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Each cortical area has a distinct pattern of anatomical connec-

tions within the thalamus, a central subcortical structure com-

posed of functionally and structurally distinct nuclei. Previous

studies have suggested that certain cortical areas may have more

extensive anatomical connections that target multiple thalamic

nuclei, which potentially allows them to modulate distributed

information flow. However, there is a lack of quantitative inves-

tigations into anatomical connectivity patterns within the thala-

mus. Consequently, it remains unknown if cortical areas ex-

hibit systematic differences in the extent of their anatomical

connections within the thalamus. To address this knowledge

gap, we used diffusion magnetic resonance imaging (dMRI) to

perform brain-wide probabilistic tractography for 828 healthy

adults from the Human Connectome Project. We then devel-

oped a framework to quantify the spatial extent of each cor-

tical area’s anatomical connections within the thalamus. Ad-

ditionally, we leveraged resting-state functional MRI, cortical

myelin, and human neural gene expression data to test if the ex-

tent of anatomical connections within the thalamus varied along

the cortical hierarchy. Our results revealed two distinct cortico-

thalamic tractography motifs: 1) a sensorimotor cortical mo-

tif characterized by focal thalamic connections targeting pos-

terolateral thalamus, associated with fast, feed-forward infor-

mation flow; and 2) an associative cortical motif characterized

by diffuse thalamic connections targeting anteromedial thala-

mus, associated with slow, feed-back information flow. These

findings were consistent across human subjects and were also

observed in macaques, indicating cross-species generalizability.

Overall, our study demonstrates that sensorimotor and associ-

ation cortical areas exhibit differences in the spatial extent of

their anatomical connections within the thalamus, which may

support functionally-distinct cortico-thalamic information flow.
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Introduction

Mapping the anatomical connections of the brain is a funda-

mental goal in neuroscience, as these pathways tether brain

areas together and impose constraints on their functional in-

teractions. The thalamus is a central subcortical structure that

is extensively connected to the entire cortex through long-

range white matter fiber tracts (1). These tracts form parallel

cortico-thalamic circuits, which enable the thalamus to re-

lay and coordinate information across the cortex (2–4). No-

tably, the thalamus lacks reciprocal excitatory connections

(5). Thus, computations involving the thalamus rely on its

long-range inputs from and outputs to the cortex (6). Map-

ping these long-range connections can provide insight into

the role of the thalamus in shaping cortical information flow

and the neural basis of cognitive computation, both of which

are critically reliant on the interactions between the thalamus

and cortex in vertebrates (2, 7–12).

Studies of cortical-thalamic connectivity date back to the

early 19th century, yet we still lack a comprehensive un-

derstanding of how these connections are organized (see 13

and 14 for review). The traditional view of the thalamus is

based on its histologically-defined nuclear structure (6). This

view was originally supported by evidence that cortical ar-

eas project to individual thalamic nuclei, suggesting that the

thalamus primarily relays information (15). However, some

cortical areas exhibit extensive connections within the thala-

mus, which target multiple thalamic nuclei (16–22). These

extensive connections may enable information integration

within the thalamus through overlapping termination patterns

from different cortical areas, a key mechanism for higher-

order associative thalamic computations (23–25). However,

our knowledge of how thalamic connectivity patterns vary

across cortical areas, especially in humans, remains incom-

plete. Characterizing cortical variation in thalamic connec-

tivity patterns may offer insights into the functional roles of

distinct cortico-thalamic loops (6, 7).

Primate studies investigating cortico-thalamic circuitry

have primarily relied on anatomical tracer data in monkeys

(e.g., 19–21, 26–28). However, such invasive studies cannot

be replicated in humans. Fortunately, advancements in mag-

netic resonance imaging (MRI) have enabled the examination

of white matter tracts in vivo using diffusion MRI (dMRI),

which measures the diffusion properties of water molecules
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in brain tissue (29–31). These properties are then used by

tractography algorithms to reconstruct white matter tracts,

known as streamlining, and estimate region-to-region con-

nectivity (32–35).

State-of-the-art tractography techniques can now map

streamlines at high spatial resolutions to reveal connectivity

patterns within the thalamus (16, 17, 36–38). These stud-

ies have unveiled a diverse array of cortico-thalamic circuits,

which have unique origins, targets, strengths, and microstruc-

tural profiles and are optimized for distinct roles in sen-

sory and higher-order associative computations (16, 38–41).

Emerging dMRI evidence also suggests that certain cortical

areas may have more extensive connections within the thala-

mus (38), which may grant them privileged access for inte-

grating cortical signals or modulating whole-brain functional

interactions (42). However, quantitative DWI studies that ex-

amine the spatial patterns of brain connections are limited

(35). Therefore, it is uncertain whether the extent of anatom-

ical connections within the thalamus systematically varies

across cortical areas in humans and what implications such

variation may have for information processing within distinct

cortico-thalamic systems.

Furthermore, there are few studies that have directly com-

pared cortico-thalamic anatomical circuitry between humans

and non-human primates using tractography methods (e.g.,

41, 43). Such studies form a bridge to the existing macaque

tract tracing literature. They also provide validation for hu-

man dMRI findings, as macaque dMRI can be collected at

much higher resolutions, without confounds such as motion

artifacts (44).

The aim of this study was to investigate the spatial extent

of anatomical connectivity patterns within the thalamus in

both humans and non-human primates and determine if such

patterns differ between sensorimotor and association corti-

cal areas. To this end, we leveraged probabilistic tractogra-

phy derived from 3T diffusion data from 828 healthy human

adults from the Human Connectome Project (HCP) and 7T

diffusion data from six post-mortem macaque monkeys. We

first developed an approach to quantify the spatial properties

of anatomical connectivity patterns within the thalamus. We

then tested if the extent of these patterns varied across the

cortical hierarchy. We found that sensorimotor cortical areas

exhibited more focal thalamic connectivity patterns, while as-

sociation cortical areas exhibited more diffuse, or extensive,

thalamic connectivity patterns. Additionally, we show that

such cortical variation was consistent across individuals, gen-

eralized in macaques, and associated with distinct types of

information flow. Overall, our findings highlight that sensori-

motor and association cortical areas exhibit distinct anatomi-

cal connectivity patterns within the thalamus, and differences

in the extent of such thalamic connectivity patterns may sup-

port functionally distinct cortico-thalamic computations.

Results

Cortical areas differ in the extent of their anatomi-

cal connectivity patterns within the thalamus. To test

if there are systematic differences in the spatial extent of

anatomical connections within the thalamus across cortical

areas, we developed a framework to quantify the spatial ex-

tent of thalamic connectivity patterns using Euclidean dis-

tance (ED) (Fig. 1A). This framework assigns a value to ev-

ery cortical area (referred to throughout the manuscript as

EDpc1 loadings). This measure reflects the spatial extent of

each cortical area’s anatomical connections within the tha-

lamus, such that cortical areas with higher EDpc1 loadings

have more focal thalamic connections.

Briefly, the framework uses anatomical connectivity be-

tween each cortical area and each thalamic voxel, creating

a matrix where each element is a streamline count (SC).

A higher streamline count reflects a higher likelihood that

a thalamic voxel is connected to a given cortical area rel-

ative to lower streamline counts. Because we used proba-

bilistic tractography, which assigns a probabilistic estimate to

each thalamic voxel, each cortical area’s thalamic streamline

counts must be thresholded to exclude thalamic voxels with

low streamline counts. There is no consensus for selecting a

threshold, so each cortical area’s thalamic streamline counts

were iteratively thresholded by excluding 0% to 99% of tha-

lamic voxels with the lowest streamline counts. Next, av-

erage pairwise ED was calculated between these ‘surviving’

thalamic voxels (i.e., the top x% of thalamic voxels with the

highest streamline counts) for each threshold. This resulted

in a matrix of 100 ED values for each cortical area. This ‘ED

matrix’ was then used as input into a principal components

analysis (PCA) to produce a single loading value for each

cortical area (EDpc1 loadings). We show that EDpc1 load-

ings index the spatial extent of each cortical area’s anatomi-

cal connections within the thalamus, such that a cortical areas

with higher EDpc1 loadings have more focal thalamic con-

nections.

We applied the thresholding and ED framework to whole-

brain dMRI-derived probabilistic tractography data from

healthy adults from the Human Connectome Project (n=828;

see SI Appendix Fig. S1 for preprocessing steps). We seg-

mented the cortex into 360 discrete areas using cortical

parcels defined in the Glasser et al. parcellation (47) and ex-

tracted SCs between these cortical parcels and each thalamic

voxel. Only ipsilateral thalamic voxels were considered, un-

less otherwise specified in supplementary analyses. Each cor-

tical parcel exhibited a distinct thalamic connectivity pattern,

as exemplified by motor area 1 (M1; top magenta panel) and

dorsolateral prefrontal cortex (DLPFC; bottom cyan panel)

(Fig. 1B). Here, warmer colors reflect voxels that have a

higher likelihood of an anatomical connection to the given

cortical area relative to cooler colors.

Next, for each cortical parcel, we iteratively calculated

ED between thalamic voxels after progressively excluding

thalamic voxels with the lowest SCs (Fig. S2 shows the sur-

viving thalamic voxels for a subset of thresholds). This pro-

cess generated 100 ED values for 360 cortical parcels and

100 thresholds (Fig. 1C). As thalamic voxels with lower SCs

were progressively excluded from the ED calculation, cor-

tical areas with more diffuse thalamic connections had ED

values that remain relatively higher across thresholds (e.g.,
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Fig. 1. Workflow to quantify the extent of each corti-
cal area’s thalamic anatomical connectivity pattern us-
ing Euclidean distance (ED). (A) Schematic overview of
the thresholding and ED calculation framework applied
to group-averaged and individual-level human probabilis-
tic tractography data (n=828). ED was used to measure
the extent of each cortical area’s anatomical connectivity
pattern within ipsilateral thalamus (see Fig. S7 for bilat-
eral calculation). (B) Thalamic connectivity patterns for
right motor area 1 (M1) and dorsolateral prefrontal cortex
(DLPFC). M1 and DLPFC exhibit focal and diffuse thala-
mic connections, respectively. Cortical parcels were de-
fined via Glasser et al. (45). (C) ED matrix, depicting av-
erage pairwise distances between surviving thalamic vox-
els for 100 thresholds. Cortical parcels with more diffuse
thalamic connections exhibited higher ED values across
thresholds (e.g., DLPFC). (D) Cortical EDpc1 loading
map obtained by applying principal component analysis
(PCA) to the ED matrix. (E) Cortical EDσ map show-
ing the standard deviation of ED across 100 thresholds
for each cortical parcel. EDσ almost perfectly correlated
with EDpc1 (rs=0.99; psa < 0.001), with p-values es-
timated using spatial-autocorrelation (sa) preserving sur-
rogate brain maps (46). rs : Spearman rho. (F) Corre-
lations between EDpc1 and EDσ were highly consis-
tent across subjects. (G) EDpc1 loadings and ED values
across cortex negatively correlated at more conservative
thresholds, indicating that higher EDpc1 loadings corre-
spond to more focal thalamic connections.

DLPFC).

We then conducted PCA using the ED matrix as input to

derive a single value for each cortical parcel. The first PC

accounted for almost all of the variation of ED across corti-

cal parcels (92%) (Fig. 1D). Cortical parcels with the lowest

loadings on PC1 (EDpc1 loadings) included bilateral ante-

rior cingulate areas, bilateral precuneus, and right temporal

cortex. In contrast, cortical parcels with the highest EDpc1

loadings included bilateral visual areas, right somatosensory

cortex, and left entorhinal cortex (refer to Fig. S3 for visual-

izations of their respective thalamic connectivity patterns).

We then compared EDpc1 loadings with measures de-

rived from alternative methods to quantify the extent of cor-

tical connections within the thalamus. Based on the quali-

tative observation that more conservative thresholds showed

the most variation in ED values across cortical parcels,

the standard deviation of ED across thresholds was calcu-

lated for each cortical parcel (EDσ) (Fig. 1E). Remarkably,

the EDpc1 and EDσ measures almost perfectly correlated

(rs=0.99; psa < 0.001), with statistical significance deter-

mined using spatial-auto-correlation (SA) preserving surro-

gate maps (see SI Appendix for further details) (46). The

high correlation between EDpc1 and EDσ was consistently

observed across subjects (mean=0.99, max=0.99, min=0.94)

(Fig. 1F). This suggests the the dominant PC axis reflects

ED variation at more conservative thresholds. Moreover, we

explored additional measures to capture the extent of cortical

connections within the thalamus, which largely replicated the

main findings of this study (Fig. S4). Based on its superior

agreement with ED calculated at more conservative thresh-

olds, we selected EDpc1 loadings for further analysis.

We next examined whether the EDpc1 measure could

distinguish focal and diffuse thalamic connections. To do

this, we compared EDpc1 loadings with ED values calcu-

lated at individual thresholds (Fig. 1G). We observed a strong

negative correlation between EDpc1 and ED at more con-

servative thresholds (e.g., 78-99%; Fig. S5). Additionally,

we investigated the relationship between EDpc1 loadings

and the mean and standard deviation of ED across threshold

ranges. These measures also highly correlated with EDpc1

loadings at more conservative thresholds (Fig. S6). Over-

all, higher EDpc1 loadings correspond to lower ED values,

when calculated between thalamic voxels with the highest

SCs, which reflect cortical parcels with more focal thalamic

connectivity patterns.

We also performed supplementary analysis to determine

if the extent of cortical connections within the thalamus var-

ied across hemispheres by calculating EDpc1 loadings for

bilateral (Fig. S7) and contralateral (Fig. S8) thalamic con-

nectivity patterns. Bilateral EDpc1 loadings strongly corre-

lated with ipsilateral loadings (rs=0.91), while contralateral

loadings exhibited a weaker, yet still significant, correlation

with ipsilateral loadings (rs=0.57). Furthermore, bilateral

EDpc1 loadings differentiated cortical parcels with unilat-

eral and bilateral thalamic connectivity patterns (Fig. S7F),

demonstrating that the EDpc1 measure could distinguish be-

tween the extent of thalamic connections within and across

hemispheres.

Finally, we conducted extensive control analyses. We

found that EDpc1 loadings were not associated with inter-

subject variation in motion (Fig. S9) or volumes of gray

or white matter in the cortex or subcortex (Fig. S10). Ad-

ditionally, inter-cortical variation of EDpc1 loadings did

not correspond with average streamline count (Mean SC)
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Fig. 2. Differences in the extent of anatomical connections within the thalamus
between sensory and association cortical parcels. (A) Resting-state functional con-
nectivity networks identified by Ji et al. (48). (B) Average EDpc1 loading within
each network for each subject. Barplots show the mean and standard error. (C)

Sensory networks exhibited significantly higher EDpc1 loadings compared to as-
sociation networks (two-sided Wilcoxon signed-rank test; *** p < 0.001). (D) Cortical
myelin map calculated by averaging T1w/T2w values across subjects. (E) Cortical
principal functional gradient (RSF Cpc1) loading map derived from PCA on cortico-
cortical resting-state functional connectivity data. Sensory cortical parcels exhibit
higher T1w/T2w values and RSF Cpc1 loadings compared to association cortical
parcels. (F,G) Correlations between EDpc1 loadings and T1w/T2w values, as well
as RSF Cpc1 loadings, across the cortex. (H,I) On average, a moderate rela-
tionship was observed between EDpc1 loadings and T1w/T2w values, as well as
RSF Cpc1 loadings, across subjects. Boxplots show the median and inter-quartile
ranges.

or streamline length (Fig. S11), anatomical overlap with

thalamic fractional anisotropy and mean diffusivity values

(Fig. S12), or cortical geometry, distortion, bias, and surface

area (Fig. S13). EDpc1 loadings also remained largely un-

changed after accounting for size differences between the left

and right thalamus (Fig. S14) and inter-cortical variation of

cortical curvature (Fig. S15).

Lastly, we also calculated isotropy to capture how evenly

a connectivity pattern extends within the thalamus (Fig. S16),

which also did not correspond highly with EDpc1 loadings.

Sensory cortical parcels have more focal connections

within the thalamus relative to association cortical

parcels. Animal studies have shown that anatomical features

in cortico-thalamic circuits are hierarchically-organized, or

varying between sensorimotor and association cortical areas

(49–52). Therefore, we hypothesized that the spatial extent

of anatomical connections within the thalamus would vary

along the cortical hierarchy in humans. To test this hypothe-

sis, we compared EDpc1 loadings between sensory and asso-

ciation cortical parcels using both network and gradient ap-

proaches (Fig. 2). Overall, we found that sensory cortical

parcels had more focal thalamic connections relative to asso-

ciation cortical parcels.

First, we assigned each cortical parcel to one of twelve

resting-state functional networks based on the work of Ji et

al. (48). These networks included four sensorimotor (‘sen-

sory’) and eight higher-order associative (‘association’) net-

works (Fig. 2A). EDpc1 loadings were higher in sensory net-

works (median=0.93) compared to association networks (me-

dian=0.68) (Wilcoxon signed-rank test: W=0, p=3.76e-137)

(Fig. 2B,C).

Recent methods have emerged to characterize brain orga-

nization along neural gradients, which reflect smooth spatial

transitions in brain features (53). Many of these gradients

vary between sensory and association cortical areas, includ-

ing the T1w/T2w ratio, a proxy measure of cortical myelin

(54), and the principal resting-state functional gradient

(RSFCpc1), which is derived from cortico-cortical resting-

state blood-oxygen-level-dependent (BOLD) functional con-

nectivity (55). T1w/T2w values and RSFCpc1 loadings

highly correspond with one another (rs=0.51; Fig. S17A)

and both are higher in sensory relative to association corti-

cal parcels (Fig. 2D,E).

EDpc1 loadings significantly correlated with both

T1w/T2w values (rs=0.48, psa=0.026) (Fig. 2F) and

RSFCpc1 loadings (rs=0.59, psa=0.001) across cortex

(Fig. 2G). On average, we observed a moderate cor-

relation between each subject’s EDpc1 loadings and

group-averaged T1w/T2w values (mean=0.35, median=0.36,

SEM=0.003, STD=0.09) and group-averaged RSFCpc1

loading (mean=0.45, median=0.45, SEM=0.003, STD=0.09)

(Fig. 2H,I). However, there were instances where a weak re-

lationship was observed between these cortical maps. These

weak correlations may be attributed to the presence of bi-

ologically implausible connections originating from certain

cortical parcels, which were associated with a weaker cor-

relation between EDpc1 loadings and T1w/T2w values, as

well as RSFCpc1 loadings, across subjects (Fig. S18). See

SI Appendix for further details.

The finding that EDpc1 loadings significantly corre-

lated with T1w/T2w values, as well as RSFCpc1 loadings,

was replicated using bilateral thalamic connectivity patterns

(Fig. S7), but not contralateral thalamic patterns (Fig. S8).

This finding was also replicated using an alternate tractog-

raphy seeding strategy (Fig. S19), dense connectivity data

(Fig. S20), and structurally and functionally defined thala-

mic masks (Fig. S21). Lastly, at more conservative thresh-

olds, ED calculated at individual thresholds (Fig. S5) and the

mean and standard deviation of ED calculated for a range of
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thresholds (Fig. S6) also differed between sensory and asso-

ciation cortical parcels.

We also tested the correspondence between EDpc1 load-

ings and the anteroposterior cortical gradient and the sec-

ondary principal functional gradient, which reflects func-

tional specialization along the sensory-association-motor

cortical axis (55). Neither cortical gradient significantly cor-

related with EDpc1 loadings (Fig. S22), suggesting speci-

ficity for the sensorimotor-association cortical gradient.

Cortical parcels with focal connections within the tha-

lamus preferentially couple with posterolateral thala-

mus. Thalamic nuclei are known to play roles in sensorimo-

tor and associative cognitive processes (9, 56). We hypothe-

sized that cortical parcels with diffuse thalamic connections

would anatomically couple with associative thalamic nuclei,

while those with focal thalamic connections would anatom-

ically couple with sensorimotor thalamic nuclei. To test

this hypothesis, we compared each cortical parcel’s EDpc1

loadings with their anatomical coupling with thalamic nu-

clei associated with sensorimotor and associative computa-

tions (Fig. 3). We observed that sensorimotor thalamic nu-

clei (e.g., posterolateral, first-order thalamic nuclei) prefer-

entially couple with cortical parcels with focal thalamic con-

nections. One the other hand, associative thalamic nuclei

(e.g., higher-order, mediolateral thalamus) exhibit more vari-

able targets, but overall appear to couple with cortical parcels

with focal and diffuse thalamic connections.

First, we tested if there was a correspondence between the

extent and location of a cortical parcel’s connections within

the thalamus. For this analysis, we used the Morel histolog-

ical thalamic atlas to segment the thalamus into 28 thalamic

nuclei (Fig. 3A). We then constructed an anatomical connec-

tivity matrix to assess the strength of connectivity between

each cortical parcel and each thalamic nucleus (Fig. 3B). In

this matrix, warmer colors reflect a higher Mean SC, reflect-

ing more likely corticothalamic connections relative to cooler

colors. The cortical parcels with the highest group-averaged

EDpc1 loadings are positioned at the top. Mean SC val-

ues were normalized within each nucleus, to better visualize

patterns of anatomical connectivity across cortex parcels for

each thalamic nucleus (see Fig. S23 for unnormalized matri-

ces).

Based on previous reports proposing different classifica-

tion schemes for thalamic nuclei, we classified thalamic nu-

clei into subgroups based on their spatial proximity (e.g., an-

terior, medial, posterior, and lateral groups), primary input

sources (e.g., higher/first-order; (58)), and molecular archi-

tecture (e.g., primary, secondary, and tertiary; 59; Fig. S24).

See Table. S1 for all nuclei labels and subgroup assign-

ments. Anterior and medial thalamic nuclei are commonly

associated with higher-order cognitive functions, while lat-

eral and posterior nuclei are primarily associated with senso-

rimotor cognitive functions (8, 42, 60, 61). Similarly, ‘first-

order’ thalamic nuclei relay sensory information to the cor-

tex. On the other hand, ‘higher-order’ thalamic nuclei facil-

itate trans-thalamic information processing which is impor-

tant for higher-order cognitive functions (15, 58). These sim-

Fig. 3. Mapping between the spatial extent of anatomical connections within the tha-
lamus and anatomical coupling with the anteromedial-posterolateral thalamic gradi-
ent. (A) Axial view of 28 histologically-defined thalamic nuclei from the Morel thala-
mic atlas (57). (B) Anatomical connectivity matrix depicting the anatomical connec-
tivity strength between each cortical parcel and each thalamic nucleus. The y-axis
is sorted such that cortical parcels with higher EDpc1 loadings are positioned near
the top. (C-D) The correlation between EDpc1 loadings and Mean SC values was
calculated for each thalamic nucleus for each subject. Higher values indicate thala-
mic nuclei that preferentially couple with cortical parcels with focal thalamic connec-
tions. (C) Posterior thalamic nuclei preferentially coupled with cortical parcels with
focal thalamic connections, relative to lateral, anterior, and medial nuclei (Fried-
man test; *** p=0.001 for Nemenyi post-hoc tests). Each dot represents a sub-
ject’s averaged rs value across nuclei within the subclass. (D) First-order thalamic
nuclei preferentially coupled with cortical parcels with focal thalamic connections
(two-sided Wilcoxon signed-rank test). (E) The overlap between each cortical par-
cel’s anatomical connectivity along the anteromedial-posterolateral thalamic spatial
gradient (P L-AMt). Positive values denote preferential coupling with anterome-
dial thalamus, while negative values denote preferential coupling with posterolateral
thalamus (P L-AMc). (F) Cortical parcels with higher EDpc1 loadings preferen-
tially coupled with the posterolateral thalamus, reflected by lower P L-AMc values.
(G) On average, a moderate relationship was observed between EDpc1 loadings
and P L-AMc values across subjects.

plified classification schemes do not fully encompass thala-

mic nuclei heterogeneity, so we tested multiple classification

schemes to test our hypothesis.

We correlated each cortical parcel’s EDpc1 loadings with

Mean SC values for each thalamic nucleus, separately. This

produced 28 Spearman rho values for each subject. Stronger

rho values indicated thalamic nuclei that preferentially cou-

ple with cortical parcels with focal (closer to 1) or diffuse

(closer to -1) connections within the thalamus. Weak rho val-

ues (closer to 0) indicated thalamic nuclei with little a weak

preference between these cortical parcels (i.e., they coupling
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with cortical areas with focal and diffuse thalamic connectiv-

ity patterns).

We then tested if these rho values differed between

thalamic nuclei. First, we found that the correlation

between EDpc1 loadings and Mean SC was highest in

posterior (median=0.27) thalamic nuclei, followed by lat-

eral (median=0.15), anterior (median=0.1), and medial

(median=0.01) thalamic nuclei (χ2 (3)=1165, p < .001)

(Fig. 3C). Post-hoc Nemenyi tests indicated significant dif-

ferences between all group comparisons (*** p=0.001). We

also found that these correlations were higher in first-order

(median=0.20) compared to higher-order (median=0.11) tha-

lamic nuclei (Wilcoxon signed-rank test; W=2067, p=6.47e-

134).

We also examined the correlation between EDpc1 load-

ings and Mean SC within thalamic subclasses defined based

on gene expression data (59), which replicated our main

findings (Fig. S24). Additionally, we examined this cor-

relation for each of the 28 Morel thalamic nuclei using

group-averaged data. However, we observed modest correla-

tions that did not survive correction for multiple comparisons

(Fig. S23). It is worth noting that other classifications of tha-

lamic nuclei exist (e.g., 62), which we did not consider in this

study.

Emerging studies suggest that some properties of thala-

mic anatomy vary along continuous spatial gradients within

the thalamus (17, 22, 63). Based on previous findings that

thalamic connectivity varies along anteroposterior and medi-

olateral spatial gradients (17, 22), we hypothesized that the

extent of connections within the thalamus would also con-

tinuously vary along these axes. To investigate this hypothe-

sis, we examined cortico-thalamic anatomical coupling along

Cartesian spatial gradients within the thalamus (e.g., antero-

posterior, mediolateral, dorsoventral).

First, we calculated the position of each thalamic voxel

along the anteromedial-posterolateral spatial gradient (PL-

AMt). Then, we correlated each cortical parcel’s stream-

line counts within ipsilateral thalamus to each thalamic

voxel’s position along the anteromedial-posterolateral gradi-

ent (schematized in Fig. S25). This workflow generated a

cortical map where warmer colors reflect cortical parcels that

anatomically couple with anteromedial thalamus and cooler

colors reflect cortical parcels that anatomically couple with

posterolateral thalamus (PL-AMc) (Fig. 3E).

We then correlated PL-AMc values with EDpc1 load-

ings (Fig. 3F). We found that cortical parcels with focal tha-

lamic connections preferentially coupled with posterolateral

thalamus (rs=-0.57, psa=0.004) compared to cortical parcels

with diffuse thalamic connections, and this relationship was

largely consistent across subjects (mean=-0.53, median=-

0.54, SEM=0.004, STD=0.12) (Fig. 3G).

We replicated these results using an alternate calculation

for the mediolateral thalamic gradient (Fig. S26). Addition-

ally, we conducted specificity analyses using the dorsoven-

tral gradient and combinations of the anteroposterior, medi-

olateral, and dorsoventral gradients (Fig. S27). Across sub-

jects, we found that the strongest anatomical coupling asso-

Fig. 4. Mapping between cortical variation in the extent of thalamic connectivity pat-
terns, anatomical overlap across thalamic subpopulations, and intrinsic timescale.
(A) Thalamic gradient reflecting the relative mRNA expression of Parvalbumin
(PVALB) and Calbindin (CALB1)-expressing thalamic subpopulations (CPt), which
index ‘core’ and ‘matrix’ thalamic subpopulations respectively. (64). Warmer colors
reflect higher CALB1 expression relative to PVALB. (B) CPt and P L-AMt values
strongly correlated with one another. (C) Cortical map reflecting each cortical area’s
anatomical overlap across CPt values (CPc). Warmer colors reflect preferential
coupling with CALB1-expressing thalamic populations and cooler colors reflect pref-
erential coupling with PVALB-expressing thalamic populations. (D) EDpc1 load-
ings and CPc values significantly correlated with one another. (E) Cortical map of
z-transformed intrinsic timescale (τ ), calculated from group-averaged resting-state
data (65). (F) EDpc1 loadings and z-transformed τ values exhibited a trending
correlation when accounting for spatial-autocorrelation.

ciation was between EDpc1 loadings and the anteromedial-

posterolateral thalamic gradient (Fig. S27I).

The extent of cortical connections within the thala-

mus is associated with distinct types of information

flow. Given previous reports that feed-forward and feed-back

cortico-thalamic connectivity vary across the cortical hierar-

chy (49), we hypothesized that the extent of cortical connec-

tions within the thalamus would also correspond to distinct

types of information flow in the cortex. Our findings sup-

port this hypothesis, demonstrating that cortical parcels with

focal thalamic connections are associated with faster, relay-

like feed-forward information flow, whereas cortical parcels

with diffuse thalamic connections are associated with slower,

modulatory feed-back information flow.

Previous studies have characterized two histologically-

defined thalamic subpopulations associated with distinct

types of information flow. Here, ‘core’ thalamic neurons

project focally to middle cortical layers, while ‘matrix’ tha-

lamic neurons project diffusely to superficial cortical layers

(5, 66). Additionally, ‘core’ fibers support relay-like, feed-

forward information flow, suited for the relaying informa-

tion, while ‘matrix’ fibers support slower, feed-back infor-

mation flow, suited for modulatory information processing

(5, 66). Recent BOLD-derived functional connectivity work

in humans demonstrated that sensory cortical parcels func-

tionally couple with ‘core’ thalamus while associative corti-

cal parcels functionally couple with ‘matrix’ thalamus (64).
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Based on this evidence, we hypothesized that cortical parcels

with more focal thalamic connections would anatomically

couple with ‘core’ thalamus, while cortical parcels with more

diffuse thalamic connections would anatomically couple with

‘matrix’ thalamus.

To test our hypothesis, we used data from the Allen Hu-

man Brain Atlas to estimate the relative mRNA expression

levels of calcium-binding proteins Parvalbumin (PVALB),

which is more highly expressed in ‘core’ thalamus, and Cal-

bindin (CALB1), which is more highly expressed in ‘ma-

trix’ thalamus. Differences in their mRNA expression in-

dex each thalamic voxel’s position along the core-matrix tha-

lamic gradient (CPt) derived from Muller & Munn et al.

(64) (Fig. 4A). Remarkably, the CPt gradient strongly corre-

lated with the anteromedial-posterolateral thalamic gradient

(rs=0.84) (Fig. 4B). While other calcium-binding proteins,

like Calretinin, are expressed by thalamic neurons as well

(67), we did not consider them in this study.

Next, for each cortical parcel, we correlated their stream-

line counts within ipsilateral thalamic voxels with those vox-

els’ CPt value, resulting in a cortical map of CPc values

(Fig. 4C). Here, warmer colors reflect cortical parcels that

preferentially target CALB1-expressing ‘matrix’ thalamus

while cooler colors reflect cortical parcels that preferentially

target PVALB-expressing ‘core’ thalamus.

EDpc1 loadings significantly corresponded with CPc

values (Fig. 4D), suggesting that cortical parcels with focal

thalamic connections preferentially coupled with ‘core’ tha-

lamus, while cortical parcels with diffuse thalamic connec-

tions preferentially coupled with ‘matrix’ thalamus (rs=0.57,

psa=0.009). Moreover, functionally-defined association cor-

tical parcels exhibited higher anatomical CPc values com-

pared to functionally-defined sensory cortical parcels (Fig.

S28).

We next compared the extent of each cortical parcel’s

anatomical connections within the thalamus and the intrinsic

timescale of their resting-state functional connectivity. Corti-

cal parcels are known to exhibit differences in the timescales

of their intrinsic BOLD fluctuations, such that cortical parcels

associated with feed-forward processing operate at relatively

faster timescales compared to cortical parcels associated with

feed-back processing (65, 68). We hypothesized that cor-

tical parcels with more diffuse thalamic connections would

exhibit longer intrinsic timescales. To test this, we com-

pared EDpc1 loadings and standardized intrinsic timescale

values (τ ), derived from resting-state functional connectiv-

ity from Ito et al. (65) (Fig. 4E). We found a modest cor-

relation between EDpc1 loadings and τ values, indicating

that cortical parcels with focal thalamic connections operated

at faster timescales at rest. However, this relationship only

showed a trending significance when accounting for spatial

auto-correlation (rs=-0.38, psa=0.09) (Fig. 4F).

Hierarchical variation of the extent of cortical connec-

tions within the thalamus is generalized in macaque.

Following previous work comparing cortico-thalamic con-

nectivity between humans and macaques (e.g., 41), we com-

pared the extent of anatomical connections within the tha-

Fig. 5. Cortical variation of the extent of anatomical connections within the macaque
thalamus. (A) Exemplar thalamic connectivity patterns for M1 (area F1; magenta)
and DLPFC (area 9/46d; cyan), parcellated using the Markov Atlas (69). (B) ED
matrix. (C) Cortical EDpc1 loading map. (D) Cortical myelin map, calculated by
averaging T1w/T2w values across 30 macaque monkeys (70). (E) Across cortex,
EDpc1 loadings positively correlated with T1w/T2w values at the group level and
(F) at the subject level. (G) Cortical map reflecting anatomical coupling with the
anteromedial-posterolateral thalamic spatial gradient (P L-AMt). Warmer colors
reflect cortical parcels that preferentially coupled with anteromedial thalamus (P L-
AMc). (H) Cortical parcels with higher EDpc1 loadings preferentially coupled
with posterolateral thalamus. The red dashed line represents parcels with weak
preferential coupling the P L-AMt gradient. (I) On average, EDpc1 loadings and
P L-AMc value negatively correlated across monkeys.

lamus between sensory and association cortical areas in

macaque monkeys. We hypothesized that cortical variation of

the extent of connections within the macaque thalamus would

similarly vary along the cortical hierarchy as in humans, al-

beit to a lesser extent. To test this, we analyzed tractography

data from six post-mortem macaque brains, obtained from 7T

diffusion MRI scans. We found that the cortical variation in

the extent of anatomical connections within the thalamus was

generalized in macaques.

We parcellated macaque tractography data to derive con-

nectivity between 128 cortical parcels, derived from the

Markov atlas, and ipsilateral thalamic voxels (69). Macaque

M1 (area F1; magenta panel) projected to the lateral por-

tion of the thalamus, while DLPFC (area 9/46d; cyan panel)

projected to medial and anterior thalamic regions (Fig. 5A).

Comparing ED values across thresholds, we observed greater

similarity between M1 and DLPFC in macaque compared to

human. We then performed PCA using the ED matrix to ob-

tain macaque EDpc1 loadings, which accounted for 82% of

the variance (Fig. 5B-C).

To test if EDpc1 loadings differed between sensory

and association cortical parcels in macaques, we corre-

lated group-averaged macaque EDpc1 loadings and group-

averaged T1w/T2w values obtained from Hayashi et al. (70)
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(Fig. 5D). We observed a strong positive correlation be-

tween EDpc1 loadings and T1w/T2w values at the group

level (rs=0.52, psa=0.024) (Fig. 5E), which was consis-

tent on average across subjects (mean=0.36, median=0.34,

SEM=0.06, STD=0.15). Surprisingly, no group differences

were observed between humans (mean=0.35, STD=.09) and

macaques (mean=0.36, STD=.15) (t=0.31, p=0.75) (Fig. 5F;

Fig. S29D).

We also conducted further analyses to investigate whether

cortical parcels with focal thalamic connections preferen-

tially coupled with posterolateral thalamus in macaques.

Consistent with the human data, macaque EDpc1 loadings

showed a strong negative correlation with PL-AMc values at

both the group level (rs=-0.57; psa=0.003) and the subject-

level (mean=-0.27, median=-0.33, SEM=0.086, STD=0.21)

(Fig. 5G-I). Similar to the human data, the strongest asso-

ciation between EDpc1 loadings and thalamic spatial gra-

dients was with the anteromedial-posterolateral gradient in

macaques (Fig. S30).

We also compared the correlation between EDpc1 load-

ings and overlap across each thalamic spatial gradient be-

tween species using a two-way ANOVA. We found a signif-

icant difference between humans (mean=-0.32, STD=0.25)

and macaques (mean=-0.20, STD=0.22) (F(1,8)=24.5, p <

0.001), a significant main effect of gradient (p < 0.001),

and no interaction effect (p=0.12). Post-hoc tests showed

that only the correlation between EDpc1 loadings and

PL − AMc values were significantly different between hu-

mans (mean=-0.53, STD=0.12) and macaques (mean=-0.27,

STD=0.21) (p=0.041) (Fig. S29E).

Discussion

This study contributes to the rich body of literature inves-

tigating the organization of cortico-thalamic systems in hu-

man and non-human primates. By employing dMRI-derived

tractography across species, we tested if cortical areas sys-

tematically vary in the spatial extent of their anatomical con-

nections within the thalamus. This is critical to establish the

anatomical architecture of how information flows within dis-

tinct cortico-thalamic systems. Here, we show that the ex-

tent of anatomical connections within the thalamus systemat-

ically varied across the cortical hierarchy in both humans and

macaques. Our results implicate distinct tractography mo-

tifs corresponding to sensorimotor and association cortico-

thalamic circuits. These motifs were consistent across people

and generalized in macaques. Collectively, this study offers

convergent evidence that sensory and association cortical ar-

eas differ in their anatomical connectivity patterns within the

thalamus, which may support distinct computations across

cortico-thalamic systems.

The spatial extent of anatomical connections within

the thalamus varies across the cortical hierarchy. Here

we replicate findings from prior tracer and tractography

studies, providing confirmation that each cortical area ex-

hibits a distinct pattern of anatomical connectivity within the

thalamus (16, 17, 19–21, 26–28, 38, 41). Moreover, this

study’s findings are consistent with previous animal studies

that demonstrate a correspondence between thalamic orga-

nization and the sensory-association cortical hierarchy (49–

52, 58, 66). Here, we build on this body of work to show, for

the first time, that sensory cortical areas project more focally

within the thalamus relative to association cortical areas. Our

findings suggest that the spatial extent of thalamic connectiv-

ity patterns is a key distinguishing feature of cortico-thalamic

circuits associated with distinct types of information flow.

In line with this notion, other quantitative measures derived

from dMRI, including connectivity strength and microstruc-

ture, did not significantly vary along the cortical hierarchy.

We also offer convergent evidence supporting the no-

tion of hierarchical anatomical variation by demonstrating

that cortical areas with focal thalamic connections prefer-

entially target posterolateral thalamus, associated with the

feed-forward relay of sensory information, relative to corti-

cal areas with diffuse thalamic connections connections (58).

This is consistent with previous studies showing that the or-

ganization of thalamic functional connectivity, microstruc-

ture, and gene expression vary along the anteroposterior and

mediolateral thalamic axis (17, 22, 59, 71–73). Prior work

has shown that axon guidance cues along the anteromedial-

posterolateral thalamic gradient shape the topography of

thalamo-cortical connections (74). Powell et al. provide in-

sight into the molecular mechanisms that may shape cortex-

to-thalamus connectivity patterns. Here, it will be vital to

characterize the mechanisms that give rise to hierarchical

differences in the spatial extent of anatomical connections

within the thalamus, which may be critical for distinct in-

formation flow across cortico-thalamic systems and compro-

mised in neurodevelopmental disorders (75–77).

Previous dMRI studies in macaque have identified both

similarities and differences in cortico-thalamic anatomical

connectivity relative to humans (78). Despite notable inter-

species differences in many cortical areas, we found that the

extent of connections within the thalamus followed similar

patterns of variation across cortex in macaques compared to

humans. Such cross-species dMRI analyses provide a bridge

with the extensive tract tracing literature in non-human pri-

mates. The integration of macaque tractography and tracer

data in cortico-thalamic systems remains limited (79, 80), but

future studies incorporating tracer data could provide more

specific insights into cortico-thalamic system organization

by considering directionality, as feed-forward and feed-back

thalamic connections vary across cortical areas and may pro-

vide more specific insights into the functional roles of these

circuits. On the other hand, dMRI-derived tractography data

can address gaps in the non-human primate tracer literature.

For instance, whole-brain tractography within a single ani-

mal is relative easy to acquire. Thus, these data can be used

to examine contralateral thalamic connections, which have

received less attention in macaque tracer studies (20, 81, 82).

Our study shows that cortical parcels with diffuse ipsilateral

thalamic connections also have diffuse bilateral thalamic con-

nections, but this relationship wasn’t as strong for contralat-

eral connections. Future studies that examine bilateral and
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contralateral thalamic connectivity patterns can provide in-

sights the role of contralateral thalamic connections and how

cortico-thalamo-cortical circuits influence inter-hemispheric

communication.

Variation in the extent of cortico-thalamic projec-

tion patterns and implications for different levels of

anatomical architecture. Thalamic and cortical neuronal

fibers exhibit distinct patterns in their axonal projections,

such that some fibers have axonal projections that project

focally while others have more extensive axonal projections

(5, 20, 66). Specifically, ‘core’ and ‘matrix’ thalamic neurons

exhibit differences in the extent of their axonal terminations,

as discussed previously (66). Moreover, prefrontal cortical

neurons have been observed to exhibit either dense, focal pro-

jections to the ipsilateral thalamus while others have sparse,

diffuse projections to bilateral thalamus (20, 83). These dif-

ferences in the extent of axonal terminations are thought to

support different types of neural computations (6), and we

hypothesized these distinct patterns of neuronal connectivity

may also be reflected in the patterns of large-scale white mat-

ter tract terminations within the thalamus.

In this study, we present the first quantitative evidence

that the extent of cortical anatomical connections within the

thalamus distinguishes cortico-thalamic white matter tracts,

mirroring variation seen at the level of cortico-thalamic neu-

rons. Furthermore, we linked human neural gene expres-

sion and tractography to show that cortical areas with focal

and diffuse thalamic connections preferentially couple with

PVALB-expressing ‘core’ and CALB1-expressing ‘matrix’

thalamus, respectively. This finding highlights a conserved

anatomical principle of variation between individual neu-

ronal fibers and large-scale white matter tracts within cortico-

thalamic systems. This finding suggests that cortico-thalamic

white matter tracts may be composed of individual neuronal

fibers with similar termination patterns, which can be more

precisely tested in animals.

Our findings align with theoretical proposals that hypoth-

esize similar principles governing connectivity at multiple

levels of analysis (84, 85). Moreover, it implies that prin-

ciples of variation at the level of thalamic fibers can provide

insights into the properties of large-scale white matter tracts.

For instance, thalamic neurons vary in the extent of their ax-

onal projections across cortical layers (5, 66). Furthermore,

some thalamic nuclei project to larger swaths of cortex com-

pared to others (26). Future tractography studies can inves-

tigate if the extent of thalamic connections within individual

cortical areas also varies across the cortical hierarchy.

The spatial properties of thalamic connectivity pat-

terns provide insight into the role of the thalamus in

shaping brain-wide information flow. While early studies

suggested that the thalamus primarily relays signals through

parallel and segregated circuits. Now, accumulating empiri-

cal and computational evidence supports the notion that the

thalamus is also a crucial integration hub capable of coordi-

nating and sustaining signals across the cortex (11, 12, 52,

86–88). The structural properties of cortico-thalamic circuits

invariably constrain the types of computations these circuits

can support (6), and prior work has established a relation-

ship between the extent of axonal terminations and both feed-

forward and feed-back information flow in cortico-thalamic

systems (20, 66). While the present findings do not directly

support directional interpretations, our data raise the possi-

bility that diffuse thalamic connections are associated with

slower, feed-back information flow that may support integra-

tive information transmission, whereas focal thalamic con-

nections are associated with faster, feed-forward informa-

tion flow that may support the relay of sensory information.

This hypothesis will likely require further investigation using

causal evidence derived from animal studies.

Complementary functional neuroimaging studies have re-

vealed areas of signal integration and segregation within the

human thalamus (61, 89, 90). While the lack of recurrent ex-

citatory connections within the thalamus supports segregated

information slow, the anatomical basis for information inte-

gration within the thalamus is not fully understood. It has

been proposed that overlapping terminations within the tha-

lamus may support information integration (23, 24, 38, 42).

This is supported by work showing that some thalamic neu-

rons receive convergent input from multiple cortical areas

(86). In this study, we demonstrate that association corti-

cal areas exhibit diffuse anatomical connections within the

thalamus. This may enable these cortical areas to integrate

information from distributed areas across the cortex, a criti-

cal mechanism supporting higher-order neural computations.

We observed that anterior cingulate cortical areas had some

of the most diffuse thalamic connections. This observation

aligns with findings from Phillips et al. that area 24 ex-

hibited the most diffuse anatomical terminations across the

mediodorsal nucleus of the thalamus relative to other pre-

frontal cortical areas (38), which was speculated to support

the integration of signals within the prefrontal cortex (42).

Circuits connecting the cortex, thalamus, and the basal

ganglia have also been implicated in integrative information

transmission (24, 91). The pattern of anatomical connections

between the basal ganglia and thalamus may also exhibit vari-

ation in their spatial properties. Future studies can examine

the spatial properties of anatomical connections between the

thalamus and basal ganglia and determine if such variation

corresponds with integrated or segregated information flow

within cortico-basal ganglia-thalamo-cortical functional in-

teractions.

We also found that ‘first-order’ thalamic nuclei preferen-

tially coupled with cortical parcels with focal thalamic con-

nections. However, our results did not support the hypothe-

sis that ‘higher-order’ thalamic nuclei preferentially couple

with cortical areas with diffuse thalamic connections. In-

stead, these nuclei coupled with cortical areas with both fo-

cal and diffuse thalamic connections. Previous studies have

shown that ‘higher-order’ thalamic nuclei receive input from

cortical and subcortical regions (92, 93). The integration of

feed-forward sensory signals and modulatory feed-back sig-

nals from cortex could be one mechanism for how the inte-

gration of higher-order and first-order signals in the thalamus
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may support complex cognitive functions (94).

Our findings offer an anatomical framework to comple-

ment the findings of a previous investigation on cortico-

thalamic functional coupling (64). Muller & Munn et al. (64)

examined cortico-thalamic BOLD-derived functional con-

nectivity and demonstrated that sensory cortical areas ex-

hibited stronger functional coupling with ‘core’ thalamus,

whereas association cortical areas exhibited stronger func-

tional coupling with ‘matrix’ thalamus, and this dichotomy

was found to align with patterns of whole-brain dynam-

ics. However, the specific ways in which thalamo-cortical

anatomical constraints may shape functional connectivity re-

main unknown. A possible future direction would be to in-

vestigate how thalamo-cortical anatomical connections con-

tribute to both intra- and inter-hemispheric functional inter-

actions. Lastly, these data imply that cortical areas with

diffuse thalamic connections may selectively overlap with

thalamic subregions implicated in functional integration and

multimodal cognitive processes (61, 90). This observation

warrants future investigations in combination with functional

modalities.

Study limitations. While powerful, probabilistic tractogra-

phy has notable limitations, such as the possibility of pro-

ducing false positives and lacking directionality information

(95, 96). We performed extensive control analyses to iden-

tify any inter-subject or inter-cortical confounds. We did not

identify any factors that were strongly associated with the

EDpc1 measure used to index the extent of thalamic connec-

tivity patterns. We did observe that cortical curvature and

sulcal depth were positively correlated with mean stream-

line count, potentially reflecting gyral bias. This observation

should be considered in future tractography studies.

Furthermore, we observed significant individual variation

in thalamic connectivity patterns. Notably, we identified bio-

logically implausible tractography patterns in some subjects.

The nature of individual differences in thalamic connectiv-

ity patterns, whether they represent true individual variation

or false positive connections, remains unclear, but it is likely

a combination of both. While such variation did not appear

to be associated with differences in the extent of thalamic

connections between sensory and association cortical areas,

our observations are consistent with previous reports demon-

strating that tractography data have inherent limitations and

should be interpreted with caution (e.g., 95, 96).

We also replicated our findings in macaque monkeys.

Macaque dMRI data help mitigate limitations related to lower

resolution, shorter collection time, and motion bias in human

dMRI studies (44). Tractography-based anatomical connec-

tivity has shown strong agreement with invasive tract trac-

ing studies conducted in monkeys, providing validation for

its use (44, 97–103). It is worth noting that the majority

of these investigations have primarily focused on cortico-

cortical connections and connectivity at the areal level. In

comparison, studies directly comparing tractography- and

tracer-derived connectivity in thalamo-cortical systems are

limited (96, 104). Consequently, future research should pri-

oritize examining the correspondence between tracer and

tractography-derived anatomical terminations within subcor-

tical gray matter structures. Furthermore, future studies

should investigate factors that may contribute to the pres-

ence of biologically implausible connections at the subject

level. This is vital for a comprehensive understanding of

inter-individual variation of anatomical connectivity and its

implications for cognition and behavior in both health and

disease.

Conclusions

The thalamus plays a key role in sensory and association cog-

nitive computations (8, 42, 105). Dysfunction of the thalamus

has been linked to severe neuropsychiatric disorders, such

as psychosis spectrum disorders (106–111), and the symp-

toms of these disorders have been associated with abnormal

anatomical cortico-thalamic connectivity (75–77). However,

our understanding of the role of the thalamus in healthy infor-

mation transmission and its dysfunction in neuropsychiatric

illness has been hindered by limited knowledge of the under-

lying circuitry, especially in humans (6, 112).

Since the first in vivo examinations of cortico-thalamic

connectivity in humans (36, 37), neuroimaging studies have

made significant progress in mapping thalamo-cortical cir-

cuitry and characterizing its role in shaping whole-brain

functional interactions (56, 113). This study provides quanti-

tative evidence that the spatial properties of anatomical con-

nections within the thalamus vary across the cortex, follow-

ing established hierarchical principles of cortical organiza-

tion, which may reflect variations associated with different

types of information flow. Our study highlights that an in-

depth investigation of cortico-thalamic anatomical circuitry

can offer insights into how the thalamus may support distinct

types of information flow throughout the brain, which is crit-

ical for the computations that enable higher-order cognition

in humans.

Experimental procedures

Human dataset and diffusion processing pipeline.

We obtained minimally pre-processed 1.25 mm

isotropic 3T dMRI data for 828 healthy adults from

the Washington University – Minnesota (WU-Min)

Human Connectome Project (HCP). The imaging

protocol details can be found at the following link:

https://protocols.humanconnectome.org/HCP/3T/imaging-

protocols.html (47, 114).

To generate dMRI-derived probabilistic tractography

data, we utilized the Quantitative Neuroimaging Environ-

ment & Toolbox (QuNex) (115). Specifically, FSL’s Bed-

postx was employed to estimate diffusion parameters, includ-

ing up to three fiber orientations per voxel, using a model-

based deconvolution approach with zeppelins (34, 116, 117).

The parameters used were as follows: burn-in period of 3000,

1250 jumps (sampled every 25), automatic relevance deter-

mination, and Rician noise. We then obtained whole-brain

probabilistic tractography using FSL’s Probtrackx (32, 37,

118). We performed dense gray-ordinate-by-gray-ordinate
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streamline connectivity, seeding from each white ordinate

3000 times (shown in all figures unless otherwise speci-

fied), and from each gray-ordinate 10,000 times (Fig. S19)

with distance correction. Streamline le,ngth data was also

extracted. This produced a dense, 91,282 x 91282 grey-

ordinate, whole-brain streamline count connectivity matrix.

We then performed several processing steps on the FSL-

generated dense tractography data (Fig. S1). To account for

inter-subject streamline count differences, dense streamline

count data were waytotal normalized. We further applied log

normalization to account for distance effects. Each subject’s

data were then parcellated along one dimension, by averaging

the streamline counts for all grey-ordinates within a cortical

parcel. The parcellation used was defined by Ji et al. (48),

and the analysis was restricted to the 360 symmetrical bilat-

eral cortical parcels defined by Glasser et al. (45). These

data were masked with the thalamic gray matter mask used

during tractography, which consisted of 2539 voxels (Fig.

S21). Group-level cortical-parcel by thalamic-voxel stream-

line count connectivity matrices were generated by averaging

data across participants. In some visualizations, standardized

streamline counts were shown, which were z-scored for each

cortical parcel. Finally, before group averaging, an alterna-

tive processing step was performed which consisted of re-

gressing cortical curvature from streamline counts for each

subject. The residuals from this regression were then group-

averaged (Fig. S1, step 5) and used for supplementary anal-

yses.

We replicated our findings using multiple func-

tionally and structurally-defined thalamic masks derived

from different atlases: the Yeo 2011 parcellation (119)

(https://github.com/ryraut/thalamic-parcellation), Melbourne

Atlas (120), and the Morel thalamic atlas (57) (Fig. S21).

Furthermore, we replicated the main results using dense

ED values (Fig. S20) and an alternative seeding strategy,

which consisted of seeding each grey-ordinate 10,000 times

(Fig. S19).

Human BOLD acquisition and processing. For each sub-

ject, we obtained four runs of minimally preprocessed blood-

oxygen-level-dependent (BOLD) resting-state data from the

HCP (Atlas_MSMAll_hp2000_clean). The first 100 frames

of each BOLD time series were dropped, and the data were

demeaned. The four resting-state scans were concatenated in

the order of 2-1-4-3. These data were parcellated using the

parcellation defined by Ji et al. (48), and we included only the

360 cortical parcels defined by Glasser et al. (45). Functional

connectivity was estimated using pairwise Pearson correla-

tions between the time series of each cortical parcel, resulting

in a parcellated functional connectivity matrix. This matrix

was then used as input into a principal component analysis

(PCA) to derive the first and second principal functional gra-

dients. See Deriving cortical gradients for more details.

Macaque dataset and diffusion processing pipeline.

We obtained diffusion-weighted 7T MRI data with 0.6

mm isotropic resolution from a previously collected

dataset of six postmortem macaques (4-16 years old), as

described in previous work (121, 122). These data are

publicly available through the PRIMatE Data Exchange

(PRIME-DE) repository (http://fcon_1000.projects.nitrc

.org/indi/PRIME/oxford2.html) (123). Nonlinear surface

transformation to macaque F99 standard space was per-

formed, as described elsewhere (124, 125). Subcortical

structures were registered to F99 standard space using

FNIRT and templates from the HCP Non-Human Primate

Minimal Preprocessing Pipelines (47, 70).

Streamline count connectivity matrices for the macaques

were derived using FSL’s Bedpostx and Probtrackx pipeline.

We seeded each white-ordinate 3,000 times to obtain a gray-

ordinate-by-gray-ordinate connectivity matrix. The parame-

ters used were the same as those used for tractography in the

human data, with the exception that no distance correction

was applied and the step length was reduced from 0.5 to 0.2.

The macaque data were waytotal and log normalized, and

then parcellated using the Markov 2014 atlas (69, 126). This

workflow resulted in a parcel-by-dense (128x71401) connec-

tivity matrix for each macaque. These data were masked with

the thalamic mask used for tractography seeding, which con-

sisted of 1539 voxels (649 right; 890 left), and data were then

averaged to create a group matrix.

Framework to quantify the extent of thalamic connec-

tivity patterns via Euclidean distance (ED). We used Eu-

clidean distance (ED) to quantify the extent of each cortical

area’s thalamic connectivity patters. Probabilistic tractogra-

phy data require thresholding before the ED calculation. To

avoid the selection of an arbitrary threshold (33, 35), we cal-

culated ED for a range of thresholds (Fig. 1A). Our thresh-

olding framework uses a tractography-derived connectivity

matrix as input. We iteratively excluded voxels with lower

streamline counts for each cortical parcel such that the same

number of voxels was included at each threshold. At each

threshold, ED was calculated between the top x% of thalamic

voxels with the highest streamline counts. This produced a

matrix of ED values (360 cortical parcels by 100 thresholds).

This matrix was used as input into a PCA to derive a sin-

gle loading for each cortical parcel. While alternative thresh-

olding approaches have been proposed, this framework op-

timizes the examination of spatial patterns by proportionally

thresholding the data, enabling equitable sampling of each

cortical parcel’s streamline counts within the thalamus. This

approach controlled for inter-areal differences in anatomical

connection strength that could confound the ED estimates.

We iteratively thresholded tractography-derived cortico-

thalamic connectivity data from 828 healthy adults from the

HCP by excluding 0% to 99% of thalamic voxels with the

lowest streamline counts for each cortical parcel (Fig. 1B).

Pairwise ED was calculated between thalamic voxels that sur-

vived thresholding for 100 thresholds, which resulted in an

ED value for each threshold for each cortical parcel (Fig. 1C).

The pairwise ED calculation was calculated using the follow-

ing equation:
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ED =
1

n(n−1)

n
ÿ

i=1

n
ÿ

j=1,j ==i

dist(i, j) (1)

Where:

• ED is the average pairwise ED,

• n is the number of surviving thalamic voxels,

• i and j are indices of thalamic voxels,

• dist(i,j) is the ED between thalamic voxels i and j.

The Euclidean distance between two thalamic voxels,

dist(i,j), was calculated using the equation:

dist(i, j) =
Ò

(xj −xi)2 +(yj −yi)2 +(zj −zi)2 (2)

where xi, yi, zi and xj , yj , zj represent the coordinates of

the thalamic voxels i and j in 2mm space. This calculation

was performed for each cortical parcel across its surviving

thalamic voxels (i.e., the top x% of thalamic voxels with the

highest streamline counts) for each threshold, generating a

cortical parcel-by-threshold matrix of ED values. The pro-

cedure was performed separately for the left and right tha-

lamus. In the case of bilateral connectivity patterns, the ED

values for each threshold were summed across the left and

right thalamus. All analyses used ipsilateral ED values, un-

less otherwise specifies in supplementary analyses.

Additionally, we calculated relative ED (rED) to account

for size differences between left and right thalamus:

rEDc,t =
EDc,t

EDc,1
(3)

Where:

• rED denotes relative ED,

• EDc,t is the ED value for each cortical parcel c at

threshold t,

• EDc,1 is the ED value for each cortical parcel c at

threshold 1 (when no threshold is applied and no vox-

els are excluded).

In this study, due to the similarity in size between the left and

right thalamus, EDpc1 and rEDpc1 loadings were nearly

identical (Fig. S14).

Measure calculations. EDpc1 loading calculation: PCA

using Singular Value Decomposition was performed using

the threshold by cortical parcel (100x360) ED matrix. The

first principal component (EDpc1) is a vector of the 360 load-

ings from PC1. The loadings were calculated following the

equation:

EDpc1c
= wc,1 ×

ÿ

λ1 (4)

Where:

• wc,1 is the first PC’s eigenvector for cortical parcel c,

• λ1 is the first PC’s eigenvalue.

This procedure was also performed for group-averaged dense

cortico-thalamic connectivity data to examine the extent of

anatomical connections within the thalamus for 59,412 corti-

cal vertices (Fig. S20).

EDσ calculation: EDσ is the population standard deviation

of ED across thresholds for each cortical parcel. It was cal-

culated following the equation:

EDσc
=

Æ

1

1

Ù

1

u

u
ÿ

t=1

(EDc,t −EDµc
)2 (5)

Where:

• EDσc
is the standard deviation of ED values across

thresholds for cortical parcel c,

• u is the total number of thresholds (in this case 100),

• EDc,t is the ED of surviving thalamic voxels for parcel

c at threshold t,

• EDµc
is the mean ED for cortical parcel c across u

thresholds.

In addition to the standard deviation of ED across all thresh-

olds, we also calculated the standard deviation (STD) of ED

across specific ranges of thresholds (Fig. S6). We then cor-

related these values with EDpc1, T1w/T2w, and RSFCpc1

measures.

Mean SC calculation and analysis: The mean streamline

count (Mean SC) within the thalamus was calculated for each

cortical parcel following the equation:

SCµc
=

Æ

1

1

Ù

1

n

n
ÿ

v=1

Gc,v (6)

Where:

• SCµc
is the square root normalized mean of streamline

counts for cortical parcel c,

• v is the index of the thalamic voxel,

• n is the number of thalamic voxels,

• Gc,v is the streamline count between cortical parcel c
and thalamic voxel v.

We then correlated Mean SC with EDpc1, T1w/T2w,

RSFCpc1, RSFCpc2, and average streamline length values.

Streamline length calculation and analysis: The average

streamline length (l) for each cortical parcel was calculated

following the equation:

lc =
1

n

n
ÿ

v=1

Lc,v (7)

Where:
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• lc is the average streamline length for cortical parcel c
across thalamic voxels,

• v is the index of the thalamic voxel,

• n is the number of thalamic voxels,

• Lc,v is the average length of streamlines between cor-

tical parcel c and thalamic voxel v.

Streamline lengths were obtained from FSL’s probtrackx us-

ing the –ompl flag.

Isotropy (Ipc1) calculation: To quantify the isotropy of thala-

mic connectivity patterns for each cortical parcel, we mod-

ified the thresholding framework shown in Fig. 1A and re-

placed the ED calculated with the following the equation:

Ic,t =

Ú

1

2

ÿ

(λ1,c,t −λ2,c,t)2 +(λ2,c,t −λ3,c,t)2 +(λ3,c,t −λ1,c,t)2

Ò

λ2

1,c,t +λ2

2,c,t +λ2

3,c,t

(8)

Here, λ values were obtained from the covariance matrix de-

rived from the x, y, and z coordinates of surviving thalamic

voxels for each threshold t and cortical parcel c. The Ipc1

measure reflect how evenly spread out each cortical parcel’s

anatomical connections are within the thalamus.

This covariance matrix was used as input into a PCA, and

the loadings from the first principal component (PC1) were

calculated as described in the ED loading calculation section.

EDpc1 score calculation: PCA was performed on the cortical

parcel by threshold (360x100) ED matrix (i.e., the transposed

matrix). PC1 scores for each cortical parcel were calculated

following the equation:

Scorespc1c
= wc,1 ×EDc,t (9)

Where:

• Scorespc1c
is the PC1 score for cortical parcel c,

• EDc,t is the cortical parcel by threshold ED matrix,

• wc,1 is the eigenvector corresponding to the first PC

for cortical parcel c.

Mean ED calculation: The average ED across thresholds was

calculated for each cortical parcel by taking the arithmetic

mean of the ED values across thresholds. The calculation

was performed using the following equation:

EDµc
=

1

u

u
ÿ

t=1

EDc,t (10)

Where:

• EDµc
is the mean ED for cortical parcel c across u

thresholds,

• u is to the total number of thresholds (in this study we

used 100),

• t is the index of the threshold,

• EDc,t is the ED of surviving thalamic voxels for cor-

tical parcel c at threshold t.

In addition to the mean ED across all thresholds, we

also calculated the mean ED across ranges of thresholds

(Fig. S6) and compared these values to EDpc1, T1w/T2w,

and RSFCpc1 values.

Weighted Mean ED calculation: We weighted ED values for

each threshold to derive a weighted mean of ED values across

thresholds, with more conservative thresholds having higher

weights. The calculation was performed using the following

equations:

EDc =
1

qu
t=1

minmax(θt)

u
ÿ

t=1

minmax(θt)×EDc,t

(11)

minmax(θt) =
θt −min(θt)

max(θt)−min(θt)
(12)

θt = exp(.05× t) (13)

Where:

• EDc is the weighted mean ED for cortical parcel c
across u thresholds,

• u is the total number of thresholds (in this study we

used 100),

• t is the index of the threshold,

• θt is the weight for the tth threshold.

The weight assigned to each threshold was determined by

an exponential function. Specifically, a threshold of t = 1,

where no voxels were excluded, had a weight of zero, while

a threshold of t = 100, where 99% of voxels were excluded,

had a weight of 1. In other words, less conservative thresh-

olds are ‘discounted’ and contribute less to the overall mean.

Streamline count (SC) Skewness calculation: The robust

skewness of streamline counts within the thalamus was

calculated for each cortical parcel using the mean-median

difference standardized by the absolute deviation. The

calculation was performed using the following equation:

SK3c =
SCµc

− median(Gc,v)
qn

v=1
|Gc,v − median(Gc,v)|

(14)

Where:

• SK3c is the robust skewness of SCs for cortical parcel

c,

• SCµc
is the mean of square-root normalized streamline

counts for cortical parcel c,

• median(Gc,v) is the median of streamline counts be-

tween cortical parcel c and thalamic voxel v,

• v is the index of the thalamic voxel,

Howell et al. | Extent of cortico-thalamic connectivity bioRχiv | 13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.07.22.550168doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.22.550168
http://creativecommons.org/licenses/by-nc-nd/4.0/


D
R
A
F
T

• n is the number of thalamic voxels.

This measure was calculated based on the hypothesis that cor-

tical areas with more focal connections within the thalamus

would have a more skewed distribution of streamline counts

within the thalamus. However, because skewness is sensitive

to outliers, we used a robust measure to discount extreme val-

ues.

Weighted Nuclei Mean SC calculation: The mean streamline

count between each cortical parcel and each thalamic nucleus

was weighted by the volume of the nucleus. These weighted

values were then summed across thalamic nuclei. The calcu-

lation was performed using the following equation:

SCc =
1

qg
f=1

θf

g
ÿ

f=1

Nc,f ×θf (15)

Where:

• SCc is the standardized mean streamline count across

all thalamic nuclei, weighted by the volume of each

nucleus (θf ),

• f is the index of the thalamic nucleus,

• g is the total number of thalamic nuclei from the Morel

thalamic atlas (g = 28),

• Nc,f is the mean streamline count between cortical

parcel c and thalamic nucleus f , standardized within

cortical parcels.

This measure was calculated based on the rationale that

cortical parcels with more diffuse connections within the tha-

lamus would be strongly connected to more thalamic nuclei

than those with focal thalamic connections. Because thala-

mic nuclei have very different sizes, we created weighted the

mean streamline counts of thalamic nuclei by their volume.

This measure may also be used with parcellated data, when

dense data are not available.

Control analyses. Cortical maps for cortical surface fea-

tures, including cortical thickness, curvature, sulcal depth,

bias field, edge distortion, spherical distortion, and areal dis-

tortion, were obtained from the HCP and group-averaged

across subjects. The surface area of each cortical parcel from

the Glasser et al., atlas was calculated as the number of ver-

tices within each parcel. These cortical maps were then ex-

amined for associations with EDpc1 loadings (Fig. S13).

Additionally, fractional anisotropy (FA) and mean dif-

fusivity (MD) values were extracted for each subject using

FSL’s DTIFIT. The correlation between the streamline counts

of each cortical parcel within the thalamus and their corre-

sponding thalamic FA and MD values was then calculated to

index anatomical overlap. These correlations were then cor-

related with EDpc1 loadings (Fig. S12).

Network analysis. Network assignments for the 360 bilat-

eral cortical parcels were derived from by Ji et al. (48). Corti-

cal parcels were categorized into 12 functionally-defined net-

works, including four sensory networks (somatomotor, SMN;

visual 1, VIS1; visual 2, VIS2; auditory, AUD) and eight as-

sociation networks (cingulo-opercular, CON; default-mode,

DMN; dorsal attention, DAN; frontoparietal network, FPN;

language, LAN; posterior multimodal, PMM; ventral mul-

timodal, VMM; orbito-affective, ORA) (Fig. 2A). EDpc1

loadings were averaged within these 12 networks and within

the sensory and association networks for each subject (Fig.

2B-C). The EDpc1 loadings were averaged within sensory

and association networks for each subject and compared us-

ing a Wilcoxon signed-rank test (Fig. 2C).

Cortical gradients. To capture systematic variation across

the cortex, we calculated multiple cortical gradients and com-

pared them to the cortical EDpc1 loading map.

T1w/T2w maps, reflecting cortical myelin content

(127), were obtained from the HCP dataset and group-

averaged across 828 subjects. Similarly, group-averaged

dense T1w/T2w maps from 30 macaques were acquired

(https://balsa.wustl.edu/study/Klr0B) (70).

Functional cortical gradients were derived from group-

averaged and individual-level (n=828) resting-state func-

tional cortical connectivity matrices. After thresholding to

include the top 20% of connections, PCA was performed,

and the loadings from the first (RSFCpc1) and second

(RSFCpc2) principal components were calculated, follow-

ing previous work (55, 128).

T1w/T2w values and RSFCpc1 loadings serve as

quantitative indexes of cortical hierarchy, with sensory

cortical parcels exhibiting higher T1w/T2w values and

RSFCpc1 loadings compared to association cortical parcels.

Individual-level T1w/T2w maps and RSFCpc1 maps

highly correlated with group-averaged maps across sub-

jects (Fig. S17). RSFCpc2 loadings index the sensory-

association-motor cortical hierarchy, which reflects func-

tional specialization (55).

To examine the anteroposterior cortical gradient, we cal-

culated the Cartesian distance between each cortical parcel

and ipsilateral V1, separately for human and macaque data.

Non-parametric method for assessing the correspon-

dence of cortical brain maps. We assessed the correspon-

dence between cortical brain maps using Spearman correla-

tions and determined the significance of each correlation us-

ing a non-parametric approach. To preserve spatial autocor-

relation, we generated 1000 surrogate maps for each target

brain map (e.g., T1w/T2w values, RSFCpc1 loadings) using

brainSMASH with default parameters (46). Specifically, 500

surrogate maps were generated for the left cortex and 500 for

the right cortex. These surrogates were then mirrored con-

tralaterally to create bilateral surrogate maps. We correlated

these bilateral surrogate maps with the empirical cortical map

(e.g., EDpc1 loadings) to generate a null distribution. Non-

parametric p-values were calculated by dividing the number
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of surrogate maps with a higher correlation coefficient than

the empirical value by the total number of surrogates gener-

ated (i.e., 1000).

For dense maps, surrogates were generated separately for

the left and right cortex using resampling. We used default

parameters with the exception of the knn parameter, which

was set to the number of vertices in the brain map, following

(129).

Thalamic nuclei segmentation. Thalamic nuclei were de-

fined using the Morel histological atlas (57), resampled to

2mm Montreal Neurological Institute (MNI) space and con-

verted to cifti format (Fig. 3A). Each thalamic voxel was as-

signed to one of the 28 thalamic nuclei based on the high-

est scaled mask value. The sPF nucleus from the Morel atlas

was combined with the PF nucleus as their voxels overlapped

in 2mm space. Thalamic nuclei were categorized into pos-

terior, medial, lateral, and anterior subdivisions (130), and

some were classified as higher-order or first-order (15) and

primary, secondary, and tertiary (59) based on prior work.

The complete list of 28 thalamic nuclei, along with their ab-

breviations, is provided in Table. 1. The volume of each nu-

cleus was also calculated by counting the number of 2mm

thalamic voxels assigned to it Table. 1.

For each cortical parcel, we calculated the mean stream-

line count across thalamic voxels within each thalamic nu-

cleus. This produced a cortical parcel by thalamic nucleus

(360x28) streamline count connectivity matrix for each sub-

ject. These matrices were then averaged across all subjects

and z-scored to visualize the cortical connectivity patterns

within each thalamic nucleus (Fig. 3B). The streamline count

connectivity matrix was sorted along the y-axis such that cor-

tical parcels with lower average EDpc1 loadings were lo-

cated at the bottom.

Next, each subject’s EDpc1 loadings were correlated

with the Mean SC values across cortex for each of 28 thala-

mic nuclei, resulting in 28 rho values per subject (Fig. 3C). A

positive rho value indicated that a thalamic nucleus preferen-

tially coupled with cortical parcels with focal thalamic con-

nections, while a negative rho value indicated that a thalamic

nucleus preferentially coupled with cortical parcels with dif-

fuse thalamic connections. A rho value of zero indicated that

a thalamic nucleus had no preference and equally coupled to

cortical parcels with focal and diffuse thalamic connections.

To test for differences between subject-level rho val-

ues, we conducted a Friedman test to compare the av-

eraged rho values between EDpc1 and Mean SC be-

tween posterior, lateral, anterior, and medial thalamic

nuclei. Post-hoc analyses were performed using the

Wilcoxon–Nemenyi–McDonald–Thompson test, which cor-

rected for family-wise error (Fig. 3C). A similar procedure

was conducted to examine the differences in average subject-

level rho values between EDpc1 and Mean SC for primary,

secondary, and tertiary nuclei (59) (Fig. S24). Additionally,

a two-sided Wilcoxon signed-rank test was employed to de-

termine the significance of differences between subject-level

rho values for first-order and higher-order thalamic nuclei

(Fig. 3D). We also examined correlations between cortical

Mean SCs for each thalamic nucleus and the minor and major

subdivisions of thalamic nuclei (Fig. S23); however, no com-

parisons survived correction for multiple comparisons using

the Holm-Bonferroni correction.

Individual variability. Based on tract tracing findings in

monkeys, we expected V1 thalamic connections to terminate

in visual thalamic areas such as the lateral geniculate nucleus

and pulvinar in the posterior thalamus (131). While some

subjects exhibited V1 terminations in the visual thalamus, as

exemplified by subject 1, others exhibited termination pat-

terns that spread along the anterior and dorsal axis of the tha-

lamus, as seen in subject 2 (Fig. S18A). To quantify these

differences, we calculated the ratio of Mean SCs in the visual

thalamus relative to Mean SCs outside of the visual thalamus

for the right V1 for each subject. Here, a more positive ratio

indicated a larger proportion of V1 streamlines terminating

in the visual thalamus, which comprised of the pulvinar and

lateral geniculate nucleus (Fig. S18B). All subjects had right

V1 terminations that preferentially coupled with the pulvinar

and lateral geniculate nucleus (ratios > 1). However, many

subjects had ratios close to 1, indicating a substantial portion

of streamlines terminating outside of the visual thalamus. A

strong negative correlation was observed between each sub-

ject’s right V1 EDpc1 loading and their right V1 SC ratio,

demonstrating that subjects with more diffuse right V1 con-

nections within the thalamus had streamlines that terminated

outside the visual thalamus (rs = -0.81) (Fig. S18B).

Finally, we investigated the hypothesis that V1 termina-

tions outside of visual thalamus would diminish the corre-

spondence between EDpc1 and the T1w/T2w and RSFCpc1

cortical maps. To assess this hypothesis specifically for

right V1, we compared each subject’s ratio of streamline

counts between visual and non-visual thalamus to their re-

spective Spearman rho values between their EDpc1 load-

ings and cortical myelin (Rhomyelin,EDpc1
; purple) and the

principal functional gradient (RhoRSF Cpc1,EDpc1
; green)

(Fig. S18C). We observed moderate positive correlation be-

tween these variables, indicating that subjects with weaker

correlations between EDpc1 loadings and T1w/T2w and

RSFCpc1 values also had more right V1 terminations out-

side of the visual thalamus. This finding suggests that

biologically-unlikely V1 connections that extend outside of

visual thalamus may weaken the relationship between EDpc1

loadings and T1w/T2w and RSFCpc1 values. It is impor-

tant to note that this observation pertains to a single cortical

parcel, and further research is needed to elucidate how such

biologically-plausible connections may bias the connectivity

patterns of other cortical parcels.

Cartesian thalamic gradient calculation and analysis.

To capture thalamic anatomical coupling along continuous

thalamic gradients, we examined the overlap between each

cortical parcel’s thalamic streamline counts along Carte-

sian spatial gradients. We correlated each voxel’s stream-

line count and position along each thalamic spatial gradient
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for each cortical area. Specifically, the anteroposterior and

dorsoventral gradients were defined by the y and z coordi-

nates (yt and zt), respectively. The mediolateral gradient was

calculated two ways. First, we calculated the distance to the

cortical midline (Mt) using the formula:

Mt = |xt − median(xt)| (16)

Where:

• Mt is the distance to the cortical midline for thalamic

voxel t,

• xt is the x coordinate of each thalamic voxel,

• median(xt) is the median x coordinate across all thala-

mic voxels.

Next, we calculated the distance to the thalamic midline

(MLt) following the equation:

MLt = Mt −min(Mj : yj = yt) (17)

Where:

• MLt is the distance to the thalamic midline for thala-

mic voxel t,

• Mt is the distance to the cortical midline for thalamic

voxel t,

• median(xt) is the median x coordinate across all thala-

mic voxels.

• min(Mj : yj = yt) is the distance between the corti-

cal midline and the most medial part of the thalamus

corresponding to the thalamic voxel’s y-axis position,

• yt is the y coordinate of a given thalamic voxel,

• j represent the indices of thalamic voxels that share the

same y coordinate as the thalamic voxel at position t.

By subtracting the distance to the midline thalamus from each

thalamic voxel’s distance to the cortical midline, we obtained

the mediolateral thalamic gradient (see Fig. S27 to view tha-

lamic gradients).

Since the thalamus sits slightly oblique to the corti-

cal midline, the distance to the midline (Mt) exhibited a

stronger correspondence with the anteroposterior thalamic

gradient compared to distance to midline thalamus (MLt)

(Fig. S26A). This demonstrates that the using distance to the

cortical midline (Mt) does not capture a true thalamic medio-

lateral gradient, because it is confounded by the anteroposte-

rior axis. Therefore, we used the distance to midline thalamus

(MLt) to quantify the mediolateral thalamic spatial gradient

in the main text. Additionally, we replicated our results using

a separate calculation for the mediolateral thalamic gradient

using the distance to the cortical midline (i.e., using Mt in-

stead of MLt). These findings largely mirrored the main text

results, with the anteromedial-posterolateral thalamic gradi-

ent showing the strongest relationship with EDpc1 loadings

(Fig. S26). These data highlight the need for the careful con-

sideration of which mediolateral gradient may be more ap-

propriate to address hypotheses regarding thalamic organiza-

tion.

We also examined combinations of the anteromedial, pos-

terolateral, and dorsoventral thalamic gradients. First, we

min-max transformed the yt, zt, and MLt values to scale

them between 0 and 1. Then, we calculated the position of

each thalamic voxel’s position along six thalamic spatial gra-

dients following the equations:

PV −ADt = zt ×yt (18)

LV −MDt = zt/MLt (19)

PL−AMt = yt/MLt (20)

PM −ALt = yt ×MLt (21)

PD −AVt = yt/zt (22)

LD −MVt = zt ×MLt × (−1) (23)

Where:

• t denotes index of the thalamic voxel,

• MLt, yt, and zt denote each thalamic voxel’s position

along the mediolateral, anteroposterior, and dorsoven-

tral thalamic gradients,

• PV -ADt : position of thalamic voxel t along the

anterodorsal-posteroventral gradient,

• LV -MDt : position of thalamic voxel t along the

mediodorsal-lateroventral gradient,

• PL-AMt : position of thalamic voxel t along the

anteromedial-posterolateral gradient,

• PM -ALt : position of thalamic voxel t along the

anterolateral-posteromedial gradient,

• PD-AVt : position of thalamic voxel t along the

anteroventral-posterodorsal gradient,

• LD-MVt : position of thalamic voxel t along the

medioventral-laterodorsal gradient.

These values were also min-max scaled between 0 and 1 (see

Fig. S27 to view the thalamic gradients). Using the same

overlap procedure described earlier, we generated six corti-

cal maps reflecting anatomical overlap with each thalamic

gradient and compared these cortical maps to the empirical

EDpc1 cortical map (Fig. S27). We performed this proce-

dure for both humans and macaques (see Fig. S30 for the

macaque gradients).
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Cross-species comparisons. The EDpc1 calculation

framework was applied to 7T dMRI data for six post-mortem

macaque monkeys (Fig. 5A). ED values were calculated for

100 thresholds and PCA was applied to the resulting ED ma-

trix to extract EDpc1 loadings for 128 cortical areas defined

using the Markov atlas (69) (Fig. 5B-C).

The relationship between macaque EDpc1 and EDσ was

slightly weaker and more nonlinear compared to the human

data, likely due to cortical parcels with exceptionally high

ED values, resulting in an underestimation of the extent of

connections within the thalamus by the EDσ measure. Con-

versely, the EDpc1 measure accurately captured the extent

of connections within the thalamus for these cortical parcels

(Fig. S29A-C).

To determine if EDpc1 loadings differed between sen-

sory and association cortical parcels we used a group-

averaged T1w/T2w macaque cortical map derived from data

from Hayashi et al. (70) (Fig. 5D) and correlated these val-

ues with EDpc1 loadings at both the group and subject level

(Fig. 5E-F). We also performed a two-sample t-test to com-

pare these correlations between species (Fig. S29D)

The median correlation coefficient (rho) between ipsilat-

eral EDpc1 loadings and overlap across thalamic spatial gra-

dient was compared between humans and macaques using a

2-way analysis of variance (ANOVA). We determiend if the

residuals of the ANOVA model were normally distributed

using a QQ plot. Both species exhibited equal variances

(Bartlett’s test; p = 0.21), but the gradients, despite having

the same sample size, showed unequal variances (Bartlett’s

test; p < 0.001). To avoid introducing an artificial interaction

between gradients and species, the sign of the rho values be-

tween EDpc1 loadings and overlap across the mediolateral

gradient was flipped prior to conducting the statistical tests.

Post-hoc Tukey’s Honestly Significant Difference (HSD) test

for multiple comparisons was then performed (Fig. S29E),

which showed a species difference only for the anteromedial-

posterolateral thalamic gradient,

PVALB and CALB1 thalamic gradient calculation and

analysis. The thalamic gradient of the relative mRNA levels

of Calbindin (CALB1) and Parvalbumin (PVALB) (CPt) was

downloaded from https://github.com/macshine/corematrix

(64). This map was originally obtained from the Allen

Brain Atlas using two probes to estimate PVALB expres-

sion (CUST_11451_PI416261804 and (A_23_P17844)

and three probes to estimate CALB1 expression

(CUST_140_PI416408490, CUST_16773_PI416261804

and A_23_P43197). Additional details are described

elsewhere (64). Cooler colors on the CPt gradient reflect

higher relative expression of PVALB, associated with the

‘core’ thalamus, while warmer colors reflect higher relative

expression of CALB1, associated with the ‘matrix’ thalamus

(Fig. 4A). We also correlated the CPt gradient with the

anteromedial thalamic gradient (PL-AMt) (Fig. 4B).

To calculate the spatial overlap between each cortical par-

cel’s thalamic connectivity patterns and ‘core’-‘matrix’ tha-

lamic subpopulations, the CPt map was correlated with each

cortical parcel’s thalamic streamline counts. Only voxels

with CPt values that overlapped with the thalamic mask used

for tractography were included in these analyses (1,684 bi-

lateral thalamic voxels). This overlap procedure produced

a cortical map (CPc) with a single rs value for each corti-

cal parcel, where cooler values reflect cortical parcels whose

thalamic connectivity patterns overlap more with PVALB-

expressing thalamic subpopulations, and warmer colors re-

flect cortical parcels whose thalamic connectivity patterns

overlap more with CALB1-expressing thalamic subpopula-

tions (Fig. 4C). Next, we correlated the CPc cortical map

with the EDpc1 cortical map (Fig. 4D).

Intrinsic timescale. We performed an auto-correlation anal-

ysis using intrinsic timescale from BOLD functional connec-

tivity data from the HCP (132). The data were obtained from

Ito et al. (2020) (https://github.com/ColeLab/hierarchy2020)

(65). For each cortical parcel, an exponential decay function

was fit for each HCP subject using the equation:

ec = ac[exp(−

k∆

τc
)+ bc] (24)

Where:

• ec is the exponential decay function fit for each cortical

parcel c,

• ac is a scaling factor,

• bc is an offset,

• τc reflects the rate of decay (i.e., intrinsic timescale),

• k∆ is the time lag (we used a lag of 100 timepoints).

The model was fit individually for each cortical par-

cel using the ‘Trust Region Reflective’ algorithm

(scipy.optimize.curvefit), and the data were standard-

ized. These τ values were then correlated with EDpc1

loadings.

Visualization. All cortical brainmaps were generated us-

ing Connectome Workbench. Subcortical axial visual-

ization were generated using Nilearn Plotting in python.

Figures were constructed in python with CanD v0.0.2

(https://github.com/mwshinn/CanD).

Data and Code Availability. The neuroimaging files used

in this study will be made available on the Brain Analy-

sis Library of Spatial maps and Atlases (BALSA) website.

The 1mm Morel thalamic atlas was obtained elsewhere with

permission (57). As such, we do not provide the thalamic

nuclei files directly, but we will provide the code to cre-

ate the labels for Morel nuclei in 2mm space. All code re-

lated to this study will be made publicly available on Bit-

Bucket. All analyses were implemented using Python (ver-

sion 3.10) and the following packages were used: numpy

v1.21.2 (133), pandas v1.4.4 (134), scipy v1.10.1 (135),

nibabel v3.2.1 (https://zenodo.org/record/7795644), seaborn

v0.12.2 (136), sklearn v0.10.0 (137), matplotlib v3.4.3 (138),
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wbplot (https://github.com/jbburt/wbplot), pingouin v0.5.3

(https://pingouin-stats.org/build/html/index.html), statsmod-

els v0.13.1 (139), and nilearn (140).
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54. Joshua B Burt, Murat Demirtaş, William J Eckner, Natasha M Navejar, Jie Lisa Ji, William J
Martin, Alberto Bernacchia, Alan Anticevic, and John D Murray. Hierarchy of transcriptomic
specialization across human cortex captured by structural neuroimaging topography. Nat

Neurosci, 21(9):1251–1259, Sep 2018. ISSN 1546-1726 (Electronic); 1097-6256 (Print);
1097-6256 (Linking). doi: 10.1038/s41593-018-0195-0.

55. Daniel S. Margulies, Satrajit S. Ghosh, Alexandros Goulas, Marcel Falkiewicz, Julia M.
Huntenburg, Georg Langs, Gleb Bezgin, Simon B. Eickhoff, F. Xavier Castellanos, Michael
Petrides, Elizabeth Jefferies, and Jonathan Smallwood. Situating the default-mode net-
work along a principal gradient of macroscale cortical organization. Proceedings of the

National Academy of Sciences, 113(44):12574–12579, 2016. ISSN 0027-8424. doi:
10.1073/pnas.1608282113.

56. S Murray Sherman. Functioning of circuits connecting thalamus and cortex. Compr Phys-

iol, 7(2):713–739, Mar 2017. ISSN 2040-4603 (Electronic); 2040-4603 (Linking). doi:
10.1002/cphy.c160032.

57. Axel Krauth, Remi Blanc, Alejandra Poveda, Daniel Jeanmonod, Anne Morel, and Gábor
Székely. A mean three-dimensional atlas of the human thalamus: generation from multiple
histological data. Neuroimage, 49(3):2053–2062, Feb 2010. ISSN 1095-9572 (Electronic);
1053-8119 (Linking). doi: 10.1016/j.neuroimage.2009.10.042.

58. S Murray Sherman and R W Guillery. The role of the thalamus in the flow of information to
the cortex. Philos Trans R Soc Lond B Biol Sci, 357(1428):1695–1708, Dec 2002. ISSN
0962-8436 (Print); 1471-2970 (Electronic); 0962-8436 (Linking). doi: 10.1098/rstb.2002.

1161.
59. James W Phillips, Anton Schulmann, Erina Hara, Johan Winnubst, Chenghao Liu, Vera

Valakh, Lihua Wang, Brenda C Shields, Wyatt Korff, Jayaram Chandrashekar, Andrew L
Lemire, Brett Mensh, Joshua T Dudman, Sacha B Nelson, and Adam W Hantman. A
repeated molecular architecture across thalamic pathways. Nat Neurosci, 22(11):1925–
1935, Nov 2019. ISSN 1546-1726 (Electronic); 1097-6256 (Print); 1097-6256 (Linking).
doi: 10.1038/s41593-019-0483-3.

60. Yuri B Saalmann. Intralaminar and medial thalamic influence on cortical synchrony, in-
formation transmission and cognition. Front Syst Neurosci, 8:83, 2014. ISSN 1662-5137
(Print); 1662-5137 (Electronic); 1662-5137 (Linking). doi: 10.3389/fnsys.2014.00083.

61. Kazuya Kawabata, Epifanio Bagarinao, Hirohisa Watanabe, Satoshi Maesawa, Daisuke
Mori, Kazuhiro Hara, Reiko Ohdake, Michihito Masuda, Aya Ogura, Toshiyasu Kato,

Shuji Koyama, Masahisa Katsuno, Toshihiko Wakabayashi, Masafumi Kuzuya, Minoru
Hoshiyama, Haruo Isoda, Shinji Naganawa, Norio Ozaki, and Gen Sobue. Bridging
large-scale cortical networks: Integrative and function-specific hubs in the thalamus.
iScience, 24(10):103106, Oct 2021. ISSN 2589-0042 (Electronic); 2589-0042 (Linking).
doi: 10.1016/j.isci.2021.103106.

62. Francisco Clascá, Pablo Rubio-Garrido, and Denis Jabaudon. Unveiling the diversity of
thalamocortical neuron subtypes. Eur J Neurosci, 35(10):1524–1532, May 2012. ISSN
1460-9568 (Electronic); 0953-816X (Linking). doi: 10.1111/j.1460-9568.2012.08033.x.

63. Siqi Yang, Yao Meng, Jiao Li, Bing Li, Yun-Shuang Fan, Huafu Chen, and Wei Liao.
The thalamic functional gradient and its relationship to structural basis and cognitive rel-
evance. NeuroImage, 218:116960, 2020. ISSN 1053-8119. doi: https://doi.org/10.1016/j.

neuroimage.2020.116960.
64. Eli J. Müller, Brandon Munn, Luke J. Hearne, Jared B. Smith, Ben Fulcher, Aurina Arnatke-
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