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Abstract

Single-cell RNA sequencing (scRNA-seq) is a powerful technology to investigate the
transcriptional programs in stromal, immune, and disease cells, like tumor cells or neurons
within the Alzheimer’s Disease (AD) brain or tumor microenvironment (ME) or niche. Cell-
cell communications within ME play important roles in disease progression and
immunotherapy response and are novel and critical therapeutic targets. Though many
tools of scRNA-seq analysis have been developed to investigate the heterogeneity and
sub-populations of cells, few were designed for uncovering cell-cell communications of
ME and predicting the potentially effective drugs to inhibit the communications. Moreover,
the data analysis processes of discovering signaling communication networks and
effective drugs using scRNA-seq data are complex and involve a set of critical analysis
processes and external supportive data resources, which are difficult for researchers who

have no strong computational background and training in scRNA-seq data analysis. To
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address these challenges, in this study, we developed a novel open-source computational

tool, sc2MeNetDrug (https://fuhaililab.github.io/sc2MeNetDrug/). It was specifically

designed using scRNA-seq data to identify cell types within disease MEs, uncover the
dysfunctional signaling pathways within individual cell types and interactions among
different cell types, and predict effective drugs that can potentially disrupt cell-cell signaling
communications. sc2MeNetDrug provided a user-friendly graphical user interface to
encapsulate the data analysis modules, which can facilitate the scRNA-seq data-based

discovery of novel inter-cell signaling communications and novel therapeutic regimens.

Introduction

Tumor-stroma communication within the tumor microenvironment (TME) plays an
important role in tumor development and responses to both conventional- and immune-
based therapies. For example, immunotherapy in pancreatic cancer treatment has not
been successful'. One possible cause of immunotherapy resistance is the abundance of
stromal cells and tumor signaling communications in Pancreatic ductal adenocarcinoma
(PDAC) tumor microenvironments?. Such immunosuppressive cells include tumor-
associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory
T cells (Tregs), as well as cancer-associated fibroblasts (CAFs)>343%7 Moreover, CAFs
were recently reported to be able to regulate the invasive epithelial-to-mesenchymal
transition (EMT) and proliferative (PRO) phenotypes of PDACS. This indicates that stroma-
tumor communication in PDAC tumor microenvironments plays a critical role in
immunotherapy resistance. Thus, stroma-tumor signaling communications are potential
targets to improve drug or immunotherapy response in cancer treatment. The inhibition of

signaling communication between TAMs and PDAC cells via the Colony Stimulating
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Factor 1 (CSF1) (ligand secreted by PDAC) and CSF1R (receptor on TAM) can reprogram
TAMs, and the synergistic combination of TAM-tumor signaling inhibition with the immune
checkpoint blockade’ can improve the immunotherapy response. In another study, the
inhibition of signaling communication between CAF and PDAC via CXCL12 (ligand
secreted by CAF) and CXCR4 (receptor on PDAC) was shown to improve immunotherapy
response'?. Another example is AD, which is a complex disease with altered inflammation
and immune functions in AD brain ME'"-"*. However, the detailed mechanism of how
stroma and immune cells like astrocytes and microglia influence the activity of each other
and neurons remain unclear. Especially, which signaling pathways and genes are
dysfunctional or expressed abnormally. These impede the development of novel drugs
and drug combinations for the control and treatment of AD.

Recent advances in single-cell RNA sequencing (scRNA-seq) create a powerful
technology to analyze the genetic and functional heterogeneity of stromal and tumor cells
(e.g., TAM, CAF and T cells) within tumor microenvironments'>'¢17_ Similarly, studies
have generated scRNA-seq data of AD brain samples to investigate the dysfunctions of
neurons, astrocytes, microglia cells and other cells in AD brain microenvironments'?~'418,
Though many tools and studies reported to have discovered the heterogeneity and sub-
populations of cells, few studies'® have been designed to investigate cell-cell
communication using sc-RNAseq data. For example, the CCCExplorer?®?! was first
developed to uncover the potential tumor and stroma cell communication using microarray
and bulk RNA data on a small set of curated ligand-receptor interactions. CellPhoneDB??
provided a repository of ligands, receptors, and their interactions using the novel
computational ligand-receptor interaction prediction approaches. NicheNet?® was the
latest software tool that integrates the large set of ligand-receptor interactions from

CellPhoneDB, and it supports the pre-analyzed scRNA-seq data. However, the
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computational modules of inferring the dysfunctional signaling networks, and predicting
potentially effective drugs inhibiting the dysfunctional signaling networks and cell-cell
communications are not available in these tools.

Specifically, compared with the existing tools, novel computational models and tools that
solve the following challenges are in high demand to 1) provide an end-to-end model that
can take the raw scRNA-seq data as input, analyze, annotate and display the scRNA-seq
data, 2) uncover dysfunctional signaling network within individual cells, and uncover
complex signaling communications among multiple stromal and tumor cells; 3) identify
effective drugs and drug combinations that disrupt the cell-cell communications, like
stroma-tumor, to improve the targeted and immunotherapy response. Moreover, 4) a user-
friendly interactive graphical user interface (GUI) is helpful and critical for biomedical
researchers because these analyses are highly composite complex and involve a set of
computational analysis processes and integration of external supportive data resources
that require visualization by non-bioinformatics experts to functionalize the complex data.
To resolve the aforementioned challenges, in this study, we developed a novel
computational tool: sc2MeNetDrug (scRNA-seq based modeling to discover disease
microenvironment signaling communication networks and drugs targeting the cell-cell
signaling communications). sc2MeNetDrug provided a user-friendly graphical user
interface to encapsulate the data analysis modules, which can facilitate the scRNA-seq
data-based discovery of novel inter-cell signaling communications and novel therapeutic
regimens. The sc2MeNetDrug, source code, and detailed documentations are publicly

available at: https://fuhaililab.qgithub.io/sc2MeNetDrug/.

Results
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Figure 1: Overview of SC2MeNetDrug. The data analysis pipeline of sc2MeNetDrug can be divided
into the following parts: (1) Raw data uploading: Users need to first upload raw-count data along with
an optional design file (cell group); (2) Preprocessing: Then, the preprocessing is applied on the raw
data to perform the quality control, normalization, and imputation; (3) Dimension reduction: the
dimension reduction algorithm applied on the normalized data; (4) Clustering: Cluster cell sample into
different group based on dimension-reduced representation for each cell sample; (5) Cell annotation:
annotate each cell cluster with the best matching cell type given cell candidate and corresponding
marker genes (The cell annotation result can also be uploaded along with raw data to directly perform
the following analyses); (6) Cell distribution: Visualize cell type distribution for each cell group; (7) GO
enrichment analysis: Gene ontology enrichment analysis to reveal the activated/inhibited GO process
for selected cell type and test/control groups. (8) Proliferation and EMT: Compute proliferation and
(9) Ligand & Receptor
communication: Identify up-regulated ligands and receptors for each cell type and potential ligand-
(10)
Dysfunctional signaling pathway: Identify dysfunctional cell-cell communication and signaling pathway

EMT score for selected cell type (mainly used for cancer dataset);

receptor interactions between different cell types given the selected test/control groups;

between two cell types given the selected test/control groups; (11) Drug discovery: Identify possible
drugs to inhibit the discovered cell-cell communication network. Note that the steps of pre-analysis (1)-
(5) need to be done sequentially (indicated by blue color in the figure). All downstream analyses like
(6)-(11) can be performed based on the interest after sc2MeNetDrug obtain the cell annotation results
(indicated by orange color in the figure).

Fig 1 summarizes the overall pipeline of the sc2MeNetDrug. The input of sc2MeNetDrug

is the raw counts of genes from single cell RNA-seq (scRNA-seq) data of different
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experimental conditions or samples, e.g., normal tissues vs disease tissues. The output
of the tool includes the annotation of cell types, dysfunctional signaling networks within
individual cells, intercellular signaling communications, and drugs that can potentially
inhibit dysfunctional signaling pathways and intercellular signaling communications.
Specifically, the pipeline can be divided into several parts: First, users need to upload the
raw data along with an optional design/group file. Then, the raw data go through
preprocessing, dimension reduction, clustering, and cell annotation sequentially to obtain
the cell annotation result for each cell (cell annotation results can also be uploaded directly
to the application to conduct the rest of analyses). Next, various analysis can be performed
based on the interest and requirement, including iCSC (inter-cell signaling communication
discovery) module that uncovers the activated signaling pathways and gene ontology (GO)
terms within individual cell types, and uncovers the cell-cell signaling communications
within the disease ME and dCSC (drug prediction for disrupting cell signaling
communication) module that identify and predict the potentially effective drugs, based on
drug-target and revere gene signature, to disrupt the cell signaling communications. All
the data analyses and modeling were designed in the modular format, which can be
upgraded or replaced conveniently to select the best practice models. A detailed
introduction to the downloading, installation, analysis modules, and examples, as well as
the video tutorials for each analysis module, were ©provided at:

https://fuhaililab.github.io/sc2MeNetDrug/. We applied the SC2MeNetDrug model to both

a cohort of pancreatic ductal adenocarcinoma (PDAC) and two cohorts of Alzheimer’s

disease scRNA-seq data demonstrating the functionality and effectiveness of the tool.
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Figure 2: The interface of some pre-analysis modules in sc2MeNetDrug. (a) The menu bar of
sc2MeNetDrug. (b) Biomarker gene database in sc2MeNetDrug. (¢) The cell clustering section in
sc2MeNetDrug. User can easily adjust parameters used in the algorithm. (d) The gene feature exploration
section in sc2MeNetDrug used to identify biomarker genes.
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The scRNA-seq data pre-analysis module

Recently, there have been many great scRNA-seq tools publicly available** that integrate
many aspects of analyses of scRNA-seq data. For example, Seurat® in R and Scanpy?®
in Python become very popular and be used as standard tools for analyzing scRNA-seq
data. They include most of the common pipeline that is needed in the scRNA-seq data
analysis like quality control, dimension reduction, cell clustering, differential gene
expression analysis??, etc. However, one drawback of such tools is that they always
require advanced knowledge in programming, which is not the case for many biomedical
experts. Regarding this, sc2MeNetDrug implements*® 2’the scRNA-seq pre-analysis
module, which is a pipeline that includes quality control, normalization, imputation
28dimension reduction, clustering, gene feature visualization®*, ??and cell type annotation’.
The pre-analysis module is powered by Seurat and further adds many useful functions for
easy processing of the scRNA-seq data. Most importantly, all methods are encapsulated
into modules with user-friendly interfaces (Fig 2a, 2c, 2d), which make it easy for
researchers to use even without programming skills.

In sc2MeNetDrug, both mice and human scRNA-seq data can be analyzed (mice gene
symbols will be converted to corresponding human gene symbols). The quality control and
data normalization will be computed automatically after the user uploads raw data. For
pre-analysis, users can then do the dimension reduction and clustering analysis in order
to perform cell annotation. Important parameters for each analysis can be adjusted directly
in the app (Fig 2c). A large set of biomarker genes were collected!?3'33 to support
different research projects, like cancer cells, immune cells, AD neuron cells (see Fig 2b).
We will keep updating the marker gene sets. Moreover, we provided a function to enable
users to upload new or user-defined marker gene sets. Once the users have decided on

the final cell type candidates and their corresponding biomarker genes, the annotation
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classifiers based on these selected cell types and corresponding marker gene sets will be
built automatically for the cell type annotation analysis. Also, the distribution (percentage)

of individual cell types in each sample will be displayed, and the Epithelial-mesenchymal
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Figure 3: Analysis result of PDAC cancer using sc2MeNetDrug. (a) Cell annotation results.
Sc2MeNetDrug clearly identify the cell type of each cluster. The cluster with negative enrichment score on
all cell types is labeled with unknown to avoid noise. (b) Cell distribution in each group, which will be
automatically plot after cell annotation. Tumor groups (T1-T24) have high population of Ductal 2 cell.
Instead, normal groups only have Ductal1 cell. (¢) EMT-PRO score of Fibroblast cells in one tumor patient.
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transition (EMT) and PRO (proliferation) scores of each sample can be calculated. Using
the sc2MeNetDrug, we process and analyze the PDAC cohort from scratch. We can see
sc2MeNetDrug successfully annotates each cell type in the dataset (Fig 3a). From the cell
population result, we can verify the correctness of the annotation result, as Ductal 2 cells
only exist in tumor groups (patients T1-T24) (Fig 3b). Ductal 2 cells are a well-known cell
type related to tumor growth*®. We also plot the EMT-PRO score for one tumor patient.
We can see this patient has a high EMT score, which may indicate the high activity level

of the metastatic expansion and the generation of tumor cells (Fig 3b).

Identifying key biomarkers in Alzheimer’s disease using the iCSC module
Uncovering the dysfunctional signaling pathways within individual cell types, and cell-cell
signaling communications, as novel therapeutic targets, are the highly needed functions.
The SC2MeNetDrug provided functions to facilitate the pathway and network analysis.
Specifically, after the cell type annotation, the differentially expressed genes in each cell
type between two different experimental conditions, for example, the immunotherapy
responder vs. non-responder, male vs. female, or tumor cells co-cultured with
macrophage vs. no macrophages, can be calculated. A function was developed to enable
the selection of samples and conditions of interest for the differential gene expression
analysis. Based on the differentially expressed genes within individual cell types, gene
ontology (GO) enrichment analysis can be identified. Further ligand-receptor interaction,
activated signaling pathway, and cell-cell communication among two cell types can be
computed accordingly.

To illustrate the functionality of sc2MeNetDrug for pathway and network analysis, we apply
the sc2MeNetDrug on two AD cohorts, one from mice'* and another from human'2. The
mice cohort collected single-cell data from normal mice (TE3, TE4), mice with tau

pathology and APOE3/APOE4 marker genes (TAFE3_oil and TAFE4_oil respectively),
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and mice with APOE3/APOE4 knock-out (TAFE3_tam and TAFE4_tam respectively). The
human cohort was collected from 48 patients with 24 patients, 15 patients, and 9 patients
classified as having No AD pathology, AD early-stage, and AD late-stage respectively. For
the mice cohort, we apply the sc2ZMeNetDrug and use the tool to do the pre-analysis to
obtain the cell annotation results. We can see sc2MeNetDrug clearly identifies marker
genes for each cluster in the cohort (Fig 4a, 4b) and annotates each cell type in the
dataset (Fig 4c¢). For the human cohort, we directly use the cell annotation result from the
original source in order to validate the functionality of the downstream analysis part in
sc2MeNetDrug. For mice dataset, we use TE4 as the control group and TAFE4_oil as the
test group. For the human dataset, we use No AD pathology as the group of control and
late-stage as the group of test. Next, we conduct the GO enrichment analysis on both mice
and human cohorts using the sc2MeNetDrug to compare the difference of neurons
between normal and AD pathology. We further conduct the KEGG pathway enrichment
analysis company with the GO enrichment analysis to provide a complete view (Fig 4e).
From the result of the mice dataset, we have the following observations: First, the neuron
autophagy and degeneration-related processes are highly activated in neurons with AD
pathology, like Pathway of neuron degeneration — multiple disease, Apoptosis in KEGG
results and Neuron apoptotic process, Autophagy in GO results. Autophagy is a lysosome-
dependent, homeostatic process, in which organelles and proteins are degraded and
recycled into energy. Autophagy has been linked to Alzheimer’s disease pathogenesis
through its merger with the endosomal-lysosomal system, which has been shown to play
arole in the formation of the latter amyloid-B plaques®*. In the prediction of sc2MeNetDrug,
we also identified several important genes related to autophagy (Fig 4f). Some have
already been shown to be related to neuron degeneration and autophagy in AD like
FAIM2* BCL2%*, and PRNP*. One hypothesis is that irregular autophagy stimulation

results in increased amyloid-B production®. Our result also identified the highly up-
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regulated GO term Positive regulation of amyloid-beta formation, which further supports
it. Secondly, neuron inflammation is prevalent in AD pathology. Numerous studies have
shown that inflammation is highly activated and plays a key role in the progress of AD'?3%-
41 Our results further verify this claim. We can see that neuroinflammatory response,
cytokine-mediated signaling pathway are all up-regulated GO terms discovered by
sc2MeNetDrug. This result aligns with the previous studies and further confirms that the
existence of APOE4 in the astrocyte stimulates the inflammatory response. Inflammation-
related genes are also identified (Fig 4f) like TREM2, CLU, and ADCY1. We further use
sc2MeNetDrug to compute the activated KEGG signaling pathway network for excitatory
neurons using mice cohort (Fig S1). The result points out additional pathways like
Estrogen signaling pathway, HIF-1 signaling pathway, and MAPK signaling pathway that
are activated in the AD neurons. Some works have pointed out that the dysfunction of the
estrogen signaling pathway also contributes to the production of amyloid-beta and the
progress of AD*?, Particularly, gene CTSD is Highly expressed in neurons, suggesting its
center role in producing amyloid precursor (APP) and tau. MAPK signaling pathway
regulates a variety of cellular activities including proliferation, differentiation, survival, and
death. Some studies report that Amyloid-beta-induced activation of p38 MAPK and NFkB
signaling can result in upregulation of proinflammatory gene transcription and cause

neuronal death®.

To further investigate the signaling pathway and disease mechanism of AD, we apply
sc2MeNetDrug on two cohorts to analyze both the ligand-receptor interaction and inter-
cell communication patterns. First, we use sc2ZMeNetDrug to compute the up-regulated
ligands and receptors for both mice and human cohorts (Fig 5a). For excitatory neurons,
PCSK1N, ALDOA, CLU, PRNP, and LINGO1 are highly up-regulated in both mice and

human cohorts. For astrocytes, PTGDS and CLU are activated in mice and humans
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commonly. For microglia, we found that APOE is highly up-regulated in both mice and
human cohorts, even though the APOE is normally expressed in astrocytes. This may
indicate the APOE in the microglia may also be a critical factor for the development of AD
pathology. Besides that, RPS19, SPP1 are also highly expressed in AD pathology. The
differential gene analysis result further confirms the discovery from sc2MeNetDrug (Fig

5¢, 5d).

Finally, we use sc2MeNetDrug to discover the up-regulated-ligand to up-regulated-
receptor interaction and cell-cell communication networks among excitatory neurons,
astrocytes, and microglia (Fig 5b, Fig 6a). The results strengthen the understanding of
AD development and neuron change. First, COL1A1, COL6A1, COL16A1 are differentially
expressed in astrocytes of AD pathology. It all connect to the common receptor ITGAV in
neuron cell and further connect to genes like PIK3CA, ACTG1, and ACTB. The collagen
gene family serves to mediate cell attachment and maintains the integrity of the
extracellular matrix (ECM). It has been reported that there are significant changes in ECM
during the early stages of Alzheimer’s disease** and also associated with amyloid plaque
production*®®. ACTG1 and ACTB are actin proteins, which are highly related to actin
cytoskeleton and spine shaping in the brain. The abnormal expression of actin-related
genes can cause synaptic plasticity and failure, which are one of the major remarkers of
AD. Our finding may suggest that the activity of collagen genes in astrocytes may trigger
the abnormal activity of actin-related genes and thus contribute to the development of AD
pathology. Further, our identified cell-cell communication network contains many genes in
the activated pathways, like Apoptosis, HIF-1 signaling pathway, Necroptosis, and

neuroinflammatory response. The results further highlight the significance of these
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Figure 4: Cell annotation and pathway analysis result of AD (mice) dataset using sc2MeNetDrug.
(a-b) The expressive pattern of selected maker genes. These genes are highly expressed in some
cluster and can be used as biomarker genes for cell annotation. (¢) The cell annotation result output from
sc2MeNetDrug. (d) The cell distribution for each group. (e) The KEGG and GO enrichment analysis
results for AD pathology. The color indicate the p-value of pathways and count (KEGG pathway) indicate
the number of genes that are activated in the pathway. The log fold-change threshold is set as 0.08 and
p-value threshold is set as 0.05. (f) Expressed genes correlated to GO terms GO:0150076
neuroinflammatory response and GO:0051402 neuron apoptotic process for AD pathology output by
sc2MeNetDrug. The log-fold change threshold is set as 0.08.



https://doi.org/10.1101/2021.11.15.468755
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.15.468755; this version posted October 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

pathways and processes in the progress of AD pathology. Meanwhile, these findings are
consistent with results from the pathway enrichment analysis, further validating our iCSC

module.

Predict drugs inhibiting signaling communications using the dCSC model

To identify drugs that can potentially inhibit the down-stream signaling pathways, the
computational model, the dCSC model was developed, which is designed to integrate the
down-stream signaling network, drug-target interaction (derived from DrugBank*®
database), and reverse gene signature data available from the connectivity map (CMAP)
database®’. It is relatively straightforward to identify drugs with targets on the downstream
signaling network based on the drug-target information. For the CMAP data®®, the
uncovered cell-cell communication signaling network will be used as a signature of the
Gene set enrichment analysis (GSEA) to identify drugs that can potentially inhibit the
expression of genes in the network. To further understand the relationship of the selected
drugs, drug clustering based on chemical structures was conducted to identify
therapeutics with similar targets or mechanisms of action. To demonstrate the functionality
and effectiveness of the dCSC module in sc2MeNetDrug, we perform the analysis using
the AD mice dataset. Specifically, we compute the signature drug discovering analysis
using connectivity map data upon the cell-cell communication network from astrocytes to
neurons. The discovered top 30 drugs can be found in Fig 6b. The drug clustering result

for all top drugs can be found in Fig 6c.

Among all the top drugs, Nifedipine achieved the best enrichment score. Nifedipine is a
dihydropyridine calcium channel blocker indicated for the management of several

subtypes of angina pectoris, and hypertension. Nifedipine is primarily used for reducing
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Figure 5: Ligand-receptor analysis results on AD cohorts. (a) Up-regulated ligands and receptors
discovered by sc2MeNetDrug on two AD cohorts. Only genes that appear in the results on both mice
and human cohorts are selected. The log-fold-change threshold is set as 0.08 and p value threshold is
set as 0.05. The size of the dot indicates the fold log-fold-change level in the human cohort and the
color indicate the level in the mice cohort. (b) ligand-receptor interaction discovered by sc2MeNetDrug
on mice cohort. Only ligands and receptors with log-fold-change great than 0.08 were selected. (c-d)
Differentially expressed aenes results usina Seurat.

blood pressure and increasing oxygen supply to the heart. However, results have shown

that calcium channel blockers like Nifedipine or Nimodipine (also shown in the top drugs)
led to a significant decrease in the level of amyloid beta peptide, with no significant

decrease in cell viability*.
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The second drug Hydralazine, which is a smooth muscle relaxant, also shows potential
for being an effective drug for reducing lipid oxidative damage and amyloid beta folding®.
Interestingly, another drug PD-0325901 from the same cluster, has been shown to be
effective in inhibiting MAPK/ERK kinase which prevents activation of the mitogen-
activated protein kinase (MAPK)®'. As we discussed above, MAPK signaling pathway is
dysfunctional in AD pathology. The inhibition of MAPK pathway can provide neuronal
protection from the amyloid beta burden by increasing autophagic lysosomal activity,
suggesting a synergic effect along with Hydralazine that is worth for further investigation.
Another type of drug mainly targets neuronal inflammation or neuronal disorders like
carbidopa, Diclofenac, and paroxetine. Relevant research already pointed out its potential
functionality in reducing inflammation and pathology of AD®*-*. Together, our results
provide several drugs that could be effective in reducing the pathology of AD from different

levels. It further valid the performance of sc2MeNetDrug.

Discussion

Single cell RNA sequencing (scRNA-seq) is a powerful technology to investigate the
transcriptional programs in stromal, immune, and tumor cells or neuron cells within tumor
or brain microenvironment (ME) or niche. Cell-cell interactions and communications within
ME play important roles in disease progression and immunotherapy response and are
novel and critical therapeutic targets. However, it is challenging, for many researchers
without solid training in computational data analysis and scRNA-seq data analysis,
because the data analysis pipelines usually consist of diverse and complex analysis
modules, and the integrative analysis of diverse and heterogenous external data

resources. There is a lack of easy-use tools with complete and integrative computational
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Figure 6: Cell-cell communication result from astrocytes to excitatory neurons and
corresponding drug discovering result (mice cohort) using sc2MeNetDrug. (a) Cell-cell
communication result with several important pathways appended. The KEGG database was used and
the log-fold-change and p-value threshold are set as 0.08 and 0.05 respectively. (b) Signature drug
discovering result. Only top 30 drugs are displayed. The higher the negative enrichment score, the
higher chance the drug can be used to inhibit the corresponding dysfunctional network. (¢) Drug
clustering result based on SMILE finger print to identify structure similar drug clusters among all top

drugs.




modules for uncovering cell-cell communications of ME and predict the potentially
effective drugs to inhibit the communications, although many tools of scRNA-seq analysis
have been developed to investigate the heterogeneity and sub-populations of cells. In this
study, we developed a novel, open-source computational tool, SC2MeNetDrug

(https://fuhaililab.github.io/sc2MeNetDrug/) to address these challenges. Specifically, the

advantages of the tool are as follows. First, it is a tool specifically designed for scRNA-seq
data analysis to identify cell types within MEs, uncover the dysfunctional signaling
pathways within individual cell types, inter-cell signaling communications, and predict
effective drugs that can potentially disrupt cell-cell signaling communications. Second, the
analysis modules in the analysis pipelines were separated with pre-designed interfaces.
Users can develop and update novel data analysis modules, and easily replace the
updated modules back to the data analysis pipeline. In another word, users or scientists
with different expertise can conveniently replace user-specific data analysis modules just
by following the input and output of individual modules, like network inference, cell type
identification, cell clustering, drug prediction, in the data analysis pipeline. Third, it
provides a user-friendly graphical user interface (GUI), encapsulating the data analysis
modules, which requires no coding and programming and can facilitate the scRNA-seq

data analysis in an interactive manner.

Conclusion
In this study, we developed a novel open-source tool, SC2MeNetDrug

(https://fuhaililab.github.io/sc2MeNetDrug/), which is specifically designed, with user-

friendly GUI for interactive scRNA-seq data analysis for the purpose of uncovering cell-
cell communications of ME, and predicting the potentially effective drugs to perturb the

cell-cell communications within disease ME.



Methodology

Data sets of case studies

The data of PDAC was downloaded from Genome Sequence Archive under project
PRJCA001063'°. There are a total of 57530 cell samples and 24003 genes. The data was
generated from 24 PDAC tumor samples and 11 control, untreated pancreas samples.
The data of Alzheimer’s disease of human'? was downloaded from Synapse website. The
DOl for the dataset is 10.7303/syn18485175. The data was generated from 48 patients,
with 24 individuals presenting no or very low AD pathologies and the rest of 24 individuals
exhibiting clear AD pathologies. There are a total of 75060 cell samples and 17926 genes.
The data on Alzheimer's disease in mice'* was obtained from the Gene Expression
Omnibus (GEO) database with accession number GSE164507. There are a total of 96252

cell samples and 33457 genes.

Quality control

Quality control is done in several steps. Initially, cells with a detected gene count of less
than 200 or more than 7500 are removed. Subsequently, cells with abnormal
mitochondrial gene expression (cells with > 10% mitochondrial counts) are also eliminated.
Finally, if the dataset is from mice, we collect a database for converting all mic gene
symbols in the dataset to the human gene symbol. All genes that don’t exist in the

database will be removed.

Normalization
The normalization and variance stabilization of scRNA-seq data in sc2MeNetDrug is done
by the regularized negative binomial regression®®. With this method, there is no need for

heuristic steps including pseudocount addition or log-transformation and improves



common downstream tasks. The method is implemented using SCTiransform function

with method=gimGamPoi in Seurat package®®.

56

Imputation
Imputation is done by the runALRA function in the Seurat package with default parameters.
The method?® is to compute the K-rank approximation to A_norm and adjust it according

to the error distribution learned from the negative values.

Dimension reduction

Dimension reduction analysis in sc2MeNetDrug involves several steps. First, select the
top 3000 variable genes across the dataset. To identify these genes, local polynomial
regression fits the relationship between log variance and log mean. Subsequently, gene
expression values are standardized using the observed mean and the expected variance
(determined by the fitted line). The variance of gene expression is calculated on the
standardized values after clipping. This procedure is automatically executed by the
SCTransform function in Seurat package. Next, Principal Components Analysis (PCA) is
applied to these 3000 variable genes. These genes are then projected into 50 dimensions
in order served as 50 different principal components (PCs). This is implemented using the
RunPCA function in Seurat package. Finally, the UMAP method will be used on the first x
PCs selected by the user (range from 10 to 50). This is implemented using the RunUMAP

function in Seurat package.”’

Cell clustering
For clustering analysis of scRNA-seq data, the application follows these steps. First, it

computes a low-dimensional representation for each cell using PCA. This is done during



the dimension reduction analysis. Next, to identify the neighbors of each cell, the clustering
analysis applies the K-Nearest-Neighbor (KNN) algorithm to the results of the PCA
analysis. Users can choose the number of principal components to use (range from 10 to
50) when performing the KNN algorithm. This step is implemented using FindNeighbors
function in Seurat package. Finally, the clustering analysis applies the Louvain algorithm
to the results of the KNN algorithm to compute the final clustering results for each cell.
Users can also choose the resolution of the clustering, with options ranging from 0.1 to 2.
A lower resolution result in fewer clusters in the final results, while a higher resolution
produces more clusters. This step is implemented using FindClusters function in Seurat

package.

Gene Feature Exploration

In gene feature exploration section, user can select any gene exists in the dataset, then
sc2MeNetDrug will generate two plots for each gene. The first plot is the expression
distribution violin plot, which plot the expression distribution of the selected gene in each
cluster. The second plot is the scatter plot to indicate the expression of the gene in each
cell. A deeper color means a higher expression. These two types of plots are drawn using

VinPlot and FeaturePlot function in Seurat package.

Biomarker gene sets

In total, we collected 56 cell type and biomarker genes from several sources'>333, The
biomarker gene database is displayed in a table with a cell marker gene manner, where
each row in the table has two columns with the first column indicating the name of cell
type and the second column indicate the corresponding gene symbol. If there is more than

one biomarker genes for one cell type, each gene will be displayed in one row (the cell



type name will be copied for each row, see Fig 7a). We also specified classical cell type

sets for Alzheimer’s disease and Pancreatic Cancer based on published articles!>33. The

a b
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Figure 7: Panel shortcut for modifying biomarker gene database in sc2MeNetDrug. (a) Biomarker
gene table display all existing cell-marker gene pairs. (b) The panel used to delete an existing cell-

marker gene pair (“Delete selected gene” button), reset the biomarker gene database (“Original marker
gene table” button), and save the modified marker gene database for future use (“Save current marker
gene table” button). (c) Panel used to add new cell-marker gene pair into current biomarker gene table.

user could easily select these cell types by clicking the corresponding button. We also
provide the user with the ability to modify and add their own marker genes for better
analysis; the user can add, delete and modify existing marker gene tables. To delete an
existing cell-marker gene pair, user can do it by first clicking the corresponding row in the
marker gene table. Then, click the “Delete selected gene” button to delete this row (see
Fig 7b). To add a new cell-marker gene pair, users can use the bottom right panel in the
biomarker gene section (Fig 7¢c). Begin by entering the cell type name in the first input
box. Next, select the marker genes you wish to add in the second input box. Users can
choose multiple genes simultaneously. Lastly, click “add new gene” to incorporate them
into the marker gene database. Finally, to modify an existing cell-marker gene pair, users

can directly double-click the table cell in the marker gene table to modify it.

Cell type annotation



The cell annotation is done in two steps. In the first step, the Gene Set Enrichment
Analysis (GSEA)* is applied to annotate cell types for every cluster. First, users should
select candidate cell types and corresponding marker genes in the Biomarker gene
section. Then, for every cluster, the application computes log fold change for cluster N by:
log fold change for cluster N
= mean expression for cluster N — mean expression for other cells
Then we rank the genes based on fold change and calculate the enrichment score of
marker gene sets for every cell type the user selected. Finally, the cell type with the largest
enrichment score will be selected as the type of this group. However, if none of the cell
types have a positive enrichment score, the cluster will be annotated as unknown. In the
second step, sc2MeNetDrug introduces a manual label correction panel such that the user

can manually modify the cell annotation result obtained from the first step.

Cell distribution plots

Once users obtain classification results or upload gene expression data, the application
can calculate the percentage of each cell type in each sample group. If users don’t provide
sample group information, the application will simply calculate the percentage of each cell

type in the whole dataset.

Epithelial-mesenchymal transition (EMT) and proliferation (PRO) analysis

EMT-PRO analysis in SC2NetDrug was analyzed by computing mean expressions for the
selected design and cell type of EMT and PRO-related genes. The
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION database was chosen for
EMT-related marker genes and the HALLMARK _E2F TARGETS database was chosen

for PRO-related marker genes. After users select the design and cell type, min-max



normalization is used to normalize the whole dataset based on the genes. Then the
intersecting genes in the EMT and PRO-related marker gene sets are selected and a
mean score of all EMT and PRO-related genes are calculated and labeled as the EMT

and PRO scores, respectively.

Ligands and receptors data resources

We collected ligand-receptor data from several sources: (1) Database of Ligand-Receptor
Partners (DLRP)®® with 175 unique ligands, 133 unique receptors, and 470 unique
interactions (2) Ligand-receptor interaction data sources in NicheNet?* with 1737 unique
ligands, 1925 unique receptors and 12659 unique interactions (3) cell-cell interactions
database in baderLab. We selected all the proteins to be annotated as ligands named
“Ligand” or “ECM/Ligand” and all the proteins to be annotated as receptors named
“Receptor” or “ECM/Receptor”. Then we selected all the interactions including the chosen
ligands and receptors. There are 1104 unique ligands, 924 unique receptors, and 16833
unique interactions. In total, there are 1424 unique ligands, 1214 unique receptors, and

27291 unique interactions.

Ligand-receptor mediated signaling interactions (Upstream Network).

Upstream network analysis is used to discover up-regulated ligands, receptors, and
potential ligand-receptor signaling interactions. First, users need to specify the log fold
change threshold, p value threshold, and the group or design the user wants to analyze.
The up-regulated ligands and receptors are discovered using the following steps. First,
the differential expression genes are calculated based on two tests, the first being the
Wilcoxon rank sum test and the second being the Likelihood-ratio test®'. The genes that

have log fold changes larger than the threshold and adjusted p-values (from the two tests)



less than the threshold will be selected as differentially expressed genes. The test is done
by the FindMarkers function in the Seurat package with parameters set as test.use=wilcox
and fest.use=bimod for the two tests respectively. After the differentially expressed genes
for all cell types in the dataset designed by the user are identified, the ligands and
receptors are found by searching for all differentially expressed genes in our ligands-
receptors database. Finally, upstream interaction networks are generated by searching
for all the discovered ligand-receptor interactions in our ligands-receptors database. To
be specific, four networks will be generated: the up-regulated ligands to expressed
receptors network, expressed ligands to up-regulated receptors network, up-regulated
ligands to up-regulated receptors network, and the combined network. Up-regulated
ligands and receptors are ligands and receptors that have log fold changes and adjusted
p-values for two tests that satisfy the user’s settings. Expressed ligands and receptors are
ligands and receptors that have log fold changes larger than 0. The combined network is

then combined with the up-regulated and the expressed ligands and receptors.

Gene ontology (GO) term enrichment analysis
To obtain the gene-gene ontology (GO)® term information, the R libraries, org.Hs.eg.db

and GO.db were used. The Fisher's exact test was used to identify the statistically

activated/enriched GOs based on the up-regulated genes and the genes in each GO term.

Inter-Cell Communication (Downstream Network) Analysis

The inter-cell communication analysis in SC2NetDrug is done by several steps. First,
differential genes in each cell type are discovered using the Wilcoxon rank sum test and
the Likelihood-ratio test®?. The genes that have log fold changes larger than the threshold

and adjusted p-values (for both tests) less than the threshold will be selected as



differentially expressed genes. The tests are done by the FindMarkers function in the
Seurat package with parameters set as test.use=wilcox and test.use=bimod for the two
tests, respectively. Next, ligands, receptors and transcript factors are discovered using the
ligands-receptors interaction database and the transcript factor-target interaction
database.

To uncover the down-stream signaling of ligand-receptor of interest, a computational
model, iCSC (inter-cell signaling communication discovery using scRNA-seq), was
developed. Specifically, 2 background signaling resources were used: KEGG®* signaling
pathways (curated) and STRING® (general protein-protein interactions). For KEGG
signaling pathways, the shortest paths starting from the given receptors to all the target
genes (without out-signaling) were identified, denoted as pi; = (9i, g1, 9k, ..., g)), where g;
is the receptor, g; is the target gene, and gkm, m=1, 2, ..., are the genes on the shortest

paths between g; and g; on the KEGG signaling pathways. Then an activation score for

_ ngepij fc(gm)/

each path, p;;, was defined as: s;; = , Where fc(.) is the fold change
calculator, and n is the number of genes on the signaling path. Then signaling paths with
activation scores greater than a given threshold will be selected to generate the inter-cell
communication network of the ligand-receptor of interest.

For STRING background signaling network, there are much more genes (nodes) and
interactions (edges) than KEGG signaling. Thus, the above model for KEGG does not
work for STRING. Herein, we proposed a novel down-stream signaling network discovery
model. Specifically, let G{ = (R;, ®) denote the initialized down-stream signaling network
of receptor R;. The update of the down-stream signaling is defined as: G} ; =
f(Gg, G, Vi1, k2), where G} and Gy is the current down-stream and background (STRING)

signaling networks respectively. The edge, e;; (protein interactions between g; and g;) of



1 + 1
abs(fc(gy) abs(fc(gj)'

background signaling network, G, is weighted as: w(e;;) = Vel is a

vector including k1 candidate genes (based on the absolute fold change in the decreasing
order) to be investigated and added to the down-stream signaling network. For any gene,
gk € node(G})), the shortest paths from g, to the k1 candidate genes in Vj, will be

calculated. Then, an activation score for each path, p«;, was defined as: Skj =

ngEpij fc(gm)/

, Where fc(.) is the fold change calculator and n is the number of genes
on the signaling path. If n > k2, the signaling paths will be discarded. In another word, the
parameters k1 and k2 decide the search width and depth. Finally, the signaling path with
highest activation score will be added to the down-stream signaling network. The process
will be conducted iteratively until it reaches a network size limit, e.g., N nodes. The down-
stream signaling network is generated by combining the down-stream signaling networks

of all receptors: G; = U; G}.

Drug-target information derived from DrugBank

We collected 6650 drugs from the drug bank database and corresponding target genes.
After the down-stream signaling network is generated, the drugs for genes in the network
is discovered by looking through each gene in the network and searching for drugs that

target this gene in drug bank database.

Connectivity Map data

Drug discovery based on signaling signatures using Connectivity Map data, which seeks
to enable the discovery of functional connections between drugs, genes, and diseases
through analysis of patterns induced by common gene-expression changes. Users can

find CMAP data in National Center for Biotechnology Information database under dataset



GSE92742. Before doing the analysis, users need to download corresponding data from

the website and we provide the function to generate the drug rank matrix based on data.

Drug discovery based on signaling signatures

The procedure of drug discovering is following: After the up-regulated genes for each cell
group in the cell-cell communication part are obtained, the application will use GSEA and
the drug rank matrix to discover potential drugs for each group. First, the application will
calculate the enrichment score of up-regulated gene sets for each drug in each group.
Then, the top K drugs with the lowest enrichment scores will be selected as potential

drugs, where K is the number of top drugs selected by user.

Drug clustering based on GSEA scores in CMAP

After the top drug is identified, Affinity Propagation Clustering® will be used to cluster top
drugs. First, a similarity matrix will be constructed for the top drugs. Given that the number
of top drugs is K, the dimensions of the matrix will be K*K. The similarity score for drug i
to drug j will be computed by the following process: select the top 150 up-regulated genes
and top 150 down-regulated genes for drug i to use as the gene set. Then, compute the
GSEA score for drug j using the drug rank matrix and the gene set from drug i. The
enrichment score will be used as the similarity score for drug i to drug j. After the similarity
matrix is constructed, it will be used to do AP clustering, which is done using the R package

apcluster.

Drug clustering based on chemical structures
To clustering drugs discovered by targets, we use the chemical structure of each drugs®’.

First, the SMILES information of drugs is used to generate drug object for each drug, this



is done by parse.smiles function in rcdk R package. Next, the fingerprint of drug is
computed using get.fingerprint function in fingerprint R package. Based on fingerprint of
drugs, the similarity between drugs is computed using Tanimoto index. The formulation of

Tanimoto index is follow:

C

Sap = a+b—c
Where S, 5 is the similarity between drug A and drug B. a is number of bits in drug A and

b is number of bits in drug B. ¢ is number of bits in both two drugs. This is done by

fp.sim.matrix function in R package fingerprint and set parameter method as tanimoto.
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Supplementary figure 1: Activated KEGG pathway network of AD pathology for excitatory neurons
identified by sc2MeNetDrug (mice cohort).




