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Abstract

Sleep timing varies between individuals and can be altered in mental and phys-
ical health conditions. Sleep and circadian sleep phenotypes, including circadian
rhythm sleep-wake disorders, may be driven by endogenous physiological pro-
cesses, exogeneous environmental light exposure along with social constraints and
behavioural factors. Identifying the relative contributions of these driving factors to

different phenotypes is essential for the design of personalised interventions.

The timing of the human sleep-wake cycle has been modelled as an interaction
of a relaxation oscillator (the sleep homeostat), a stable limit cycle oscillator with
a near 24-hour period (the circadian process), man-made light exposure and the
natural light-dark cycle generated by the Earth’s rotation. However, these models
have rarely been used to quantitatively describe sleep at the individual level. Here,
we present a new Homeostatic-Circadian-Light model (HCL) which is simpler, more
transparent and more computationally efficient than other available models and is
designed to run using longitudinal sleep and light exposure data from wearable
sensors. We carry out a systematic sensitivity analysis for all model parameters

and discuss parameter identifiability.

We demonstrate we can describe individual sleep phenotypes in each of 34 older
participants (65-83y) by feeding individual participant light exposure patterns into
the model and fitting two parameters that capture individual average sleep duration

and timing. The fitted parameters describe endogenous drivers of sleep pheno-

types.

We then quantify exogenous drivers using a novel metric which encodes the cir-
cadian phase dependence of the response to light. Combining endogenous and
exogeneous drivers better explains individual mean mid-sleep (adjusted R-squared

0.62) than either driver on its own (adjusted R-squared 0.07 and 0.17 respectively).

Critically, our model and analysis highlights that different people exhibiting the
same sleep phenotype may have different driving factors and opens the door to
personalised interventions to regularize sleep-wake timing that are readily imple-

mentable with current digital health technology.
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Summary

Disrupted sleep has long term health consequences and affects our day-to-day ability
to function physically, mentally and emotionally. But what determines when and how
long we sleep?

It is well-known that daily light exposure patterns determine the timing of the body
clock. However, creating mathematical models that can take realistic light exposure
patterns and predict plausible sleep timing has been challenging. Furthermore, nearly
all previous studies have focused on developing models for average behaviour, yet
sleep timing and duration are highly individual.

In this paper, we present a simple model that combines sleep regulatory and circadian
processes. The model can take individual light exposure patterns and, by fitting physio-
logically plausible parameters, describe individual mean sleep timing and duration. We
test our model on data collected from 34 older participants. Our modelling approach
suggests that some of the participants slept late because of physiological factors, while
for other individuals, late sleep was a consequence of their light environment.

This approach of combining a model with longitudinal data could be implemented in
digital health technology such that your smart watch could tell you not only how you
slept last night, but also how to change your light environment to sleep better tomorrow.
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1 Introduction

Sleep is a recurring physiological state in many species. In humans, it is a major de-
terminant of quality of life, and disorders and disturbances of sleep are predictive of
adverse health outcomes [1]. Sleep timing and duration change across the human life
span but also show considerable individual differences in every age group. When indi-
vidual differences in sleep timing are extreme, they are considered disorders; circadian
rhythm sleep-wake disorders are prototypical examples [2]. Sleep disorders, including
those associated with timing, are associated with psychiatric disorders and evidence
indicates the relationship may be bidirectional [3, 4]. Interventions to ameliorate sleep
timing are therefore desirable. Understanding, at an individual level, the endogenous
versus exogeneous factors determining different sleep phenotypes [5] will facilitate the
design of more effective, personalised treatments.

Sleep fulfils an essential need that accrues during wakefulness. Sleep homeostasis
refers to the process that keeps track of this build up and dissipation of sleep need and
this process is a determinant of sleep timing. Sleep timing in humans is also governed
by a second physiological process, namely circadian rhythmicity. In the context of sleep
regulation, circadian rhythmicity refers to the approximately 24-hour variation in sleep-
wake propensity which persists even when sleep need and environmental factors such
as light are kept constant. Circadian sleep propensity is high during the circadian night
and low during the circadian day [6].

The alignment of circadian rhythms with respect to the 24-hour day is regulated by en-
vironmental light exposure patterns. The circadian pacemaker, located in the suprachi-
asmatic nuclei (SCN) in the brain, generates a near 24-hour rhythm with a near 24-hour
period (24.15 h, standard deviation 0.2 h) [7]. This non-24-hour rhythm is synchronised
to the 24-hour day by light input via a well-defined neural pathway connecting retinal
photoreceptors to the SCN. The effects of light on the pacemaker depend on the phase
of the circadian cycle at which light information reaches the SCN. Light in the biological
morning speeds up the clock and light in the biological evening slows down the clock
[8, 9]. Entrainment of our non-24-hour clocks to the 24-hour day occurs when there is
an appropriate balance between ‘speeding up’ and ‘slowing down’.

Environmental light exposure patterns were once primarily driven by the natural light-
dark cycle. However, in industrialised societies, most people spend approximately 90%
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of their time indoors [10] and, access to electric light means light is available at any
time of day or night. Since indoor light is typically of lower intensity than outdoor light
and we self-select when to turn lights on and off, the strength of the light-dark signal
as a signal that can entrain the biological clock to the 24-hour day has been greatly
degraded. The consequence of a less robust 24-hour light-dark signal is that for most
people, i.e. those with an intrinsic period longer than 24-hours (77%), circadian rhythms
and preferred sleep timing delay [11, 12, 13, 14]. Social factors, such as work, school
schedules and socialising, also influence sleep timing [15]. In sum, sleep homeostasis,
circadian rhythmicity, the light-dark cycle, and social constraints interact to determine
the timing of wake and sleep across the 24-hour day.

Understanding of the genetic molecular determinants and correlates of the sleep home-
ostat, circadian rhythmicity and the effects of light has grown rapidly in the past few
decades (e.g. [16, 17]). At the same time laboratory studies have indicated that long
and short sleepers differ with respect to the average level of homeostatic sleep pres-
sure [18] whereas early and late sleepers differ in their intrinsic circadian period [19, 20].
However, at the individual level, understanding how these different regulatory mecha-
nisms result in different sleep phenotypes in daily life is more limited. The difficulty of
ascertaining causal factors driving sleep phenotypes is exacerbated by the fact that the
same phenotype may have different underlying causes. For example, late sleep timing
may be a consequence of too little bright light in the morning or too much bright light in
the evening or a long intrinsic period (slow clock), or a combination of all of these. Pa-
rameters of the clock and sleep homeostasis can be quantified in laboratory protocols
but these are labour intensive and are not scalable.

Mathematical models are one way to unravel the relative contributions of different fac-
tors. Several system-level mathematical models for the human sleep-wake cycle have
been developed. Kronauer and colleagues modelled the sleep-wake cycle as an in-
teraction between a strong circadian oscillator (driving core body temperature) and a
weak sleep-wake oscillator. Entrainment to the 24-hour day occurred via forcing the
strong oscillator by the effects of a so-called zeitgeber (‘time giver’) which entered the
system via the weak oscillator [21]. However, the zeitgeber was not based on available
data for the effects of light on the human circadian timing system. Daan, Beersma and
Borbély modelled the interaction of the homeostatic and circadian process (hence the
so-called ‘two-process’ model) but did not model the effects of light on the circadian
process and hence could not simulate entrainment to the 24-hour day. Parameters of
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the homeostatic process of the two-process model were based on electroencephalog-
raphy (EEG) slow wave activity (SWA, EEG power density in the 0.75-4.5 Hz range)
and it was assumed that this variable played a key role in sleep timing. Parameters for
the circadian process were motivated by average sleep duration following displacement
of sleep with respect to the day by extending the wake period [22, 23].

The two-process model is a phenomenological model. Building on insights on the
neuronal regulatory mechanisms and the conceptual flip-flop model [24], Phillips and
Robinson developed a more physiologically-based model by considering mutual in-
hibitory sleep and wake promoting nuclei whose firing rates were modulated by circa-
dian and homeostatic processes [25]. Later, they incorporated Kronauer's model for
the phase-shifting effects of light in phase response experiments [26, 27], by includ-
ing a self-sustained oscillator and light input [28]. Previously, we have shown that an
adapted version of the Phillips-Robinson model can accurately model sleep duration
and timing across the lifespan [29] and have systematically investigated the impact of
light and imposed social constraints (such as getting up for work) [14]. We have shown
that combining light exposure data, collected longitudinally, with the Phillips-Robinson
model can replicate average sleep timing and sleep duration within people living with
schizophrenia and healthy unemployed individuals [30]. Using a similar model, Post-
nova and co-workers have modelled the effect of imposed wake schedules due to shift-
working [31] and in forced desynchrony experiments [32], on sleepiness, cognitive per-
formance and ‘circadian dynamics’. Hong et al. have introduced the notion of ‘circadian
sufficient sleep’ to quantify the degree of alignment of sleep and circadian rhythms [33].
In a further extension of the Phillips-Robinson model, Song et al. [34] predicted sleepi-
ness based on individual sleep-wake history and proposed the duration and timing of
the main sleep and a prophylatic nap to minimise sleepiness during shifts.

Concurrently neuronal models capturing wake, rapid eye movement (REM) sleep and
non-REM sleep have been developed [35] which, consistent with observations, have
modelled the differences between long and short sleepers by differences in mean levels
of a sleep homeostat [36].

Neuronal models are specifically designed to incorporate more physiological insight
into mathematical models of sleep-wake regulation than the phenomenological two-
process model. However, consequently, they are more mathematically complex and
have more parameters than are needed to explain currently available data on sleep
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timing and duration.

Here, we take a different approach and present a new, more minimalist, model that
incorporates the effects of sleep homeostasis, circadian rhythmicity and light on sleep
timing, which has a lower compute time and where the role of each parameter is more
transparent. This new model has the intuitive appeal of the two-process model but also
includes the effect of light on circadian timing. We undertake a systematic sensitiv-
ity analysis to find which parameters primarily regulate sleep timing and duration and
discuss which parameters are identifiable from light and sleep timing data. In older
participants (N=34, age 65-83 y), we demonstrate that we can extract individual pa-
rameters describing endogenous physiological processes by combining the model with
data from wearable light sensors and fitting for individual average sleep duration and
timing. Associations between model parameters and multiple sleep measures, includ-
ing standard biomarkers of sleep homeostasis collected in the laboratory, are consid-
ered. The exogenous driver of light is quantified using both standard metrics of light
exposure and a novel light metric that quantifies both the intensity and time-of-day de-
pendent effects of light on the biological clock. Finally, using the extracted parameters
and the novel light metric, we propose a method to identify the endogenous physiolog-
ical versus the exogenous environmental factors underlying different phenotypes and
discuss the implications for the design of light interventions delivered by digital health
technology applications.

2 Methods

2.1 A new mathematical model for realistic sleep timing

Our Homeostatic-Circadian-Light (HCL) model is motivated by elements of the original
two-process model for sleep-wake regulation [22, 23], the neuronal model of Phillips-
Robinson model [25, 28] and a model of the interaction of light with the human biological
clock [27]. The model is illustrated in Fig. 1 and described in detail below.
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Figure 1: Homeostat-Circadian-Light (HCL) model. Patterns of available environ-
mental light gated by the sleep-wake cycle (since we turn off the lights and close our
eyes when we go to sleep), result in a rhythmic signal that passes from the retina to the
suprachiasmatic nuclei (SCN). Provided the signal is of sufficient ‘strength’, it controls
the timing of rhythms in the SCN, which in turn drives the 24-hour rhythm in the circa-
dian drive for wakefulness and sleep. Homeostatic sleep pressure H increases during
wake and decreases during sleep. If kept awake, homeostatic sleep pressure asymp-
totes to an asymptote i.. The larger the value of u, the faster the rise rate of homeostatic
sleep pressure during wake. Switching between wake (W) and sleep (S) states occurs
at thresholds modulated by the circadian rhythm of wake-sleep propensity [37] which
has peak-to-peak amplitude 2¢,.
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Sleep homeostasis

As in the two-process model, it is assumed that there is a sleep pressure signal H(t)
which increases during wake and decreases exponentially during sleep. Specifically,

w4 (H(tog) — p) exp (—%) , during wake,

H (ton) exp (—%) , during sleep,

H(t) = (1)

where t is time, t,, and t,g are the times of sleep onset and offset respectively, x
describes the rate of decay of sleep pressure during sleep whereas the rise rate during
wake is governed by both 1 and x. The parameter 4 is the ‘upper asymptote’ for
the homeostatic sleep pressure signal since during wake H(t) — p ast — oo. In
other words, if kept awake for a long time, homeostatic sleep pressure approaches an
upper limit that cannot be surpassed, see Fig. 1. Similarly, homeostatic sleep pressure
approaches a lower asymptote of zero during sleep.

In differential equation form,
dH
i
where S takes the value 1 during sleep and 0 during wake.

=—H+(1-95)p, )

Circadian rhythmicity

As in the two-process model, we assume that spontaneous switching from wake to
sleep and from sleep to wake occurs at thresholds which are periodically modulated to
mimic the effect of circadian rhythmicity. Hence, switching from wake to sleep occurs
at H(t) = H*(t) where

(1) = Ho + 58+ c,C (1), 3)

and switching from sleep to wake occurs at H(t) = H (t) where
— 1
Hi(t) :HO— §A+Cac(t) (4)
The constant Hy is the mean level of upper and lower thresholds and A is the separa-
tion between the thresholds.

The wave form of the time dependent circadian modulation C(t) represents the cir-
cadian rhythm of wake propensity. Evidence for a strong circadian drive for 'wake-
fulness’ has been observed both for sleep measures [37] and for cognitive measures

9
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[38]. For the functional form used here we have fitted to experimental data from forced
desynchrony experiments [37]. The functional form is discussed in greater detail in the
subsection ‘Light coupling to circadian rhythmicity’ and in the Supplementary material.
Paradoxically, but consistent with data and the understanding that sleep and circadian
processes act in opposition, the circadian wake propensity signal increases during the
‘day’, reaching a maximum shortly before bedtime and a minimum in the second half of
the night

Equations (2)-(4) may be considered as a lower dimensional representation of a neu-
ronal model in which switching between wake and sleep occurs on a fast timescale. The
neuronal interpretation of Hy is that it represents the drive to be awake, for example
from orexin [24], whereas A represents the strength of the mutual inhibition between
sleep and wake promoting neurons. Further discussion of the link between H, and A
and parameters in neuronal models such as [28] is given in the Supplementary Mate-
rial, Section S1.

Light coupling to circadian rhythmicity

The function C(t) describes the circadian wake propensity rhythms and has a peak-to-
peak amplitude of approximately two. Here, the circadian rhythm C(¢) is constructed
from a model of the effect of light on circadian phase and data describing the circadian
drive for wakefulness [37]. Specifically, following Kronauer [26], the circadian timing
system is modelled as the interaction of Process L (L for light), and Process P (P for
pacemaker) [26]. In Process L, light is considered to activate photoreceptors in the eye
and result in a driving ‘force’, B, on the circadian pacemaker,

I= -1, ®
=\ P

LU (Ifo) (1 =n)—Bn. ©

. I\’

B = G (ﬂ)) (I—n), (7)

where I(t) is the available light, I is the light that reaches the retina and n is the fraction
of activated photoreceptors. The factor (1 — S) in equation (5) models the fact that eyes
are closed during sleep, so that sleep has a gating effect on light exposure. Equation
(6) states that when light reaches the retina, the rate of saturation of photoreceptors

10
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is given by ag (f}—?)p and the rate of decay of activated receptors is given by 5. The
values of «y, Iy, p and g have been determined from experimental data collected during
phase response experiments [26, 27]. Of particular note is that the response to light of

intensity I is ‘compressed’ since it appears in the form (I)? and p <1.

The pacemaker P is modelled as a van der Pol oscillator, here, as in [27], given by,

da 4a3 24\ 2

Ko = 7<$—3>—y<<f7_c> —|—k‘B>, (8)
dy

K}E = X + B, (9)

where r = 2423800 ig g time scaling factor and
B(t) = (1 — bx)(1 — by) B. (10)

A typical form for B(t) for one specific light profile is shown in Fig. 1 and shows that
it incorporates both so-called ‘phasic’ and ‘tonic’ elements [39]. Phasic effects induce
abrupt changes in the position of the oscillator, as occurs as a result of the spike in B(t)
at the transition from dark to light. Tonic effects change the speed of the clock through
modulating the period of the pacemaker and occur via the fact that B(t) settles to an
approximately constant value in constant light.

In equations (8), (9), y(t) represents the circadian pacemaker activity, and x(¢) is an
auxiliary variable. The physiologically motivated parameters result in the van der Pol
oscillator operating in its weakly nonlinear regime where x(¢) and y(t) oscillate in a
close to sinusoidal manner, see Fig. 1. In the absence of light, these oscillations have
a natural period, the ‘intrinsic circadian period’, of 7. hours. The parameter ~ is the
stiffness of the oscillator which describes how easily the system is perturbed from its
natural oscillatory state and the speed of recovery following perturbation. Consistent
with observations that to induce large changes in phase in humans repeated bouts of
high intensity light are required [40], the value of v is taken to be relatively large. This
means that the periodic solution (limit cycle) is strongly attracting,

The effect of light on the van der Pol oscillator comes from the light drive, B modulated
by a sensitivity function (1 — bx)(1 — by) that describes how the strength of the drive
varies with the position of the oscillator.

In the HCL model, the function C(t) is taken to be
C(t) = c20 + an @ + azoy + Ba12” + Pasay + Bosy® (11)

11
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where the coefficients co9, a;; and 3;; were found by fitting to the circadian drive for
wakefulness reported in [37], see Fig. 1. Further details of the fitting process are given
in the Supplementary Material Section S2, along with the values of the coefficients.

Hence the complete HCL model consists of four differential equations: one for the
sleep homeostat, (2); two for the van der Pol oscillator, (8), (9), and one for the pho-
toreceptors, (6). In addition, there are the two switching conditions: switching from
wake to sleep occurs when H(t) = H™(t) and switching from sleep to wake when
H(t) = H=(t), where H*(t) are given by equations (3), (4) and (11). Finally, the light
exposure pattern I(t) is needed as an input, see equation (5). In this paper, I(t) will
come from light intensity data measured in individuals. For scenario testing and inter-
vention design, synthetic profiles are also used.

2.1.1 Parameter values in the HCL model

The HCL model contains a total of 14 parameters, five directly linked to the sleep-wake
regulation aspects of the model (i, x, Ho, A, ¢,) and nine related to the interaction of
light with the pacemaker (f., G, p, k, B, v, ag, 5, Ip)-

Default parameter values for y, Hy and A are motivated by considering the HCL model
as a slow manifold reduction of the neuronal model in [14]. Hence the gap between the
thresholds A is much smaller, and typical values for the circadian amplitude ¢, are much
larger, than those used in the original two-process model. Furthermore, consistent with
neuronal models, we take the homeostatic time constant y to be 45 hours whereas the
two-process model has different time constants for the rate of rise of sleep homeostasis
during wake and rate of fall of sleep homeostasis during sleep. These time constants
have been measured from slow wave activity in sleep electroencephalography (EEG)
studies to be approximately 18 hours and four hours respectively [23]. The HCL time
constants appear very different, but since the actual rise / decay rates of the homeostat
depend not only on the homeostatic time constants but also on the values of the upper
(and lower) asymptotes it is not easy to make a direct comparison. Further compar-
ison between the HCL model parameter regime and that of the original two-process
model is given in the Supplementary Material, Section S3 and Fig. S2. In Supplemen-
tary Section S3 we also demonstrate that the ratio of the average rate of rise of sleep
homeostasis during wake compared with the average fall during sleep is given by the
ratio of sleep to wake duration). Thus for an average sleeper who is asleep for 8 hours

12
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and awake for 16 hours, the ratio is one half.

For the purposes of this paper, default values for i and ¢, were chosen such that, with
the same default light profile used in [14] and shown gated by sleep in Fig. 1, mid-
sleep time was 03:16 hh:mm. This matches mid-sleep time data reported in [41, 42] for
people aged approximately 65 y. Default values for the ten light / circadian parameters
were fixed to the standard parameters used in [28, 14, 30].

All parameters, their meanings and their default values are listed in Table 1.

2.1.2 Differential equation solver

Simulations of the HCL model were carried out in MATLAB [43] using the stiff solver
ode15s with relative and absolute tolerances set to 10~%. The event solver was used
to locate switching points from wake to sleep and from sleep to wake.

2.2 Data collected in everyday life

The primary purpose of developing the HCL mathematical model was to construct a
simpler, more transparent model that was computationally less complex than existing
models and could be used to fit longitudinal data for deeper understanding of causal
factors driving sleep phenotypes in close to real time.

In order to test our approach, we used light, actigraphy and sleep diary data collected
for 7-14 days at home from 35 participants (age (mean + SD) 70.9 + 5 years, range 65—
83 years, 14 women). Immediately after the 7-14 days at home, participants undertook
an overnight polysomnography (PSG) recording at the Surrey Sleep Research Centre,
Guildford, UK. The study received a favourable opinion from the University of Surrey
Ethics Committee and was conducted in accordance with the Declaration of Helsinki.
Written informed consent was obtained from participants before any procedures were
performed.

To be deemed eligible for the study participants had to be between the age of 65 and
85 years, be self-declared mentally stable and physically healthy but could have stable
controlled medical conditions including Type 2 diabetes, hypertension, arthritis. They
needed to be able to perform daily living activities independently, drink less than 29
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Sleep / wake regulation parameters

Parameter Value Meaning

1 17.87 Upper asymptote giving the upper bound for homeostatic
sleep pressure and controlling the rate of rise of homeostatic
sleep pressure during wake.

X 45 x 60 x 60 s | Time constant for rise and decay of homeostatic sleep pres-
sure.
H, 13 Mean level of the wake propensity rhythm.
A 1 Separation between the thresholds.
Ca 1.72 Circadian amplitude.

’ Light / circadian parameters

Parameter Value Meaning

Te 24.2 h Circadian period. Natural period of the van der Pol oscillator.

f 0.99669 Correction factor so that in the absence of light the van der Pol
oscillator gives oscillations with a period of 7.

G 19.9 Gain factor determining the magnitude of the effect of light on
the driving force B on the circadian pacemaker.

D 0.6 Light sensitivity. Determines the steepness of the dose re-
sponse curve to light.

k 0.55 Determines the relative effect of light on the oscillator variables
x and y. It changes the shape of the velocity response curve.

b 0.4 Sensitivity modulation factor that determines the degree to

which the strength of the drive on pacemaker P depends on
the position of the pacemaker. Shifts the time of maximum
sensitivity to light.

07 0.23 Stiffness of the van der Pol oscillator determining how quickly
oscillations return to the limit cycle when perturbed.

Qg 0.16/60 s~! | Factor determining the magnitude of the effect of light on the
fraction of activated photoreceptors and on the drive.

B 0.013/60 s~ | Decay rate of fraction of activated photo receptors.

Iy 9500 lux Scaling factor for light.

Table 1: Default parameter values for the HCL model and their meanings.

units of alcohol per week and be non-smokers. Eligibility for the study was assessed
via a telephone interview and an in-person screening visit which included provision of
demographic information, measurement of height, weight and vital signs, self-reported
medical history, symptom directed physical examination and completion of a series
questionnaires including the Epworth Sleepiness Scale [44] and the Pittsburgh Sleep
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Quality Index [45]. Data were collected from the first 18 participants from January to
March 2020. Following a temporary halt in data collection due to COVID, data from the
remaining 17 participants were collected from July to November 2021.

Subjective sleep-wake patterns were assessed via daily completion of the Consensus
Sleep Diary [46]. Parameters collected through the sleep diary included the time the
participant went to bed, when they tried to go to sleep, how long it took them to fall
asleep (sleep latency), number of awakenings, and time of final awakening. For the
purposes of this paper, sleep onset times for each participant were calculated as the
sleep diary time when participants started to try to go to sleep plus the sleep latency
(i.e. answers to the questions: What time did you try to go to sleep? How long did it
take you to fall asleep?). Sleep offset times were considered to be the sleep diary final
awakening time (i.e. answer to the question: What time was your final awakening?).

Light exposure patterns were assessed by continuous wearing of a wrist worn acti-
watch (Actiwatch Spectrum, Philips Respironics, Murrysville, PA, USA). Environmental
white light levels, recorded in lux at one minute intervals, were extracted from the Ac-
tiwatch datasets. One participant was excluded from the fitting because the Actiwatch
stopped recording after two days. The second group of participants in addition wore a
second light measuring device (HOBO Pendant MX2202 Onset Data Logger, Bourne,
MA, USA) that was worn as a pendant and clipped to clothing near the shoulder. Re-
sults were calculated both using data recorded at the wrist and data recorded at the
shoulder to test the sensitivity of results to the position of the sensor.

Since participants wore an Actiwatch spectrum an alternative to using the participant
self-reported sleep diaries would have been to use outputs from the Actiwatch algo-
rithms for automated analysis of rest-activity records. However, for the participants
reported here, we have shown that sleep diaries more accurately assess nocturnal
sleep-timing parameters than Actiwatch outputs that are unassisted by sleep diaries to
set the analysis period [47].

2.2.1 Light imputation
Participants were encouraged to keep all light monitors uncovered. Nevertheless, there

were some periods in which the participants reported being awake but the recorded lux
values were zero. For values that were zero and occurred during wake, imputation
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was carried out and zero values were replaced by the median value for the half an
hour before and half an hour after, calculated across all available days of data for the
participant concerned. Fittings were carried out with both raw and imputed light data to
test the sensitivity of the method to imputation.

Light was recorded at one minute intervals. When the ordinary differential equation
solver used to solve the HCL equations required values of light at intermediate intervals,
light data were linearly interpolated.

2.2.2 Slow wave activity

Full PSG data were collected using the SomnoHD system (SOMNOmedics GmbHTM,
Germany) according to the American Academy of Sleep Medicine (AASM) guidelines
during the overnight in-lab recording which consisted of an in-bed period of ten hours.
The Domino software associated with the SomnoHD system was used to score sleep
at 30 s intervals [48]. A consensus hypnogram was generated using the manual sleep
scoring performed by a registered polysomnographic technologist and an experienced
scorer. The six channels of electroencephalography (EEG) data collected in the PSG
included frontal (F3-M2; F3-M1), central (C3-M2; C4-M1) and occipital (O1-M2; O2-
M1) derivations. The artefacts in the EEG were manually scored by an expert and the
labels were verified by a second expert to ensure accurate removal of the artefacts.

Slow wave activity (SWA) was calculated according to the method outlined in [49].
Specifically, each 30 s epoch that was classified as sleep was further divided into 4 s
sub-epochs with an over-lap of 1s (10 sub-epochs per 30 s epoch). The artefacts in
each of the 4 s sub-epochs were manually scored by an expert and the labels were
verified by a second expert to ensure accurate removal of the artefacts. Power spectral
density estimates were created via Fast Fourier Transform (FFT) for each of the artefact
free 4 s sub-epochs and a measure of SWA activity for each 30 s epoch was calculated
by averaging power in the 0.75-4.5 Hz range [50]. The timeseries of SWA for the first 3
hours of the recording from the two frontal and two central derivations were averaged
to produce a single measure of SWA for each participant.
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2.3 Parameter fitting

For each participant, the light data were fed into the HCL model and then parameters
were found that minimized the difference between the average diary sleep duration
and the average modelled predicted sleep duration and the average diary mid-sleep
timing and the average model predicted mid-sleep timing. Care was taken to remove
transients in the calculation of sleep duration and mid-sleep time by starting from default
settings for the initial conditions for H,z,y and n and then integrating repeatedly for
the duration of the light data (truncated to an integer number of days) until the model
predicted average sleep duration and mid-sleep time had converged.

In order to test the robustness of our modelling approach, sleep data from each partic-
ipant were fitted four times for the first cohort in which light data were collected at the
wrist, and eight times for the second cohort in which light data were collected from both
the wrist and shoulder. First, the impact of light imputation was tested by fitting using
both raw and imputed light data. Next, the impact of the position of the sensor was
tested by fitting using both light data collected from the shoulder and from the wrist.
In all cases, fitting was carried out for the pair of parameters (u, 7.) and separately for
the pair of parameters (u, ¢,) to investigate different possible physiological interpreta-
tions. The motivations for choosing these two pairs of parameters are discussed in the
results.

The fittings were implemented in MATLAB. For reasons of computational speed, differ-
ent minimization methods were chosen depending on the fitting parameters. Specif-
ically, when fitting for the pair of parameters (u, c,) the sum of squared residuals be-
tween the observed and model predicted averages of sleep duration and mid-sleep time
was minimized using a Nelder-Mead search algorithm (fminsearch). The optimization
routine was considered to have successfully converged to a solution if the residuals
were less than 0.001 and the parameters were physiologically realistic. In particular, we
required all parameters to be positive and 1. > ¢, + Ho + 3A. The reason for imposing
the latter constraint is that when p < ¢, + Ho + %A, there are some circadian phases
close to the maximum wake propensity at which it is impossible for homeostatic sleep
pressure to reach the upper threshold and therefore for the model to spontaneously fall
asleep. At first sight, this seems in line with the literature where the region close to
the maximum wake propensity is known as the wake maintenance zone or forbidden
zone for sleep and is a region where sleep is less likely to be initiated [51]. In fact,
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the presence of the wake maintenance zone in the model follows from the oscillatory
shape of the threshold. The reason for judging values of y that violate the imposed
constraint as ‘non-physiological’ is because they lead to the model predicting that, even
if someone had been kept awake for days, spontaneous sleep could not be initiated at
these circadian phases.

Fitting for the pair of parameters (i, 7.) was carried out iteratively using knowledge of
model behaviour, as reported in the results. Specifically, sleep duration is almost inde-
pendent of 7. and depends monotonically on u, whereas sleep timing depends mono-
tonically on 7., see Section 3.1. Hence, first the value of i that gave a model predicted
average sleep duration that matched the average diary sleep duration was found using
a bisection-based method (fzero). Second, the value of 7. that matched the average
diary mid-sleep time was found using a bisection-based method (fzero). The process
was repeated if the sum of the squared residuals between the observed and model
predicted averages of sleep duration and mid-sleep time did not meet the tolerances
specified. In both cases, an interval containing the solution was first found based on
the known monotonic dependence of the outcome measure on the parameters. Fitting
iteratively was faster and more reliable than using fminsearch.

2.4 Metrics for light exposure patterns

Light exposure patterns can be quantified in different ways, and it remains unclear
which metric is most relevant for light’s effect on the circadian system. Here, five stan-
dard metrics were calculated for each participant for each complete day of data: the
number of hours of bright light exposure (light > 500 lux); the mean lux value; the ge-
ometric mean light exposure calculated by first taking the mean of the log (lux+1) and
then raising the resulting value to the power of 10; the mean time of day at which half
the daily light exposure occurred by considering the time at which half the cumulative
daily lux occurred; the mean time of day at which half the daily light exposure occurred
by considering the time at which half the cumulative daily log(lux+1) occurred. These
metrics are illustrated in Fig. S3.
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2.4.1 Novel light metric quantifying the biological effect of light

In addition, a novel measure of the biological effect of light was constructed by feeding
each day of light data into the light-circadian model of Forger et al [27] (essentially
equations (5 - 10) for default parameters and S = 0) and integrating for one day. Initial
conditions were set to be those for the state of the light-clock system (given by z,y and
n) at midnight for someone with a mid-sleep of 04:30, a sleep duration of 8.22 h and the
synthetic light profile used in [14]. These values were chosen to be consistent with the
‘average’ person considered in [14]. The light-circadian model is designed to capture
the interaction of light on the human velocity response curve, including the fact that
at some times of day light speeds up the clock and at others it slows down the clock.
Integrating for one day and considering whether the clock has covered more than or
less than one cycle (here expressed in minutes) quantifies the extent to which that day
of light data has a net effect of speeding up or slowing down the clock. Positive values
mean that the clock has undergone more than one cycle in 24 hours, negative numbers
mean that the clock has undergone less than one cycle in 24 hours, see Fig. S3.

2.5 Statistics

General linear and / or mixed effect models were used to quantify the contribution of
different factors to sleep timing.

Intraclass correlations (ICCs) were calculated for daily measures of mid-sleep time,
sleep onset, sleep offset, sleep duration and light metrics in order to assess the within
versus the between subject variance. The ICCs were calculated by first fitting a linear
mixed effect model using the MATLAB fitime function with participant as a random
variable, i.e.

Yij = Bo + boj + €ij, (12)

for observation y;; and participant j, with the assumptions that by; and ¢;; are normally
distributed, by; ~ N(0,0%) and €;; ~ N(0,0%). Hence, o} is the between participant
variance and o2 is the residual variance (within participant variance). The ICC is then

given by
%

I1CC =
0134-02

(13)

Pairwise Spearman’s rank correlations were computed using the MATLAB function corr.
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Significance levels were corrected for false discovery rate (FDR) using the Benjamini-
Hochberg method [52] with a FDR of 5%.

3 Resulis

3.1 Behaviour of the HCL model: sensitivity of sleep duration and timing
to model parameters and light availability patterns

Before fitting, we perform a sensitivity analysis of the nonlinear HCL model to under-
stand the underlying mathematical structure, deduce relevant parameters and assess
which parameters are identifiable from available data.

We find parameters largely separate into those that primarily affect sleep duration and
those that affect sleep timing. Sleep timing is also affected by light exposure. Results
are summarised in Fig. 2 and Supplementary Figs. S4 and S5 and discussed further
below.

3.1.1 Parameters that affect sleep duration

For the five sleep-wake regulation parameters listed in Table 1, sleep duration is primar-
ily controlled by 1 (the upper asymptote) and H (the mean level of the wake propensity
rhythm). Both of these parameters affect sleep duration through a similar mechanism.
Either increasing H or decreasing u result in a net reduction in the rate of increase
of sleep homeostasis during wake. The slower rise in sleep homeostasis during wake
results in longer wake periods and consequently shorter sleep periods.
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Figure 2: Dependence of model predicted sleep duration and timing on model
parameters and light exposure. The top left panel shows two different light avail-
ability profiles. In all other groups of panels, the dependence of sleep duration (top
panels), mid-sleep time (middle panels) and time of the circadian minimum (bottom
panels) for the two light profiles are shown. The black vertical line indicates the default
parameter values. Results are shown for ailfive sleep-wake parameters and five of the
circadian-light parameters. The equivalent graphs for the remaining four circadian-light
parameters are shown in Supplementary Fig. S4.


https://doi.org/10.1101/2023.06.14.544757
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.14.544757; this version posted October 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

The parameter y, which simultaneously affects the rate of decay of sleep homeostasis
during sleep and the rate of rise of sleep homeostasis during wake, has little impact on
sleep duration over the range considered. Similarly, sleep duration is insensitive to the
gap between the thresholds, A over the range considered. Circadian amplitude ¢,, has
a small effect on sleep duration.

There are ten light / circadian parameters listed in Table 1, although only nine of them
are independent since f and 7. only appear in the combination fr.. All of these nine
parameters act to change the timing of the circadian rhythm relative to the 24-hour day
with barely observable changes to the amplitude or shape of C(t) (graphs for five of
these nine parameters are shown in Fig. 2, the remaining four are shown in Supple-
mentary Fig. S4). Unless the light is sufficiently strong to change the shape of C(¢),
there is no mechanism for any of these parameters to change sleep duration.

3.1.2 Parameters that affect sleep timing

Each of the five sleep-wake regulation parameters affects sleep timing to a greater
or lesser extent. The change in sleep timing occurs through two mechanisms. First,
where there are changes to sleep duration there are consequently also changes to the
duration of the light period. Second, all five parameters alter the internal relationship
between sleep and circadian rhythmicity to some extent (see Supplementary Fig. S5).
The fixed light availability profile used here combined with the gating effect of sleep,
mean that a shift in the circadian minimum towards the end of the sleep episode results
in more bright light earlier in the circadian day. More bright light earlier in the circadian
day means more light at times when light acts to speed up the circadian clock, leading
to earlier sleep timing.

Each of the nine independent circadian parameters adjust sleep timing by changing
the magnitude or the effect of light on the circadian pacemaker, consistent with their
definitions in Table 1. The parameter 7, is the intrinsic period of the van der Pol oscillator
modelling the circadian pacemaker. Consistent with entrainment theory [53], sleep
timing is later for longer 7.. For an evening light of 40 lux, the curves for the time of
the circadian minimum and the mid-sleep time stop at around 7. equals 24.3 h. At
this point, the parameter values sit at the edge of the region of entrainment for stable
periodic sleep-wake cycles. For larger values of 7. the model no longer entrains. For
similar reasons, the curves for p, k, b and I, for an evening light level of 40 lux also
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stop.

The parameters ag, p and I collectively alter the magnitude of the light signal. Increas-
ing ag or p scales all values of light up. Increasing I, scales all values of light down.
However, since both the magnitude and the timing of light are important it is not neces-
sarily obvious what the net effect of scaling light will be on sleep and circadian timing.
Here, we find that for the synthetic light profiles shown in Fig. 2, increasing p or ag or
decreasing I shifts sleep and circadian timing earlier.

The parameter g alters the rate of decay of activated photoreceptor. Larger values of 3
will in general lead to smaller values for » and thus larger values for B and B. k alters
the shape of the velocity response curve that describes the effect that light has on the
velocity of the clock as a function of the phase of the clock. b alters the timing when
the clock is most sensitive to light. The parameter ~ alters the speed at which the van
der Pol oscillator returns to the limit cycle. Under the entrained conditions here with a
smooth, regular periodic input it has little impact on mid-sleep timing.

3.1.3 The effect of light on sleep timing

The sensitivity results presented in Fig. 2 and Fig. S4 are shown for two different exam-
ple light profiles. These two profiles have a similar shape, with light switching smoothly
between a high level during daylight hours and a low level at all other times, represent-
ing 24-hour access to electric light. The duration of the daylight hours was selected to
approximate the natural photoperiod around the equinoxes. We refer to the low level
as ‘evening light’ because the alignment of sleep with respect to daylight hours means
that the primary effect of the low level of light is after dusk. The two profiles differ in
the amount of available evening light. Note that the model assumes that light is avail-
able during wake, but is turned off when the switch to sleep occurs and turned back
on when the switch to wake occurs. The consequent ‘self-selection’ means that sleep
timing controls the timing of light, resulting in feedback between sleep and circadian
rhythmicity [13, 14]. This feedback has a ‘destabilising’ effect since even if the input
light signal is periodic the signal reaching the retina will not be periodic unless sleep is
periodic.

In all cases, increasing evening light shifts sleep and circadian timing later with no
visible impact on sleep duration. However, the magnitude of the delay is dependent on
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the parameter values. For the default parameters, the increase in evening light results
in a delay of approximately one hour because increasing light during the evening results
in more light exposure during times when light acts to slow down the circadian clock
[54]. For the intrinsic period 7., longer circadian periods result in greater sensitivity to
evening light, consistent with [14].

In general, the parameter sensitivity curves have steeper slopes for the higher value
of evening light, meaning that sleep and circadian timing are more sensitive to the
parameter values for evening light of 40 lux than of 10 lux. This is because of the
gating effect of sleep on light exposure. When the evening light levels are low, the
precise timing of sleep onset does not greatly alter the light exposure pattern reaching
the eye and so sleep timing has little impact on circadian timing. However, when the
evening light levels are high, later sleep onset leads to more light in the evening which
further contributes to the delay to the circadian clock.

3.1.4 The same phenotype may have different driving factors

Fig. 2 highlights that multiple model parameters lead to a particular sleep phenotype.
For example, an individual may have a late sleep timing preference because of their
physiology (e.g. a long intrinsic circadian period or a high sensitivity to light in the
evening) or because of their pattern of light exposure. Different phenotypes and asso-
ciated model parameters are summarised in Table 2.

For given sleep timing and duration data, there may therefore be multiple ways to ex-
plain the same data. With access to individual light exposure data, it should however, be
possible to separate endogenous physiological factors from exogenous environmental
factors.
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Sleep Physiological / environmental interpretation Associated model pa-
phenotype rameter
Long sleep | Rapid increase of homeostatic sleep pressure dur- | High value of .
ing wake. High sleep need.
Low level of wake propensity. Low mean level of
thresholds H,
Short sleep | Slow increase of homeostatic sleep pressure dur- | Low value of p.
ing wake. Low sleep need.
High level of wake propensity. High mean level of
thresholds H.
Early sleep | Low circadian amplitude. Small circadian ampli-
tude c¢,.
Intrinsic period shorter than 24 h giving a tendency | Short 7.
to phase advance in the absence of zeitgebers of
sufficient strength.
Insensitive to the effect of light in the evening and | High value of p, high
/ or sensitive to bright light during the day. value of k.
High levels of bright light during the day and / or
low levels of light in the evening.
Late sleep | High circadian amplitude. High ¢,.
Intrinsic period longer than 24 hours giving a ten- | Long ..
dency to phase delay in the absence of zeitgebers
of sufficient strength.
Sensitive to the effects of light in the evening and | Low value of p or k or
/ or insensitive to the effects of bright light during | high value of b.
the day.
Low levels of light during the day or too much light
in the evening.
Irregular Low circadian amplitude. Low c,.
sleep
Low zeitgeber strength i.e. little variation in levels
of light across the day.

Table 2: Different sleep phenotypes, associated model parameters and the phys-
iological and environmental interpretation.
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3.2 Identifying endogenous factors driving sleep phenotypes: combin-
ing the HCL model with data

Next we demonstrate that we can match individual average sleep duration and timing
by fitting for two pairs of parameters namely (u,7.) and (u,c,). The choice of these
pairs is motivated by the sensitivity analysis and aims to provide sufficient flexibility to
fit to a wide range of sleep durations and mid-sleep times. Essentially, for each pair, one
parameter primarily determines sleep duration (), whilst the other primarily determines
sleep timing (7. or ¢,). We fit two pairs of parameters to illustrate some of the pros and
cons of parameter selection.

3.2.1 Observed sleep and circadian phenotypes

In order to test the HCL model, it was important to consider individuals who exhibit
a range of different phenotypes. In our cohort, sleep timing (mid-sleep ICC = 0.65,
sleep onset ICC = 0.56, sleep offset ICC = 0.61), duration (ICC = 0.47) and day-to-
day variability differed between individuals. Five examples are shown in Fig. 3 and
include: an early sleeper (mid-sleep time + standard deviation 02:11 hh:mm + 0:26
h:mm; sleep onset 22:55 hh:mm 4 0:30 h:mm); sleep offset 05:28 + 0:49 h:mm); a late
sleeper (mid-sleep time 04:18 hh:mm + 0:42 h:mm; sleep onset 00:53 + 0:47 h:mm;
sleep offset 07:44 hh:mm =+ 0:55 h:mm); a long sleeper (sleep duration + standard
deviation 8.92 h + 0.92 h); a short sleeper (sleep duration 4.67 h + 0.74 h) and an
irregular sleeper (sleep duration 5.37 h + 1.85 h). Also shown are boxplots for sleep
duration and mid-sleep time for each participant and the distributions of the participant
average and standard deviation in mid-sleep time and sleep duration for the whole
cohort. Equivalent boxplots and distributions for sleep onset and offset are shown in
Supplementary Fig. S6.
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Figure 3: Example of field data for five different sleep phenotypes and summary
information for sleep timing and duration for each participant and the cohort.
Panels (a) show daily sleep timing (coloured horizontal bars, darker colouring shows
sleep on Friday and Saturday nights). Light exposure is shown in the background for
four different intensity bands. Dusk and dawn are indicated by the orange triangles.
Panels (b) show box plots for mid-sleep timing and sleep duration respectively for each
participant. Participants have been ordered according to their mean mid-sleep time.
Panels (c) show the distributions of mean participant mid-sleep, standard deviation
of participant mid-sleep, mean participant sleep duration, and standard deviation of
participant sleep duration respectively.
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3.2.2 Personalised model parameters were retrieved for each participant

Model parameters (u, 7.) that matched average sleep timing and duration for every
individual were found for all 34 participants. Fitting for (u, c,) successfully retrieved
parameters for 27 of the participants when raw light data were used and 30 of the 34
participants when imputed light data were used. The reason that not all participants
were fitted when using (u, ¢,) are discussed in section 3.2.5 below. Example fits and
the corresponding personalised HCL models are shown in Fig. 4. Scatter plots showing
the values of all parameters can be seen in Fig. 5.

For both pairs of parameters (u,7.) and (u,c,), the fitted values accurately predict
average sleep duration and mid-sleep timing within individuals to within the tolerances
set for the optimization algorithm i.e that the residual calculated as the square root
of the sum of the squares of the error in the average sleep duration and the average
mid-sleep was less than one minute, Supplementary Fig. S7.

There is a very little association between the homeostatic parameter and the circadian
period 7., supporting the fact that they are capturing different phenotypic dimensions,
see Fig. 5. There was a weak association between the homeostatic parameter and the
circadian amplitude, c,.

The method was robust in that fitted parameters calculated using data collected from
the wrist were strongly associated with those calculated using data collected from the
shoulder (Spearman’s rho for the homeostatic parameters 1 > 0.96, and those for the
timing parameters of ¢, or 7. > 0.79), see Supplementary Figs. S8 and S9. Likewise,
parameters fitted using imputed data were strongly associated with those calculated
using raw data (Spearman’s rho values for the homeostatic parameters > 0.96, and for
the timing parameters of 7. or ¢, > 0.90).
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Figure 4: Example fits to mid-sleep and sleep duration. Panels (a) show simulated
raster plots superimposed on the sleep timings (background bars coloured according
to phenotype) as a result of fitting for the homeostatic parameter p with the two alter-
native circadian timing parameters, i.e. the intrinsic circadian period, 7. (grey, left hand
column), and the circadian amplitude ¢, (blue, right hand column). Panels (b) show the
corresponding Homeostatic-Circadian-Light (HCL) models from fitting for (u, 7.) (grey,
left hand column, ¢, fixed at the default value of 1.72) and for (u, ¢,) (blue, right hand

column, . fixed at the default value of 24.28 h).
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Figure 5: Associations between the fitted homeostatic parameter ;. with the two
alternative circadian timing parameters, i.e. the intrinsic circadian period, 7. and
the circadian amplitude c,.

3.2.3 Relation of fitted parameters to phenotypes and physiology

Consistent with the sensitivity analysis, we find that for each pair of parameters, one
parameter (i) is strongly associated with sleep duration, with little association with mid-
sleep time, see Table 3. Larger p is associated with longer sleep duration, shifting sleep
onset earlier and sleep offset later by approximately the same amount.

Also consistent with the sensitivity analysis, 7. or ¢, are (weakly) associated with mid-
sleep time, with larger values of 7. and larger values of ¢, indicative of later mid-sleep
time. We note that although we consider ¢, as a ‘timing’ parameter, as found in the
sensitivity analysis, it does also affect sleep duration and indeed there is a moderate
association between ¢, and sleep duration.

The two values of the homeostatic parameters 1 are strongly associated with each
other (Spearman’s rho 0.88), as are the timing parameters 7. and ¢,, (Spearman’s rho
0.72), see Supplementary Fig. S7(c).

The HCL model is designed to capture the gross features of key physiological pro-
cesses that regulate sleep. Since SWA activity is viewed as a marker of homeostatic
sleep pressure it is interesting to note that the homeostatic parameter p derived from
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Spearman correlations (p-values)

Mid-sleep Sleep Sleep Sleep Slow wave
time onset offset duration activity

Homeostatic
parameter © | 0.05 (0.784) | -0.60 (<0.001*) | 0.59 (<0.001*) | 0.99 (<0.001*) | 0.40 (0.022)
(1, 7 fitting)

Homeostatic
parameter 1 | 0.01 (0.949) | -0.16 (0.392) 0.10 (0.610) 0.88 (<0.001*) | 0.29 (0.124)

(1, cq fitting)

Circadian
timing 0.34 (0.053) | 0.12 (0.490) 0.33 (0.055) 0.13  (0.464) -0.01 (0.964)
parameter 7.

Circadian
timing 0.26 (0.165) | -0.09  (0.630) -0.20  (0.279) 0.57 (0.001*) | 0.19 (0.305)
parameter c,

Table 3: Correlations between fitted parameters and sleep duration and timing
measures and slow wave activity Values in bold are significant (p < 0.05). Those
with an asterisk survive FDR correction (p < 0.0125).

data collected at home is positively associated with SWA derived from data collected in
the laboratory, see Table 3.

The width of the distribution of model intrinsic circadian periods 7. (standard deviation
0.12-0.15 h) is similar to the width of the distribution of intrinsic circadian periods found
in forced desynchrony experiments (standard deviation 0.2 h, [7]), see Fig. 6(a). How-
ever, since both circadian amplitude ¢, and 7. determine sleep timing, in the HCL model
these interact, consequently the mean value for the distribution of fitted 7. depends on
the circadian amplitude. For example, when fitting for (u, 7.) a default value of ¢, = 1.72
was used. Using a larger circadian amplitude results in later sleep timing. So fixing
the default circadian amplitude at a higher value will tend to shift the distribution of 7.
to smaller values (earlier sleep timing) to compensate. Similarly, a smaller circadian
amplitude shifts the distribution of 7. to higher values, see Fig. 6(a). Hence, one cannot
make inferences on the actual intrinsic circadian period as measured in a forced desyn-
chrony protocol. We have kept the notation 7. consistent with prior literature (e.g. [28]),
but it is perhaps more appropriate to think of it as an endogenous timing parameter.
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Figure 6: Identifiability of model parameters Panels (a) show histograms of fitted
intrinsic circadian period 7. for three different choices of the circadian amplitude c,,
highlighting the inter-dependence of these two parameters. Panels (b) show the resid-
ual for fitting simultaneously to mean sleep duration and mean mid-sleep timing for one
participant as a function of (i, 7.) and (u,c,) i.e. the sum of the squared differences
between mean sleep duration and mean simulated sleep duration and mean mid-sleep
time and mean simulated mid-sleep time.

3.2.4 Day-to-day variability

Average sleep duration and mid-sleep timing are accurately matched, but Fig. 4 high-
lights that there are differences between reported and model predicted day-to-day mid-
sleep timing. Specifically, average standard deviation in participant reported mid-sleep
time was 0:34 h:mm (see Fig. 3), whereas model predictions were 0:09 h:mm and 0:08
h:mm for (u, 7.) and (u, c,) respectively. Similarly, average participant standard devia-
tion in reported sleep duration was 1.01 h (see Fig. 3), whereas model predictions were
0.07 h and 0.05 h for (u, 7.) and (u, c,) respectively. Considering the day-to-day differ-
ences between predicted and reported mid-sleep time, sleep onset time, sleep offset
time and sleep duration, there were no significant differences between the goodness of
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fit for (u, 7.) and (u, cq)-

3.2.5 Which parameters to fit?

Overall, it was faster and more people were successfully fitted with (u, 7.) than (i, ¢,).
Plotting the residual error as a function of the parameters, see Fig. 6(b) for one example,
illustrates the reasons. For (u,7.) there is a well-defined minimum value since sleep
duration is independent of 7. and mid-sleep is only weakly dependent on u. For (u, ¢,)
the minimum value is much less well-defined with a line along which reducing x and
increasing ¢, give similar (low) values for the residuals. The inability to fit for (u, ¢,) for a
few people is because for some light exposure patterns, the model is unable to simulate
late enough sleep timing by only varying amplitude (and (x)). This is because for large
amplitudes, sleep timing is very insensitive to further changes in amplitude. This can
be seen in the sensitivity analysis shown in Fig. 2 and understood with reference to
the HCL model for the late sleeper shown in Fig. 6(b). In the HCL model, once the
amplitude is large, at the points on the thresholds where sleep onset and offset occur,
the gradient is very steep. Increasing the amplitude further makes the gradient steeper,
making the time of sleep onset or sleep offset relatively insensitive to the upward or
downward trajectory of the sleep homeostat.

Table 2 and the sensitivity analysis shown in Figs 2 and S5 highlight that multiple pa-
rameters affect sleep timing. The fact that we could fit 30 of the 34 participants equally
well for two pairs of parameters (u, ¢,) and (u, 7.) further highlights that it is not possible
to uniquely identify a set of parameters for each participant on the basis of light, sleep
timing and duration data alone. As shown in Fig. 6, a slightly larger ¢, can be com-
pensated for by a slightly smaller value for 7. (and a smaller value of x). Similarly, it is
not easy to distinguish between small differences in light sensitivity (e.g. the parameter
p) and small differences in one of the other parameters that alter the effect of light on
sleep timing (e.g. ¢, and 7).

On the other hand, the fact that we could not fit 4 of the 34 participants by only varying
(1, cq) illustrates that picking parameters with sufficient sensitivity is important. Since
we were able to fit sleep timing (and duration) for all participants by varying 7. (and p),
from this point we focus on the pair of parameters (u, 7).
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3.3 Exogenous factors determining sleep phenotypes

The endogenous parameters found by fitting the HCL model were strongly associated
to sleep duration, sleep onset and sleep offset, but the association with mid-sleep timing
was weak. Given the acknowledged importance of light in determining the timing of
the biological clock and sleep, it is interesting to examine if individual patterns of light
exposure correlate with sleep phenotypes.

3.3.1 Observed light exposure patterns

Light exposure patterns varied between individuals, see Fig. 7, where light exposure
patterns for the five example sleep and circadian phenotypes are shown. Also shown
are boxplots indicating the daily hours of bright light and daily measure of the effect
of light on the biological clock for each participant and distributions of the participant
average and standard deviation in both light measures. An average of less than one
hour of bright light (light > 500 lux) a day was recorded at the wrist for most people
(24 individuals i.e. 71%). Equivalent boxplots and distributions for the remaining four
light metrics which further quantify overall light exposure and timing of light exposure
are shown in the Supplementary Figs S10 and S11.

3.3.2 Associations between sleep timing and duration and light exposure

Mid-sleep time was not associated with any of the three metrics which quantify the
amount of light received, i.e. the mean lux value, the geometric mean value or the
mean number of daily hours of bright light (light > 500 lux) (Spearman’s rho all of
magnitude less than or equal to 0.11), see Supplementary Table S2. Mid-sleep was
weakly associated with the two measures of the timing of light i.e. the time of day at
which half the total daily amount of light (lux) has been received (Spearman’s rho 0.29)
and the time of day at which half the total daily amount of light (log (lux+1) has been
received (Spearman’s rho 0.32). The associations are such that later light exposure is
associated with later mid-sleep time. The novel measure of the biological effect of light
was also weakly assciated with mid-sleep time (Spearman’s rho -0.25).

All measures that quantify the amount of light are significantly associated with each
other (p<0.001), as are the measures that quantify the timing of light (p<0.001), see
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Table S2. The novel measure of the biological effect of light was found to be moderate
to strongly associated with all measures of the amount of light (Spearman’s rho from
0.56 to 0.76) and with one of the timing measures (time of half-light measured in lux,
Spearman’s rho -0.55).

Sleep duration was not found to associate with any of the six light metrics (Spearman’s
rho all of magnitude less than or equal to 0.16), see Supplementary Table S2.
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Figure 7: Example light data for five different sleep phenotypes and summary
information for each participant and the cohort. Panels (a) show examples of light
exposure patterns for five different participants. The regions show the fraction of time
spent in each of four intensity bands. Average sleep timing is marked by the coloured
horizontal bars. Dusk and dawn are indicated by the orange triangles. Panels (b) show
box plots for the daily hours of bright light and the daily measure of the effect of light on
the circadian clock respectively for each participant. Participants are ordered by their
mean mid-sleep time, as in Fig. 3. Panels (c) show the distributions of the mean and
standard deviation of participant daily hours of bright light and the mean and standard
deviation of the participant daily measure of the effect of light on the biological clock.
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3.4 Relative contribution of endogenous physiological and exogenous
environmental drivers of sleep phenotypes

To summarise, individual differences in sleep timing and duration were successfully
fitted by the HCL model. Individual differences in sleep duration were found to be pri-
marily driven by the modelled homeostatic sleep process (see Table 3). However, for
individual differences in mid-sleep timing the explanation is more complex and is a re-
sult of the interaction of physiological factors and light exposure patterns. In a first
approach to determine at an individual level the relative contribution of physiological
factors and light exposure patterns we have found model parameters describing en-
dogenous physiological factors and used a variety of measures to quantify exogenous
light exposure.

Physiological factors driving sleep timing are captured by the fitted model circadian tim-
ing parameter, 7.. However, interestingly, we found that 7. is only weakly associated
with mid-sleep timing, only explaining a small amount of the variance, see Table 3 and
Fig. 8(a). For example, although the late sleeper labelled as ‘late phenotype (physiol-
ogy)’ in Fig. 8(a) has a greater value of 7. than the ‘early phenotype’, there are those
with a relatively small value of 7. who have a similarly late mid-sleep time, for example
the individual labelled as ‘late phenotype (environmental light)’.

Similarly, in spite of the acknowledged importance of light as the primary zeitgeber for
the human biological clock, mid-sleep timing was not associated with measures of total
environmental light exposure and was only weakly associated with measures of the
timing of light (see Table S2). As shown in Fig. 8(b), our novel metric of the biological
effect of light also only explains a small amount of the variance in mid-sleep time, with
the early phenotype and late phenotype (physiology) examples having similar values
for the biological effect of light.

However, taken together, the fitted parameter 7. and our novel metric of light timing
explain a large amount of the variance (adjusted Rsquared, 0.62), see Fig. 8(c). Here
we see that our modelling approach suggests that of the two highlighted late sleep
examples, one has late phenotype as a result of their physiology and one has a late
phenotype as a result of their light exposure pattern.

In Fig. 8(c) along with the data the fitted general linear model,

Mid-sleep time = 4.06 — 5.94 X Lime + 5.37 X (7. — 24.2), (14)
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where Liine is the measure of the biological effect of light in hours, is shown. This
model estimates the deviation from a mid-sleep time of 4.06 h that occurs either as
a result of a deviation of the fitted intrinsic period from 24.2 hours or as a result of
an environmental light signal that for the average person would advance / delay the
biological clock relative to a 24-hour day. Including higher order interaction terms does
not improve the fit.

The novel light timing metric combined with 7. explains more of the variance than com-
bining either of the other two light timing metrics with 7.. (Fitting for 7. with the time
of half light gives an adjusted rsquared value of 0.51, and with the time of half-loglight
gives an adjusted rsquared value of 0.09.)
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Figure 8: Quantifying the effect of environment versus physiology in the deter-
mination of mid-sleep time. Panel (a) shows that the fitted physiologically-motivated
timing parameter, the intrinsic circadian period 7., also only explains a small amount of
the between participant variance. Similarly, panel (b) shows that considering the novel
metric of the biological effect of light also explains only a small amount of the between
participant mid-sleep time. In contrast, combining environmental and physiological vari-
ables (panel (c)), explains a large amount of the variance.
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3.5 Light intervention and phenotype: an example

Here, we illustrate how different underlying causes to a given phenotype may than have
implications for the effects of light interventions. The predicted effect of two different
types of light intervention are shown in Fig. 9, for the participants that were classified
as late phenotype (environmental light) and late phenotype (physiology). Two typical
types of light interventionsh are shown. One is an ’evening’ light intervention, in which
all values of the available light between 18:00 and 06:00 are set to 10 lux (the model
turns light off during predicted sleep). The other is a ‘morning’ light intervention in
which all values of the available light between 9:30 and 10:00 were set to 1000 lux.
All other values of the light pattern were left at their original recorded values. The
simulations suggest that the light interventions will have a bigger impact on the indivudal
for whom it was suggested that the environmental light was the main contributor to
their late phenotype, In order to get the same magnitude of effect for the late phentype
(physiology) would require a more extreme light intervention.

4 Discussion

Individuals may have preferred sleep timing that conflicts with their work schedules or
personal desired sleep timing. But preferred sleep timing is a result of both endogenous
physiological factors and exogenous light exposure patterns. In order to design person-
alised interventions to either advance or delay sleep timing an important step is to be
able to dissect the relative contributions of these separate drivers to sleep phenotype.
While changing endogenous physiology drivers is challenging, exogenous light expo-
sure patterns can readily be altered and offer a practical solution for implementation of
targeted interventions at scale.

Here we have developed a new simplified model for the Homeostatic-Circadian-Light
(HCL) regulation of sleep timing and duration. Critically, we have demonstrated that
combining the model with 7-10 days of measured light exposure patterns we can ac-
curately find personalised parameters that match individual mean sleep-timing and du-
ration. Parameter values are robust in that they are not strongly dependent on the
position of the light sensor (wrist or shoulder) or whether raw or imputed light data are
used. In addition, motivated by the fact that current widely used metrics do not capture
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Figure 9: Effect of light interventions. The upper panels show one day of the original
time series of the recorded light. The available light for the evening and the morning
light intervention are shown in red / blue respectively. The bottom panels show the
predicted sleep timing for each of the three cases (black, default; red, evening light
intervention; blue, morning light intervention).

both the intensity and time-of-day effect of light on the timing of the biological clock,
we constructed a novel light metric based on the phase response to light as encoded
in a van der Pol oscillator model of the circadian pacemaker [27]. The identification of
personalised model parameters along with the use of the novel measure of the effect of
light on the biological clock enabled us to suggest, for the first time, the relative contri-
butions of endogenous physiological versus exogenous environmental light drivers for
mid-sleep timing.

The HCL model could readily be combined with wearables to provide individual advice
on appropriate light availability patterns to achieve a target preferred sleep timing, as
envisaged in the interventional framework proposed in [30].
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Relation of the HCL model to other models

The HCL model was motivated by elements of the original two-process model [23] along
with elements of recent neuronal models [28, 14]. Critically, unlike the two-process
model it includes light to allow for the modelling of sleep-timing relative to the 24-hour
day. Unlike Kronauer-type models, the HCL models both circadian rhythmicity and
sleep Compared with recent neuronal models, the HCL model is simpler (four instead of
six first order differential equations, 14 instead of 23 parameters), and computationally
faster. For consistency with our previous work, we checked that the HCL model gave
similar results to our work on neuronal models, for example reproducing similar tongue-
like entrainment regions as computed in [14] (see Fig. S12) and similar results to those
reported in [30] when fitting to data from people living with schizophrenia and healthy
unemployed controls. We found integrating the HCL model to be typically twise as fast
as integrating our neuronal model.

The relative simplicity of the HCL model makes it straightforward to understand the role
of each parameter, see Fig. 2 and Table 2. In addition the form of the coupling between
sleep and circadian rhythmicity has been updated to better reflect data on the circadian
variation of wakefulness, [6]. The model can also easily be extended to include the role
of social constraints (see the Supplementary Material, section S13 and Fig. S13).

Nine of the parameter relate to light-circadian aspect of the model. In spite of the
number of parameters, we elected to retain the circadian-light model as specified by
Kronauer and colleagues [26, 27]. A recent systematic study suggests that simplifying
the circadian-light model results in a poorer fit to circadian phase data [55]. Another
popular version of the Kronauer model is that produced by St Hilaire and co-workers
[56]. Given the similarities between the different models, we would expect results to
be similar whichever version is used. Although we note that if a different light-circadian
model was used then the form of the sleep-circadian coupling function C(¢) given in
equation (11) would also need to be updated.

Identifying factors underlying sleep phenotypes: challenges

Based on our sensitivity analysis, we fitted for one parameter encoding sleep dura-
tion (e.g. i) and one encoding sleep timing (e.g. ¢, or 7.). Over several weeks, with
sufficiently variable light from one week to the next, it may be possible to capture the
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nuanced different dynamic responses that may occur with different parameter combi-
nations. Further types of data could enable the identification of more parameters. For
example, knowledge of individual alignment of circadian phase with sleep could en-
able fitting of one additional sleep-wake parameter. Day-to-day variation in circadian
phase could enable both a light sensitivity parameter and intrinsic circadian period to
be determined as suggested for light-circadian models in [57].

Limitations

The current work is based on only one to two weeks of data. As longer timeseries
become available, the same approaches can be used to assess whether model pa-
rameters vary with time. The current HCL model, like the neuronal models, captures
individual differences in the average timing and duration of sleep but not the night-to-
night variation in sleep timing and duration. The reason that current deterministic sleep
models do not capture night-to-night variation in sleep timing is that, in the models, the
only difference between one day and the next is the difference in the light exposure
pattern. Different light exposure patterns on different days introduces a small day-to-
day variation in the timing of the circadian rhythm, which is translated into a day-to-day
variation in sleep timing. In order for the HCL model (or any of the neuronal models)
to predict greater night-to-night variation in sleep timing there are then a number of dif-
ferent options. For example, night-to-night variation could be modelled by the inclusion
of stochasticity to capture momentary changes in alertness (e.g. see [58]) or further
knowledge on the reasons that determine when people go to bed. Including circadian
amplitude dependence on light [59] may also be important and enable reported de-
pendence of sleep duration on light [60] to be captured. Finally, the current work uses
lux as the measure for the effects of light on the circadian clock. The discovery of the
contribution of the photopigment melanopsin to the regulation of circadian rhythmicity
implies that melanopic lux rather than photopic lux may be the relevant measure [61],
although we do not expect this to substantially affect our results.

Outlook

Our modelling approach suggests that it is possible to separate endogenous physio-
logical drivers from exogenous environmental drivers for different sleep phenotypes.
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This implies that there is considerable scope for appropriate models to be incorporated
in clinical guidance and intervention design for sleep disorders. Models could even
be implemented as standard in smart watch software for general guidance for day-to-
day living or coupled to human centric lighting systems to automatically tune the light
environment to optimise the alignment of sleep and circadian rhythmicity to a desired
time.
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