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TrackMate is an automated tracking software used to analyze
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and usability, and integrating several popular machine and deep
learning algorithms to improve versatility. We illustrate how
these new components can be used to efficiently track objects
from brightfield and fluorescence microscopy images across a
wide range of bio-imaging experiments.
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Object tracking is an essential image analysis technique used
across biosciences to quantify dynamic processes. In life
sciences, tracking is used for instance to track single parti-
cles, sub-cellular organelles, bacteria, cells, and whole ani-
mals. Due to the diversity of images to analyze, no single
software can address every Life-Sciences research tracking
challenges. This prompted for flexible and extensible soft-
ware tracking platforms [1-5] that enable biologists to build
automated tracking pipelines tailored for a specific problem.

Most tracking algorithms proceed in two steps. First, a
detection algorithm detects or segments individual objects at
each time point. Second, a linking algorithm links the detec-
tions across time points and builds tracks that follow each ob-
ject over time. Importantly, accurately detecting or segment-
ing objects is crucial to yield accurate tracking results [6].
However, the low signal-to-noise ratio (SNR) typical of live-
cell fluorescence microscopy often makes it challenging to
accurately track all objects. Overlooked objects then result in
the linking part generating short tracks that end prematurely,
creating multiple short tracks for these objects. Also, objects
at high density can be challenging to individualize as they
often overlap or come in contact. Most detection algorithms
will treat them as a single detection, resulting in breaks in
tracks or in single tracks linking groups of objects.

Several linking algorithms can partly rescue these issues,
but overall all tracking algorithms tested in [6] displayed a
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Fig. 1. New TrackMate capabilities. TrackMate can now create, use, analyze and
store object contours segmented from 2D images. These contours enable Track-
Mate to extract morphological features of the tracked objects over time. We also
wrote a new application programming interface (API) to facilitate integrating exter-
nal components to TrackMate. We use this API to incorporate popular segmentation
tools available in Java, including ilastik, the Weka Trainable-Segmentation Fiji plu-
gin, StarDist, and the morphological segmentation tool MorphoLibJ. TrackMate can
now also track previously segmented objects by directly importing mask or label
images generated, for instance, using cellpose.

decreasing performance with increasing object density and
decreasing SNR. Machine-learning (ML) and deep learning
(DL) approaches can address these challenges. Indeed ML
and DL approaches have been shown to excel at image seg-
mentation tasks in low SNR and high-density images [7]. In
fact, several groups already used DL to perform successfully
complex tracking problems [7-11]. However, many of these
approaches remain specific to a problem or challenging to
employ as they often require dedicated coding skills and spe-
cialized hardware.

We previously developed TrackMate [4], a user-friendly
Fiji [12] plugin for tracking objects in fluorescence mi-
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Fig. 2. TrackMate can be used to track objects from a wide variety of bio-imaging experiments. a. Migration of MCF10DCIS.com cells, labeled with SiR-DNA, recorded
using a spinning disk confocal microscope and automatically tracked using a custom StarDist model loaded in TrackMate (see also Movie 1). Detected cells and their local
tracks (colors indicate track ID) are displayed. Scale bar = 250 um. b. The migration of activated T cells plated on ICAM-1 was recorded using a brightfield microscope
and automatically tracked using a custom StarDist model loaded in TrackMate (see also Movie 2). Detected cells (colors indicate the mean track speed; blue slow-moving
cells, red fast-moving cells) and their local tracks (colors indicate track ID) are displayed. Scale bar = 250 pm. c¢. MDA-MB-231 cells stably expressing an ERK activity
reporter (ERKKTRClover) and labeled using SiR-DNA were recorded live using a wide-field fluorescent microscope over 17 hours. Cell nuclei were automatically tracked
over time using a StarDist model available in TrackMate (see Movie 3). For each tracked cell, the average intensity of the ERK reporter was measured in their nucleus over
time (directly in TrackMate). Changes in ERK activity and in instant velocity are displayed as heatmaps (blue low, yellow high). d. The growth of Neisseria meningitidis
expressing PilQ-mCherry was recorded using a spinning-disk confocal microscope. An ilastik pixel classifier trained to segment individual bacteria was loaded into TrackMate
to follow bacteria growth. Representative field of views and the linage tree of the bacteria highlighted in green are displayed (see Movie 5). Changes in area and circularity
of a bacterium over the tracking period are also highlighted (green track). Cell division events translate in sharp decreases in area, followed by a quasi-linear increase. The
circularity roughly plateaus during cell growth then decreases before cell division. Scale bar = 25 pm. e. Mouse hematopoietic stem cells migrating in a hydrogel microwell
were automatically segmented using cellpose implemented in the ZeroCostDL4Mic platform. The resulting label images were automatically tracked using TrackMate (see
Supplementary Figure 1 and Movie 6). Example raw and label images, as well as cell tracks, are displayed. f. MCF10DCIS.com 3D spheroids were stained for Dapi and
imaged using a spinning disk confocal microscope. Across the Z volume, nuclei were detected at each Z plane using StarDist and tracked (everything done in TrackMate).
Tracked nuclei were then exported as a label image to create 3D labels (see Movie 8).
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croscopy images. TrackMate offers automated and semi-
automated tracking algorithms, together with advanced vi-
sualization and analysis tools. TrackMate is interactive and
enables users to filter and curate tracking results based on de-
fined parameters, and as such, it can accommodate a wide
range of tracking challenges. TrackMate has a strong focus
on interoperability and can be scripted (Jython in Fiji, MAT-
LAB via MIJ [13]), exchange data with other tracking soft-
ware (Icy [14], MTrack]J [15]) or analysis packages (MAT-
LAB, R, Python). TrackMate is also a software platform that
can easily be extended by adding new tracking algorithms,
analysis, and visualization features. Thanks to these features,
TrackMate has built a large user and developer base [16—18].

Until now, TrackMate detectors were solely based on the
Laplacian of Gaussian (LoG) filter. The LoG filter is effi-
cient against sub-resolved particles [19] or other blob-like
objects but performs poorly for textured objects, for objects
with complex shapes, and other imaging modalities than flu-
orescence. These detectors are also limited to measuring the
object’s position and not their shape.

Here we introduce a new version of TrackMate rewrit-
ten to improve performance, usability, and versatility. In
particular, we developed a new API that allowed integrat-
ing the main segmentation tools based on ML and DL algo-
rithms available in Java (Figure 1). For instance, ilastik [20],
Weka [21] and StarDist [22] are now integrated into Track-
Mate as object detectors allowing the user to seamlessly
use these methods from the same interface. We also inte-
grated the morphological segmentation algorithm of Mor-
phoLib]J [23]. For algorithms not implemented in Java,
TrackMate can incorporate their segmentation results by di-
rectly loading label images, probability maps, or binary mask
images. Importantly, the integrated segmentation algorithms
can provide the shape of the object in addition to its position
in every single frame. We therefore rewrote the TrackMate
data model to store, display and analyze the object contours
in 2D. TrackMate can now measure morphological features
on the tracked objects. This allows for instance to correlate
motility with object shape changes and fluorescent intensity
over time.

We found that the new detectors offer better tracking ac-
curacy than the LoG detector when the shape of the objects
to track is more complex than a round spot (Supplemen-
tary Note 1, Supplementary Figure 1-3). Significantly the
newly included detectors considerably increase the breadth
of TrackMate applications and capabilities (Figure 2, Movie
1-10, Supplementary Figure 4-7, Supplementary manual, and
tutorials).

For instance, the StarDist integration offers efficient and
versatile nuclei detection in fluorescence images via the built-
in model (from image set BBBCO038v1 in [24]). Our integra-
tion also provides an interface to use custom models trained
e.g. with the ZeroCostDL4AMic platform [25]. To illustrate
this, we used custom StarDist models to track fluorescently
labelled nuclei of collectively migrating breast cancer cells or
track rapidly migrating T cells from brightfield images (Fig-
ure 2a-b and Movie 1-2). Before this integration, fully auto-
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mated tracking of label-free cells was difficult in TrackMate.

Thanks to TrackMate supporting multi-dimensional im-
ages, users can now track objects using one channel and mea-
sure changes of intensities within the track objects in separate
channels over the tracking period. As an example, we tracked
the nuclei of breast cancer cells expressing an ERK activ-
ity reporter and followed changes in ERK activity in single
cells as they migrate (Figure 2c, Supplementary Figure 4 and
Movie 3).

Users can also train a custom ML classifier using the
Fiji Weka Trainable-Segmentation plugin or ilastik and use
them subsequently in TrackMate. For instance, we used
Weka combined with TrackMate to track focal adhesions
in endothelial cells (Supplementary Figure 5 and Movie 4).
We also used an ilastik pixel classifier to follow Neisse-
ria meningitidis growth and correlate lineage information to
single bacteria morphological measurements (Figure 2d and
Movie 5). This new version of TrackMate makes it possi-
ble to track objects segmented by an extensive range of seg-
mentation algorithms. Indeed TrackMate can now import bi-
nary mask images, segmentation probability maps, or label
images directly, then track the imported objects. As exam-
ples, we tracked migrating cancer cells (fluorescent images),
and hematopoietic stem cells ([26], brightfield images, Fig-
ure 2e, Supplementary Figure 6 and Movie 6-7) previously
segmented using cellpose [27].

The new detectors work for 2D and 3D images when pos-
sible, but the display and analysis of object contours are cur-
rently limited to 2D images. However we can exploit Track-
Mate to segment 3D objects, using a slice-by-slice approach.
Instead of tracking objects over time, we tracked them across
subsequent axial planes and linked them to recover 3D ob-
jects (Figure 2f, Supplementary Figure 7 and Movie 8-10).
With this approach, TrackMate can accelerate the segmenta-
tion of challenging 3D datasets by using a custom DL model
trained on 2D images, for instance, using interactive annota-
tion tools such as Kaibu [28].

We provide a detailed manual and step-by-step tutorials
to facilitate the use of the new TrackMate detectors (Supple-
mentary manual and Supplementary Figure 8). We also pro-
vide documentation aimed for developers to integrate their
own DL and ML algorithms in TrackMate. Altogether,
TrackMate now enables powerful segmentation approaches
for tracking purposes directly in Fiji within a user interface
already familiar to many. We envision that by making com-
plex tracking problems more easily solvable by scientists,
this new version of TrackMate will accelerate discoveries
made in Life-Sciences.

Online methods and data availability statement. The ver-
sion of TrackMate described here is available in the Fiji [12]
software by simply updating it.  TrackMate is documented
on the Image] wiki: https://imagej.net/plugins/
trackmate/ and the documentation for the new features
can be accessed from https://imagej.net/plugins/
trackmate/trackmate-v7—-detectors. We also provide
11 test datasets that are made available via a dedicated Zenodo col-
lection [29].
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