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Abstract

We consider the problem of predicting a protein
sequence from its backbone atom coordinates.
Machine learning approaches to this problem to
date have been limited by the number of available
experimentally determined protein structures. We
augment training data by nearly three orders of
magnitude by predicting structures for 12M pro-
tein sequences using AlphaFold2. Trained with
this additional data, a sequence-to-sequence trans-
former with invariant geometric input processing
layers achieves 51% native sequence recovery on
structurally held-out backbones with 72% recov-
ery for buried residues, an overall improvement
of almost 10 percentage points over existing meth-
ods. The model generalizes to a variety of more
complex tasks including design of protein com-
plexes, partially masked structures, binding inter-
faces, and multiple states.

*Equal contribution 1University of California, Berkeley. Work
performed during internship at Facebook AI Research. 2Facebook
AI Research. 3New York University. Code and weights available at
https://github.com/facebookresearch/esm. Cor-
respondence to: Chloe Hsu <chloehsu@berkeley.edu>, Adam
Lerer <alerer@fb.com>, Alexander Rives <arives@fb.com>.

1. Introduction

Designing novel amino acid sequences that encode proteins
with desired properties, known as de novo protein design, is
a central challenge in bioengineering (Huang et al., 2016).
The most well-established approaches to this problem use
an energy function which directly models the physical basis
of a protein’s folded state (Alford et al., 2017).

Recently a new class of deep learning based approaches
has been proposed, using generative models to predict se-
quences for structures (Ingraham et al., 2019; Strokach et al.,
2020; Anand-Achim et al., 2021; Jing et al., 2021b), gen-
erate backbone structures (Anand & Huang, 2018; Eguchi
et al., 2020), jointly generate structures and sequences (An-
ishchenko et al., 2021; Wang et al., 2021), or model se-
quences directly (Rives et al., 2021; Madani et al., 2021;
Shin et al., 2021; Gligorijevic et al., 2021; Bryant et al.,
2021; Dallago et al., 2021). The potential to learn the rules
of protein design directly from data makes deep genera-
tive models a promising alternative to current physics-based
energy functions.

However, the relatively small number of experimentally
determined protein structures places a limit on deep learning
approaches. Experimentally determined structures cover
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Figure 1. Augmenting inverse folding with predicted structures. To evaluate the potential for training protein design models with predicted
structures, we predict structures for 12 million UniRef50 protein sequences using AlphaFold2 (Jumper et al., 2021). An autoregressive
inverse folding model is trained to perform fixed-backbone protein sequence design. Train and test sets are partitioned at the topology
level, so that the model is evaluated on structurally held-out backbones. We compare transformer models having invariant geometric input
processing layers, with fully geometric models used in prior work. Span masking and noise is applied to the input coordinates.
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Figure 2. Illustration of the protein design tasks considered.

less than 0.1% of the known space of protein sequences.
While the UniRef sequence database (Suzek et al., 2015)
has over 50 million clusters at 50% sequence identity; as
of January 2022, the Protein Data Bank (PDB) (Berman
et al., 2000) contains structures for fewer than 53,000 unique
sequences clustered at the same level of identity.

Here we explore whether predicted structures can be used to
overcome the limitation of experimental data. With progress
in protein structure prediction (Jumper et al., 2021; Baek
et al., 2021), it is now possible to consider learning from
predicted structures at scale. Predicting structures for the
sequences in large databases can expand the structural cov-
erage of protein sequences by orders of magnitude. To train
an inverse model for protein design, we predict structures
for 12 million sequences in UniRef50 using AlphaFold2.

We focus on the problem of predicting sequences from back-
bone structures, known as inverse folding or fixed back-
bone design. We approach inverse folding as a sequence-
to-sequence problem (Ingraham et al., 2019), using an au-
toregressive encoder-decoder architecture, where the model
is tasked with recovering the native sequence of a protein
from the coordinates of its backbone atoms.

We make use of the large number of sequences with un-
known structures by adding them as additional training
data, conditioning the model on predicted structures when
the experimental structures are unknown (Figure 1). This
approach parallels back-translation (Sennrich et al., 2015;
Edunov et al., 2018) in machine translation, where predicted
translations in one direction are used to improve a model in
the opposite direction. Back-translation has been found to
effectively learn from extra target data (i.e. sequences) even
when the predicted inputs (i.e. structures) are of low quality.

We find that existing approaches have been limited by data.
While current state-of-the-art inverse folding models de-
grade when training is augmented with predicted structures,
much larger models and different model architectures can
effectively learn from the additional data, leading to an im-

provement of nearly 10 percentage points in the recovery of
sequences for structurally held out native backbones.

We evaluate models on fixed backbone design benchmarks
from prior work, and assess the generalization capabilities
across a series of tasks including design of complexes and
binding sites, partially masked backbones, and multiple
conformations. We further consider the use of the models
for zero-shot prediction of mutational effects on protein
function and stability, complex stability, and binding affinity.

2. Learning inverse folding from predicted

structures

The goal of inverse folding is to design sequences that fold to
a desired structure. In this work, we focus on the backbone
structure without considering side chains. While each of
the 20 amino acid has a specific side chain, they share a
common set of atoms that make up the amino acid backbone.
Among the backbone atoms, we choose the N, Cα (alpha
Carbon), and C atom coordinates to represent the backbone.

Using the structures of naturally existing proteins we can
train a model for this task by supervising it to predict the pro-
tein’s native sequence from the coordinates of its backbone
atoms in three-dimensional space. Formally we represent
this problem as one of learning the conditional distribution
p(Y |X), where for a protein of length n, given a sequence
X of spatial coordinates (x1, . . . , xi, . . . , x3n) for each of
the backbone atoms N, Cα, C in the structure, the objec-
tive is to predict Y the native sequence (y1, . . . , yi, . . . , yn)
of amino acids. This density is modeled autoregressively
through a sequence-to-sequence encoder-decoder:

p(Y |X) =
n∏

i=1

p(yi|yi−1, . . . , y1;X) (1)

We train a model by minimizing the negative log likelihood
of the data. We can design sequences by sampling, or by
finding sequences that maximize the conditional probability
given the desired structure.

2.1. Data

Predicted structures We generate 12 million structures
for sequences in UniRef50 to explore how predicted struc-
tures can improve inverse folding models. To select se-
quences for structure prediction we first use MSA Trans-
former (Rao et al., 2021) to predict distograms for MSAs
of all UniRef50 sequences. We rank the sequences by dis-
togram LDDT scores (Senior et al., 2020) as a proxy for
the quality of the predictions. We take the top 12 million
sequences not longer than five hundred amino acids and
forward fold them using the AlphaFold2 model with a final
Amber (Hornak et al., 2006) relaxation. This results in a
predicted dataset approximately 750 times the size of the
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training set of experimental structures (Appendix A.1).

Training and evaluation data We evaluate models on a
structurally held-out subset of CATH (Orengo et al., 1997).
We partition CATH at the topology level with an 80/10/10
split resulting in 16153 structures assigned to the training set,
1457 to the validation set, and 1797 to the test set. Particular
care is required to prevent leakage of information in the test
set via the predicted structures. We use Gene3D topology
classification (Lees et al., 2012) to filter both the sequences
used for supervision in training, as well as the MSAs used
as inputs for AlphaFold2 predictions (Appendix A.1). We
also perform evaluations on a smaller subset of the CATH
test set that has been additionally filtered by TM-score using
Foldseek (Kim et al., 2021) to exclude any structures with
similarity to those in the training set (Appendix B).

2.2. Model architectures

We study model architectures using Geometric Vector Per-
ceptron (GVP) layers (Jing et al., 2021b) that learn rotation-
equivariant transformations of vector features and rotation-
invariant transformations of scalar features.

We present results for three model architectures: (1) GVP-
GNN from Jing et al. (2021b) which is currently state-of-
the-art on inverse folding; (2) a GVP-GNN with increased
width and depth (GVP-GNN-large); and (3) a hybrid model
consisting of a GVP-GNN structural encoder followed by a
generic transformer (GVP-Transformer). All models used
in evaluations are trained to convergence, with detailed hy-
perparameters listed in Table A.1.

In inverse folding, the predicted sequence should be inde-
pendent of the reference frame of the structural coordinates.
For any rotation and translation T of the input coordinates,
we would like for the model’s output to be invariant under
these transformations, i.e., p(Y |X) = p(Y |TX). Both the
GVP-GNN and GVP-Transformer inverse folding models
studied in this work are invariant (Appendix A.3).

GVP-GNN We start with the GVP-GNN architecture with
3 encoder layers and 3 decoder layers as described in (Jing
et al., 2021b), with the vector gates described in (Jing et al.,
2021a) (GVP-GNN, 1M parameters). When trained on
predicted structures, we find a deeper and wider version
of GVP-GNN with 8 encoder layers and 8 decoder layers
(GVP-GNN-large, 21M parameters) performs better. Scal-
ing GVP-GNN further did not improve model performance
in preliminary experiments (Figure 6c).

GVP-Transformer We use GVP-GNN encoder layers to
extract geometric features, followed by a generic autoregres-
sive encoder-decoder Transformer (Vaswani et al., 2017). In
GVP-GNN, the input features are translation-invariant and
each layer is rotation-equivariant. We perform a change of

Figure 3. Example AlphaFold prediction compared with experi-
mental structure for a UniRef50 sequence (UniRef50: P07260;
PDB: 1AP8). The experimental structure is shown as pink with
transparency. The prediction is coloured by the pLDDT confidence
score, with blue in high-confidence regions.

basis on the vector features from GVP-GNN into local refer-
ence frames defined for each amino acid to derive rotation-
invariant features (Appendix A.3). In ablation studies in-
creasing the number of GVP-GNN encoder layers improves
the overall model performance (Figure C.1), indicating that
the geometric reasoning capability in GVP-GNN is com-
plementary to the Transformer layers. Scaling improves
performance up to a 142M-parameter GVP-Transformer
model with 4 GVP-GNN encoder layers, 8 generic Trans-
former encoder layers, and 8 generic Transformer decoder
layers (Figure 6c).

2.3. Training

Combining experimental and predicted data During
training, in each epoch we mix the training set of experi-
mentally derived structures (∼16K structures) with a 10%
random sample of the AlphaFold2-predicted training set
(10% of 12M), resulting in a 1:80 experimental:predicted
data ratio. For larger models, a high ratio of predicted data
during training helps prevent overfitting on the smaller ex-
perimental train set (Figure 6b).

The loss is equally weighted for each amino acid in target
sequences. We mask out predicted input coordinates with
AlphaFold2 confidence score (pLDDT) below 90, around
25% of the predicted coordinates. See Figure 3 for visualiza-
tion of the pLDDT confidence score. Most often these low
confidence regions are at the start and the end of sequences
and may correspond to disordered regions. We prepend one
token at the beginning of each sequence to indicate whether
the structure is experimental or predicted. For each residue
we provide the pLDDT confidence score from AlphaFold2
as a feature encoded by Gaussian radial basis functions.

Adding Gaussian noise at the scale of 0.1 angstroms to
the predicted structures during training slightly improves
performance (Table C.1). This finding is consistent with
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Perplexity Recovery %
Model Data Short Single-chain All Short Single-chain All
Natural frequencies 18.12 18.03 17.97 9.6% 9.0% 9.5%
Structured GNN CATH 7.91 6.48 6.49 31.5% 37.1% 37.1%

GVP-GNN
CATH 7.14 5.36 5.43 34.0% 42.7% 42.2%
+ AlphaFold2 8.55 6.17 6.06 29.5% 38.2% 38.6%

GVP-GNN-large
CATH 7.68 6.12 6.17 32.6% 39.4% 39.2%
+ AlphaFold2 6.11 4.09 4.08 38.3% 50.8% 50.8%

GVP-Transformer
CATH 8.18 6.33 6.44 31.3% 38.5% 38.3%
+ AlphaFold2 6.05 4.00 4.01 38.1% 51.5% 51.6%

Table 1. Fixed backbone sequence design. Evaluation on the CATH 4.3 topology split test set. Models are compared on the basis of
per-residue perplexity (lower is better; lowest perplexity bolded) and sequence recovery (higher is better; highest sequence recovery
bolded). Large models can make better use of the predicted UniRef50 structures. The best model trained with predicted structures
(GVP-Transformer) improves sequence recovery by 8.9 percentage points over the best model (GVP-GNN) trained on CATH only.

Edunov et al. (2018), who observe that backtranslation with
sampled or noisy synthetic data provides a stronger training
signal than maximum a posteriori (MAP) predictions.

Span masking To enable sequence design for partially
masked backbones, we introduce backbone masking during
training. We experiment with both independent random
masking and span masking. In natural language processing,
span masking improves performance over random mask-
ing (Joshi et al., 2020). We randomly select continuous
spans of up to 30 amino acids until 15% of input backbone
coordinates are masked. The communication patterns in the
geometric layers are adapted to account for masking with
details in Appendix A.2. Span masking improves the perfor-
mance of GVP-Transformer both on unmasked backbones
(Table C.1) and on masked regions (Figure 4).

3. Results

We evaluate models across a variety of benchmarks in two
overall settings: fixed backbone sequence design and zero-
shot prediction of mutation effects. For fixed backbone
design, we start with evaluation in the standard setting (In-
graham et al., 2019; Jing et al., 2021b) of sequence design
given all backbone coordinates. Then, we make the se-
quence design task more challenging along three dimen-
sions: (1) introducing masking on coordinates; (2) gen-
eralization to protein complexes; and (3) conditioning on
multiple conformations. Additionally, we show that inverse
folding models are effective zero-shot predictors for protein
complex stability, binding affinity, and insertion effects.

3.1. Fixed backbone protein design

We begin with the task of predicting the native protein se-
quence given its backbone atom (N, Cα, C) coordinates. Per-
plexity and sequence recovery on held-out native sequences
are two commonly used metrics for this task. Perplexity
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Figure 4. Perplexity on regions of masked coordinates of different
lengths. The GVP-GNN architecture degrades to the perplexity of
the background distribution for masked regions of more than a few
tokens, while GVP-Transformer maintains moderate accuracy on
long masked spans, especially when trained on masked spans.

measures the inverse likelihood of native sequences in the
predicted sequence distribution (low perplexity for high
likelihood). Sequence recovery (accuracy) measures how
often sampled sequences match the native sequence at each
position. To maximize sequence recovery, the predicted se-
quences are sampled with low temperature T = 1e−6 from
the model. Table 1 compares models using these metrics on
the structurally held-out backbones.

We observe that current state-of-the-art inverse folding mod-
els are limited by the CATH training set. Scaling the current
1M parameter model (GVP-GNN) to 21M parameters (GVP-
GNN-large) on the CATH dataset results in overfitting with
a degradation of sequence recovery from 42.2% to 39.2%

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.10.487779doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.10.487779
http://creativecommons.org/licenses/by-nc-nd/4.0/


Learning inverse folding from millions of predicted structures

(Table 1). On the other hand, the current model at the 1M
parameter scale cannot make use of the predicted structures:
training GVP-GNN with predicted structures results in a
degradation to 38.6% sequence recovery (Table 1), with per-
formance worsening with increasing numbers of predicted
structures in training (Figure 6a).

Larger models benefit from training on the AlphaFold2-
predicted UniRef50 structures. Training with predicted
structures increases sequence recovery from 39.2% to 50.8%
for GVP-GNN-large and from 38.3% to 51.6% for GVP-
Transformer over training only on the experimentally de-
rived structures. The improvements are also reflected in per-
plexity. Similar improvements are observed on the test sub-
set filtered by TM-score (Table B.1). The best model trained
with UniRef50 predicted stuctures, GVP-Transformer, im-
proves sequence recovery by 9.4 percentage points over the
best model, GVP-GNN, trained on CATH alone.

As there are many sequences that can fold to approximately
the same structure, even an ideal protein design model will
not have 100% native sequence recovery. We observe that
the GVP-GNN-large and GVP-Transformer models are well-
calibrated (Figure C.5). The substitution matrix between
native sequences and model-designed sequences resembles
the BLOSUM62 substitution matrix (Figure C.4), albeit
noticeably sparser for the amino acid Proline.

When we break down performance on core residues and
surface residues, as expected, core residues are more con-
strained and have a high native sequence recovery rate of
72%, while surface residues are not as constrained and have
a lower sequence recovery of 39% (Figure 5; top). Gener-
ally perplexity increases with the solvent accessible surface
area (Figure 5; bottom). Despite the lower sequence recov-
ery on the surface, sampled sequences do tend not to have
hydrophobic residues on the surface (Figure C.6).

As an example of inverse folding of a structurally-remote
protein, we re-design the receptor binding domain (RBD)
sequence of the SARS-CoV-2 spike protein (PDB: 6XRA
and 6VXX; illustrated in Figure C.3) with the two models.
The SARS-CoV-2 spike protein has no match to the training
data with TM-score above 0.5. Both GVP-GNN and GVP-
Transformer achieve high sequence recovery (49.7% and
53.6%) for the native RBD sequence (Table C.3).

Partially-masked backbones We evaluate the models on
partial backbones. While masking during training does
not significantly change test performance on unmasked
backbones (Table C.1), masking does enable models to
non-trivially predict sequences for mask regions. Although
GVP-GNN-large has low perplexity on short-length masks,
its performance quickly degrades to the perplexity of the
background distribution on masks longer than 5 amino acids
(Figure 4). By contrast, the GVP-Transformer model main-
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Figure 5. Comparison of perplexity and sequence recovery by
structural context according to two different measures: number of
neighbors (top) and solvent accessible surface area (bottom). Top:
Breakdown for core and surface residues. Residues are categorized
by density of neighboring Cα atoms within 10A of the central
residue Cα atom (core: ≥ 24 neighbors; surface: < 16 neighbors).
Each box shows the distribution of perplexities for the core or
surface residues across different sequences. Bottom: Perplexity
and sequence recovery as a function of solvent accessible surface
area. Increased sequence recovery for buried residues suggests the
model learns dense hydrophobic packing constraints in the core.

tains moderate performance even on longer masked regions,
with less degradation if trained with span masking instead
of independent random masking (Figure 4).

Protein complexes Although the training data only con-
sists of single chains, we find that models generalize to
multi-chain protein complexes. We represent complexes
by concatenating the chains together with 10 mask tokens
between chains, and include all complexes in the test set
up to length 1000. For chains that are part of a protein
complex, there is a substantial improvement in perplexity
of both models when given the full complex coordinates as
input, versus only the single chain (Table 2 and Figure C.2),
suggesting that both GVP-GNN and GVP-Transformer can
make use of inter-chain information from amino acids that
are close in 3D structure but far apart in sequence.

Multiple conformations Multi-state design is of inter-
est for engineering enzymes and biosensors (Langan et al.,
2019; Quijano-Rubio et al., 2021). Some proteins exist in
multiple distinct folded forms in equilibrium, while other
proteins may exhibit distinct conformations when binding
to partner molecules. For a backbone X , the inverse folding
model predicts a conditional distribution p(Y |X) over possi-
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Figure 6. Ablation studies on training data. (a) Effect of increasing the number of predicted structures. The original GVP-GNN degrades
with training on additional data, but GVP-GNN-large and GVP-Transformer improve with increasing numbers of predicted structures. (b)
Effect of increasing the mixing ratio during training between predicted and experimental structures. A higher ratio of predicted structures
improves performance for both GVP-GNN-large and GVP-Transformer. (c) GVP-GNN and GVP-Transformer model size.

Perplexity
Model Chain Complex
Natural frequencies 17.93
GVP-GNN 7.80 5.37
GVP-GNN-large+AF2 6.32 3.90
GVP-Transformer+AF2 6.32 3.81

Table 2. Sequence design performance on complexes in the CATH
topology test split when given the backbone coordinates of only a
chain (“Chain” column) and when given all backbone coordinates
of the complex (“Complex” column). The perplexity is evaluated
on the same chain in the complex for both columns.

ble sequences Y for the backbone. To design a protein with
two states A and B, we would like find sequences that have
high likelihoods in the conditional distributions p(Y |A) and
p(Y |B) for each of the two states. We use the geometric
average of the two conditional likelihoods as a proxy for the
desired distribution p(Y |A,B) conditioned on the sequence
being compatible with both states.

We compare single-state and multi-state sequence design
performance on 87 test split proteins with multiple confor-
mations in the PDBFlex dataset (Hrabe et al., 2016). On
locally flexible residues, multi-state design results in lower
sequence perplexity than single-state design (Figure 7). See
Appendix C for more details on the PDBFlex data.

3.2. Zero-shot predictions

We next show that inverse folding models are effective zero-
shot predictors of mutational effects across practical design
applications, including prediction of complex stability, bind-
ing affinity, and insertion effects. To score the effect of
a mutation on a particular sequence, we use the ratio be-
tween likelihoods of the mutated and wildtype sequences
according to the inverse folding model, given the experi-
mentally determined wildtype structure. Exact likelihood
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Figure 7. Dual-state design. GVP-Transformer conditioned on two
conformations results in lower sequence perplexity at locally flexi-
ble residues than single-conformation conditioning for structurally
held-out proteins in PDBFlex (see Appendix C for details).

evaluations are possible from both GVP-GNN and GVP-
Transformer as they are both based on autoregressive de-
coders. We then compare these likelihood ratio scores to
experimentally-determined fitness values measured on the
same set of sequences.

De novo mini-proteins Rocklin et al. (2017) performed
deep mutational scans across a set of de novo designed mini-
proteins with 10 different folds measuring the stability in
response to point mutations. The likelihoods of inverse fold-
ing models have been shown to correlate with experimen-
tally measured stability using this dataset (Ingraham et al.,
2019; Jing et al., 2021b). We evaluate the GVP-Transformer
and GVP-GNN-large models on the same mutational scans,
and observe improvements in stability predictions from us-
ing predicted structures as training data for 8 out of 10 folds
in the dataset (Table C.2). Further details are in Appendix C.
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Spearman correlation

Model No coords No RBM coords No ACE2 coords All coords

ESM-1v 0.03
ESM-1b 0.02
ESM-MSA-1b (few-shot) 0.51

GVP-GNN -0.10 0.50 0.60
GVP-GNN-large+AF2 -0.05 0.52 0.69

GVP-Transformer+AF2 -0.06 0.53 0.64

Table 3. Zero-shot performance on binding affinity prediction for the receptor binding domain (RBD) of SARS-CoV-2 Spike, evaluated on
ACE2-RBD mutational scan data (Starr et al., 2020). The zero-shot predictions are based on the sequence log-likelihood for the receptor
binding motif (RBM), which is the portion of the RBD in direct contact with ACE2 (Lan et al., 2020). We evaluate in four settings: 1)
Given sequence data alone (“No coords”); 2) Given backbone coordinates for both ACE2 and the RBD but excluding the RBM and
without sequence (“No RBM coords”); 3) Given the full backbone for the RBD but no information for ACE2 (“No ACE2 coords”); and 4)
Given all coordinates for the RBD and ACE2.

Complex stability We evaluate models on zero-shot pre-
diction of mutational effects on protein complex interfaces,
using the Atom3D benchmark (Townshend et al., 2020)
which incorporates binding free energy changes in the
SKEMPI database (Jankauskaitė et al., 2019) as a binary
classification task. We find that sequence log-likelihoods
from GVP-GNN are effective zero-shot predictors of sta-
bility changes of protein complexes even without predicted
structures as training data (Table C.4), performing compa-
rably to the best supervised method which uses transfer
learning. While we observe a substantial improvement in
perplexity when predicted structures are added to training
(Table 2), this does not further improve complex stabil-
ity prediction for the single-point mutations in SKEMPI
(Table C.4), indicating potential limitations of evaluating
models only on single-point mutations.

Binding affinity While the SKEMPI dataset features one
mutation entry per protein, we also want to evaluate whether
inverse folding models can rank different mutations on the
same protein, potentially enabling binding-affinity optimiza-
tion, which is an important task in therapeutic design. We
assess whether inverse folding models can predict muta-
tional effects on binding by leveraging a dataset generated
by Starr et al. (2020) in which all single amino acid substi-
tutions to the SARS-CoV-2 receptor binding domain (RBD)
were experimentally measured for binding affinity to human
ACE2. Given potential applications to interface optimiza-
tion or design, we focus on mutations within the receptor
binding motif (RBM), the portion of the RBD in direct con-
tact with ACE2 (Lan et al., 2020). When given all RBD
and ACE2 coordinates, the best inverse folding model pro-
duces RBD-sequence log-likelihoods that have a Spearman
correlation of 0.69 with experimental binding affinity mea-
surements (Table 3). We observe weaker correlations when
not providing the model with ACE2 coordinates, indicat-
ing that inverse folding models take advantage of structural

information in the binding partner. When masking RBM
coordinates (69 of 195 residues, a longer span than masked
during model training), we no longer observe correlation
between RBD log-likelihood and binding affinity, indicat-
ing that the model relies on structural information at the
interface to identify interface designs that preserve binding.
Zero-shot prediction via inverse folding outperforms meth-
ods for sequence-based variant effect prediction, which use
the likelihood ratio between the mutant and wildtype amino
acids at each position to predict the impact of a mutation on
binding affinity. These likelihoods are inferred by masked
language models, ESM-1b, ESM-1v, and ESM-MSA-1b, as
described by Meier et al. (2021) (Table 3); additional details
are given in Appendix C.

Sequence insertions Using masked coordinate tokens at
insertion regions, inverse folding models can also predict
insertion effects. On adeno-associated virus (AAV) cap-
sid variants, we show that relative differences in sequence
log-likelihoods correlate with the experimentally measured
insertion effects from Bryant et al. (2021). As shown in
Table C.5, both GVP-GNN and GVP-Transformer outper-
form the sequence-only zero-shot prediction baseline ESM-
1v (Meier et al., 2021). When evaluating on subsets of se-
quences increasingly further away from the wildtype (≥ 2,
≥ 3, and ≥ 8 mutations), the GVP-GNN-large and GVP-
Transformer models trained with predicted structures have
increasing advantages compared to GVP-GNN trained with-
out predicted structures.

4. Related work

Structure-based protein sequence design Early work on
design of protein sequences studied the packing of amino
acid side chains to fill the interior space of predetermined
backbone structures, either for a fixed backbone conforma-
tion (Street & Mayo, 1999; Dahiyat & Mayo, 1997; De-
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Grado et al., 1991), or with flexibility in the backbone con-
formation (Harbury et al., 1998). Since then, the Rosetta
energy function (Alford et al., 2017) has become an estab-
lished approach for structure-based sequence design. An
alternative non-parametric approach involves decompos-
ing the library of known structures into common sequence-
structure motifs (Zhou et al., 2020).

Early machine learning approaches in structure-based pro-
tein sequence design used fragment-based and energy-based
global features derived from structures (Li et al., 2014;
O’Connell et al., 2018). More recently, convolution-based
deep learning methods have also been applied to predict
amino acid propensities given the surrounding local struc-
tural environments (Anand-Achim et al., 2021; Boomsma
& Frellsen, 2017; Shroff et al., 2020; Li et al., 2020; Qi &
Zhang, 2020; Zhang et al., 2020; Chen et al., 2019; Wang
et al., 2018). Another recent machine learning approach
is to leverage structure prediction networks for sequence
design. Norn et al. (2021) carried out Monte Carlo sampling
in the sequence space to invert the trRosetta (Yang et al.,
2020) structure prediction network for sequence design.

Generative models of proteins The literature on
structure-based generative models of protein sequences is
the closest to our work. Ingraham et al. (2019) introduced
the formulation of fixed-backbone design as a conditional
sequence generation problem, using invariant features with
graph neural networks, modeling each amino acid as a node
in the graph with edges connecting spatially adjacent amino
acids. Jing et al. (2021b;a) further improved graph neu-
ral networks for this task by developing architectures with
translation- and rotation-equivariance to enable geometric
reasoning, showing that GVP-GNN achieves higher native
sequence recovery rates than Rosetta on TS50, a bench-
mark set of 50 protein chains. Strokach et al. (2020) trained
graph neural networks for conditional generation with the
masked language modeling objective, adding homologous
sequences as data augmentation to training.

Recently models have been proposed to jointly generate
structures and sequences. Anishchenko et al. (2021) gener-
ate structures by optimizing sequences through the trRosetta
structure prediction network to maximize their difference
from a background distribution. The joint generation ap-
proach is also being explored in the setting of infilling par-
tial structures. Contemporary to this work, Wang et al.
(2021) apply span masking to fine-tune the RosettaFold
model (Baek et al., 2021) to perform infilling. However
Wang et al. do not consider inverse folding, and condition
on both coordinates and amino acid identities. Also contem-
porary to this work, Jin et al. (2021) develop a conditional
generation model for jointly generating sequences and struc-
tures for antibody complementarity determining regions
(CDRs), conditioned on framework region structures.

So far there has been little work on generative models of
structures directly. Interesting examples include Anand &
Huang (2018) who model fixed-length protein backbones
with generative adversarial networks (GANs) via pairwise
distance matrices, and Eguchi et al. (2020) who generate
antibody structures with variational autoencoders (VAEs).

Language models A large body of work has focused on
modeling the sequences in individual protein families. Shin
et al. (2021) show that protein-specific autoregressive se-
quence models trained on related proteins can predict point
mutation and indel effects and design functional nanobod-
ies. Trinquier et al. (2021) also studied protein-specific
autoregressive models for sequence generation.

Recently language models have been proposed for model-
ing large scale databases of protein sequences rather than
families of related sequences. Examples include (Bepler &
Berger, 2019; Alley et al., 2019; Heinzinger et al., 2019; Rao
et al., 2019; Madani et al., 2020; Elnaggar et al., 2021; Rives
et al., 2021; Rao et al., 2021). Meier et al. (2021) found
that the log-likelihoods of large protein language models
predict mutational effects. Madani et al. (2021) study an
autoregressive sequence model conditioned on functional
annotations and show it can generate functional proteins.

Structure-agnostic protein sequence design We point
the reader to Wu et al. (2021) for a review of the many
machine learning-based sequence design approaches that
do not explicitly model protein structures. Additionally, as
an alternative to sequence generation models, model-guided
algorithms design sequences based on predictive models
as oracles (Yang et al., 2019; Angermueller et al., 2019;
Brookes et al., 2019; Sinai et al., 2020).

Back-translation For machine translation (MT) in NLP,
Sennrich et al. (2015) studied how to leverage large amounts
of monolingual data in the target language, a setting that
parallels the situation we consider with protein sequences
(the target language in our case). Sennrich et al. found it
most effective to generate synthetic source sentences by per-
forming the backwards translation from the target sentence,
i.e. back-translation. This parallels the approach we take
of predicting structures for sequence targets that have un-
known structures. Edunov et al. (2018) further investigated
back-translation for large-scale language models.

5. Conclusions

While there are billions of protein sequences in the largest
sequence databases, the number of available experimen-
tally determined structures is on the order of hundreds of
thousands, imposing a limit on generative methods that
learn from protein structure data. In this work, we explored
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whether predicted structures from recent deep learning meth-
ods can be used in tandem with experimental structures to
train models for protein design.

To this end, we generated structures for 12 million UniRef50
sequences using AlphaFold2. As a result of training with
this data we observe improvements in perplexity and se-
quence recovery by substantial margins, and demonstrate
generalization to longer protein complexes, to proteins in
multiple conformations, and to zero-shot prediction for mu-
tation effects on binding affinity and AAV packaging. These
results highlight that in addition to the geometric inductive
biases which have been the major focus for work on inverse-
folding to date, finding ways to leverage more sources of
training data is an equally important path to improved mod-
eling capabilities.

We also take initial steps toward more general structure-
conditional protein design tasks. By integrating backbone
span masking into the inverse folding task and using a
sequence-to-sequence transformer, reasonable sequence pre-
dictions can be achieved for short masked spans.

If ways can be found to continue to leverage predicted struc-
tures for generative models of proteins, it may be possible
to create models that learn to design proteins from an ex-
panded universe of the billions of natural sequences whose
structures are currently unknown.
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A. Additional details on datasets, training procedures, and model architectures

A.1. Details on dataset of predicted structures

We used training data from two sources: 1) experimental protein structures from the CATH 40% non-redundant chain
set, and 2) AlphaFold2-predicted structures from UniRef50 sequences. To evaluate the generalization performance across
different protein folds, we split the train, validation, and test data based on the CATH hierarchical classification of protein
structures (Orengo et al., 1997) for both data sources. To achieve that a rigorous structural hold-out, we additionally use
foldseek (Kim et al., 2021) for pairwise TMalign between the test set the train set.

CATH topology split. Following the structural split methodology in previous work (Ingraham et al., 2019; Jing et al.,
2021b; Strokach et al., 2020), we randomly split the CATH v4.3 (latest version) topology classification codes into train,
validation, and test sets at a 80/10/10 ratio. The CATH (Orengo et al., 1997) structural hierarchy, classifies domains in
four levels: Class (C), Architecture (A), Topology/fold (T), and Homologous superfamily (H). The topology/fold (T) level
roughly corresponds to the SCOP fold classification.

Experimental structures. We collected full chains up to length 500 for all domains in the CATH v4.3 40% sequence
identity non-redundant set. The experimental structure data contained only stand-alone chains and no multichain complexes.
As each chain may be classified with more than one topology codes, we further removed chains with topology codes
spanning different splits, so that there is no overlap in topology codes between train, validation, and test. This results in
16,153 chains in the train split, 1457 chains in the validation split, and 1797 chains in the test split.

Predicted structures. We curated a new data set of AlphaFold2 (Jumper et al., 2021)-predicted structures for a selective
subset of UniRef50 (202001) sequences. To prevent information leakage about the test set from the predicted structures, we
proceeded in the following steps.

First, we annotated UniRef50 sequences with CATH classification according to the Gene3D (Lees et al., 2012) database,
also used by Strokach (Strokach et al., 2020) for data curation. Gene3D represents each CATH classification code as a
library of representative profile HMMs. We searched all HMMs associated with the validation and test splits against the
UniRef50 sequences using default parameters in hmmsearch (Potter et al., 2018) and excluded all hits.

Additionally, as AlphaFold2 predictions use multiple sequence alignments (MSAs) as inputs, we also took precaution to
avoid information leakage from sequences in the MSAs. We created a filtered version of UniRef100 by searching all the
validation-split and test-split Gene3D HMMs against UniRef100 (202001) and excluding all hits. Then, we constructed our
MSAs using hhblits (Steinegger et al., 2019) on this filtered version of UniRef100.

As AlphaFold2 predictions are computationally costly, our budget only allowed for predicting structures for a subset of the
UniRef50 sequences. We ranked UniRef50 sequences based on the distogram lDDT score (Supplementary Equation 6 in
(Senior et al., 2020)), based on distogram predictions from MSATransformer (Rao et al., 2021), as a proxy for the quality of
predicted structures. In this order, using AlphaFold2 Model 1 on the filtered UniRef100 MSAs described above, we obtained
predicted structures for the top 12 million UniRef50 sequences under length 500, roughly 750 times the CATH train set size.

We used the publicly released model weights from AlphaFold2 Model 1 for CASP14 as a single model, as opposed the
5-model ensemble in (Jumper et al., 2021), to cover more sequences with the same amount of computing resources. We
curated the input MSAs from UniRef100 with hhblits, with an additional filtering step as described above. To reduce
computational costs, compared to the standard AlphaFold2 protocol, we did not include the UniRef90 jackhmmer MSAs, or
the MGnify and BFD metagenomics MSAs, nor the pdb70 templates. Other than a reduced inputs, we followed the default
settings in AlphaFold2 open source code, using 3 recycling iterations and the default Amber relaxation protocol. Despite the
reduced inputs, the resulting 12 million predicted structures still have high pLDDT scores from AlphaFold, with 75% of
residues having pLDDT above 90 (highly confident).

We found that increasing the predicted data size to up to 1 million structures (75 times the CATH experimental data size)
substantially improves model performance. Beyond 1 million structures, models still benefit from more data but with
diminished marginal returns (Figure 6a).

Noise on AlphaFold2-predicted backbone coordinates. Even after Amber relaxation, the backbone coordinates predicted
by AlphaFold2 contain artifacts in the sub-Angstrom scale that may give away amino acid identities. Without adding
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GVP-GNN GVP-GNN-large GVP-Transformer
GVP-GNN embedding dim (node) (100, 16) (256, 64) (1024, 256)
GVP-GNN embedding dim (edge) (32, 1) (32, 1) (32, 1)
Top K neighbors in GVP-GNN 30 30 30
GVP-GNN encoder layers 3 8 4
GVP-GNN decoder layers 3 8
Transformer embedding dim 512
Feedforward embedding dim 2048
Attention heads 8
Transformer encoder layers 8
Transformer decoder layers 8
Total number of parameters 1M 21M 142M

Batch size (tokens per GPU) 3072 4096 4096
GPUs 1 32 32
CATH:AF2 mixing ratio 1:0 40:1 80:1
Epochs until convergence 84 368 178
Train time per epoch (GPU hours) 0.07 24 88
Total train time (GPU days) 0.2 368 653

Optimizer Adam Adam Adam
Learning rate schedule Constant Inverse square root Inverse square root
Peak learning rate 1.0E-03 1.0E-03 1.0E-03
Initial learning rate 1.0E-07 1.0E-07
Warm-up updates 5000 5000
Gradient clipping 4.0 1

Table A.1. Details on model hyperparameters and training.

noise on predicted structures, there is a substantial gap between held-out set performance on predicted structures and
on experimental structures. To prevent the model from learning non-generalizable AlphaFold2-specific rules, we added
Gaussian noise at the 0.1A scale on predicted backbone coordinates. The Gaussian noise improves the invariant Transformer
performance but not the GVP-GNN performance (Supplementary Figure C.1).

A.2. Details on span masking

We add a binary feature indicating whether each coordinate is masked or not. In GVP-Transformer, we exclude the
masked nodes in the GVP-GNN encoder layers, and then impute zeros when passing the GVP-GNN outputs into the main
Transformer. Imputing zeros for missing vector features ensure the rotation- and translation- invariance of the model. In
GVP-GNN, we impute zeros for the input vector features, and in the input graph connect the masked nodes to the k sequence
nearest-neighbors (k = 30) in lieu of the k nearest nodes by spatial distance.

For span masking, we randomly select continuous spans of up to 30 amino acids until 15% of input backbone coordinates are
masked. Such a span masking scheme has shown to improve performance on natural language processing benchmarks (Joshi
et al., 2020). The span lengths are sampled from a geometric distribution Geo(p) where p = 0.05 (corresponding to
an average span length of 1/p = 20). The starting points for the spans are uniformly randomly sampled. Compared to
independent random masking, span masking is better for GVP-Transformer but not for GVP-GNN (Table C.1).

For the amino acids with masked coordinates, we exclude the corresponding nodes from the input graph to the pre-processing
GVP message passing layers, and then impute zeros for the geometric features when passing the GVP outputs into the main
Transformer. Imputing zeros for missing vector features ensure the rotation- and translation- invariance of the model.
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Figure B.1. An illustrative example of structural overlap between CATH topology splits. The jack bean canavalin (PDB code 1DGW;
chain Y; red) and the soybean β-Conglycinin (PDB code 1UIJ; chain B; blue) are assigned different topology codes in CATH (1.10.10 and
2.60.120), but they align with TM-score 0.94 and CA RMSD 0.7A on a segment of 90 residues. The difference in topology classifications
likely resulted from CATH annotating only a 37-residue mainly helical segment of the jack bean canavalin as a domain while annotating a
longer 176-residue mainly beta sheet segment of the soybean β-Conglycinin as a domain.

A.3. Details on model architectures

Invariance to rotation and translation. The input features for both GVP-GNN and GVP-Transformer are translation-
invariant, making the overall models also invariant to translations.

Each GVP-GNN layer is rotation-equivariant, that is, for a vector feature x and any arbitrary rotation T , Tf(x) = f(Tx).
With equivariant intermediate layers and an invariant output projection layer, GVP-GNN is overall invariant to rotations,
since the composition of an equivariant function f with an invariant function g produces an invariant function g(f(x)).

The GVP-Transformer architecture is also invariant to rotations and translations. The initial GVP-GNN layers in GVP-
Transformer output rotation-invariant scalar features and rotation-equivariant vector features for each amino acid. To
make the overall GVP-Transformer invariant, we perform a change of basis on GVP-GNN vector outputs to produce
rotation-invariant features for the Transformer. More specifically, for each amino acid, we define a local reference frame
based on the N, CA, and C atom positions in the amino acid, following Algorithm 21 in AlphaFold2 (Jumper et al., 2021).
We then perform a change of basis according to this local reference frame, rotating the vector features in GVP-GNN outputs
into the local reference frames of each amino acid. We concatenate this rotated “local version” of vector features together
with the scalar features as inputs to the Transformer. The concatenated features are invariant to both translations and rotations
on the input backbone coordinates, forming a L× E matrix where L is the number of amino acids in the protein backbone
and E is the feature dimension. For amino acids with masked or missing coordinates, the features are imputed as zeros.

Transformer. We closely followed the original autoregressive encoder-decoder Transformer architecture (Vaswani et al.,
2017) except for using learned positional embeddings instead of sinusoidal positional embeddings, attention dropout, and
layer normalization inside the residual blocks (“pre-layernorm”). For model scaling experiments, we followed the model
sizes in (Turc et al., 2019), and chose the 142-million-parameter model with 8 encoder layers, 8 decoder layers, 8 attention
heads, and embedding dimension 512 based on the best validation set performance (Figure 6c shows test set ablation).

The GVP-GNN, GVP-GNN-large, and GVP-Transformer models used in the evaluations in this manuscript are all trained to
convergence, with detailed hyperparameters listed in Table A.1.

B. TM-score-based test set

In addition to the CATH topology-based test set following previous work (Ingraham et al., 2019; Jing et al., 2021b), we also
create an even more stringent test set based on pairwise TM-score comparison between train and test examples. The CATH
topology split does not completely prevent high TM-score matches between train and test structures. We illustrate such an
example in Figure B.1, and show overall TM-score statistics Figure B.2.
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Figure B.2. Distribution of the highest TM-score from each test example to the train set. For example, 54% of the CATH topology split
test set has at least one match in the train set with TM-score above 0.5, and 27% of the topology split test set has at least one match in the
train set with TM-score above 0.6.

Perplexity Recovery %
Model Data Short Single-chain All Short Single-chain All
Structured GNN CATH 10.08 7.04 7.06 27.8% 35.1% 35.4%

GVP-GNN
CATH 8.13 5.76 5.86 31.5% 41.1% 40.4%
+ AlphaFold2 9.87 6.61 6.50 26.3% 36.3%. 36.8%

GVP-GNN-large
CATH 8.87 6.62 6.68 31.0% 37.2% 37.4%
+ AlphaFold2 7.08 4.46 4.39 34.1% 48.2% 48.7%

GVP-Transformer
CATH 8.80 6.78 6.97 28.5% 36.7% 36.3%
+ AlphaFold2 6.99 4.36 4.34 33.0% 48.9% 49.5%

Table B.1. Fixed backbone sequence design performance on the more stringent structurally held-out test set from CATH v4.3 chains (and
its short and single-chain subsets) in terms of per-residue perplexity (lower is better) and recovery (higher is better).

We constructed a TM-score-based test set of 223 proteins with no TMalign matches (TM-score ≥ 0.5) from the train set,
using the foldseek (Kim et al., 2021) TMalign tool with default parameters for the pairwise search.

We found that the conclusions about model performance overall remains the same on this TM-score-based test set as on the
CATH topology split test set. For consistency with prior work, we report metrics on the CATH topology test set in the main
manuscript, while showing metrics on the smaller TM-score-based test set in Table B.1.

C. Additional results and details

Ablation on noise and masking during training. We found that GVP-Transformer models trained with Gaussian noise
during training perform slightly better at test time than those trained without (Table C.1). When given full backbone
coordinates at test time, training with span masking only very slightly improves model performance compared to no masking
or to random masking, even though there is a much larger performance gap between random masking and span masking on
regions with masked backbone coordinates (Figure 4).

Dual-state design test set from PDBFlex. We test design performance on multiple conformations by finding test split
proteins with distinct conformations in the PDBFlex database. From PDBFlex, we looks for experimental structures of
protein sequences in the CATH topology split test set (95% sequence identity or above), and take all paired instances that
are at least 5 angstroms apart in overall RMSD between conformations. We report perplexity on locally flexible residues
(defined as local RMSD above 1 angstrom). To be more conservative in our evaluation, we show the better of the two
conformations to represent single-state perplexity in Figure 7.

Ablation on the number of GVP-GNN encoder layers in GVP-Transformer. Increasing the number of GVP-GNN
encoder layers improves the overall model performance (Figure C.1), indicating that the geometric reasoning capability in
GVP-GNN is complementary to the Transformer layers.
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Perplexity

GVP-Transformer (142M params, mixing ratio 1:40)

Span masking Gaussian noise 4.10
Span masking No noise 4.32
Independent random masking Gaussian noise 4.30
No masking Gaussian noise 4.20

Table C.1. Effects of adding Gaussian noise to predicted structures and effects of span masking during training, as measured by perplexity
on CATH topology split test set.

Figure C.1. Effects of varying the number of GVP-GNN pre-processing layers in the GVP-Transformer model, as measured by perplexity
on CATH topology split test set.

Stability prediction on de novo small proteins. We predict protein stability on an experimentally measured stability
dataset for de novo small proteins (Rocklin et al., 2017). We use the relative difference in sequence conditional log-
likelihoods as a predictor for stability and compute Pearson correlation with the mutation effect following (Ingraham et al.,
2019), assuming that more stable sequences should score higher in log-likelihoods. For each fold, Rocklin et al. (2017) starts
with a reference protein and generates sequence variants with single amino acid substitutions. We calculate the Pearson
correlation between sequence conditional log-likelihood scores and experimental stability measurements for all designed
sequences in each fold. With predicted structures as additional training data, the GVP-Transformer model improves the
pearson correlation on 8 out of the 10 folds.

Perplexity and sequence recovery of SARS-CoV-2 RBD. We show perplexity and sequence recovery on the SARS-
CoV-2 protein receptor binding domain (RBD) as an example for inverse folding. The RBD can exist in a closed-state with
the RBD down or in an open-state with the RBD up (Walls et al., 2020), as illustrated in Figure C.3. The SARS-Cov-2
spike protein structure has no match with the training data with TM-score above 0.5. The SARS-Cov-2 spike protein has

Pearson correlation
Fold Structured GNN GVP-GNN GVP-GNN-large+AF2 GVP-Transformer+AF2

(Ingraham et al., 2019) (Jing et al., 2021a)
ββαββ37 0.47 0.53 0.62 0.70

ββαββ1498 0.45 0.39 0.37 0.33
ββαββ1702 0.12 0.26 0.24 0.22
ββαββ1716 0.47 0.57 0.60 0.58
αββα779 0.57 0.48 0.62 0.64

αββα223 0.36 0.47 0.57 0.55
αββα726 0.21 0.19 0.24 0.26

αββα872 0.23 0.39 0.38 0.42

ααα134 0.36 0.44 0.46 0.50

ααα138 0.41 0.44 0.55 0.58

Average 0.37 0.42 0.47 0.48

Table C.2. Mutation stability prediction performance for small de novo proteins (Rocklin et al., 2017), with highest correlation bolded.
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Figure C.2. Fixed backbone sequence design perplexity for protein complexes. The model is evaluated on 796 structurally held-out
protein complexes. Comparison of conditioning on the backbone coordinates of individual chains (x-axis) with conditioning on backbone
coordinates of the entire complex (y-axis). Note that for both values perplexity is evaluated on the same chain in the complex. The shift to
the lower right indicates improved perplexity when the model is given the complete structure of the complex.

Receptor-binding SB domain (RBD)

Closed Partially open

Figure C.3. Illustration of the closed and open states of the SARS-CoV-2 spike protein receptor-binding domain. Cryo-EM structures
from (Walls et al., 2020) (open state: PDB 6XRA; closed state: PDB 6VXX).

both an open and closed state (open state: PDB 6XRA; closed state: PDB 6VXX). We evaluate perplexity and sequence
recovery conditioning on each of the two states independently and jointly. Conditioning on the open state results in better
perplexity and sequence recovery than conditioning on the closed state. Conditioning on both states gives improvement in
both perplexity and sequence recovery compared to conditioning only on the open state.

Predicting RBD-ACE2 binding affinity. We used the binding affinity dataset provided by Starr et al. (2020) (https:
//github.com/jbloomlab/SARS-CoV-2-RBD_DMS), restricting to sites within the RBM subsequence. We used
the RBD-ACE2 structure determined by Lan et al. (2020) (PDB: 6M0J). For mutational effect predictions with ESM-1v, ESM-
1b, and ESM-MSA-1b, we scored mutations using the masked-marginal likelihood ratio between the mutant and wildtype
amino acids. To generate the MSA used as input to ESM-MSA-1b, we searched uniclust30_2017_07 (Mirdita et al.,
2017) with hhblits (Steinegger et al., 2019) (using two iterations and an E-value cutoff of 0.001) based on the RBD
wildtype sequence as the query.

Predicting complex stability changes upon mutations. SKEMPI (Jankauskaitė et al., 2019) is a database of binding
free energy changes upon single point mutations within protein complex interfaces. This database is used as a task in the
Atom3D benchmark suite (Townshend et al., 2020) for comparing supervised stability prediction methods. The task is
to classify whether the stability of the complex increases as a result of the mutation. We compare zero-shot predictions
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Perplexity Recovery %
Open state Closed state Dual-state Open-state Closed state Dual-state

GVP-GNN 4.64 5.13 4.20 45.3% 44.2% 49.7%
GVP-Transformer 4.50 4.96 4.06 49.2% 48.1% 53.6%

Table C.3. Perplexity and sequence recovery on the SARS-Cov-2 spike protein receptor binding domain (RBD), conditioned on either
the closed state, the open state, or both states (illustrated in Figure C.3). The inputs to inverse folding models consist of the backbone
coordinates for the entire spike protein, while the perplexity evaluation is only on the RBD.

AUROC

Supervised

3DCNN 0.57
GNN 0.62
ENN 0.57
GVP-GNN 0.68

Transfer GVP-GNN 0.71

Zero-shot

GVP-GNN (chain) 0.58
GVP-GNN (complex) 0.71

GVP-GNN-large+AF2 (chain) 0.61
GVP-GNN-large+AF2 (complex) 0.71

GVP-Transformer+AF2 (chain) 0.60
GVP-Transformer+AF2 (complex) 0.68

Table C.4. Protein complex stability on SKEMPI test set (binary classification of increase in stability on single-point mutations). Although
only trained on single chains, the inverse-folding models generalize to protein complexes. Giving the full complex as input, complex,
improves performance compared to giving only the chain as input, chain. Zero-shot prediction compared to fully supervised and supervised
transfer learning methods from (Townshend et al., 2020) and (Jing et al., 2021a) trained on the SKEMPI train set.

Spearman correlation (zero-shot)
Evaluation subset ESM-1v GVP-GNN GVP-GNN-large+AF2 GVP-Transformer+AF2
Mutated −0.23 ± 0.03 0.34 ± 0.02 0.29 ± 0.03 0.31 ± 0.03

Designed 0.42 ± 0.02 0.65 ± 0.01 0.72 ± 0.01 0.67 ± 0.02
High-fitness 0.22 ± 0.02 0.13 ± 0.03 0.21 ± 0.03 0.26 ± 0.02

Sampled −0.21 ± 0.03 0.35 ± 0.02 0.30 ± 0.02 0.30 ± 0.03
≥ 2 mutations −0.20 ± 0.03 0.35 ± 0.03 0.29 ± 0.04 0.30 ± 0.02
≥ 3 mutations 0.28 ± 0.03 0.53 ± 0.02 0.62 ± 0.02 0.64 ± 0.02

≥ 8 mutations 0.20 ± 0.03 0.47 ± 0.02 0.53 ± 0.02 0.55 ± 0.02

Table C.5. Zero-shot performance on AAV split (Dallago et al., 2021).
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using inverse folding models to supervised and transfer learning methods (Townshend et al., 2020; Jing et al., 2021a) on the
Atom3D test set. We find that sequence log-likelihoods from GVP-GNN, GVP-GNN-large, and GVP-Transformer models
are all effective zero-shot predictors of stability changes of protein complexes (Table C.4), performing comparably to the
best supervised method which uses transfer learning.

Predicting insertion effects on AAV. Using masked coordinate tokens at insertion regions, inverse folding models can
also predict the effects of sequence insertions. Adeno-associated virus (AAV) capsids are a promising gene delivery vehicle,
approved by the US Food and Drug Administration for use as gene delivery vectors in humans. Focusing on mutating a
28-amino acid segment, Bryant et al. (2021) generated more than 200,000 variants of AAV sequences with 12–29 mutations
across this region, and measured their ability to package of a DNA payload. This dataset is unique compared to many other
mutagenesis datasets in that most sequences feature random insertions in the 28-amino acid segment, as opposed to only
random substitutions.

We use inverse folding models to predict insertion and substitution effects as follows: For each sequence, we input the
full backbone coordinates of the wild-type (PDB: 1LP3), and insert one masked token into the input backbone coordinates
for each insertion. Then we compare the conditional sequence log-likelihood on this input with masks to the conditional
sequence log-likelihood of the wild-type sequence on the wild-type backbone. The difference in these two conditional
log-likelihoods are used as the score for predicting packaging ability.

We report the zero-shot performance on each of the 7 data subsets evaluated in the FLIP (Dallago et al., 2021) benchmark
suite. As shown in Table C.5, GVP-Transformer trained with predicted structures outperforms the sequence-only zero-shot
prediction baseline ESM-1v on 6 out of the 7 data subsets. For ESM-1v, we scored variant sequences based on the
independent marginals formula, as described in Equation 1 from Meier et al. (2021).

Confusion matrix. We calculated the substitution scores between native sequences and sampled sequences (sampled with
temperature T = 1) by using the same log odds ratio formula as in the BLOSUM62 substition matrix. For two amino acids
x and y, the substitution score s(x, y) is

s(x, y) = log

(

p(x, y)

q(x)q(y)

)

, (2)

where p(x, y) is the jointly likelihood that native amino acid x is substituted by sampled amino acid y, q(x) is the marginal
likelihood in the native distribution, and q(y) is the marginal likelihood in the sampled distribution.

Calibration. Calibration curves examines how well the probabilistic predictions of a classifier are calibrated, plotting the
true frequency of the label against its predicted probability. When computing the calibration curve, for each amino acid, we
bin the predicted probabilities into 10 bins and then compare with the true probability.

Placement of hydrophobic residues. We define the amino acids IVLFCMA as hydrophobic residues, and inspect the
distribution of solvent accessible surface area for both hydrophobic residues and polar (non-hydrophobic) residues. Solvent
accessible surface area calculated with the Shrake-Rupley (“rolling probe”) algorithm from the biotite package (Kunzmann
& Hamacher, 2018) and summed over all atoms in each amino acid. All models have similar distributions of accessible
surface area for hydrophobic residues, also similar to the distribution in native sequences (Figure C.6).

Sampling speed. We profile the sampling speed with PyTorch Profiler, averaging over the sampling time for 30 sequences
in each sequence length bucket on a Quadro RTX 8000 GPU with 48GB memory. For the generic Transformer decoder, we
use the incremental causal decoding implementation in fairseq (Ott et al., 2019). For GVP-GNN, we use the implementation
from the gvp-pytorch GitHub repository.
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Figure C.4. Confusion matrix between native sequence and sampled sequences from the model, compared to BLOSUM62 as reference.
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Figure C.5. Calibration.
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Figure C.6. The majority of hydrophobic residues are buried, following a long tail accessible surface area distribution as in native
sequences.
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Average sampling time per sequence
Sequence length ≤ 100 100− 200 200− 300 300− 400 400− 500
GVP-GNN (3 layers) 3.7s 9.3s 20.8s 76.9s 150.3s
GVP-GNN-large (8 layers) 6.7s 11.8s 47.5s 90.3s 168.8s
GVP-Transformer (8 layers) 1.5s 2.6s 9.0s 16.2s 26.0s

Table C.6. Average time required for sampling one sequence, using open source implementation of GVP-GNN and open source imple-
mentation of Transformer from fairseq (Ott et al., 2019).
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