376  the novel noda-like viruses Ripofluq virus, Chrocozanb virus, and Ripokruj virus, and may
377  represent the existence of a third genus within the Nodaviridae.

378
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A total of nine viruses fell within the Nodaviridae, and another five sequences fell within a
group of noda-like viruses forming a sister clade to the Nodaviridae (Fig 6C, Supplementary
Fig. 3). This sister clade — provisionally named Ripowav noda-like group — may represent a
fourth genus within the Nodaviridae. However, the largest expansion of virus diversity was in
a sister clade to the Nodaviridae that likely comprises a new family. This putative family
included Lake Sinai virus 1 and 2 (Sinhaliviridae), many noda-like viruses previously
identified from soil (Chen et al., 2022) and invertebrates (Shi et al., 2016) in China, and

novel viruses from all environments sampled (Supplementary Fig. 3).
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Figure 6. Phylogenetic trees of RARp sequences from (A) the orders Hepelivirales and
Tymovirales, (B) the order Martellivirales, and (C) the family Nodaviridae. Known viruses
are shown in black, while putative novel viruses identified here are coloured by sampling
environment. Trees are midpoint rooted for clarity only and branch lengths are scaled

according to the number of amino acid substitutions per site. Black circles represent node
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394  support >80% using 1,000 SH-aLRT replicates. Phylogenies with collapsed branches

395  expanded are shown in Supplementary Figures 1-3.

396

397  Tolivirales (Kitrinoviricota)

398  Novel Tolivirales sequences were also identified in all environments sampled, although those
399  clustering within the plant-associated Tombusviridae were predominantly identified in

400  riverbank sediment libraries (Supplementary Fig. 4). A total of 29 sequences (27 from

401  riverbank sediments) formed sister lineages to the subfamilies Procedovirinae and

402  Calvusvirinae, and 12 formed sister lineages to the entire family Tombusviridae.

403

404  All sampling environments were represented in the 20 novel sequences clustering within a
405  clade of diverse tombus-like viruses (Supplementary Fig. 4). This clade also included the sole
406  species within the Carmotetraviridae - Providence virus (AMQ67162) - a unique virus

407  isolated from arthropod (lepidopteran) tissue that is also capable of replicating in plant and
408  mammalian cell lines (Jiwaji ef al., 2019). Finally, 38 novel sequences fell into the most

409  divergent clade in this phylogeny, which largely comprised previously identified

410  environmental viruses, as well as some sourced from invertebrates and animal faecal samples
411  (Supplementary Fig. 4).

412

413 Lenarviricota

414 A remarkable 1,807 novel sequences were identified within the phylum Lenarviricota,

415  comprising the majority of novel viruses found in this study. Novel sequences were sourced
416  from sediment and both farmland soil types and land uses. Due to the high level of sequence
417  divergence across the Lenarviricota, phylogenetic trees were estimated on sub-alignments of
418 (i) the class Leviviricetes (i.e., bacteriophage; Supplementary Fig. 5), (ii) the family

419  Mitoviridae (Supplementary Fig. 6), and (iii) the families Narnaviridae, Botourmiaviridae
420  and the newly proposed Narliviridae (Supplementary Fig. 7).

421

422 In total, 943 novel leviviruses were identified and every sampling environment was

423 represented in this group of viruses. In many large clades, the majority of viruses were novel
424  sequences identified in this study (Supplementary Fig. 5). Similarly, several clades mainly
425  comprising novel mitoviruses were identified in soil environments. Of particular interest was
426  the clade of seven native chromosol, five pasture sodosol, and two sediment viruses that

427  clustered with a mitovirus - Kinsystermes vitus (QQM15243) - identified in a termite,
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428  although their use of the mitochondrial genetic code suggests they likely infect the fungal
429  hosts that are typical of mitoviruses (Supplementary Fig. 6). Eight sediment and two pasture
430  sodosol mitoviruses formed a sister clade to viruses likely associated with the microbiomes of
431  arthropods and vertebrates, although as these viruses were obtained from metagenomic

432  studies their true host association is unclear.

433

434  In the Narnaviridae-Botourmiaviridae-Narliviridae phylogeny multiple new, distinct clades
435  comprising viruses from different sampling sources were observed, typically biased towards
436  sediment or soil environments. These novel viruses typically shared <50% amino acid

437  identity with any reference sequence. One clade of 124 entirely new viruses was identified
438  within the Narliviridae, potentially representing a genus within this family (Supplementary
439  Fig. 7). The viruses comprising this group included 30 from sediment, 27 and 17 from pasture
440  and native sodosol, respectively, and 42 and 8 from cropping and native chromosol,

441  respectively (Supplementary Fig. 7). Most of the novel Botourmiaviridae identified here were
442  associated with soil samples. This contrasted with most of the viruses detected from other
443  families within the Lenarviricota that were predominantly associated with sediments

444  (Supplementary Fig. 7). Indeed, only three of the 62 novel botourmiaviruses were identified
445  in sediment, and only from a single sediment library (MP3). A tendency for soil over

446  sediment has previously been observed in the Botourmiaviridae (Chen et al., 2022). We also
447  identified 35 novel Narnaviridae species in sediment, 10 and 8 in pasture and native sodosol,
448  respectively, and 19 and 7 in cropping and native chromosol, respectively. Notably, the

449  majority of the novel viruses identified in the Lenarviricota occurred in lineages that were
450  divergent from known viral families, including viruses from all five sampling environments
451  (Supplementary Figs. 5-7).

452

453 Picornavirales (Pisuviricota)

454  The main expansion of novel sequences in this order was in the Marnaviridae and

455  Dicistroviridae, as well as several unclassified Picornavirales species that fell outside of
456  defined families. Again, the scale of novel diversity in this order warranted splitting it into
457  smaller groups of 1-3 families for robust phylogenetic analysis: (i) the Marnaviridae

458  (Supplementary Fig. 8), (ii) the Picornaviridae, Polycipiviridae, Solinviviridae (Fig. 7A,

459  Supplementary Fig. 9), and (iii) the Dicistroviridae, Secoviridae, Iflaviridae (Fig. 7B,

460  Supplementary Fig. 10). Each phylogeny also included several clades of unclassified

461  Picornavirales.
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462

463 A total of 191 novel viruses with sequence similarity (22-98%) to the Marnaviridae were

464  identified. The majority were sourced from riverbank sediment, which is unsurprising given
465  that marnaviruses are typically associated with marine organisms and environments. At the
466  genus level, 17 viruses from sediment clustered with the sogarnaviruses, 33 with the

467  salisharnaviruses, and one with the bacillarnaviruses (Supplementary Fig. 8). Eleven

468  sequences clustering in the genus Marnavirus were also identified in sediment, grouping with
469  Antarctic picorna-like virus 3 (AKG93964) and Picornaviridae sp. (URG14782, URG14392,
470  URG14815). These sequences formed a sister clade to the group containing the sole member
471  of the genus Marnavirus - Heterosigma akashiwo RNA virus (YP_009047193)

472 (Supplementary Fig. 8). Novel sequences from soil and sediment environments were also

473 identified in the genera Kusarnavirus, Locarnavirus, and Labyrnavirus. Finally, several

474  unclassified virus lineages fell between certain genera: four clades between Bacillarnavirus
475  and Marnavirus, three between Kusarnavirus and Locarnavirus, and three falling basal to all
476  genera except for Labyrnavirus (Supplementary Fig. 8).

477

478 A group of 28 novel picorna-like viruses fell in a divergent sister clade to the established

479  families Picornaviridae, Polycipiviridae, and Solinviviridae (Fig. 7TA., Supplementary Fig. 9).
480  The majority of published sequences in this sister clade were metagenomically sourced from
481  environmental or invertebrate samples. The diversity within this clade suggests that the

482  creation of several new virus families may be warranted, with five well-supported clusters
483  able to be identified (Fig. 7A, Supplementary Fig. 9). Eighteen novel viruses were identified
484  in the Dicistroviridae, and a further fourteen novel picorna-like viruses fell in lineages of

485  diverse, unclassified Picornavirales that fell as sister lineages to the Dicistroviridae

486  (Supplementary Fig. 10). Another clade of interest — provisionally named the Ripiresk

487  picorna-like group — fell between the plant-infecting Secoviridae and insect-associated

488  Iflaviridae (Fig. 7B, Supplementary Fig. 10). This group included six novel viruses from

489  sediment, one from cropping chromosol, several previously identified environmental picorna-
490 like viruses, and two picornaviruses identified in plants (Fig. 7B, Supplementary Fig. 10).

491
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Figure 7. Phylogenetic trees of the RdRp sequences from the order Picornavirales,

displaying the expansion of novel, unclassified picorna-like clades surrounding (A) the

Picornaviridae, Polycipiviridae, Solinviviridae and a clade of previously identified picorna-

like sequences, and (B) the Dicistroviridae, Iflaviridae, and Secoviridae. Known viruses are

shown in black, while putative novel viruses identified here are coloured by the sampling

environment. Trees are midpoint rooted with branch lengths scaled according to the number

of amino acid substitutions per site. Black circles represent node support >80% using 1,000

SH-aLRT replicates. Phylogenetic trees with collapsed branches expanded are shown in

Supplementary Figures 9 and 10.

Sobelivirales (Pisuviricota)
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504  Three viruses fell within the fungi-associated family Barnaviridae, while another two

505  sequences formed a clade with the sole member of the dinoflagellate-associated

506  Alvernaviridae and three divergent sobemo-like viruses (Supplementary Fig. 11). Several
507  other sobeli-like viruses fell in clades of unclassified Sobeliviridae. Of note, were three novel
508  soil — Sonifin virus, Sopibym virus, and Sopibym virus — which formed a cluster with

509  solemoviruses predominantly associated with insects including termites, rabbit fleas, and flies
510  (Supplementary Fig. 11).

511

512 Hypoviridae (Pisuviricota)

513  Four novel Hypoviridae sequences were identified in sediment and one in cropping

514  chromosol. These sequences were highly divergent and had low node support, such that their
515  true phylogenetic placement could not be robustly determined (Supplementary Fig. 12).

516

517  Partiti-Picobirnaviruses (Pisuviricota)

518  Novel sequences were identified in both the Partitiviridae and Picobirnaviridae

519  (Supplementary Fig. 13). The majority of novel picobirnaviruses were found in divergent,
520  unclassified clades. The largest cluster of novel sequences were sampled from riverbank

521  sediment and grouped with a clade including termite microbiome-associated picobirnaviruses
522  identified by Le Lay et al. (2020) (Fig. 8A). Of these, 20 novel sediment picobirnaviruses
523  formed a single monophyletic group.

524

525  3.3.2 Negative-stranded RNA virus families (Negarnaviricota)

526 It is striking that only twelve putative novel species of negative-sense RNA viruses were

527  identified, two of which fell within the class Monjiviricetes. These viruses — Ripivex virus
528  and Ripivax virus - were identified from a single riverbank sediment library (MP3). Ripivex
529  virus clustered within the family Mymonaviridae (although with low bootstrap support),

530  while Ripivax fell basal to the family (Supplementary Fig. 14).

531

532 The remaining ten negative-stranded RNA viruses fell in two clades of plant pathogenic

533  fungi-associated Bunyavirales. The first clade, denoted the Sonekey bunya-like group,

534 included four sequences related to bunyaviruses found in grapevine downy mildew lesions
535  caused by Plasmopara viticola (Supplementary Fig. 15). In the second clade, the Soperolo
536  bunya-like group, five sequences clustered with bunyaviruses associated with Phytophthora

537  cactorum and Halophyophthora species. The final sequence, Chrocemuse virus, fell between
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538  the Sonekey and Soperolo bunya-like groups (Supplementary Fig. 15). It is interesting that
539  five of the six viruses in Soperolo bunya-like group were identified in soil, given that several
540  of their relatives are associated with predominantly marine-inhabiting host organisms

541  (Halophytophthora species).

542

543 3.3.3 Double-stranded RNA virus families (Duplornaviricota)

544  Cystoviridae

545  All ten novel cysto-like viruses were identified from WA riverbank sediment samples. One
546  sequence (Ripucork virus) fell within a clade including the formally ratified species

547  Cystovirus phil3, Cystovirus phiYY, and Cystovirus phi6. The remaining nine sequences

548  formed two intermediate lineages between the two major clades in this family and clustered
549 by sampling site (Supplementary Fig. 16). The first clade comprised five viruses identified in
550  libraries from sediment samples taken further inland than the other four viruses, which, along
551  with Jiangsu sediment cystovirus (QYF49681) and Cystovirus phi8 (NP_524561), comprised
552 the second clade.

553

554  Reovirales

555  One divergent reo-like virus in sodosol pasture (denoted Soputhoc virus) grouped with Hubei
556  reo-like virus 10 and 11 (APG79149 and APG79051), falling as a sister lineage to the genus
557  Rotavirus (a vertebrate-associated genus) in the Sedoreoviridae, although with low node

558  support (Supplementary Fig. 17). The three other novel reo-like sequences (one identified in
559  sodosol pasture, the others in riverbank sediment) fell in a small sister clade to the genus

560  Fijivirus within the family Spinareoviridae (Supplementary Fig. 17).

561

562  Ghabrivirales

563  Novel species in this order were identified predominantly in sediment, with a small number
564  from both sodosol environments and cropping chromosol (Supplementary Fig. 18). Of note,
565 22 novel toti-like sequences sourced from sediment greatly expanded a clade that previously
566  only included Giardia lamblia virus (NP_620070), Giardiavirus sp. (QXP43781), and Keenan
567  toti-like virus (Q1J70132) (Fig. 8B). This may represent an expansion of the Totiviridae

568  genus Giardiavirus, which currently contains only one accepted species — Giardia lamblia
569  virus. Other novel species in the Totiviridae included a victori-like and a totivirus from

570  cropping chromosol and pasture sodosol, respectively, as well as two sequences identified

571  from sediment samples that clustered with one of several lineages of unclassified Totiviridae
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(Supplementary Fig. 18). A novel alphachryso-like virus (Riputesc virus) and a divergent
megabirna-like virus (Ripusarb virus) were also identified in sediment (Supplementary Fig.

18).
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Figure 8. Phylogenetic trees of RARp sequences from (A) a subset of the Picobirnaviridae,
and (B) a clade of Giardiavirus-like sequences from the Totiviridae. Known viruses are
shown in black, while putative novel viruses identified here are coloured by the sampling
environment. Trees are midpoint rooted with branch lengths scaled according to the number
of amino acid substitutions per site. Black circles represent node support >80% using 1,000
SH-aLRT replicates. Phylogenetic trees with collapsed branches expanded are shown in

Supplementary Figures 13 and 17.

DISCUSSION

Numerous novel RNA viruses have been identified in Australia’s unique ecosystems
(Geoghegan et al., 2021; Harvey et al., 2018; Le Lay et al., 2020; Mabhar et al., 2020; Mu et
al., 2018; Pyke et al., 2021; Chang et al., 2021; Van Brussel et al., 2022; Wille et al., 2018).
While efforts have been made to characterise the overall microbial communities of Australian
soils (Bowd et al., 2022; Xue et al., 2022; Pino et al., 2023), little work has been done on the

Australian soil virome. We generated meta-transcriptomic data on 26 libraries from 16 soil
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592  and sediment samples taken from eastern (NSW) and western (WA) Australia. From these,
593  we identified a remarkable 2,562 novel viral RARp sequences across all five RNA virus

594  phyla, of which 1,807 belonged to the phylum Lenarviricota, classically associated with

595  microbial species. The discovery of 2,562 putative viruses from such a small number of meta-
596 transcriptomic sequence libraries showcases the extensive, untapped diversity of RNA

597  viruses in Australian soil and sediment environments. Viruses were detected across 15 viral
598  orders and, in many cases, were so diverse that they would constitute new viral genera and
599  even families.

600

601 A relationship between virome composition and land use has been previously observed for
602  both DNA viruses (Narr et al., 2017; Liao et al., 2022) and RNA viruses (Hillary et al., 2022)
603  in soil on other continents. Likewise, local sampling environment has been shown to be

604  associated with viral abundance and diversity (Chen et al., 2022; Durham et al., 2022). We
605  found land use and sampling environment to be significantly associated with the abundance
606  and richness of RNA viruses in Australian soils. However, more specific soil factors such as
607  pH and soil nutrient levels have been identified as determinants of viral abundance and

608  diversity (Narr et al., 2017; Chen et al., 2022; Liao et al., 2022). These factors also determine
609  the community compositions of soil-dwelling microbial hosts (Wang et al., 2019; He et al.,
610  2022), and are therefore likely play a role in the viral abundance and diversity trends

611  observed in this study. Revealing the precise relationships between Australian soil

612  ecosystems and the viruses within them will not only rely on expansive sampling of diverse
613  environments, but also the generation of thorough ecological metadata.

614

615  Despite a small sample size, we detected viruses that spanned the entire diversity of the

616  Lenarviricota. Such remarkable genetic diversity, as well as the presence of bacterial- and
617  eukaryote-associated families (Hillman and Cai, 2013) and an often very simple genome

618  structure, suggests that this phylum may comprise the oldest extant RNA viruses. Meta-

619 transcriptomic studies of diverse ecosystems have consistently detected members of the

620  Lenarviricota, such that the diversity of this phylum has greatly increased in recent years.

621  Despite their microbial association, these viruses have been detected in studies of both

622  vertebrates (Mahar et al., 2020; Wille et al., 2020) and invertebrates (Shi ez al., 2016; Kondo
623  etal,2020; Le Lay et al., 2020; Thongsripong et al., 2021). Although they are unlikely to be
624  infecting these animals directly, it is clear that these highly diverse viruses are present in

625  virtually all environments (Starr et al., 2019; Wolf et al., 2020; Chen et al., 2022; Neri et al.,
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626  2022). Hence, it is no surprise that 1,807 novel Lenarviricota sequences were identified from
627  both soil types and land uses sampled here, as well as a considerable number from riverbank
628  sediment.

629

630  Within the Lenarviricota, the Narnaviridae and Botourmiaviridae are currently placed in

631  different virus classes but have been proposed to comprise a single taxonomic class along
632  with the newly proposed Narliviridae (Sadiq et al., 2022). The phylogeny generated here,
633  with an additional 1,807 viral sequences expanding the known Lenarviricota diversity,

634  supports the proposal of Sadiq et al. (2022) that the Narliviridae and Botourmiaviridae form
635  sister clades to the exclusion of the Narnaviridae. Furthermore, the genus Ourmiavirus did
636  not fall within the Botourmiaviridae, where it is currently classified, but instead clustered
637  with the Narliviridae. This corroborates previous findings that these three ourmiaviruses are
638  more closely related to the narliviruses than the botourmiaviruses (Sadiq et al., 2022).

639

640  Based on the nature of the samples (soil and sediment) and the known host ranges of families
641  with which these novel viruses share sequence similarity, the majority of host taxa evaluated
642  in this study were most likely associated with plant or microbial rather animal hosts. The

643  limited proportion of viruses that were predicted to have animal hosts (less than 10%) were
644  also most likely associated with invertebrates such as insects rather than vertebrates. The

645  novel mitoviruses identified here appeared to utilise the mitochondrial genetic code, which
646  changes the UGA codon from a stop codon to Tryptophan and is typical of fungi-infecting
647  mitovirus genomes, suggesting that these mitoviruses also infect fungi (Cole et al., 2000). As
648  the Leviviricetes and Cystoviridae are a class and family of bacteriophage (King et al., 2013;
649  Poranen et al., 2017), the 953 novel viruses within them are also likely bacteriophage. The
650  detection of large numbers of picobirnaviruses in environmental samples supports the

651  hypothesis that these viruses do not infect vertebrate hosts (as is routinely assumed when

652  associated with vertebrate faecal samples [Malik et al., 2014; Delmas et al., 2019]), but are
653  instead associated with microflora present in animal gastrointestinal systems or components
654  of their diet (Ghosh and Malik, 2021). Novel species in the Tombusviridae were likely to be
655  associated with plants due to their phylogenetic proximity to established plant viruses.

656  Similarly, the four novel viruses that clustered within the established dicistroviruses are likely
657  to be insect-associated. Therefore, while the metagenomic nature of this study makes it

658  inherently difficult to confidently determine the hosts of the novel viruses identified,

659  assuming similar host ranges to their closest phylogenetic relatives reveals a remarkable
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660  variety of potential host organisms ranging from microbes to plants to invertebrates. Hence,
661  viruses are infecting the majority, if not all, key players in the ecological processes of

662 terrestrial and aquatic soil systems.

663

664 A limitation of this study was the initial extraction of genetic material. Of 90 potential

665  sequencing libraries (including technical triplicates for the NSW farmland soil samples),

666  RNA was only successfully extracted from 26 samples at low but detectable concentrations
667  0f0.26-10 ng/uL. This prevented us from conducting robust statistical analyses on the

668  various ecological factors that might shape RNA viral abundance and diversity. The inability
669  to extract RNA from any samples collected 15-30 cm from the soil surface may be a result of
670  the reduction in host organisms at this depth as deeper layers of soil have been shown to

671  harbour limited microbial diversity compared to surface layers (Hao et al., 2021; Zhao et al.,
672  2021). We were also unable to extract RNA from the vertosol, even from surface level soil
673  which was successful in both chromosol and sodosol. This is likely due to the high clay

674  content of vertosol, which has a negative effect on RNA yield under a variety of extraction
675  protocols (Novinscak and Fillon, 2011). Yields may have also been impacted due to

676 limitations in sample preservation, indicating a clear need for a more refined sampling and
677  storage cold chain to effectively extract RNA from remote soil and sediment environments.
678

679  The discovery of 2,562 novel viruses spanning all five RNA viral phyla and a potential host
680  range of bacteria, protists, fungi, plants, and invertebrates shows that Australian terrestrial
681  environments are evidently an untapped resource for RNA virus diversity. These

682  environments may harbour entire families of ecological and evolutionary importance, likely
683  reflecting the vast array of flora and fauna that is unique to the continent. Our work provides
684  an initial view of the Australian terrestrial RNA virosphere, as well as the broad

685  environmental properties such as land use and soil type that may be driving viral

686  composition.

687
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692  available in NCBI GenBank under the accession numbers XXXX-YYYY.

693
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726  SUPPLEMENTARY INFORMATION

727  Supplementary Figure S1. Phylogeny of RdRp sequences from the orders Hepelivirales and
728  Tymovirales (class Alsuviricetes). Known viruses are shown in black, while putative novel
729  viruses identified here are coloured by sampling environment. The tree was midpoint rooted
730  for clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles

731  represent node support >80% using 1,000 SH-aLRT replicates.

732 Supplementary Figure S2. Phylogeny of RdRp sequences from the order Martellivirales
733 (class Alsuviricetes). Known viruses are shown in black, while putative novel viruses

734 identified here are coloured by sampling environment. The tree was midpoint rooted for

735  clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent

736  node support >80% using 1,000 SH-aLRT replicates.

737  Supplementary Figure S3. Phylogeny of RdRp sequences from the order Nodamuvirales.
738  Known viruses are shown in black, while putative novel viruses identified here are coloured
739 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
740 0.5 amino acid substitutions per site. Black circles represent node support >80% using 1,000

741  SH-aLRT replicates.

742 Supplementary Figure S4. Phylogeny of RdRp sequences from the order Tolivirales.

743 Known viruses are shown in black, while putative novel viruses identified here are coloured

744 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
745 0.5 amino acid substitutions per site. Black circles represent node support >80% using 1,000

746 SH-aLRT replicates.

747  Supplementary Figure S5. Phylogeny of RdRp sequences from the class Leviviricetes

748  (phylum Lenarviricota). Known viruses are shown in black, while putative novel viruses

749  identified here are coloured by sampling environment. The tree was midpoint rooted for

750  clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent

751  node support >80% using 1,000 SH-aLRT replicates.

752 Supplementary Figure S6. Phylogeny of RdRp sequences from the family Mitoviridae
753 (phylum Lenarviricota). Known viruses are shown in black, while putative novel viruses
754  identified here are coloured by sampling environment. The tree was midpoint rooted for
755  clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent

756  node support >80% using 1,000 SH-aLRT replicates.
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757  Supplementary Figure S7. Phylogeny of RdRp sequences from the class Amabiliviricetes
758  (phylum Lenarviricota). Known viruses are shown in black, while putative novel viruses

759  identified here are coloured by sampling environment. The tree was midpoint rooted for

760  clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent

761  node support >80% using 1,000 SH-aLRT replicates.

762  Supplementary Figure S8. Phylogeny of RdRp sequences from the family Marnaviridae
763  (order Picornavirales). Known viruses are shown in black, while putative novel viruses

764  identified here are coloured by sampling environment. The tree was midpoint rooted for

765  clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent

766  node support >80% using 1,000 SH-aLRT replicates.

767  Supplementary Figure S9. Phylogeny of RdRp sequences from the families Picornaviridae,
768  Polycipiviridae, and Solinviviridae (order Picornavirales). Known viruses are shown in

769  black, while putative novel viruses identified here are coloured by sampling environment.
770  The tree was midpoint rooted for clarity only. Scale bar represents 0.5 amino acid

771  substitutions per site. Black circles represent node support >80% using 1,000 SH-aLRT

772 replicates.

773 Supplementary Figure S10. Phylogeny of RdRp sequences from the families

774 Dicistroviridae, Iflaviridae, and Secoviridae (order Picornavirales). Known viruses are

775  shown in black, while putative novel viruses identified here are coloured by sampling

776  environment. The tree was midpoint rooted for clarity only. Scale bar represents 0.5 amino
777  acid substitutions per site. Black circles represent node support >80% using 1,000 SH-aLRT
778  replicates.

779  Supplementary Figure S11. Phylogeny of RdRp sequences from the order Sobelivirales.
780  Known viruses are shown in black, while putative novel viruses identified here are coloured
781 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
782 0.5 amino acid substitutions per site. Black circles represent node support >80% using 1,000

783  SH-aLRT replicates.

784  Supplementary Figure S12. Phylogeny of RdRp sequences from the family Hypoviridae.
785  Known viruses are shown in black, while putative novel viruses identified here are coloured
786 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
787 0.5 amino acid substitutions per site. Black circles represent node support >80% using 1,000

788  SH-aLRT replicates.
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789  Supplementary Figure S13. Phylogeny of RdRp sequences from the Partiti-Picobirna clade.
790  Known viruses are shown in black, while putative novel viruses identified here are coloured
791 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
792 0.5 amino acid substitutions per site. Black circles represent node support >80% using 1,000

793  SH-aLRT replicates.

794  Supplementary Figure S14. Phylogeny of RdRp sequences from the class Monjiviricetes
795  (phylum Negarnaviricota). Known viruses are shown in black, while putative novel viruses
796  identified here are coloured by sampling environment. The tree was midpoint rooted for

797  clarity only. Scale bar represents 0.5 amino acid substitutions per site. Black circles represent

798  node support >80% using 1,000 SH-aLRT replicates.

799  Supplementary Figure S15. Phylogeny of RdRp sequences from the order Bunyavirales.
800  Known viruses are shown in black, while putative novel viruses identified here are coloured
801 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
802 0.5 amino acid substitutions per site. Black circles represent node support >80% using 1,000

803  SH-aLRT replicates.

804  Supplementary Figure S16. Phylogeny of RdRp sequences from the family Cystoviridae.
805  Known viruses are shown in black, while putative novel viruses identified here are coloured
806 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
807 0.5 amino acid substitutions per site. Black circles represent node support >80% using 1,000

808  SH-aLRT replicates.

809  Supplementary Figure S17. Phylogeny of RdRp sequences from the order Reovirales.

810  Known viruses are shown in black, while putative novel viruses identified here are coloured

811 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
812 0.5 amino acid substitutions per site. Black circles represent node support >80% using 1,000

813  SH-aLRT replicates.

814  Supplementary Figure S18. Phylogeny of RdRp sequences from the order Ghabrivirales.
815  Known viruses are shown in black, while putative novel viruses identified here are coloured
816 by sampling environment. The tree was midpoint rooted for clarity only. Scale bar represents
817 0.5 amino acid substitutions per site. Black circles represent node support >80% using 1,000

818  SH-aLRT replicates.
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