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Abstract 

Single-cell RNA sequencing (scRNA-seq) is a powerful technology to investigate the 

transcriptional programs in stromal, immune, and disease cells, like tumor cells or neurons 

within the Alzheimer9s Disease (AD) brain or tumor microenvironment (ME) or niche. Cell-

cell communications within ME play important roles in disease progression and 

immunotherapy response and are novel and critical therapeutic targets. Though many 

tools of scRNA-seq analysis have been developed to investigate the heterogeneity and 

sub-populations of cells, few were designed for uncovering cell-cell communications of 

ME and predicting the potentially effective drugs to inhibit the communications. Moreover, 

the data analysis processes of discovering signaling communication networks and 

effective drugs using scRNA-seq data are complex and involve a set of critical analysis 

processes and external supportive data resources, which are difficult for researchers who 

have no strong computational background and training in scRNA-seq data analysis. To 
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address these challenges, in this study, we developed a novel open-source computational 

tool, sc2MeNetDrug (https://fuhaililab.github.io/sc2MeNetDrug/). It was specifically 

designed using scRNA-seq data to identify cell types within disease MEs, uncover the 

dysfunctional signaling pathways within individual cell types and interactions among 

different cell types, and predict effective drugs that can potentially disrupt cell-cell signaling 

communications. sc2MeNetDrug provided a user-friendly graphical user interface to 

encapsulate the data analysis modules, which can facilitate the scRNA-seq data-based 

discovery of novel inter-cell signaling communications and novel therapeutic regimens. 

 

 

Introduction 

Tumor-stroma communication within the tumor microenvironment (TME) plays an 

important role in tumor development and responses to both conventional- and immune-

based therapies. For example, immunotherapy in pancreatic cancer treatment has not 

been successful1. One possible cause of immunotherapy resistance is the abundance of 

stromal cells and tumor signaling communications in Pancreatic ductal adenocarcinoma 

(PDAC) tumor microenvironments2. Such immunosuppressive cells include tumor-

associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory 

T cells (Tregs), as well as cancer-associated fibroblasts (CAFs)2,3,4,5,6,7. Moreover, CAFs 

were recently reported to be able to regulate the invasive epithelial-to-mesenchymal 

transition (EMT) and proliferative (PRO) phenotypes of PDAC8. This indicates that stroma-

tumor communication in PDAC tumor microenvironments plays a critical role in 

immunotherapy resistance. Thus, stroma-tumor signaling communications are potential 

targets to improve drug or immunotherapy response in cancer treatment. The inhibition of 

signaling communication between TAMs and PDAC cells via the Colony Stimulating 
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Factor 1 (CSF1) (ligand secreted by PDAC) and CSF1R (receptor on TAM) can reprogram 

TAMs, and the synergistic combination of TAM-tumor signaling inhibition with the immune 

checkpoint blockade9 can improve the immunotherapy response. In another study, the 

inhibition of signaling communication between CAF and PDAC via CXCL12 (ligand 

secreted by CAF) and CXCR4 (receptor on PDAC) was shown to improve immunotherapy 

response10. Another example is AD, which is a complex disease with altered inflammation 

and immune functions in AD brain ME11314. However, the detailed mechanism of how 

stroma and immune cells like astrocytes and microglia influence the activity of each other 

and neurons remain unclear. Especially, which signaling pathways and genes are 

dysfunctional or expressed abnormally. These impede the development of novel drugs 

and drug combinations for the control and treatment of AD. 

Recent advances in single-cell RNA sequencing (scRNA-seq) create a powerful 

technology to analyze the genetic and functional heterogeneity of stromal and tumor cells 

(e.g., TAM, CAF and T cells) within tumor microenvironments15,16,17. Similarly, studies 

have generated scRNA-seq data of AD brain samples to investigate the dysfunctions of 

neurons, astrocytes, microglia cells and other cells in AD brain microenvironments12314,18. 

Though many tools and studies reported to have discovered the heterogeneity and sub-

populations of cells, few studies19 have been designed to investigate cell-cell 

communication using sc-RNAseq data. For example, the CCCExplorer20,21 was first 

developed to uncover the potential tumor and stroma cell communication using microarray 

and bulk RNA data on a small set of curated ligand-receptor interactions. CellPhoneDB22 

provided a repository of ligands, receptors, and their interactions using the novel 

computational ligand-receptor interaction prediction approaches. NicheNet23 was the 

latest software tool that integrates the large set of ligand-receptor interactions from 

CellPhoneDB, and it supports the pre-analyzed scRNA-seq data. However, the 
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computational modules of inferring the dysfunctional signaling networks, and predicting 

potentially effective drugs inhibiting the dysfunctional signaling networks and cell-cell 

communications are not available in these tools.   

Specifically, compared with the existing tools, novel computational models and tools that 

solve the following challenges are in high demand to 1) provide an end-to-end model that 

can take the raw scRNA-seq data as input, analyze, annotate and display the scRNA-seq 

data, 2) uncover dysfunctional signaling network within individual cells, and uncover 

complex signaling communications among multiple stromal and tumor cells; 3) identify 

effective drugs and drug combinations that disrupt the cell-cell communications, like 

stroma-tumor, to improve the targeted and immunotherapy response. Moreover, 4) a user-

friendly interactive graphical user interface (GUI) is helpful and critical for biomedical 

researchers because these analyses are highly composite complex and involve a set of 

computational analysis processes and integration of external supportive data resources 

that require visualization by non-bioinformatics experts to functionalize the complex data. 

To resolve the aforementioned challenges, in this study, we developed a novel 

computational tool: sc2MeNetDrug (scRNA-seq based modeling to discover disease 

microenvironment signaling communication networks and drugs targeting the cell-cell 

signaling communications). sc2MeNetDrug provided a user-friendly graphical user 

interface to encapsulate the data analysis modules, which can facilitate the scRNA-seq 

data-based discovery of novel inter-cell signaling communications and novel therapeutic 

regimens. The sc2MeNetDrug, source code, and detailed documentations are publicly 

available at: https://fuhaililab.github.io/sc2MeNetDrug/. 

 

Results 
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Overview of sc2MeNetDrug 

Fig 1 summarizes the overall pipeline of the sc2MeNetDrug. The input of sc2MeNetDrug 

is the raw counts of genes from single cell RNA-seq (scRNA-seq) data of different 

 

Figure 1: Overview of SC2MeNetDrug. The data analysis pipeline of sc2MeNetDrug can be divided 

into the following parts: (1) Raw data uploading: Users need to first upload raw-count data along with 

an optional design file (cell group); (2) Preprocessing: Then, the preprocessing is applied on the raw 

data to perform the quality control, normalization, and imputation; (3) Dimension reduction: the 

dimension reduction algorithm applied on the normalized data; (4) Clustering: Cluster cell sample into 

different group based on dimension-reduced representation for each cell sample; (5) Cell annotation: 

annotate each cell cluster with the best matching cell type given cell candidate and corresponding 

marker genes (The cell annotation result can also be uploaded along with raw data to directly perform 

the following analyses); (6) Cell distribution: Visualize cell type distribution for each cell group; (7) GO 

enrichment analysis: Gene ontology enrichment analysis to reveal the activated/inhibited GO process 

for selected cell type and test/control groups. (8) Proliferation and EMT: Compute proliferation and 

EMT score for selected cell type (mainly used for cancer dataset); (9) Ligand & Receptor 

communication: Identify up-regulated ligands and receptors for each cell type and potential ligand-

receptor interactions between different cell types given the selected test/control groups;  (10) 

Dysfunctional signaling pathway: Identify dysfunctional cell-cell communication and signaling pathway 

between two cell types given the selected test/control groups; (11) Drug discovery: Identify possible 

drugs to inhibit the discovered cell-cell communication network. Note that the steps of pre-analysis (1)-

(5) need to be done sequentially (indicated by blue color in the figure). All downstream analyses like 

(6)-(11) can be performed based on the interest after sc2MeNetDrug obtain the cell annotation results 

(indicated by orange color in the figure). 
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experimental conditions or samples, e.g., normal tissues vs disease tissues. The output 

of the tool includes the annotation of cell types, dysfunctional signaling networks within 

individual cells, intercellular signaling communications, and drugs that can potentially 

inhibit dysfunctional signaling pathways and intercellular signaling communications. 

Specifically, the pipeline can be divided into several parts: First, users need to upload the 

raw data along with an optional design/group file. Then, the raw data go through 

preprocessing, dimension reduction, clustering, and cell annotation sequentially to obtain 

the cell annotation result for each cell (cell annotation results can also be uploaded directly 

to the application to conduct the rest of analyses). Next, various analysis can be performed 

based on the interest and requirement, including iCSC (inter-cell signaling communication 

discovery) module that uncovers the activated signaling pathways and gene ontology (GO) 

terms within individual cell types, and uncovers the cell-cell signaling communications 

within the disease ME and dCSC (drug prediction for disrupting cell signaling 

communication) module that identify and predict the potentially effective drugs, based on 

drug-target and revere gene signature, to disrupt the cell signaling communications. All 

the data analyses and modeling were designed in the modular format, which can be 

upgraded or replaced conveniently to select the best practice models. A detailed 

introduction to the downloading, installation, analysis modules, and examples, as well as 

the video tutorials for each analysis module, were provided at: 

https://fuhaililab.github.io/sc2MeNetDrug/. We applied the SC2MeNetDrug model to both 

a cohort of pancreatic ductal adenocarcinoma (PDAC) and two cohorts of Alzheimer9s 

disease scRNA-seq data demonstrating the functionality and effectiveness of the tool.  
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Figure 2:  The interface of some pre-analysis modules in sc2MeNetDrug. (a) The menu bar of 
sc2MeNetDrug. (b) Biomarker gene database in sc2MeNetDrug. (c) The cell clustering section in 
sc2MeNetDrug. User can easily adjust parameters used in the algorithm. (d) The gene feature exploration 
section in sc2MeNetDrug used to identify biomarker genes.  

a b

c

d

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2023. ; https://doi.org/10.1101/2021.11.15.468755doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468755
http://creativecommons.org/licenses/by-nc/4.0/


The scRNA-seq data pre-analysis module 

Recently, there have been many great scRNA-seq tools publicly available24 that integrate 

many aspects of analyses of scRNA-seq data. For example, Seurat25 in R and Scanpy26 

in Python become very popular and be used as standard tools for analyzing scRNA-seq 

data. They include most of the common pipeline that is needed in the scRNA-seq data 

analysis like quality control, dimension reduction, cell clustering, differential gene 

expression analysis22, etc. However, one drawback of such tools is that they always 

require advanced knowledge in programming, which is not the case for many biomedical 

experts. Regarding this, sc2MeNetDrug implements26 27the scRNA-seq pre-analysis 

module, which is a pipeline that includes quality control, normalization, imputation 

28dimension reduction, clustering, gene feature visualization24, 29and cell type annotation30. 

The pre-analysis module is powered by Seurat and further adds many useful functions for 

easy processing of the scRNA-seq data. Most importantly, all methods are encapsulated 

into modules with user-friendly interfaces (Fig 2a, 2c, 2d), which make it easy for 

researchers to use even without programming skills.  

In sc2MeNetDrug, both mice and human scRNA-seq data can be analyzed (mice gene 

symbols will be converted to corresponding human gene symbols). The quality control and 

data normalization will be computed automatically after the user uploads raw data. For 

pre-analysis, users can then do the dimension reduction and clustering analysis in order 

to perform cell annotation. Important parameters for each analysis can be adjusted directly 

in the app (Fig 2c). A large set of biomarker genes were collected12,31333 to support 

different research projects, like cancer cells, immune cells, AD neuron cells (see Fig 2b). 

We will keep updating the marker gene sets. Moreover, we provided a function to enable 

users to upload new or user-defined marker gene sets. Once the users have decided on 

the final cell type candidates and their corresponding biomarker genes, the annotation 
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classifiers based on these selected cell types and corresponding marker gene sets will be 

built automatically for the cell type annotation analysis. Also, the distribution (percentage) 

of individual cell types in each sample will be displayed, and the Epithelial3mesenchymal 

 
Figure 3: Analysis result of PDAC cancer using sc2MeNetDrug. (a) Cell annotation results. 

Sc2MeNetDrug clearly identify the cell type of each cluster. The cluster with negative enrichment score on 
all cell types is labeled with unknown to avoid noise. (b) Cell distribution in each group, which will be 
automatically plot after cell annotation. Tumor groups (T1-T24) have high population of Ductal 2 cell. 
Instead, normal groups only have Ductal1 cell.  (c) EMT-PRO score of Fibroblast cells in one tumor patient.    

a

b c
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transition (EMT) and PRO (proliferation) scores of each sample can be calculated. Using 

the sc2MeNetDrug, we process and analyze the PDAC cohort from scratch. We can see 

sc2MeNetDrug successfully annotates each cell type in the dataset (Fig 3a). From the cell 

population result, we can verify the correctness of the annotation result, as Ductal 2 cells 

only exist in tumor groups (patients T1-T24) (Fig 3b). Ductal 2 cells are a well-known cell 

type related to tumor growth33. We also plot the EMT-PRO score for one tumor patient. 

We can see this patient has a high EMT score, which may indicate the high activity level 

of the metastatic expansion and the generation of tumor cells (Fig 3b). 

 

Identifying key biomarkers in Alzheimer9s disease using the iCSC module 

Uncovering the dysfunctional signaling pathways within individual cell types, and cell-cell 

signaling communications, as novel therapeutic targets, are the highly needed functions. 

The SC2MeNetDrug provided functions to facilitate the pathway and network analysis. 

Specifically, after the cell type annotation, the differentially expressed genes in each cell 

type between two different experimental conditions, for example, the immunotherapy 

responder vs. non-responder, male vs. female, or tumor cells co-cultured with 

macrophage vs. no macrophages, can be calculated. A function was developed to enable 

the selection of samples and conditions of interest for the differential gene expression 

analysis. Based on the differentially expressed genes within individual cell types, gene 

ontology (GO) enrichment analysis can be identified. Further ligand-receptor interaction, 

activated signaling pathway, and cell-cell communication among two cell types can be 

computed accordingly.  

To illustrate the functionality of sc2MeNetDrug for pathway and network analysis, we apply 

the sc2MeNetDrug on two AD cohorts, one from mice14 and another from human12. The 

mice cohort collected single-cell data from normal mice (TE3, TE4), mice with tau 

pathology and APOE3/APOE4 marker genes (TAFE3_oil and TAFE4_oil respectively), 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2023. ; https://doi.org/10.1101/2021.11.15.468755doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468755
http://creativecommons.org/licenses/by-nc/4.0/


and mice with APOE3/APOE4 knock-out (TAFE3_tam and TAFE4_tam respectively). The 

human cohort was collected from 48 patients with 24 patients, 15 patients, and 9 patients 

classified as having No AD pathology, AD early-stage, and AD late-stage respectively. For 

the mice cohort, we apply the sc2MeNetDrug and use the tool to do the pre-analysis to 

obtain the cell annotation results. We can see sc2MeNetDrug clearly identifies marker 

genes for each cluster in the cohort (Fig 4a, 4b) and annotates each cell type in the 

dataset (Fig 4c). For the human cohort, we directly use the cell annotation result from the 

original source in order to validate the functionality of the downstream analysis part in 

sc2MeNetDrug. For mice dataset, we use TE4 as the control group and TAFE4_oil as the 

test group. For the human dataset, we use No AD pathology as the group of control and 

late-stage as the group of test. Next, we conduct the GO enrichment analysis on both mice 

and human cohorts using the sc2MeNetDrug to compare the difference of neurons 

between normal and AD pathology. We further conduct the KEGG pathway enrichment 

analysis company with the GO enrichment analysis to provide a complete view (Fig 4e). 

From the result of the mice dataset, we have the following observations: First, the neuron 

autophagy and degeneration-related processes are highly activated in neurons with AD 

pathology, like Pathway of neuron degeneration 3 multiple disease, Apoptosis in KEGG 

results and Neuron apoptotic process, Autophagy in GO results. Autophagy is a lysosome-

dependent, homeostatic process, in which organelles and proteins are degraded and 

recycled into energy. Autophagy has been linked to Alzheimer9s disease pathogenesis 

through its merger with the endosomal-lysosomal system, which has been shown to play 

a role in the formation of the latter amyloid-³ plaques34. In the prediction of sc2MeNetDrug, 

we also identified several important genes related to autophagy (Fig 4f). Some have 

already been shown to be related to neuron degeneration and autophagy in AD like 

FAIM235, BCL236, and PRNP37. One hypothesis is that irregular autophagy stimulation 

results in increased amyloid-³ production38. Our result also identified the highly up-
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regulated GO term Positive regulation of amyloid-beta formation, which further supports 

it. Secondly, neuron inflammation is prevalent in AD pathology. Numerous studies have 

shown that inflammation is highly activated and plays a key role in the progress of AD12,393

41. Our results further verify this claim. We can see that neuroinflammatory response, 

cytokine-mediated signaling pathway are all up-regulated GO terms discovered by 

sc2MeNetDrug. This result aligns with the previous studies and further confirms that the 

existence of APOE4 in the astrocyte stimulates the inflammatory response. Inflammation-

related genes are also identified (Fig 4f) like TREM2, CLU, and ADCY1. We further use 

sc2MeNetDrug to compute the activated KEGG signaling pathway network for excitatory 

neurons using mice cohort (Fig S1). The result points out additional pathways like 

Estrogen signaling pathway, HIF-1 signaling pathway, and MAPK signaling pathway that 

are activated in the AD neurons. Some works have pointed out that the dysfunction of the 

estrogen signaling pathway also contributes to the production of amyloid-beta and the 

progress of AD42. Particularly, gene CTSD is Highly expressed in neurons, suggesting its 

center role in producing amyloid precursor (APP) and tau. MAPK signaling pathway 

regulates a variety of cellular activities including proliferation, differentiation, survival, and 

death. Some studies report that Amyloid-beta-induced activation of p38 MAPK and NFkB 

signaling can result in upregulation of proinflammatory gene transcription and cause 

neuronal death43. 

 

To further investigate the signaling pathway and disease mechanism of AD, we apply 

sc2MeNetDrug on two cohorts to analyze both the ligand-receptor interaction and inter-

cell communication patterns. First, we use sc2MeNetDrug to compute the up-regulated 

ligands and receptors for both mice and human cohorts (Fig 5a). For excitatory neurons, 

PCSK1N, ALDOA, CLU, PRNP, and LINGO1 are highly up-regulated in both mice and 

human cohorts. For astrocytes, PTGDS and CLU are activated in mice and humans 
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commonly. For microglia, we found that APOE is highly up-regulated in both mice and 

human cohorts, even though the APOE is normally expressed in astrocytes. This may 

indicate the APOE in the microglia may also be a critical factor for the development of AD 

pathology. Besides that, RPS19, SPP1 are also highly expressed in AD pathology. The 

differential gene analysis result further confirms the discovery from sc2MeNetDrug (Fig 

5c, 5d).  

 

Finally, we use sc2MeNetDrug to discover the up-regulated-ligand to up-regulated-

receptor interaction and cell-cell communication networks among excitatory neurons, 

astrocytes, and microglia (Fig 5b, Fig 6a). The results strengthen the understanding of 

AD development and neuron change. First, COL1A1, COL6A1, COL16A1 are differentially 

expressed in astrocytes of AD pathology.  It all connect to the common receptor ITGAV in 

neuron cell and further connect to genes like PIK3CA, ACTG1, and ACTB.  The collagen 

gene family serves to mediate cell attachment and maintains the integrity of the 

extracellular matrix (ECM). It has been reported that there are significant changes in ECM 

during the early stages of Alzheimer9s disease44 and also associated with amyloid plaque 

production45. ACTG1 and ACTB are actin proteins, which are highly related to actin 

cytoskeleton and spine shaping in the brain. The abnormal expression of actin-related 

genes can cause synaptic plasticity and failure, which are one of the major remarkers of 

AD. Our finding may suggest that the activity of collagen genes in astrocytes may trigger 

the abnormal activity of actin-related genes and thus contribute to the development of AD 

pathology. Further, our identified cell-cell communication network contains many genes in 

the activated pathways, like Apoptosis, HIF-1 signaling pathway, Necroptosis, and 

neuroinflammatory response. The results further highlight the significance of these  
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Figure 4: Cell annotation and pathway analysis result of AD (mice) dataset using sc2MeNetDrug. 
(a-b) The expressive pattern of selected maker genes. These genes are highly expressed in some 
cluster and can be used as biomarker genes for cell annotation. (c) The cell annotation result output from 
sc2MeNetDrug. (d) The cell distribution for each group. (e) The KEGG and GO enrichment analysis 
results for AD pathology. The color indicate the p-value of pathways and count (KEGG pathway) indicate 
the number of genes that are activated in the pathway. The log fold-change threshold is set as 0.08 and 
p-value threshold is set as 0.05.  (f) Expressed genes correlated to GO terms GO:0150076 
neuroinflammatory response and GO:0051402 neuron apoptotic process for AD pathology output by 
sc2MeNetDrug. The log-fold change threshold is set as 0.08. 
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pathways and processes in the progress of AD pathology. Meanwhile, these findings are 

consistent with results from the pathway enrichment analysis, further validating our iCSC 

module.  

  

Predict drugs inhibiting signaling communications using the dCSC model 

To identify drugs that can potentially inhibit the down-stream signaling pathways, the 

computational model, the dCSC model was developed, which is designed to integrate the 

down-stream signaling network, drug-target interaction (derived from DrugBank46 

database), and reverse gene signature data available from the connectivity map (CMAP) 

database47. It is relatively straightforward to identify drugs with targets on the downstream 

signaling network based on the drug-target information. For the CMAP data48, the 

uncovered cell-cell communication signaling network will be used as a signature of the 

Gene set enrichment analysis (GSEA) to identify drugs that can potentially inhibit the 

expression of genes in the network. To further understand the relationship of the selected 

drugs, drug clustering based on chemical structures was conducted to identify 

therapeutics with similar targets or mechanisms of action. To demonstrate the functionality 

and effectiveness of the dCSC module in sc2MeNetDrug, we perform the analysis using 

the AD mice dataset. Specifically, we compute the signature drug discovering analysis 

using connectivity map data upon the cell-cell communication network from astrocytes to 

neurons. The discovered top 30 drugs can be found in Fig 6b. The drug clustering result 

for all top drugs can be found in Fig 6c.  

 

Among all the top drugs, Nifedipine achieved the best enrichment score. Nifedipine is a 

dihydropyridine calcium channel blocker indicated for the management of several 

subtypes of angina pectoris, and hypertension. Nifedipine is primarily used for reducing 
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blood pressure and increasing oxygen supply to the heart. However, results have shown 

that calcium channel blockers like Nifedipine or Nimodipine (also shown in the top drugs) 

led to a significant decrease in the level of amyloid beta peptide, with no significant 

decrease in cell viability49.  

 

 
Figure 5: Ligand-receptor analysis results on AD cohorts. (a) Up-regulated ligands and receptors 

discovered by sc2MeNetDrug on two AD cohorts. Only genes that appear in the results on both mice 
and human cohorts are selected. The log-fold-change threshold is set as 0.08 and p value threshold is 
set as 0.05. The size of the dot indicates the fold log-fold-change level in the human cohort and the 
color indicate the level in the mice cohort.  (b) ligand-receptor interaction discovered by sc2MeNetDrug 
on mice cohort. Only ligands and receptors with log-fold-change great than 0.08 were selected. (c-d) 
Differentially expressed genes results using Seurat.  
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The second drug Hydralazine, which is a smooth muscle relaxant, also shows potential 

for being an effective drug for reducing lipid oxidative damage and amyloid beta folding50. 

Interestingly, another drug PD-0325901 from the same cluster, has been shown to be 

effective in inhibiting MAPK/ERK kinase which prevents activation of the mitogen-

activated protein kinase (MAPK)51. As we discussed above, MAPK signaling pathway is 

dysfunctional in AD pathology. The inhibition of MAPK pathway can provide neuronal 

protection from the amyloid beta burden by increasing autophagic lysosomal activity, 

suggesting a synergic effect along with Hydralazine that is worth for further investigation. 

Another type of drug mainly targets neuronal inflammation or neuronal disorders like 

carbidopa, Diclofenac, and paroxetine. Relevant research already pointed out its potential 

functionality in reducing inflammation and pathology of AD52354. Together, our results 

provide several drugs that could be effective in reducing the pathology of AD from different 

levels. It further valid the performance of sc2MeNetDrug. 

 

 

Discussion 

Single cell RNA sequencing (scRNA-seq) is a powerful technology to investigate the 

transcriptional programs in stromal, immune, and tumor cells or neuron cells within tumor 

or brain microenvironment (ME) or niche. Cell-cell interactions and communications within 

ME play important roles in disease progression and immunotherapy response and are 

novel and critical therapeutic targets. However, it is challenging, for many researchers 

without solid training in computational data analysis and scRNA-seq data analysis, 

because the data analysis pipelines usually consist of diverse and complex analysis 

modules, and the integrative analysis of diverse and heterogenous external data 

resources. There is a lack of easy-use tools with complete and integrative computational  
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Figure 6:Cell-cell communication result from astrocytes to excitatory neurons and 

corresponding drug discovering result (mice cohort) using sc2MeNetDrug. (a) Cell-cell 
communication result with several important pathways appended. The KEGG database was used and 
the log-fold-change and p-value threshold are set as 0.08 and 0.05 respectively. (b) Signature drug 
discovering result. Only top 30 drugs are displayed. The higher the negative enrichment score, the 
higher chance the drug can be used to inhibit the corresponding dysfunctional network. (c) Drug 
clustering result based on SMILE finger print to identify structure similar drug clusters among all top 
drugs.  
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modules for uncovering cell-cell communications of ME and predict the potentially 

effective drugs to inhibit the communications, although many tools of scRNA-seq analysis 

have been developed to investigate the heterogeneity and sub-populations of cells. In this 

study, we developed a novel, open-source computational tool, SC2MeNetDrug 

(https://fuhaililab.github.io/sc2MeNetDrug/) to address these challenges. Specifically, the 

advantages of the tool are as follows. First, it is a tool specifically designed for scRNA-seq 

data analysis to identify cell types within MEs, uncover the dysfunctional signaling 

pathways within individual cell types, inter-cell signaling communications, and predict 

effective drugs that can potentially disrupt cell-cell signaling communications. Second, the 

analysis modules in the analysis pipelines were separated with pre-designed interfaces. 

Users can develop and update novel data analysis modules, and easily replace the 

updated modules back to the data analysis pipeline. In another word, users or scientists 

with different expertise can conveniently replace user-specific data analysis modules just 

by following the input and output of individual modules, like network inference, cell type 

identification, cell clustering, drug prediction, in the data analysis pipeline. Third, it 

provides a user-friendly graphical user interface (GUI), encapsulating the data analysis 

modules, which requires no coding and programming and can facilitate the scRNA-seq 

data analysis in an interactive manner.  

 

Conclusion 

In this study, we developed a novel open-source tool, SC2MeNetDrug 

(https://fuhaililab.github.io/sc2MeNetDrug/), which is specifically designed, with user-

friendly GUI  for interactive scRNA-seq data analysis for the purpose of uncovering cell-

cell communications of ME, and predicting the potentially effective drugs to perturb the 

cell-cell communications within disease ME.  



 

Methodology 

Data sets of case studies 

The data of PDAC was downloaded from Genome Sequence Archive under project 

PRJCA00106316. There are a total of 57530 cell samples and 24003 genes. The data was 

generated from 24 PDAC tumor samples and 11 control, untreated pancreas samples. 

The data of Alzheimer9s disease of human12 was downloaded from Synapse website. The 

DOI for the dataset is 10.7303/syn18485175. The data was generated from 48 patients, 

with 24 individuals presenting no or very low AD pathologies and the rest of 24 individuals 

exhibiting clear AD pathologies. There are a total of 75060 cell samples and 17926 genes. 

The data on Alzheimer9s disease in mice14 was obtained from the Gene Expression 

Omnibus (GEO) database with accession number GSE164507. There are a total of 96252 

cell samples and 33457 genes. 

 

Quality control 

Quality control is done in several steps. Initially, cells with a detected gene count of less 

than 200 or more than 7500 are removed. Subsequently, cells with abnormal 

mitochondrial gene expression (cells with > 10% mitochondrial counts) are also eliminated. 

Finally, if the dataset is from mice, we collect a database for converting all mic gene 

symbols in the dataset to the human gene symbol. All genes that don9t exist in the 

database will be removed. 

 

Normalization 

The normalization and variance stabilization of scRNA-seq data in sc2MeNetDrug is done 

by the regularized negative binomial regression55. With this method, there is no need for 

heuristic steps including pseudocount addition or log-transformation and improves 



common downstream tasks. The method is implemented using SCTtransform function 

with method=glmGamPoi in Seurat package56.  

56 

Imputation 

Imputation is done by the runALRA function in the Seurat package with default parameters. 

The method28 is to compute the K-rank approximation to A_norm and adjust it according 

to the error distribution learned from the negative values. 

 

Dimension reduction 

Dimension reduction analysis in sc2MeNetDrug involves several steps. First, select the 

top 3000 variable genes across the dataset. To identify these genes, local polynomial 

regression fits the relationship between log variance and log mean. Subsequently, gene 

expression values are standardized using the observed mean and the expected variance 

(determined by the fitted line). The variance of gene expression is calculated on the 

standardized values after clipping. This procedure is automatically executed by the 

SCTransform function in Seurat package. Next, Principal Components Analysis (PCA) is 

applied to these 3000 variable genes. These genes are then projected into 50 dimensions 

in order served as 50 different principal components (PCs). This is implemented using the 

RunPCA function in Seurat package. Finally, the UMAP method will be used on the first � 

PCs selected by the user (range from 10 to 50). This is implemented using the RunUMAP 

function in Seurat package.57 

 

Cell clustering 

For clustering analysis of scRNA-seq data, the application follows these steps. First, it 

computes a low-dimensional representation for each cell using PCA. This is done during 



the dimension reduction analysis. Next, to identify the neighbors of each cell, the clustering 

analysis applies the K-Nearest-Neighbor (KNN) algorithm to the results of the PCA 

analysis. Users can choose the number of principal components to use (range from 10 to 

50) when performing the KNN algorithm. This step is implemented using FindNeighbors 

function in Seurat package. Finally, the clustering analysis applies the Louvain algorithm 

to the results of the KNN algorithm to compute the final clustering results for each cell. 

Users can also choose the resolution of the clustering, with options ranging from 0.1 to 2. 

A lower resolution result in fewer clusters in the final results, while a higher resolution 

produces more clusters. This step is implemented using FindClusters function in Seurat 

package.  

 

Gene Feature Exploration 

In gene feature exploration section, user can select any gene exists in the dataset, then 

sc2MeNetDrug will generate two plots for each gene. The first plot is the expression 

distribution violin plot, which plot the expression distribution of the selected gene in each 

cluster. The second plot is the scatter plot to indicate the expression of the gene in each 

cell. A deeper color means a higher expression. These two types of plots are drawn using 

VlnPlot and FeaturePlot function in Seurat package. 

 

Biomarker gene sets 

In total, we collected 56 cell type and biomarker genes from several sources12,31333. The 

biomarker gene database is displayed in a table with a cell marker gene manner, where 

each row in the table has two columns with the first column indicating the name of cell 

type and the second column indicate the corresponding gene symbol. If there is more than 

one biomarker genes for one cell type, each gene will be displayed in one row (the cell 



type name will be copied for each row, see Fig 7a). We also specified classical cell type 

sets for Alzheimer9s disease and Pancreatic Cancer based on published articles12,33. The 

user could easily select these cell types by clicking the corresponding button. We also 

provide the user with the ability to modify and add their own marker genes for better 

analysis; the user can add, delete and modify existing marker gene tables. To delete an 

existing cell-marker gene pair, user can do it by first clicking the corresponding row in the 

marker gene table. Then, click the <Delete selected gene= button to delete this row (see 

Fig 7b). To add a new cell-marker gene pair, users can use the bottom right panel in the 

biomarker gene section (Fig 7c). Begin by entering the cell type name in the first input 

box. Next, select the marker genes you wish to add in the second input box. Users can 

choose multiple genes simultaneously. Lastly, click <add new gene= to incorporate them 

into the marker gene database. Finally, to modify an existing cell-marker gene pair, users 

can directly double-click the table cell in the marker gene table to modify it. 

 

Cell type annotation 

Figure 7: Panel shortcut for modifying biomarker gene database in sc2MeNetDrug. (a) Biomarker 
gene table display all existing cell-marker gene pairs. (b) The panel used to delete an existing cell-
marker gene pair (<Delete selected gene= button), reset the biomarker gene database (<Original marker 
gene table= button), and save the modified marker gene database for future use (<Save current marker 
gene table= button). (c) Panel used to add new cell-marker gene pair into current biomarker gene table. 

a b

c



The cell annotation is done in two steps. In the first step, the Gene Set Enrichment 

Analysis (GSEA)59 is applied to annotate cell types for every cluster. First, users should 

select candidate cell types and corresponding marker genes in the Biomarker gene 

section. Then, for every cluster, the application computes log fold change for cluster N by: 

���	����	�/����	���	�������	�

= ����	����������	���	�������	� 2����	����������	���	��/��	����� 

Then we rank the genes based on fold change and calculate the enrichment score of 

marker gene sets for every cell type the user selected. Finally, the cell type with the largest 

enrichment score will be selected as the type of this group. However, if none of the cell 

types have a positive enrichment score, the cluster will be annotated as unknown. In the 

second step, sc2MeNetDrug introduces a manual label correction panel such that the user 

can manually modify the cell annotation result obtained from the first step.  

 

Cell distribution plots 

Once users obtain classification results or upload gene expression data, the application 

can calculate the percentage of each cell type in each sample group. If users don9t provide 

sample group information, the application will simply calculate the percentage of each cell 

type in the whole dataset. 

 

Epithelial-mesenchymal transition (EMT) and proliferation (PRO) analysis 

EMT-PRO analysis in SC2NetDrug was analyzed by computing mean expressions for the 

selected design and cell type of EMT and PRO-related genes. The 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION database was chosen for 

EMT-related marker genes and the HALLMARK_E2F_TARGETS database was chosen 

for PRO-related marker genes. After users select the design and cell type, min-max 



normalization is used to normalize the whole dataset based on the genes. Then the 

intersecting genes in the EMT and PRO-related marker gene sets are selected and a 

mean score of all EMT and PRO-related genes are calculated and labeled as the EMT 

and PRO scores, respectively. 

 

Ligands and receptors data resources 

We collected ligand-receptor data from several sources: (1) Database of Ligand-Receptor 

Partners (DLRP)60 with 175 unique ligands, 133 unique receptors, and 470 unique 

interactions (2) Ligand-receptor interaction data sources in NicheNet23 with 1737 unique 

ligands, 1925 unique receptors and 12659 unique interactions (3) cell-cell interactions 

database in baderLab. We selected all the proteins to be annotated as ligands named 

<Ligand= or <ECM/Ligand= and all the proteins to be annotated as receptors named 

<Receptor= or <ECM/Receptor=. Then we selected all the interactions including the chosen 

ligands and receptors. There are 1104 unique ligands, 924 unique receptors, and 16833 

unique interactions. In total, there are 1424 unique ligands, 1214 unique receptors, and 

27291 unique interactions. 

 

Ligand-receptor mediated signaling interactions (Upstream Network).  

Upstream network analysis is used to discover up-regulated ligands, receptors, and 

potential ligand-receptor signaling interactions. First, users need to specify the log fold 

change threshold, p value threshold, and the group or design the user wants to analyze. 

The up-regulated ligands and receptors are discovered using the following steps. First, 

the differential expression genes are calculated based on two tests, the first being the 

Wilcoxon rank sum test and the second being the Likelihood-ratio test61. The genes that 

have log fold changes larger than the threshold and adjusted p-values (from the two tests) 



less than the threshold will be selected as differentially expressed genes. The test is done 

by the FindMarkers function in the Seurat package with parameters set as test.use=wilcox 

and test.use=bimod for the two tests respectively. After the differentially expressed genes 

for all cell types in the dataset designed by the user are identified, the ligands and 

receptors are found by searching for all differentially expressed genes in our ligands-

receptors database. Finally, upstream interaction networks are generated by searching 

for all the discovered ligand-receptor interactions in our ligands-receptors database. To 

be specific, four networks will be generated: the up-regulated ligands to expressed 

receptors network, expressed ligands to up-regulated receptors network, up-regulated 

ligands to up-regulated receptors network, and the combined network. Up-regulated 

ligands and receptors are ligands and receptors that have log fold changes and adjusted 

p-values for two tests that satisfy the user9s settings. Expressed ligands and receptors are 

ligands and receptors that have log fold changes larger than 0. The combined network is 

then combined with the up-regulated and the expressed ligands and receptors.  

 

Gene ontology (GO) term enrichment analysis 

To obtain the gene-gene ontology (GO)62 term information, the R libraries, org.Hs.eg.db 

and GO.db were used. The Fisher9s exact test was used to identify the statistically 

activated/enriched GOs based on the up-regulated genes and the genes in each GO term.  

 

Inter-Cell Communication (Downstream Network) Analysis 

The inter-cell communication analysis in SC2NetDrug is done by several steps. First, 

differential genes in each cell type are discovered using the Wilcoxon rank sum test and 

the Likelihood-ratio test63. The genes that have log fold changes larger than the threshold 

and adjusted p-values (for both tests) less than the threshold will be selected as 



differentially expressed genes. The tests are done by the FindMarkers function in the 

Seurat package with parameters set as test.use=wilcox and test.use=bimod for the two 

tests, respectively. Next, ligands, receptors and transcript factors are discovered using the 

ligands-receptors interaction database and the transcript factor-target interaction 

database.  

To uncover the down-stream signaling of ligand-receptor of interest, a computational 

model, iCSC (inter-cell signaling communication discovery using scRNA-seq), was 

developed. Specifically, 2 background signaling resources were used: KEGG64 signaling 

pathways (curated) and STRING65 (general protein-protein interactions). For KEGG 

signaling pathways, the shortest paths starting from the given receptors to all the target 

genes (without out-signaling) were identified, denoted as pi,j = (gi, gk1, gk2, &, gj), where gi 

is the receptor, gj is the target gene, and gkm, m=1, 2, &, are the genes on the shortest 

paths between gi and gj on the KEGG signaling pathways. Then an activation score for 

each path, pi,j, was defined as: �!" =
3 ��(�#)$!*&"#

�: , where fc(.) is the fold change 

calculator, and n is the number of genes on the signaling path. Then signaling paths with 

activation scores greater than a given threshold will be selected to generate the inter-cell 

communication network of the ligand-receptor of interest.  

For STRING background signaling network, there are much more genes (nodes) and 

interactions (edges) than KEGG signaling. Thus, the above model for KEGG does not 

work for STRING. Herein, we proposed a novel down-stream signaling network discovery 

model. Specifically, let �'
! = +�! , '+ denote the initialized down-stream signaling network 

of receptor �! .  The update of the down-stream signaling is defined as: �()*
! =

�A�(! , �+ , �,*, �2E, where �(! and �+ is the current down-stream and background (STRING) 

signaling networks respectively. The edge, �!" (protein interactions between �! and �") of 



background signaling network, �+, is weighted as: �A�!"E =
*

-./(12($")
+ *

-./412($#5
.  �,* is a 

vector including k1 candidate genes (based on the absolute fold change in the decreasing 

order) to be investigated and added to the down-stream signaling network. For any gene, 

�, * ����(�(!) , the shortest paths from �,  to the k1 candidate genes in �,* , will be 

calculated. Then, an activation score for each path, pk,j, was defined as: �," =

3 ��(�#)$!*&"#
�: , where fc(.) is the fold change calculator and n is the number of genes 

on the signaling path. If � > �2, the signaling paths will be discarded. In another word, the 

parameters k1 and k2 decide the search width and depth. Finally, the signaling path with 

highest activation score will be added to the down-stream signaling network. The process 

will be conducted iteratively until it reaches a network size limit, e.g., N nodes. The down-

stream signaling network is generated by combining the down-stream signaling networks 

of all receptors: �* =	*! �(!. 

 

Drug-target information derived from DrugBank 

We collected 6650 drugs from the drug bank database and corresponding target genes. 

After the down-stream signaling network is generated, the drugs for genes in the network 

is discovered by looking through each gene in the network and searching for drugs that 

target this gene in drug bank database.  

 

Connectivity Map data 

Drug discovery based on signaling signatures using Connectivity Map data, which seeks 

to enable the discovery of functional connections between drugs, genes, and diseases 

through analysis of patterns induced by common gene-expression changes. Users can 

find CMAP data in National Center for Biotechnology Information database under dataset 



GSE92742. Before doing the analysis, users need to download corresponding data from 

the website and we provide the function to generate the drug rank matrix based on data. 

 

Drug discovery based on signaling signatures 

The procedure of drug discovering is following: After the up-regulated genes for each cell 

group in the cell-cell communication part are obtained, the application will use GSEA and 

the drug rank matrix to discover potential drugs for each group. First, the application will 

calculate the enrichment score of up-regulated gene sets for each drug in each group. 

Then, the top K drugs with the lowest enrichment scores will be selected as potential 

drugs, where K is the number of top drugs selected by user. 

 

Drug clustering based on GSEA scores in CMAP 

After the top drug is identified, Affinity Propagation Clustering66 will be used to cluster top 

drugs. First, a similarity matrix will be constructed for the top drugs. Given that the number 

of top drugs is K, the dimensions of the matrix will be K*K. The similarity score for drug � 

to drug � will be computed by the following process: select the top 150 up-regulated genes 

and top 150 down-regulated genes for drug � to use as the gene set. Then, compute the 

GSEA score for drug � using the drug rank matrix and the gene set from drug �. The 

enrichment score will be used as the similarity score for drug � to drug �. After the similarity 

matrix is constructed, it will be used to do AP clustering, which is done using the R package 

apcluster.  

 

Drug clustering based on chemical structures 

To clustering drugs discovered by targets, we use the chemical structure of each drugs67. 

First, the SMILES information of drugs is used to generate drug object for each drug, this 



is done by parse.smiles function in rcdk R package. Next, the fingerprint of drug is 

computed using get.fingerprint function in fingerprint R package. Based on fingerprint of 

drugs, the similarity between drugs is computed using Tanimoto index. The formulation of 

Tanimoto index is follow: 

�6,+ =
�

� + � 2 �
 

Where �6,+ is the similarity between drug A and drug B. a is number of bits in drug A and 

b is number of bits in drug B. c is number of bits in both two drugs. This is done by 

fp.sim.matrix function in R package fingerprint and set parameter method as tanimoto. 
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Supplementary figure 1: Activated KEGG pathway network of AD pathology for excitatory neurons 

identified by sc2MeNetDrug (mice cohort). 

Activated KEGG pathway network for excitatory 

neurons (Mice)


