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The SARS-CoV-2 Omicron variant of concern comprises three sublineages
designated BA.1, BA.2, and BA.3, with BA.2 steadily replacing the globally dominant BA.1.
We show that the large number of BA.1 and BA.2 spike mutations severely dampen plasma
neutralizing activity elicited by infection or seven clinical vaccines, with cross-
neutralization of BA.2 being consistently more potent than that of BA.1, independent of the
vaccine platform and number of doses. Although mRNA vaccines induced the greatest
magnitude of Omicron BA.1 and BA.2 plasma neutralizing activity, administration of a
booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing
antibody titers and breadth against BA.1 and BA.2 across all vaccines evaluated. Our data
suggest that although BA.1 and BA.2 evade polyclonal neutralizing antibody responses,
current vaccine boosting regimens may provide sufficient protection against Omicron-
induced disease.
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The ongoing COVID-19 pandemic has led to the emergence of SARS-CoV-2 variants with
increased transmissibility, viral fitness and immune evasion (7—70). The most recently named
variant of concern, Omicron, is characterized by the greatest known genetic divergence from the
ancestral virus (Wuhan-Hu-1) and consists of three sublineages designated BA.1, BA.2, and
BA.3. These three sublineages are as genetically and antigenically distant from each other as
several previous SARS-CoV-2 variants of concern are from one another (77). BA.1 was first
detected in late 2021 and quickly displaced Delta (3, 9, 72) to become the globally dominant
SARS-CoV-2 strain, aided by its high transmissibility and escape from neutralizing antibodies (6,
13-17). However, BA.2 has recently been shown to replicate with faster kinetics, mediate
enhanced fusogenicity, and be more pathogenic than BA.1 in hamsters (18, 19), in agreement
with its steadily increasing prevalence and expected future global replacement of BA.1 (20).

The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein interacts
with the receptor ACE2 (27-25), promoting S conformational changes that lead to membrane
fusion and viral entry (26, 27). S is the main target of neutralizing antibodies, which have been
shown to be a correlate of protection against SARS-CoV-2 (28-36), with RBD-targeting antibodies
accounting for nearly all cross-variant neutralizing activity (37). SARS-CoV-2 vaccines are thus
based on the S glycoprotein (sometimes the RBD only (28, 38, 39)) or full virus (inactivated) and
utilize a variety of delivery technologies. Lipid-encapsulated prefusion-stabilized S-encoding
mRNA vaccines include Moderna mRNA-1273 and Pfizer/BioNTech BNT162b2. Viral-vectored
vaccines encoding for the SARS-CoV-2 S sequence include Janssen Ad26.COV2.S (human
adenovirus 26), AstraZeneca AZD1222 (chimpanzee adenovirus), and Gamaleya National Center
of Epidemiology and Microbiology Sputnik V (human adenovirus 26/5 for prime/boost). Novavax
NVX-CoV2373 is a prefusion-stabilized S protein-subunit vaccine formulated with a saponin-
based matrix M adjuvant whereas Sinopharm BBIBP-CorV comprises inactivated virions. The
primary vaccine series consisted of two doses for all of these candidates except for Ad26.COV2.S
which was administered as a single dose.

We set out to compare side-by-side the plasma neutralizing activity elicited in humans by
each of these seven vaccines or SARS-CoV-2 infection and evaluate the immune evasion
associated with the constellation of spike mutations present in the BA.1 and BA.2 Omicron
sublineages. Although BA.1 and BA.2 share a large number of spike mutations, they are each
characterized by unique sets of amino acid changes, which are expected to be associated with
different antigenic properties (Table S1). We therefore assessed entry of vesicular stomatitis virus
(VSV) pseudotyped with the SARS-CoV-2 Wuhan-Hu-1 S harboring the D614G, BA.1, or BA.2
mutations into VeroE6 cells stably expressing TMPRSS2 (40) in the presence of vaccinee or
convalescent plasma. Convalescent plasma was obtained from individuals infected with a
Washington-1-like SARS-CoV-2 strain based on time of infection. Although we determined a
plasma neutralizing geometric mean titer (GMT) of 162 against G614 VSV S pseudovirus, only
6/14 and 7/14 individuals had detectable, but mostly weak, neutralizing activity against BA.1 and
BA.2, respectively. Individuals who received two doses of mRNA vaccines three to four weeks
apart, however, fared better against Omicron sublineages than these previously infected patients.
Subjects that received two doses of Moderna mRNA-1273 had G614, BA.1, and BA.2 S VSV
neutralizing GMTs of 1155, 26, and 47, respectively, whereas subjects that received two doses
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of Pfizer BNT162b2 had G614, BA.1, and BA.2 S VSV neutralizing GMTs of 764, 23, and 34,
respectively. 18/21 and 19/21 mRNA-vaccinated subjects retained neutralizing activity against

BA.1 S VSV and BA.2 S VSV, respectively, with the combined cohorts experiencing a 235-fold
GMT reduction against BA.1 S VSV and a 224-fold GMT reduction against BA.2 S VSV. A similar
trend was observed for Novavax NVX-CoV2373 vaccinees (two doses) for which we determined
a neutralizing GMT of 289 against G614 S VSV with only 1/13 and 5/13 individuals having
detectable neutralizing activity against BA.1 (GMT: 11, 223-fold drop) and BA.2 (GMT: 18, 213-

fold drop). A single dose of Janssen Ad26.COV2.S resulted in a G614 S VSV GMT of 80 and only

1/10 subjects had detectable plasma neutralizing activity against either Omicron sublineage. Two
doses of AZD1222 four weeks apart induced G614, BA.1 and BA.2 S VSV neutralizing GMTs of

656, 15, and 31, amounting to 245-fold and =21-fold magnitude reductions for BA.1 and BA.2,
respectively. Sputnik V vaccinee plasma after two doses had a G614 S VSV GMT of 153 and
detectable neutralizing activity for 7/12 subjects against the two Omicron sublingeages, with 212-

fold BA.1 and =7-fold BA.2 GMT respective reductions. Lastly, plasma from subjects vaccinated
with two doses of Sinopharm BBIBP-CorV had a neutralizing GMT against G614 S VSV of 188
with only 5/12 and 8/12 samples retaining detectable neutralizing activity against BA.1 (GMT:15,

212-fold GMT reduction) and BA.2 (GMT:29, 26-fold GMT reduction), respectively. Overall, these

data underscore the unprecedented magnitude of evasion of polyclonal plasma neutralizing
antibody responses for these two Omicron sublineages in humans based on primary
immunization regimes for all seven vaccines or infection with a more marked effect for BA.1
compared to BA.2.
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Figure 1. SARS-CoV-2 Omicron BA.1 and BA.2 evade human plasma neutralizing
antibodies elicited by infection or primary vaccine series. Plasma neutralizing antibody titers
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elicited by primary COVID-19 vaccination determined using SARS-CoV-2 spike VSV pseudotypes
using VeroE6-TMPRSS2 as target cells. Individual points are representative geometric mean
titers from two independent experiments consisting of two replicates each. Bars represent
geometric means and error bars represent geometric standard deviations for each group.
Statistical significance between groups of paired data was determined by Wilcoxon rank test and
*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. Patient demographics are shown in Table S2.
Normalized curves and fits are shown in Figure S1.

The emergence of the SARS-CoV-2 Delta and subsequently Omicron variants of concern
led to an increasing number of reinfections and vaccine breakthrough cases (5, 41, 42). Public
health policies were therefore updated worldwide to recommend administration of an additional
vaccine dose (booster) several months after the primary vaccine series, which has been shown
to increase the breadth and potency of neutralizing antibodies (5, 13). We thus assessed and
compared the benefits provided by homologous or heterologous vaccine boosters on vaccinee
plasma neutralizing activity against G614, BA.1, and BA.2 S VSV pseudotypes. Plasma samples
of subjects that received three mRNA vaccine doses had neutralizing GMTs of 3324, 415, and
612 against G614, BA.1, and BA.2 S VSV, respectively. The 8-fold and 5-fold respective potency

losses against BA.1 and BA.2 are marked improvements over the corresponding 235-fold and
>24-fold reductions observed after two vaccine doses, underscoring an increase in overall

neutralizing antibody potency and breadth (5, 73). Plasma from individuals who received one

dose of Ad26.COV2.S followed either by a homologous Ad26.COV2.S or a heterologous
BNT162b2 booster approximately four months later had neutralizing GMTs of 641, 37 and 74

against G614, BA.1 and BA.2 S VSV, respectively, corresponding to dampening of 217-fold and

9-fold with 12/14 and 14/14 samples exhibiting detectable BA.1 and BA.2 neutralizing activity. We
next investigated individuals that received two doses of AZD1222 four weeks apart followed by
an mRNA booster approximately six months later. This cohort had neutralizing GMTs of 2579,
275, and 414 against G614, BA.1 and BA.2 S VSV, corresponding to 9-fold and 6-fold reductions
against BA.1 and BA.2, respectively. These neutralizing GMT reductions are comparable to that
observed with three doses of mMRNA vaccines. Individuals vaccinated with two doses of Sputnik
V and boosted with AZD1222 or BNT162b2 approximately nine months later had neutralizing
GMTs of 1480, 160, and 147 for G614, BA.1, and BA.2, respectively, amounting to 9-fold and 10-
fold reductions of potency against BA.1 and BA.2. The marked improvement in plasma
neutralizing activity for subjects that received a booster dose over those that did not highlights the
importance of vaccine boosters for eliciting potent neutralizing antibody responses against
Omicron sublineages.
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Figure 2. Booster doses rescue neutralization potency against Omicron BA.1 and BA.2.
Plasma neutralizing antibody titers elicited by COVID-19 vaccine boosters determined using
SARS-CoV-2 S VSV pseudotypes and VeroE6-TMPRSS2 as target cells. Individual points are
representative geometric mean titers from two independent experiments consisting of two
replicates each. Bars represent geometric means and error bars represent geometric standard
deviations for each group. Statistical significance between groups of paired data was determined
by Wilcoxon rank test and *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. Patient demographics
are shown in Table S2. Normalized curves and fits are shown in Figure S2.

The development of life-saving vaccines is regarded as one of humanity’s greatest
medical and scientific achievements, which is perhaps best exemplified by COVID-19 vaccines
(43-45). Here we report that, although the two Omicron sublineages evaluated are characterized
by severe dampening of plasma neutralizing activity, vaccine and infection-elicited cross-
neutralization of BA.2 was more efficient than that of BA.1, independent of the immunization
scheme or vaccine platform. Although mRNA vaccines induced the greatest magnitude of
Omicron plasma neutralizing activity across all tested COVID-19 vaccines, administration of a
booster dose increased neutralizing antibody titers and breadth against BA.1 and BA.2 to
appreciable levels regardless of the vaccine evaluated, concurring with recent findings for BA.1
(5, 13, 16, 46—48). These results are consistent with previous studies demonstrating that a third
vaccine dose results in the recall and expansion of pre-existing SARS-CoV-2 S-specific memory
B cells, as well as de novo induction of novel ones, leading to production of neutralizing antibodies
with enhanced potency and breadth against variants (49, 50). Furthermore, vaccinees receiving
two doses of Ad26.COV2.S (four months apart) had greater Omicron neutralization potency than
other two dose vaccine recipients (three to four weeks between doses) but less than three dose
vaccinees. These findings suggest that the time interval between immunizations may affect the
breadth and potency of elicited plasma neutralizing activity, and that a third dose may be beneficial
for this cohort as well. Moreover, the induction by several currently available vaccines of robust
cross-reactive cellular immunity against SARS-CoV-2 Omicron is likely playing a key role in the
retained protection observed against severe disease (57, 52).
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As SARS-CoV-2 becomes endemic in the human population, vaccination strategies will
need to be carefully considered and optimized to provide long-lasting immunity. So far, elicitation
of high titers of variant-neutralizing antibodies and protection against severe disease can be
accomplished with three doses of the Wuhan-Hu-1 S antigen, as shown in animal models and
studies of vaccine efficacy in humans(53, 54). In fact, an Omicron BA.1 S boost may not offer
significantly more BA.1 protection than a Wuhan-Hu-1 S boost (55-58). However, continued
SARS-CoV-2 evolution will accentuate the genetic drift from the ancestral strain and it is unknown
if vaccines based on Wuhan-Hu-1 S alone will provide satisfactory protection, either as boosters
in experienced individuals or as an initial vaccine in naive individuals (mainly children). The recent
evaluation of intranasal vaccine administration could also be important to not only prevent severe
disease but also curtail viral infection and transmission through induction of mucosal immunity
(59, 60). For these reasons, it is important to monitor new variants, assess the effectiveness of
currently available vaccines, and continue to test and implement new vaccination strategies that
may provide stronger, longer lasting, or broader protection against SARS-CoV-2 and the entire
sarbecovirus subgenus (38, 61, 62).
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Supplementary Material

Table S1. SARS-CoV-2 BA.1 and BA.2 spike mutations as compared to Wuhan-Hu-1.

BA.1

Both

BA.2

AG67V, del69/70, T9SI,
del143/145, N2111,
del212/212, S371L, G496S,
Q498R, T547K, N856K,
L981F

G142D, G339D, S373P,

S375F, S477N, T478K,

E484A, Q493R, Q498R,

N501Y, Y505H, D614G,

H655Y, N679K, P681H,

N764K, D796Y, Q954H,
N969K

T19I1, L24S, del25/27, V213G,
S371F, T376A, D405SN,
R408S, K417N, N440K
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Table S2. Demographics data of enrolled plasma donors.
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Fig. $1. Normalized neutralization curves using VSV pseudovirus containing the SARS-CoV-2
G614 spike (gray), BA.1 spike (orange), or BA.2 spike (blue) on VeroE6-TMPRSS2 cells using
plasma from subjects after their primary vaccine series.
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Fig. $2. Normalized neutralization curves using VSV pseudovirus containing the SARS-CoV-2
G614G (gray), BA.1 spike (orange), or BA.2 spike (blue) on VeroE6-TMPRSS2 cells using plasma
from subjects after receiving a booster dose.
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Methods

Cell lines

Cell lines used in this study were obtained from ThermoFisher Scientific (HEK293T) or were kindly
gifted by Florian Lempp (Vero-TMPRSS2 cells(40)). None of the cell lines used were
authenticated or tested for mycoplasma contamination.

Sample donors

Convalescent plasma, Ad26.COV2.S, and some BNT162b2 samples were obtained from the
HAARVI study approved by the University of Washington Human Subjects Division Institutional
Review Board (STUDY00000959). mRNA-1273 and BNT162b2 samples were obtained from
individuals enrolled in the UWARN: COVID-19 in WA study approved by the University of
Washington Human Subjects Division Institutional Review Board (STUDY00010350). AZD1222
samples were obtained from the Pollmmune-COVID study conducted by INGM and IRCCS Ca'
Granda Ospedale Maggiore Policlinico of Milan, approved by INMI “Lazzaro Spallanzani” Ethics
Committee (286_2021). Samples from NVX-CoV2373 immunized individuals were collected in
the San Diego region by the La Jolla Institute for Immunology. This work was approved by the
institutional review boards (IRB) of the La Jolla Institute (IRB#: VD-214). Sputnik V samples were
obtained from healthcare workers at the hospital de Clinicas "José de San Martin", Buenos Aires,
Argentina. BBIBP-CorV samples were obtained from Aga Khan University, Karachi, Pakistan.
Demographic data for these individuals are summarized in Table S2.

Plasmid construction

SARS-CoV-2 G614 S (YP 009724390.1) S gene was placed into the HDM vector with a 21 residue
C-terminal deletion, as previously described (3, 38, 63). The plasmids encoding the SARS-CoV-
2 Omicron S variants BA.1 and BA.2 were generated by overlap PCR mutagenesis of the wildtype
plasmid, pcDNA3.1(+)-spike-D19 (Table S1) (64).

Pseudotyped VSV production

SARS-CoV-2 G614 and Omicron BA.1 and BA.2 pseudotypes were prepared as previously
described (3). Briefly, HEK-293T cells seeded in poly-D-lysine coated 100 mm dishes at ~75 %
confluency were washed five times with Opti-MEM and transfected using 24 pg of the S
glycoprotein plasmid with Lipofectamine 2000 (Life Technologies). After 5 h at 37°C, media
supplemented with 20% FBS and 2% PenStrep was added. After 20 hours, cells were washed
five times with DMEM and cells were transduced with VSVAG-luc before a 2 h incubation at 37°C.
Infected cells were then washed an additional five times with DMEM prior to adding media
supplemented with anti-VSV-G antibody (I1-mouse hybridoma supernatant diluted 1:25, from
CRL-2700, ATCC) to reduce parental background. After 18-24 h, the supernatant was harvested
and clarified by low-speed centrifugation at 2,500 g for 10 min. The supernatant was then filtered
(0.45 ym) and concentrated 10 times using a 30 kDa centrifugal concentrator (Amicon Ultra). The
pseudotypes were then aliquoted and frozen at -80 °C.

Pseudotyped VSV neutralization assay
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To evaluate neutralization of SARS-CoV-2 G614 and Omicron BA.1 and BA.2 pseudotypes by
plasma of vaccinees or previously infected individuals, Vero-TMPRSS2 cells in DMEM
supplemented with 10% FBS, 1% PenStrep, and 8 ug/mL puromycin were seeded at 60-70%
confluency into white clear-bottom 96 well plates (Corning) and incubated at 37°C. The following
day, a half-area 96-well plate (Greiner) was prepared with eight 3-fold serial plasma dilutions. An
equal volume of DMEM with 1:25 pseudovirus and 1:25 anti-VSV-G antibody (l11-mouse
hybridoma supernatant from CRL-2700, ATCC) was then added to the half-area plate. The
mixture was incubated at room temperature for 20-30 minutes. Media was removed from the cells
and 40 pL from each well (containing plasma and pseudovirus) was transferred to the 96-well
plate seeded with Vero-TMPRESS?2 cells and incubated at 37°C for 2 h. After 2 h, an additional
40 uL of DMEM supplemented with 20% FBS and 2% PenStrep was added to the cells. After 16-
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