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Abstract

Phylogenomics revealed reticulate evolution to be widespread across taxa, but

whether  reticulation  is  due  to  low  statistical  power  (soft  polytomy)  or  true

evolutionary patterns (hard polytomy) remains a 昀椀eld of investigation. Here, we

investigate the phylogeny and quantify reticulation in the  Drosophila saltans

species group, a Neotropical clade of the subgenus Sophophora comprising 23

species  arranged  in  昀椀ve  subgroups,  namely  cordata,  elliptica, parasaltans,

saltans and sturtevanti, whose relationships have long been problematic. We

sequenced and assembled the genomes of 15 species. Phylogenetic analyses

revealed con昀氀icting topologies between the X chromosome, autosomes and the

mitochondria. We extended the ABBA-BABA test of asymmetry in phylogenetic

discordance  to  cases  where  no  “true”  species  tree  could  be  inferred,  and

applied our new test (called 2A2B) to ≥50 kb-long 1,797 syntenic blocks with

conserved  collinearity  across  Neotropical  Sophophora.  High  incidences  of

reticulation (sometimes up to 90% of the blocks) were restricted to three nodes

on the tree, at the split between the cordata-elliptica-saltans subgroups and at

the origin of the  sturtevanti and  saltans subgroups. By contrast,  cases with

asymmetric  discordances,  which  are  often  interpreted  as  evidence  for

interspeci昀椀c  introgression,  did  not  exceed  ~5%  of  the  blocks.  Historical

biogeography analysis revealed that short inter-speciational times and greater

overlap of ancestral geographical ranges partly explain cases with predominant

reticulation. Therefore, episodic rapid radiations have played a major role in the

evolution of this largely understudied Neotropical clade.

Keywords:  phylogenomic  discordance;  genome  assembly;  historical

biogeography;  introgression;  cyto-nuclear  con昀氀icts;  Neotropical  speciation;

Sophophora.
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Introduction

Knowledge of phylogenetic relationships among species is a requirement

for many evolutionary studies. However, it is often di昀케cult to reconstruct well-

resolved bifurcating trees for some clades. This could either be due to the lack

of signal in the evaluated data, a condition known as “soft polytomy”, or due to

persistent phylogenetic con昀氀icts among datasets leading to “hard polytomies”

and reticulate patterns of  interspeci昀椀c relationships. A plethora of  biological

processes  could  cause  such  con昀氀icts,  including  incomplete  lineage  sorting

(Maddison 1989; Maddison 1997; Walsh et al.  1999; Townsend et al.  2012),

horizontal gene transfer, introgression and hybridization (Schrempf and Szöllősi

2020), and adaptive radiations (Glor 2010). Phylogenetic con昀氀ict also may be

caused by technical errors, such as, sequencing error, contamination, wrong

model  selection  and  general  lack  of  quality  control  (Philippe  et  al.  2011).

Recent advances in genomic analyses have signi昀椀cantly reduced such errors

and, in a wide range of taxa, increased the number of analyzed genes hence

helping to resolve early con昀氀icting topologies. However, in many other cases,

whole genome analyses demonstrated persistent phylogenetic con昀氀icts (e.g.,

in plants (Wickett et al. 2014; Gagnon et al. 2022), birds (Suh 2016), sponges

and ctenophores (Philippe et al. 2009; Pick et al. 2010; Whelan et al. 2015;

Chang  et  al.  2015;  Simion  et  al.  2017),  mammals  (Romiguier  et  al.  2013;

Morgan et al. 2013; Doronina et al. 2015), amphibians (Hime et al. 2021), and

insects (Owen and Miller 2022)).

Of  the  di昀昀erent  processes  that  can  lead  to  reticulate  evolution,

introgression and hybridization have attracted much attention,  昀椀rst  because

they challenged long-held concept of reproductive isolation between species,

and second due to the development of a number of bioinformatic tools and

tests that quantify phylogenetic discordance across the genome (Durand et al.

2011; Pease and Hahn 2015; Malinsky et al. 2021). Site-based methods usually

count the number of bi-allelic sites supporting each of three possible topologies

in a species triplet  with an outgroup (Figure 1A).  Comparisons between the

proportions of  the three topologies can yield one of four possible outcomes

(Figure 1B): (i) complete reticulation, all topologies are equally encountered; (ii)

incomplete reticulation, such as in the case of full hybridization wherein two

topologies signi昀椀cantly exceed the third one but do not signi昀椀cantly di昀昀er from

each other;  (iii)  incomplete  bifurcation,  such  as  in  the  case  of  asymmetric

introgression wherein the proportion of all topologies signi昀椀cantly di昀昀er; and
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(iv) complete bifurcation,  one topology signi昀椀cantly exceeds the two others,

which in their turn have nearly equal proportions. The earliest of introgression

tests, Patterson's D, compared the two later cases (iii and iv), i.e. it presumed

that a “true” species tree exists. A later test, HyDe, quanti昀椀es admixture (γ)

from the ratio of shared alleles with the test going from 0 (full isolation) to 0.5

(full hybridization) and therefore it can also cover case ii. The two tests di昀昀er in

how  they  measure  signi昀椀cance,  using  bootstrapping  in  Patterson's  D and

normal approximation in HyDe. Of late, another site-based test was developed

using χ2 to test for deviation of parity between the three topologies as in case i

(Sayyari and Mirarab 2018). A uni昀椀ed test that can test the prevalence of each

of  the  four  categories  across  the  genome  and  a  phylogenetic  tree  is  still

lacking.

Polytomies  and  incongruencies  have  been  reported  for  the  jumping

pomace  昀氀y  Drosophila  saltans  species  group,  a  clade  of  the  subgenus

Sophophora with 23 Neotropical species (Magalhães 1962). The group retains

its name from the peculiar “jumping” habit of its larvae;  “the larva seizes its

posterior  end  with  its  mouthhooks,  and  stretches.  The  hooks  pull  loose

suddenly,  the  larva  straightens  with  considerable  force,  and  as  a  result  is

thrown several inches into the air” (Sturtevant 1942). The group was divided

into 昀椀ve species subgroups, namely, saltans, parasaltans, cordata, elliptica and

sturtevanti  subgroups, mostly on the basis of male genitalia (Magalhães and

Björnberg 1957). Although the monophyly of the subgroups has been con昀椀rmed

by di昀昀erent phylogenetic methods, the relationships among and within them

are not.  Hypothesis  for  their  evolutionary relationships have been proposed

using di昀昀erent methods and di昀昀erent morphological characters (Magalhães and

Björnberg  1957;  Throckmorton  1962;  Throckmorton  and  Magalhães  1962;

O’Grady  et  al.  1998;  Yassin  2009;  Souza  et  al.  2014;  Roman et  al.  2022),

chromosome  polymorphism  (Bicudo  1973a),  reproductive  isolation  (Bicudo

1973b;  Bicudo  and  Prioli  1978;  Bicudo  1979),  protein  polymorphism

(Nascimento and Bicudo 2002) and gene sequences (Pélandakis and Solignac

1993; O’Grady et al. 1998; Rodríguez-Trelles et al. 1999; de Castro and Carareto

2004; de Setta et al. 2007; Roman et al. 2022). The evolutionary relationships

proposed are summarized in Supplementary Table S1.

Unlike other species groups in the subgenus  Sophophora,  such as the

melanogaster,  obscura and  willistoni groups, genomic resources and genetic

investigations  in  the  saltans species  group  are  scarce.  Indeed,  only  four
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genomes have been sequenced and assembled to date (Kim et al. 2021). To

bridge  this  gap  and  to  test  for  the  extent  of  phylogenetic  con昀氀icts,  we

sequenced and assembled genomes for 15 species with representatives from

the 昀椀ve subgroups. Phylogenetic analyses using well-conserved genes resolved

the  evolutionary  relationships  among  the  subgroups  but  also  highlighted

con昀氀icts between X-linked, autosomal and mitochondrial loci. To test how each

of the four incongruence categories prevails across the genome, we devised a

new  χ2-based  test  that  uses  pairwise  comparisons  of  the  three  topologies

proportions  in  long  syntenic  blocks  with  conserved  collinearity  across  the

Neotropical Sophophora (Figure 1). We found reticulation levels to di昀昀er among

the  subgroups,  in  concordance  with  rate  of  speciation  and  historical

biogeography.

Results

Short-read assembly of 17 genomes recovered 90% of BUSCO genes

We sequenced using  short-read  Illumina  approach  17  whole  genomes

from 15 species collected across various locations in the Neotropical region.

Genome  size,  estimated  from  21-kmer  frequency  spectrum  using

GenomeScope 2 (Ranallo-Benavidez et al. 2020), ranged from 154.0 to 356.8

Mb. Our de novo assemblies using MaSuRCA (Zimin et al.  2013) resulted in

genome lengths ranging from 177.5 to 287.7 Mb, with N50 values ranging from

2 to 92 Kb (Supplementary Table S2).  To evaluate the completeness of  our

assembled genomes,  we searched for  single-copy genes (SCG) using Busco

(Simão et  al.  2015).  We found that  over  90% of  the  searched genes  were

complete for all of the genomes (Supplementary Table S2). Kim et al. (2021)

assembled using both short Illumina and long Nanopore reads the genomes of

four  saltans group species,  all  of  which we have independently  sequenced.

Whereas their assemblies’ contigs were much longer, with N50 ranging from 2

to 6 Mb, the BUSCO score for the same set of species did not largely di昀昀er

(98% vs. 95-96% in our study; Supplementary Table S2). Their genomes were

also included in subsequent phylogenetic analyses, using the assembly of  D.

willistoni as an outgroup (Kim et al. 2021).

Muller  elements  analysis  resolves relationships  between the subgroups  and

unravels a minor X-autosomal con昀氀ict in the sturtevanti subgroup
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Phylogenomic analyses were performed using 2,159 SCG shared across

all  species.  Gene trees,  inferred for  each SCG using maximum-likelihood in

IqTree produced 1,263 distinct topologies, with 206 of them found more than

once  (Supplementary  Data  S1).  To  test  if  SCG  chromosomal  position  may

underlie  the  discrepancies  in  gene  trees,  we  localized  each  SCG  to  its

corresponding Muller element according to the position of its D. melanogaster

ortholog identi昀椀ed by Blast (Camacho et al. 2009). As a result, we generated

昀椀ve independent datasets, each corresponding to the Muller elements A, B, C,

D, and E, comprising 337, 370, 425, 419, and 568 SCG, respectively.  These

datasets  were  then  used  to  reconstruct  the  species  trees  using  the  multi-

species coalescent model, and the genes within them were concatenated for

Bayesian and Maximum Likelihood phylogenetic inferences.

The trees generated by the 5 data sets showed very similar topologies

with  well  supported  nodes  either  for  the  multi-species  coalescent  model

analysis  implemented  in  ASTRAL-III  (Zhang  et  al.  2018),  the maximum-

likelihood implemented in IqTree (Nguyen et al. 2015) or Bayesian Inference

implemented in BEAST (Bouckaert et al. 2019) (Supplementary Figures S1, S2

and S3). The parasaltans subgroup was placed as sister to all other subgroups,

followed  by  the  emergence  of  the  sturtevanti  subgroup.  The cordata  and

elliptica subgroups showed a close relationship, and were sister to the saltans

subgroup. The only discrepancy between the topologies was the placement of

D. lehrmanae, a newly discovered species in the  sturtevanti subgroup (Madi-

Ravazzi et al. 2021).   For  D. lehrmanae, while maximum-likelihood and multi

species coalescent analyses reported lack of branch support for multiple trees,

(Supplementary Figures S2 and S3), Bayesian inference recover well supported

branches and two topologies (Figure 2A and Supplementary Figures S1). These

two distinct topologies were identi昀椀ed among the Muller Elements forming the

X chromosome (Muller elements A and D, a fusion shared by the Neotropical

Sophophora,  the saltans and willistoni groups,  see  Sturtevant  and  Novitski

1941; Dobzhansky and Pavan 1943; Cavalcanti 1948) and the Muller Elements

representing autosomal chromosomes (Muller elements B, C, and E).

The published genome of  D. prosaltans (Kim et al. 2021) did not group

with the genome of this species sequenced by us, instead it grouped with  D.

saltans.  The genome previously published comes from a line collected in El

Salvador  in  1957.  According  to  Magalhães'  (1962)  detailed  morphological

revision of multiple geographical specimens of the saltans group, the sampling
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site of this particular strain is outside the geographical range of D. prosaltans,

but within the expected range of D. saltans. Furthermore, the D. saltans and D.

prosaltans lines used in our study underwent thorough morphological analyzes

(Souza et al. 2014; Roman and Madi-Ravazzi 2021), indicating that the lines we

used were accurately identi昀椀ed. Therefore, it is most likely that the previously

sequenced  D.  prosaltans strain  from El  Salvador  was  misidenti昀椀ed  and we

consider it here to belong to D. saltans.

Mitogenomes  show  cytonuclear  con昀氀icts  in  the  sturtevanti and  saltans

subgroups

We assembled mitochondrial genomes for the 15  saltans group species

using MitoZ (Meng et al. 2019). We did not use the previously assembled four

strains  since  several  mitochondrial sca昀昀olds  were  likely  removed  in  those

assemblies  (Kim  et  al.  2021).  We  conducted  phylogenetic  analysis  on  the

aligned  mitogenomes  genes  using  both  IqTree  and  MrBayes.  Overall,  the

mitochondrial trees matched the topology of the nuclear gene trees regarding

the  inter-subgroup  relationships.  However,  three  major  discrepancies  were

identi昀椀ed (Figure 2B). First, the position of D. lehrmanae within the sturtevanti

subgroup  did  not  agree  with  either  the  X  or  autosomal  SCG  topologies,

proposing topology wherein  D. lehrmanae is a sister species of  D. sturtevanti

(topology recover once in Multi-Species Coalesce analysis (Muller element C,

Supplementary  Figure  S3)  and  Maximum  likelihood  (Muller  element  B,

Supplementary Figure S2)). Second, whereas the mitochondrial tree recovered

the  monophyletic  relationship  between  the  elliptica,  cordata and  saltans

subgroups, the position of  D. neocordata (cordata subgroup) di昀昀ered,  being

sister to the three species of the elliptica subgroup in the nuclear trees and to

the  six  species  of  the  saltans subgroup  in  the  mitochondrial  tree.  Third,

whereas nuclear trees recovered  three  lineages within the  saltans subgroup,

namely,  austrosaltans,  nigrosaltans-pseudosaltans,  and  septentriosaltans-

prosaltans-saltans, only two lineages are revealed by the mitochondrial tree.

Intriguingly,  each  of  the  mitochondrial  clades  involved  one  species  from

otherwise sister species in the nuclear trees, i.e. D. nigrosaltans and D. saltans

in one clade and their respective closely-related species D. pseudosaltans and

D. prosaltans in  the other clade.  Because  D. saltans and  D.  prosaltans  are

reported as close related species in the nuclear trees and are separated in the

two mitochondrial clades, the two mitotypes were called S and P, respectively.
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The distribution of  closely-related species between distinct mitotypic groups

suggest that multiple cytoplasmic introgression events might have occurred in

this subgroup.

Site-speci昀椀c phylogenetic analysis of syntenic blocks quanti昀椀es the extent of

reticulate evolution in the saltans group

Site-speci昀椀c analyses of phylogenetic discordance are highly sensitive to

locus  size  (Martin  et  al.  2015;  Pease  and  Hahn  2015).  To  overcome  this

problem,  we  identi昀椀ed  1,797  syntenic  blocks  ≥50  kb-long  with  conserved

collinearity across the 15  saltans assemblies and  D. willistoni (see Methods).

For a four-taxon species tree with an outgroup, three topologies can possibly be

obtained for each site with two alleles (A and B),  namely AABB,  ABBA and

BABA, with the AABB topology usually refers to the true species tree (Durand et

al.  2011;  Patterson  et  al.  2012).  However,  to  consider  cases  where  a  true

species tree cannot be inferred, we designed a test for reticulation, that we call

2A2B. The test consists of comparing each pair of the three topologies using a

χ2 test, and classify each block with ≥20 evaluated sites into one of the four

categories along the reticulation-bifurcation continuum given in Figure 1B. We

run this  test  for  every possible  quartet  (Supplementary Table S3).  Whereas

blocks supporting bifurcating trees (categories iii and iv) predominated in most

quartets, we identi昀椀ed three parts on the species tree with reticulation indices

(i.e. the proportion of blocks in categories i and ii) exceeding 70% (Figure 3).

At the inter-subgroup level, high incidences of reticulation were observed

in any combination that involved representatives from at least two subgroups

of the  cordata,  elliptica and  saltans subgroups. For the  sturtevanti subgroup,

~90% of the blocks could not resolve the relationships between D. sturtevanti,

D. lehrmanae and the dacunhai-milleri clade, in agreement with the con昀氀icting

topologies between the X, autosomes and mitochondrial loci shown above. For

the  saltans subgroup,  reticulation  dominated  (60-75%)  in  all  comparisons

involving  D.  austrosaltans,  and  representatives  of  the  nigrosaltans-

pseudosaltans and the  septentriosaltans-prosaltans-saltans clades.  However,

not every subgroup with multiple representatives showed excess reticulation,

since for the elliptica subgroup, almost no evidence for reticulate evolution was

found  whether  D.  sturtevanti,  D.  neocordata or  any  species  of  the  saltans

subgroup were used as an outgroup.Remarkably, the proportion of categories

supporting inter-speci昀椀c hybridization (ii) or introgression (iii) rarely exceeded
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5% of the 50-kb long syntenic blocks (Figure 3).

Historical biogeography partly explains excess reticulation

To  test  if  historical  biogeography  could  explain  the  present

incongruences, we mapped current distribution of the studied species on the

Bayesian X tree. For each species, a polygon connecting the four most extreme

cartesian  points  was  drawn  and  the  ancestral  position  of  each  point  was

inferred  using  BayesTraits  (Meade  and  Pagel  2022)  (see  Methods).  This

approach allowed us to infer an ancestral range at each internal node of the

tree. The historical biogeography supported an Amazonian origin of the saltans

group around 16 million years (myr) ago (Figure 2B, 4A, Supplementary Table

S4). Internal nodes as old as or older than 4 myr ago had ranges con昀椀ned to

the  central  or  northern  parts  of  South  America.  These  nodes  included  the

ancestors of all species subgroups except  sturtevanti. Northwestern dispersal

into Panama and southern Central America occurred around 3 myr ago, which

correlates with the geological formation of the isthmus of Panama (O’Dea et al.

2016),  and  involved  the  ancestors  of  the  nigrosaltans-pseudosaltans and

septentriosaltans-prosaltans-saltans clades.  The  sturtevanti subgroup

diversi昀椀ed around 2.5 myr ago in the northern parts of South America.

We tested the e昀昀ects of the successiveness of speciational times on the

estimated proportion of syntenic blocks with reticulated evolution patterns (i.e.

categories  i  and  ii).  For  each  quartet  with  an  (outgroup,(sp.1,(sp.2,sp.3)))

topology we tested the regression of the proportion of reticulation on the ratio

of the divergence time between sp.2 and sp.3 and the divergence time of the

three ingroup species (hereafter T2/T1 ratio). This ratio increased as the time

between  successive  speciation  events  shortened.  Reticulation  positively

correlated  with  this  measurement,  and  the  regression  line  followed  an

exponential pattern (R2 = 0.98) (Figure 4C, Supplementary Table S5). We also

tested the  regression  of  reticulation  on the  degree of  overlap between the

ancestral ranges of sp.2 and sp.3 (i.e. node 1 and 2 in Figure 4D), and of all

ingroup  species  (hereafter  H2/H1  ratio).  This  ratio  indicates  the  degree  of

conservation  of  ancestral  habitat  and  possible  connectivity.  A  strong

exponential correlation was obtained for this ratio (R2 = 0.89) (Figure 4C).

Discussion
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Towards a comprehensive phylogeny of the saltans species group

A large number of Drosophila genomes have been sequenced and used in

phylogenetic analyses (Suvorov et al. 2022; Khallaf et al. 2021; Kim et al. 2021;

Li et al. 2022), but studies with comprehensive sampling of nearly all species in

a group remain relatively uncommon (Mai et al. 2020; Conner et al. 2021; Yusuf

et  al.  2022;  Moreyra  et  al.  2023).  Despite  minor  inconsistencies,  our

phylogenomic analysis of 15 species of the  Drosophila saltans species group

produced a consistent picture of the relationships between the 昀椀ve subgroups

of  this  clade.  All  X,  autosomal  and  mitochondrial  phylogenies  showed  the

parasaltans subgroup  as  the  昀椀rst  to  diverge,  followed  by  the  sturtevanti

subgroup,  and later by a clade comprising the  cordata,  elliptica and  saltans

subgroups,  in  which the  position  of  the  cordata subgroup di昀昀ered between

nuclear and mitochondrial trees. This general picture has not been previously

proposed despite the tremendous number of phylogenetic investigations of this

group  (Magalhães  1962;  Throckmorton  1962;  Throckmorton  and  Magalhães

1962; O’Grady et al. 1998; Rodríguez-Trelles et al. 1999; de Castro and Carareto

2004; de Setta et al. 2007; Yassin 2009; Souza et al. 2014; Roman et al. 2022),

see Supplementary Table S1 for previous suggested topologies).

After  establishing  a  coherent  phylogenetic  picture  for  the  Drosophila

saltans  species group and identifying the relationships among its subgroups,

the next critical step lies in expanding our sampling e昀昀orts. While our analysis

has shed light on the intricate evolutionary dynamics within this clade, further

sampling holds the potential to provide a more comprehensive understanding

into  this  complex  evolutionary  history.  For  example,  the  inclusion  of  D.

subsaltans,  D.  lusaltans,  D.  cordata,  and  D.  rectangularis  through  whole-

genome sequencing promises to provide insight into unresolved phylogenetic

questions  raised  from  previously  published  observations  on  reproductive

isolation  and  morphology  (Magalhães  1962;  Bicudo  and Prioli  1978).  These

questions  include  the  monophyly  and  positioning  of  the  parasaltans and

cordata subgroups.  Additionally,  the  inclusion  of  the  insular  species  D.

lusaltans  which presents low reproductive isolation (Bicudo 1973b), can bring

new insights into the reticulation evolution.  These prospects for  heightened

sampling e昀케cacy and its potential to unlock further dimensions of the saltans

subgroup's evolution are explored in greater detail in Supplementary Document

S1.

The  saltans subgroup showed the most dramatic signal of cyto-nuclear
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discordance  and  reticulated  evolution.  Bicudo  (1973a)  investigated

reproductive  isolation  among  the  seven  then  described  species  of  this

subgroup,  and  in  a  remarkably  partial  agreement  with  our  nuclear

phylogenomic trees, she concluded that D. pseudosaltans, D. nigrosaltans and

D. austrosaltans showed more basal relationships compared to D. lusaltans, D.

septentriosaltans,  D.  prosaltans and  D.  saltans.  Indeed,  nearly  all  crosses

among the last four species produce fertile females with some even producing

fertile  females  and  males  (Bicudo  1973b).  This  behavioral  porosity  largely

agrees with the high incidence of reticulate evolution we report here for this

subgroup.

Two  widespread  species  of  the  saltans subgroup,  D.  saltans and  D.

prosaltans,  show  a  peculiar  geographical  disjunction.  The  discrimination

between  strains  belonging  to  each  species  has  long  been  erroneous

(Dobzhansky  1944;  Mayr  and  Dobzhansky  1945;  Spassky  1957;  Magalhães

1962) and we showed here that  their  misidenti昀椀cation persists  even in the

genomic  era  (Suvorov  et  al.  2022;  Kim  et  al.  2021).  Interestingly,  Bicudo

(1973a) provided evidence for reproductive reinforcement between these two

sister  species;  sympatric  populations  in  their  junction  zone  in  Costa  Rica

demonstrated  stronger  reproductive  isolation  than  allopatric  populations  of

both species. We have only included one to a few geographical lines from each

species and a broader sampling to investigate the extent of their reproductive

isolation and genome porosity is strongly needed.

Intra- and inter-genomic con昀氀icts impact the inference of phylogenetic patterns

in the saltans group

Concatenation  helped  recovering  a  sexual  versus  autosome  con昀氀ict,

similar to the one described by Mai et al. (2020) for the nasuta subgroup. Like

these authors,  this con昀氀ict  was limited to a single part  of  the tree,  i.e. the

relationship of  D. pulau to  D. sulfurigaster sulfuricaster and D. s. bilimbata in

the  nasuta group  and  the  placement  of  D.  lehrmanae in  the  sturtevanti

subgroup. The peculiarities of sexual chromosomes such as the slower e昀昀ective

number, di昀昀erent recombination and mutation rates, the greater exposition to

natural selection when found in hemizygosity, leads to higher rates of adaptive

evolution of sexual-linked genes compared with autosomal genes (i.e. faster-X

evolution)  and also to the disproportional  accumulation of  genes related to

reproductive  isolation  and  Dobzhanski-Muller  hybrid  incompatibilities  (i.e.
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Haldane’s rule). Altogether, those characteristics are thought to be responsible

for the resistance to hybridization in the sexual chromosomes (Ellegren 2009;

Qvarnström and Bailey 2009; Sankararaman et al. 2016; Charlesworth et al.

2018; Seixas et al. 2018; Mai et al. 2020; Matute et al. 2020; Moran et al. 2021;

Reilly et al. 2022; Skov et al. 2023); but see (David et al. 2022).

The  second  con昀氀ict  regards  a  signi昀椀cant  disagreement  between

mitochondrial  (mtDNA) and nuclear  data.  Discordance between nuclear and

mitochondrial genomes is a well documented phenomenon in the tree of life as

highlighted by (Toews and Brelsford 2012). Several characteristics of mtDNA,

such  as  being  haploid  and  uniparentally  inherited,  resulting  in  a  fourfold

reduction  in  e昀昀ective  population  size  when  compared  with  autosomal

chromosome loci, a昀昀ect its evolution. Cytoplasmic introgression has long been

recognized  in  Drosophila (Solignac  et  al.  1986;  Ballard  2000;  Llopart  et  al.

2014).  In  a  recent  population  study  within  the  willistoni group,  multiple

mitochondrial  introgressions  were  observed  in  D.  paulistorum  populations.

These included an ancient introgression with a highly divergent mitochondrial

type,  followed  by  more  recent  events.  While  nuclear-mitochondrial

incompatibilities likely posed challenges, the study also suggested two possible

alternatives to overcome these challenges: a selective advantage provided by

the mitochondrial type it self. Or a non-selective factor, such as Wolbachia, a

bacteria  known  to  modify  the  reproduction  of  its  host,  could  facilitate  a

mitochondrial  type 昀椀xation (Baião et al.  2023).  Although,  interesting results

have been report from population approaches, con昀氀icts between nuclear and

mitochondrial  genomes  have  not  been  addressed  in  recent  phylogenomic

analyses in the Drosophilidae (Mai et al. 2020; Khallaf et al. 2021; Suvorov et

al. 2022; Yusuf et al. 2022). The disagreement was particularly evident for the

saltans subgroup, where it was most likely of recent origins, separating species

that have diverged only 0.7 myr ago, i.e. D. nigrosaltans and D. pseudosaltans.

Remarkably, the two mitotypes P and S do not correlate with the degree of

reproductive  isolation  inferred  by  Bicudo  (1973b),  contrary  to  nuclear  tree,

indicating  that  cytoplasmic  introgression  in  the  saltans subgroup  did  not

contribute to the evolution of reproductive isolation in this clade.

Syntenic blocks also allowed a quanti昀椀cation of the degree of reticulate

evolution. Of the three subgroups for which multiple species were sequenced,

the  saltans subgroup  had  the  highest  incidence  of  reticulation.  For  all

subgroups,  the  degree  of  reticulation  correlated  negatively  with  the  time
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between successive speciation events and positively with the degree of range

conservatism. Indeed, reticulation is expected to increase with fast speciation

increasing incomplete lineage sorting and/or range overlap promoting either

gene 昀氀ow or  the selective retention of  habitat-associated alleles (Avise and

Robinson 2008; Degnan and Rosenberg 2009; Feng et al. 2022). In the saltans

subgroups,  multiple  large  chromosomal  inversions  are  known  to  be  shared

among closely-related species (Dobzhansky and Pavan 1943; Cavalcanti 1948;

Bicudo 1973a;  Bicudo et  al.  1978)  and evidence for  balancing on ancestral

inversion  has  been  demonstrated  in  a  number  of  cases  (Bicudo  1973a).

Whether the high degree of reticulation in the saltans subgroup are associated

with large ancestral inversions potentially absent in other bifurcating clades

would  require  the  future  generation  of  chromosome-level  assemblies  for

multiple saltans group species.

Large  syntenic  blocks  distinguish  soft  from hard  polytomies  in  the  saltans

group

There  is  no  consensus  in  current  phylogenomic  analysis  between

concatenating  and  partitioning  approaches.  Whereas  the  former  approach

increases the power, i.e. providing a total evidence, it also introduces bias due

to  the  non-independence  of  linked  loci  and  in  some  cases  it  cannot  be

computationally feasible to analyze whole genomes. Alternatively, multi-locus-

coalescent  (MLC)  approaches  that  partition  the  data  into  presumably

independent and neutral loci have been proposed. Those last approaches have

broadly been applied in the investigation of phylogenetic discordances, mostly

in studies inferring asymmetric introgressions. The de昀椀nition of  independent

loci widely di昀昀ers between studies with an impact on discordance estimate. For

example,  in  a  study of  155 genomes covering a  wide  range of  drosophilid

lineages, Suvorov et al. (2022) limited their MLC analyses on highly conserved

single-copy protein-coding genes. However, their discordance estimates were

highly sensitive to the length of the analyzed single genes as well as by the

slightest relaxation of selective pressures, e.g., the exclusion of 5% of loci with

the highest non-synonymous to synonymous ratio (dN/dS) led to a decrease of

nearly 50% of discordance cases. An alternative approach is to align reads from

multiple  species  to  a  well  annotated  genome,  hence  creating  pseudo-

references  genome  wherein  di昀昀erent  nucleotides  replace  their  orthologous

sites for each species. This approach was used by Mai et al. (2020) in the study
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of the  D. nasuta subgroup, a clade of 12 species that diverged ~3 myr ago

(Suvorov  et  al.  2022).  These  authors  de昀椀ned  loci  in  terms  of  500-kb  long

windows  for  phylogenetic  reconstruction  and  50-kb  long  windows  for

discordance analyses. The 500-kb windows were either analyzed separately or

concatenated according to chromosomal arm (Muller’s element). Whereas such

an  approach  would  increase  the  signal,  it  also  introduces  biases  due  to

paralogy, misalignments or absence of collinearity among species. Besides, this

approach is highly sensitive to the choice of the reference genome (Valiente-

Mullor et al. 2021; Rick et al. 2023).

We combined here both approaches.  First,  we based our phylogenetic

analysis  on  conserved  single-copy  protein-coding  genes  like  Suvorov  et  al.

(2022), but like Mai et al. (2020) we concatenated those genes according to

their  Muller  elements.  Second,  we  inferred  phylogenetic  discordance  using

large ≥50 kb-long windows like Mai et al. (2020), but unlike these authors we

did not  infer  pseudo-references and de昀椀ned our windows on large syntenic

blocks that conserved their  collinearity across Neotropical  Sophophora.  Both

approaches helped us to de昀椀ne signals of reticulate evolution that were not

homogeneously distributed across the subgroups.(Mai et al. 2020; Khallaf et al.

2021; Suvorov et al. 2022; Yusuf et al. 2022)

Perhaps the most striking outcome of our synteny-based analysis is the

low incidence of interspeci昀椀c introgression compared to recent analyses across

the genus Drosophila suggesting introgression to be widespread (Suvorov et al.

2022). Whether this discrepancy is due to the size of the analyzed loci or re昀氀ect

genuine di昀昀erences between the  saltans group and other  Drosophila clades

would  require  the  extension  of  the  2A2B  test  to  these  clades.  Early

phylogenetic studies in Drosophila suggested radiation episodes to be the most

common evolutionary  patterns  in  drosophilids  (Throckmorton  1975).  If  hard

polytomes are widespread, currently common introgression analyses based on

the assumption of true bifurcating species trees may be misled. Given the ever

growing  evidence  for  introgression  in  other  animal  and  plant  clades,  we

strongly recommend the application of phylogenetic discordance tests in large

syntenic blocks in these organisms as well  to distinguish introgression from

rapid radiation events.

Materials and Methods

Sample collection, whole genome sequencing and assembly
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We performed  whole  genome  sequencing  on  a  group  of  female  昀氀ies

consisting  of  15  di昀昀erent  species  from the  saltans group,  as  well  as  three

populations  of  D.  sturtevanti.  The  specimens  used  for  sequencing  were

obtained from one or multiple strains, and detailed information regarding the

number  of  individuals  and  their  collection  locations  can  be  found  in

Supplementary Table S6. For all species except  D. neocordata, which had its

DNA extraction from ovaries and genome assembly described in BAIÃO et al.

2023, DNA was extracted following the manufacturer's instructions using the

Promega  DNeasy  Kit.  We  conducted  whole  genome  sequencing  using  the

Illumina Hi-seq platform. The resulting genomes were then assembled using

the Maryland Super Read Cabog Assembler  (MaSuRCA) (Zimin et  al.  2013),

which  utilizes  both  the  Bruijn  graph  and  overlap-layout-consensus  (OLC)

methods to generate super-reads. To assess the assembly's completeness, we

searched for SCG using default parameters in Busco5 (Waterhouse et al. 2018)

with the diptera_odb10 database (Kuznetsov et al. 2023).

Phylogenomics: Nuclear genes

In addition to the sequenced 昀氀ies, we also utilized the reference genomes

of D. saltans, D. neocordata, D. prosaltans and D. sturtevanti published by Kim

et  al.  (2021)  (assembly  numbers  ASM1890357v1,  ASM1890361v1,

ASM1815127v1 and ASM1815037v1, respectively) in our downstream analysis.

For phylogenomics analysis, SCG searches were carried out using 3,285 SCG

from diptera_odb10 database on Busco5 (Waterhouse et al. 2018). SCG present

in all species were kept and aligned using the L-INS-i method implemented on

MAFFT  (Katoh  and  Standley  2013)  (ma昀昀t  --localpair  --maxiterate  1000  –

adjustdirection).

Genomic  data  of  di昀昀erent  species  of  Drosophila  support  the  ancient

proposition that  genes tend to  be situated within  the same Muller  element

across multiple species, suggesting that natural selection has maintained a low

rate of gene transposition between chromosomal arms (see SCHAEFFER, 2018).

Taking  this  gene  linkage  into  account,  we  reconstructed  昀椀ve  independent

datasets (Muller elements A-E), each comprising all SCG found in the respective

Muller element. To achieve this, we performed a tBlastn search against the D.

melanogaster,  and  subsequently  we  concatenated  genes  found  within  the

same  Muller  element.  Phylogenetic  trees  were  then  constructed  using

maximum likelihood and Bayesian methods implemented in the softwares IQ-
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TREE (Nguyen et al.  2015) and BEAST (Bouckaert et al.  2019), respectively.

Additionaly,  maximum-likelihood  trees  were  generated  for  each  gene,  the

output  tree from each Muller  element data-set  were used to reconstruct  to

species trees, using multi-species coalesce model implemented in ASTRAL-III

(Zhang et al. 2018).

Phylogenomics: Mitochondrial Genome

Mitochondrial genomes were assembled and annotated with MitoZ (Meng

et al. 2019), with the Megahit assembler (Li et al. 2015). In order to ensure the

exclusion  of  nuclear-embedded  mitochondrial  DNA  sequences  within  the

assembly,  a  strategic  approach  was  taken.  Considering  that  mitochondrial

reads  are  found  in  higher  frequency  than  nuclear-mitochondrial  DNA

sequences,  the  read  subsampling  were  set  to  0.5  gigabases  (--

data_size_for_mt_assembly 0.5).  The genes obtained from the mitochondrial

genome  were  aligned  using  the  MAFFT  alignment  tool  with  the  --auto

parameter due to the close similarity between sequences. Subsequently, the

aligned genes were concatenated into a dataset for phylogenetic analysis. The

concatenated dataset served as the basis for reconstructing phylogenetic trees

using both Maximum Likelihood (ML) implemented in IQ-TREE (Nguyen et al.

2015) and Bayesian Inference (BI) in BEAST (Bouckaert et al. 2019).

Quantifying reticulation: 2A2B test

The 20 genomes of  the  saltans group,  the  16 sequenced here  and 4

published  by  Kim  et  al.  (2021)  were  preliminary  annotated  with  Miniprot

(miniprot -Iut16, (Li  2023)).  The primary objective of this annotation was to

accurately map proteins from the robust and reliable genome annotation of D.

willistoni. After the protein mapping, the predicted gene loci were assessed to

identify syntenic blocks present in the Neotropical Sophophora (comprising D.

willistoni and  saltans group). The identi昀椀cation of these blocks was based on

gene order and orientation, achieved using an in-house Perl script. First, this

script  compare  the  sca昀昀olds’  genes  order  and  orientation  between  the

references  genome  D.  saltans  and  D.  sturtevanti,  the  synteny  block  were

de昀椀ned when all the genes were fond in same order and orientation for both

species. The identi昀椀ed collinear blocks were than searched for the remaining

genomes. Blocks with missing data, i.e. missing gene for one or more species

were  subsequently  removed  and  subjected  to  a  size-based  昀椀ltering  with
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threshold of 50kb. The selected blocks were subjected to alignment using the

Ma昀昀t (Katoh and Standley 2013). The resulting alignments were integral to the

subsequent analysis, which aims to measure reticulation evolution, in the new

2A2B test.

All combination of quartets species were evaluated for test reticulation,

bi-allelic  non  degenerated  sited  shared  by  pairs  were  searched  in  every

synteny blocks. Collinear blocks that presented at least 20 informative sites

between the  evacuated quartets  were  keep.  Bi-alellic  sites  shared between

pairs of species quartets can generate 3 topologies, AABB (species 2 and 3

closely related), ABBA (species 1 and 2 closely related), and BABA (species 1

and 3  closely  related)  as  shown in  Figure  1A.  For  each synteny block,  the

occurrences of  these three topologies  were counted,  and three di昀昀erent χ2-

based tests were conducted. First, the Patterson’s D, this measure quanti昀椀es

the di昀昀erence in allele sharing between species pairs. It provides insights into

whether a ABBA or BABA topology is more prevalent. It is calculated as the

di昀昀erence in allele sharing normalized by the total allele sharing as in Equation

1.

D1=
(∑ A B B A−∑ B A B A )

2

∑ A B B A+∑ B A B A

 (1),

The  two  other  test  were  D2  and  D3  (Equation  2  and  3)  focus  on

discordant  allele-sharing  patterns  (AABB  vs.  ABBA  and  AABB  vs.  BABA,

respectively). They help identify cases where allele sharing between species

pairs  deviates  from  what's  expected  under  a  simple  divergence  model.

Signi昀椀cant values for D1 or D2 might indicate that certain alleles are more

shared between species pairs than expected.

D 2
(∑ A A BB−∑ B A B A )

2

∑ A A BB+∑ B A B A

(2), and

D3=
(∑ A AB B−∑ A B B A )

2

∑ A AB B+∑ A BB A

(3)

Afterward, based on how these three topologies were distributed within

each synteny block and considering the signi昀椀cance of  the three tests,  the
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collinear blocks were grouped into one of four categories (see 昀椀gure 1B). Class

I comprises complete reticulation, the frequencies of the three topologies do

not deviate from neutral expectation, i.e. they are equal (D1, D2 and D3 are

not signi昀椀cant), high frequencies of this class are caused by incomplete lineage

sorting.  Class  II,  comprises  the  cases  in  which  two  topologies  do  not

signi昀椀cantly di昀昀erentiate between them and are more frequent than the third

topology (i.e. two D tests are signi昀椀cant),  high frequencies of this class are

expected  in  cases  where  hybridization  had  happen.  Class  iii,  incomplete

bifurcating,  comprises  the cases in  with  the frequency of  all  topologies  are

signi昀椀cantly  di昀昀erent.  Blocks  classi昀椀ed  in  class  iii  show  asymmetric

introgression signals. Class iv comprise the cases in each one topology is much

more frequent than the two alternatives ones, and the minor topologies are not

signi昀椀cantly di昀昀erent from each other. High frequency of class iv is expected

under  the  complete  lineage  sorting,  and  it  is  seen  when  one  topology

frequency greater outweighs two the alternative ones, which do not di昀昀erent

between them.  After  each  block  classi昀椀cation,  the  overall  genome porosity

between the quartets were evaluated.

Historical biogeography

To  determine  the  sampling  locations  of  the  evaluated  species,  we

conducted  searches  in  TaxoDros

(https://www.taxodros.uzh.ch/search/class.php).  Additionally,  we  incorporated

sampling sites that we ourselves had conducted. It is important to note that the

accuracy  of  our  species  identi昀椀cation  was  con昀椀rmed  through  BarCode

veri昀椀cation. After inspection of the geographical points and manual correction

of inverted coordinates, we identi昀椀ed the most northern, southern, western,

and eastern points for each species. We used those points to reconstruct the

ancestral geographical extremes in BayesTraits (Meade and Pagel 2022). This

analysis  was  carried  out  using  the  GEO  model  with  the  phylogenetic  tree

generated  reconstructed  with  the  Miller  element  A  (XL  chromosome  arm),

1.000.000 of MCMC and 25% burn-in. The divergence times were estimated

using this tree under Bayesian inference. The calibration point used was the

split between D. willistoni (17.5 myr), as estimated by Suvorov et al. (2022).

To assess the relationship between reticulation ratio and speciation ratio,

we  employed  speci昀椀c  calculations.  The  reticulation  ratio,  indicating  the

frequency of syntenic blocks in class i and ii, was computed for groups of four
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species.  Similarly,  the  speciation  (T2/T1)  ratio  was  also  calculated  using

quartets,  it  is  determined by the divergence time between the ancestral  of

species 2 and species 3 in relation to the divergence time of the species 1. We

also evaluated the relationship between reticulation and ancestral connectivity

between  the  species.  To  do  that,  we  utilized  the  ancestral  geographical

extremes  and  determined  the  predicted  overlap  area  using  the  polygon  R

package. Finally, we computed a ratio according to Equation 4:

H 2/H 1 r a t i o=
2×H

E
A1
+E

A2

(4)

Here,  “H”  represented  the  shared  geographical  area,  “E”  is  the  exclusive

geographical  area  of  ancestral  1  (A1)  and  2  (A2).  The  昀椀t  for  linear  and

exponential  regressions  between  Reticulation  and T2/T1  ratio  and  between

Reticulation and H2/H1 ratio were calculated.
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Figure  1.  Distribution  of  bi-allelic  patterns  along  the  reticulation-bifurcation

continuum and the  2A2B  test.  A)  The  distribution  of  bi-allelic  sites  of  four

species can generate three distinct  topologies,  BBAA with sp.3 and sp.4 as

sister, ABBA with sp.1 and sp.2 and BABA with sp.1 and sp.3 are most closely

related. B) Based of the frequency of these topologies in a genome fragment,

this fragment can be categorized in (i) complete reticulation, T1=T2=T3, (ii)

incomplete reticulation, T1=T2>T3, (iii) incomplete bifurcation, T1>T2>T3, and

(iv) complete bifurcation, T1>t2=T3.

Figure  2.  Phylogenomic  Con昀氀ict  of  X  Chromosome,  Autosomal,  and

Mitochondria. A) Comparative Analysis of autosomal topology (left, represented
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by  Muller  element  B)  and  X-linked  topology  (right,  represented  by  Muller

element  A)  demonstrates  overall  agreement  with  minor  Incongruence.  B)

Mitochondrial-Nuclear Disagreement highlight stronger incongruence between

Mitochondrial  Topology  (left)  and  Sexual  chromosome  topology  (right).

Divergence  time  estimation  (in  million  years  ago,  myr)  for  the  Sexual

Chromosome Topology is Provided.

Figure  3.  The  2A2B  test  reveals  a  diminished  introgression  signal,  while  a

prominent signal of reticulation evolution is evident within speci昀椀c subgroups.

The  distribution  of  classes  i-iv  frequencies,  spanning  from  symmetrical

complete reticulation to asymmetrical bifurcation reticulation, is displayed for

quartet species. A pronounced pattern of complete reticulation is apparent in

the saltans and sturtevanti subgroups, whereas such a signal is absent in the

elliptica subgroup.

Figure 4. Historical biogeography of the  saltans group. A) the midpoint of the

extreme geographical points for each ancestral node, reveals that the ancestral

origins of all subgroups lie within the Amazonian forest, node numbers follows

昀椀gure 2B. B) Blue line shows exponential relationship of reticulation in function

of  divergence  time  ratio  of  the  three  ingroup  species  (T2/T1  ratio)  and

reticulation (frequency of class i and ii). The black line depicts the exponential

correlation  between the  overlap of  ancestral  ranges  of  the  ingroup species

(H2/H1 ratio) and reticulation. C) The exponential correlation between ancestral

ranges of the ingroup species and reticulation. D) illustration of the method

employed to calculate the overlap of ancestral ranges of the ingroup species

(H2/H1 ratio). Speci昀椀cally, the geographical ranges of the ancestors, nodes 1

and 2, were inferred using BayesTraits, enabling the determination of shared

and unique proportions of geographical ranges.
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MP = maximum parsimonia, ML = maximum likelihood, BI =Bayesian inference.
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highlighted in yellow, blue, red, green and pink, respectively.

Supplementary  Figure  S2.  Maximum  likelihood  trees  generated  with  5

independent datasets, each comprise the concatenate genes predicted to the

Muller elements A-F. UltraFast Bootrap values are shown for each node. The

parasaltans,  sturtevanti,  saltans,  elliptica  and  cordata  subgroups  are

highlighted in yellow, blue, red, green and pink, respectively.

Supplementary  Figure  S3.  Species  Tree  generated  under  the  multi-species
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available in Supplementary Data S1 and evaluated as 5 di昀昀erent data sets,

acording to genes predicted to the Muller elements A-F. Branch support are

shown  for  each  node.  The  parasaltans,  sturtevanti,  saltans,  elliptica  and

cordata  subgroups  are  highlighted  in  yellow,  blue,  red,  green  and  pink,

respectively.

Supplementary Figure S4. Phylogenetic tree with inclusion of  D. lusaltans and

D. subsaltans. Mitochondrial tree reconstructed with inclusion of mitochondrial

genes of D. lusaltans (A) and nuclear trees generated with the Xdh (B) and Adh

(C)  genes,  which  includes  sequences  of  D.  subsaltans.  Branch  supporter

di昀昀erent than 1 are shown. The parasaltans, sturtevanti, saltans, elliptica and

cordata  subgroups  are  highlighted  in  yellow,  blue,  red,  green  and  pink,

respectively.
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