

1 **Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant**

2 Yang Liu^{1,2,*}, Jianying Liu^{2,3,4,*}, Bryan A. Johnson⁴, Hongjie Xia¹, Zhiqiang Ku⁵, Craig
3 Schindewolf^{2,3,4}, Steven G. Widen¹, Zhiqiang An⁵, Scott C. Weaver^{2,3,4}, Vineet D. Menachery^{2,3,4},
4 Xuping Xie^{1#}, and Pei-Yong Shi^{1,2,3,#}

5
6 ¹Department of Biochemistry and Molecular Biology, University of Texas Medical Branch,
7 Galveston TX, USA

8 ²Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston
9 TX, USA

10 ³World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical
11 Branch, Galveston TX, USA

12 ⁴Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
13 TX, USA

14 ⁵Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University
15 of Texas Health Science Center at Houston, Houston, TX 77030, USA

16
17 *YL and JL made equal contributions to the study

18
19 #Correspondence: X.X. (xuxie@UTMB.edu) or P.-Y.S. (peshi@UTMB.edu)

20
21 **Abstract**

22 SARS-CoV-2 Delta variant has rapidly replaced the Alpha variant around the world. The
23 mechanism that drives this global replacement has not been defined. Here we report that Delta
24 spike mutation P681R plays a key role in the Alpha-to-Delta variant replacement. In a replication
25 competition assay, Delta SARS-CoV-2 efficiently outcompeted the Alpha variant in human lung
26 epithelial cells and primary human airway tissues. Delta SARS-CoV-2 bearing the Alpha-spike
27 glycoprotein replicated less efficiently than the wild-type Delta variant, suggesting the
28 importance of Delta spike in enhancing viral replication. The Delta spike has accumulated
29 mutation P681R located at a furin cleavage site that separates the spike 1 (S1) and S2
30 subunits. Reverting the P681R mutation to wild-type P681 significantly reduced the replication

31 of Delta variant, to a level lower than the Alpha variant. Mechanistically, the Delta P681R
32 mutation enhanced the cleavage of the full-length spike to S1 and S2, leading to increased
33 infection via cell surface entry. In contrast, the Alpha spike also has a mutation at the same
34 amino acid (P681H), but the spike cleavage from purified Alpha virions was reduced compared
35 to the Delta spike. Collectively, our results indicate P681R as a key mutation in enhancing Delta
36 variant replication via increased S1/S2 cleavage. Spike mutations that potentially affect furin
37 cleavage efficiency must be closely monitored for future variant surveillance.

38

39 **Introduction**

40 The continuous emergence of new variants of severe acute respiratory syndrome
41 coronavirus 2 (SARS-CoV-2) poses the greatest threat to pandemic control, vaccine
42 effectiveness, therapeutic efficacy, and surveillance. Since its emergence in late 2019,
43 mutations have unceasingly emerged in the circulating viruses, leading to variants with
44 enhanced transmissibility, evasion of therapeutic antibodies, and breakthrough infections in
45 vaccinated individuals.¹⁻⁶ Since the viral spike glycoprotein is responsible for binding to the
46 human cellular receptor angiotensin-converting enzyme (ACE2), many mutations have
47 accumulated in the spike gene with the potential to alter viral fitness or to escape immunity. The
48 variants have emerged from different geographic regions and, depending on their biological
49 properties, spread to other regions. The World Health Organization (WHO) has classified
50 variants as “variants of concern” (*i.e.*, Alpha, Beta, Gamma, and Delta) and “variants of interest”
51 (*i.e.*, Eta, Iota, Kappa, and Lambda).⁷ The Alpha variant was first identified in the United
52 Kingdom in September 2020 and subsequently became dominant in many parts of the world.
53 Afterwards, the Delta variant emerged in India in October 2020 and has now spread to over 119
54 countries, displacing the Alpha variant globally.^{7,8} From May 2 to July 31 of 2021, the
55 prevalence of the Delta variant in the USA had increased from 1.3% to 94.4%, whereas the

56 prevalence of the Alpha variant had decreased from 70% to 2.4%. More seriously, the Delta
57 variant has been associated with increased transmissibility, disease severity, and breakthrough
58 infections in vaccinated individuals.^{5,9-11} The mutation(s) that have driven the explosive spread
59 of the Delta variant and its displacement of the Alpha variant remain to be defined. In this study,
60 we used a reverse genetic approach to identify the molecular determinant(s) for the enhanced
61 fitness of Delta variant and its dominance over the Alpha variant.

62

63 **Results**

64 We constructed infectious cDNA clones for the Alpha (GISAIS ID: EPI_ISL_999340) and
65 Delta (GISAIS ID: EPI_ISL_2100646) SARS-CoV-2 variants using a previously established
66 protocol (**Extended data Fig. 1**).^{12,13} The infectious cDNA clones enabled us to prepare
67 recombinant Alpha and Delta SARS-CoV-2 variants (**Fig. 1a**). Both Alpha and Delta variants
68 rescued from these clones developed smaller plaques on Vero E6 cells than the earlier
69 USA/WA1-2020 (wild-type) strain isolated in January 2020 (**Extended data Fig. 2**). Sequencing
70 analysis showed no undesired mutations in the rescued recombinant virus stocks. To compare
71 the viral replication fitness between the Alpha and Delta variants, we performed a competition
72 assay by infecting cells with a mixture of the two viruses at a plaque-forming unit (PFU) ratio of
73 1:1, followed by quantifying the ratios of the two viral RNA species at different days post
74 infection. Compared with analyzing individual viruses separately, the competition assay has the
75 advantages of (i) a built-in internal control of each viral replication and (ii) elimination of host-to-
76 host variation that reduces experimental power. Due to its precision and reproducibility¹⁴, the
77 competition assay has been widely used to study microbial fitness,¹⁵⁻¹⁷ including SARS-CoV-
78 2^{1,18}. When infecting human lung adenocarcinoma Calu-3 cells, the RNA ratio of Delta versus
79 Alpha increased to 3.0, 7.0, and 4.1 at 24, 36, and 48 h post infection, respectively (**Extended**
80 **data Fig. 3**). When infecting primary human airway epithelial (HAE) cultures, the RNA ratio of

81 Delta versus Alpha increased from 1.7 on day 1 to 3.1 on day 5 (**Fig. 1b**). These results indicate
82 that Delta variant has greater replication fitness compared to the Alpha variant in *in vitro*
83 respiratory models of SARS-CoV-2 infection.

84 To examine if the spike gene alone determines the improved replication fitness of the
85 Delta variant, we constructed a chimeric Delta SARS-CoV-2 bearing the Alpha-spike
86 glycoprotein (i.e., Alpha-spike/Delta-backbone virus; **Fig. 1a** and **Extended data Fig. 2b**). In a
87 competition assay on HAE culture, the RNA ratio of Delta versus Alpha-spike/Delta-backbone
88 continuously increased from 2.8 on day 1 to 9.8 on day 5 post infection (**Fig. 1c**), suggesting
89 that (i) the Alpha-spike reduces the replication fitness of the Delta variant and (ii) the spike gene
90 drives the improved replication of Delta variant. Interestingly, the Alpha-spike/Delta-backbone
91 virus replicated less efficiently than the Alpha variant on HAE culture (**Fig. 1d**), suggesting that,
92 in contrast to Delta spike mutations that enhance replication, mutations outside the spike gene
93 of the Delta variant reduced to some degree fitness for viral replication. The above
94 quantifications of viral competition outcomes were measured by Sanger sequencing (**Fig. 1b-d**)
95 and subsequently verified by Illumina next generation sequencing (NGS; **Extended data Fig.**
96 **4**).

97 Delta spike has accumulated mutations T19R, G142D, E156G, F157-R158 deletion,
98 L452R, T478K, D614G, P681R, and D950N,¹⁹ among which P681R is located at a furin
99 cleavage site (PRRAR[↓]S with P681 underlined and “↓” indicating furin cleavage) that is absent
100 in other group 2B coronaviruses.²⁰ Since the furin cleavage site was shown to be important for
101 SARS-CoV-2 replication and pathogenesis,^{21,22} we hypothesized that mutation P681R may
102 improve the furin cleavage efficiency of full-length spike to S1 and S2, leading to a more
103 efficient virus entry into respiratory epithelial cells. To test this hypothesis, we reverted the Delta
104 P681R mutation to wild-type P681 in the Delta SARS-CoV-2 (**Extended data Fig. 2a**). The
105 Delta-P681 virus developed equivalent plaque morphology compared with Delta (**Extended**

106 **data Fig. 2b).** Remarkably, the P681 reversion attenuated Delta variant replication on HAE
107 cultures, as evidenced by the increase in the RNA ratio of wild-type Delta versus Delta-P681
108 from 2.2 on day 1 to 3.4 on day 5 (**Fig. 1e**). The replication of the Delta-P681 virus was even
109 lower than that of the Alpha variant, as suggested by the decrease in the RNA ratio of Delta-
110 P681 versus Alpha variant from 0.9 on day 1 to 0.6 on day 5 (**Fig. 1f**). These results
111 demonstrate that mutation P681R at the furin cleavage site plays a critical role in enhancing the
112 replication of the Delta variant on primary human airway cultures.

113 We directly evaluated the spike cleavage of Alpha, Delta, Delta-P681, and wild-type
114 SARS-CoV-2. Virions were prepared from Vero E6 cells expressing TMPRSS2, a host serine
115 protease that is required for SARS-CoV-2 entry via the ACE2-mediated cell surface
116 mechanism.²³ After virions were purified through sucrose cushion ultracentrifugation, pelleted
117 viruses were analyzed for spike cleavage by Western blotting (**Fig. 1g**). The results showed that
118 spike processing efficiency of the purified virions occurred in the order of Delta > Alpha > Delta-
119 P681 > wild-type virions, with ratios of S1 versus full-length spike of 15.3, 5.4, 2.7, and 1.4,
120 respectively (**Fig. 1h**). It should be noted that the Alpha variant also has a spike mutation at
121 amino acid position 681 (P681H), which may contribute to the increase in spike cleavage when
122 compared with the wild-type USA/WA1-2020 virus; however, a recent study showed that
123 mutation P681H alone did not enhance viral fitness or transmission.⁴ Overall, our results
124 indicate a correlation of improved spike cleavage with enhanced viral replication of Delta
125 variant.

126 To exclude the possibility that enhanced replication of the Delta variant over Alpha was
127 due to an improved spike/ACE2 receptor interaction, we performed a binding assay using
128 recombinant spike receptor-binding domain (RBD) and human ACE2 proteins on a Bio-Layer
129 Interferometry (BLI) system (**Extended data Fig. 5**). Within the RBD, the Alpha RBD has a
130 N501Y mutation, whereas Delta RBD has L452R and T478K mutations. The BLI results indicate

131 that the Alpha RBD has a higher binding affinity for ACE2 than Delta RBD, as indicated by
132 >200-fold K_D improvement (**Extended data Fig. 5**). These data strongly argue that the higher
133 replication of Delta variant than Alpha variant is not due to an improved spike/ACE2 receptor
134 binding.

135

136 **Discussion**

137 Since the emergence of SARS-CoV-2, the virus has accumulated mutations improving
138 fitness and transmission. First, it accumulated a D614G mutation in the spike gene to enhance
139 viral transmission.^{1,3,6,24} This mutation promotes spike RBD in an “open” conformation to
140 facilitate ACE2 receptor binding.²⁵ Subsequently, another spike mutation N501Y emerged
141 independently in Alpha, Beta, and Gamma variants from the United Kingdom, South Africa, and
142 Brazil, respectively. The N501Y mutation further increases the binding affinity between the spike
143 protein and ACE2, leading to additional improvement in viral transmission.^{4,10,26} Most recently,
144 the Delta variant emerged and spread explosively, replacing the Alpha variant around the world.
145 The current study demonstrates that spike mutation(s) are responsible for the enhanced viral
146 fitness of the Delta variant over Alpha. Importantly, the unique P681R mutation plays a critical
147 role in this fitness advantage and increases the processing of Delta spike to S1 and S2, most
148 likely through an improved furin cleavage when newly assembled virions egress through the
149 trans-Golgi network. Although the original SARS-CoV-2 strain has a functional furin cleavage
150 site with a minimal recognition site of RXXR_↓,²⁷ adjacent residues influence the cleavage
151 efficiency.²⁸ The P681R substitution clearly augments spike processing and is likely the main
152 driver of the fitness advantage observed in Delta variant. When the Delta variant infects
153 respiratory epithelial cells, it binds to ACE2 receptor via the RBD in S1. Already cleaved at the
154 S1/S2 site, the Delta virion facilitates cleavage at S2' by the cell surface protease TMPRSS2,
155 leading to an activation of the S2 fusion peptide (FP) for viral and plasma membrane fusion.²³

156 Thus, the improved spike cleavage enhances viral replication when the Delta variant infects
157 respiratory epithelial cells.

158 One major concern with the emergence of Delta variant is its association with increased
159 breakthrough infections in vaccinated people.^{5,9} As a critical target for host immunity, changes in
160 the spike protein of SARS-CoV-2 variants have been implicated in reducing antibody
161 neutralization.²⁹ Among all tested variants (including Delta), the Beta and Kappa variants have
162 been shown to reduce the BNT162b2 vaccine-elicited neutralizing titers the most,^{2,30-32} yet,
163 BNT162b2 showed 100% vaccine efficacy against Beta variant-associated severe, critical or
164 fatal disease in Qatar and 100% real-world effectiveness against Beta variant-associated
165 COVID-19 in South Africa.^{33,34} These real-world vaccine efficacy/effectiveness and *in vitro*
166 neutralization results argue that breakthrough infections by the Delta variant in vaccinated
167 individuals do not reflect immune escape. Instead, the increased breakthrough infection is likely
168 due to enhanced viral replication fitness of the Delta variant through augmented spike
169 processing. Consistent with this hypothesis, the viral RNA loads in the oropharynx from Delta
170 variant-infected patients were >1,200-fold higher than those from the original Wuhan virus-
171 infected patients.⁹ Together, the results indicate changes in viral processing and infection
172 efficiency, rather than evasion of antibodies, drive breakthrough infections of Delta variant in
173 vaccinated individuals.

174 In summary, using a reverse genetic system and primary human airway cultures, we
175 have identified spike mutation P681R as a significant determinant for enhanced viral replication
176 fitness of the Delta compared to the Alpha variant. The P681R mutation enhances spike protein
177 processing through the improved furin cleavage site. As new variants continue to emerge, spike
178 mutations that affect furin cleavage efficiency, as well as other mutations that may increase viral
179 replication, pathogenesis, and/or immune escape, must be closely monitored.

180

181 **Methods**

182 **Cells.** African green monkey kidney epithelial Vero E6 cells (ATCC, Manassas, VA,
183 USA) were grown in Dulbecco's modified Eagle's medium (DMEM; Gibco/Thermo Fisher,
184 Waltham, MA, USA) with 10% fetal bovine serum (FBS; HyClone Laboratories, South Logan,
185 UT) and 1% penicillin/streptomycin (Gibco). Human lung adenocarcinoma epithelial Calu-3 cells
186 (ATCC) were maintained in a high-glucose DMEM containing sodium pyruvate and GlutaMAX
187 (Gibco) with 10% FBS and 1% penicillin/streptomycin at 37°C with 5% CO₂. The EpiAirway
188 system is a primary human airway 3D tissue model purchased from MatTek Life Science
189 (Ashland, MA, USA). This EpiAirway system was maintained with the provided culture medium
190 at 37°C with 5% CO₂ following manufacturer's instruction. All other culture medium and
191 supplements were purchased from Thermo Fisher Scientific (Waltham, MA, USA). All cell lines
192 were verified and tested negative for mycoplasma.

193 **Construction of infectious cDNA clones and SARS-CoV-2 mutant viruses.** The full-
194 length (FL) cDNA clones of Alpha and Delta variants were constructed through mutagenesis of
195 a previously established cDNA clone of USA/WA1-2020 SARS-CoV-2.^{12,13} The previous seven-
196 fragment *in vitro* ligation method was improved to a three-fragment ligation approach (**Extended**
197 **data Fig. 1a**) to construct the full-length cDNA clones of Alpha and Delta SARS-CoV-2,
198 resulting in Alpha-FL and Delta-FL, respectively. Prior to the three-fragment ligation, mutations
199 from Alpha or Delta variants were engineered into individual fragments of USA/WA1-2020 using
200 a standard mutagenesis method. The sequences for constructing Alpha, Delta and Alpha-
201 spike/Delta-backbone were downloaded from GISAID database, the accession ID for Alpha is
202 EPI_ISL_999340, accession ID for Delta is EPI_ISL_2100646. Individual point mutations for
203 Alpha (NSP3: P153L, T183I, A890D, I1412T; NSP6: SGF106-108del; NSP12: P323L; Spike:
204 HV69-70del, Y145del, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H; ORF8:
205 Q27stop, R52I, Y73C, S84L; N: D3L, R203K, G204R, S235F) and individual point mutations for

206 Delta (NSP2: P129L; NSP3: P822L; H1274Y; NSP4: A446V; NSP6: V149A; NSP12: P323L;
207 V355A; G671S; NSP13: P77L; NSP15: H234Y; Spike: T19R, G142D, E156G, FR157-158del,
208 L452R, T478K, D614G, P681R, D950N; ORF3a: S26L; M: I82T; ORF7a: V82A; L116F; T120I;
209 ORF8: S84L; DF119-120del; N: D63G; R203M; D377Y; R385K) were introduced into subclones
210 of individual fragments by overlapping fusion PCR. For preparing Alpha-spike/Delta-backbone
211 virus, the spike gene of Delta was replaced with the spike gene of the Alpha. For preparing
212 Delta-P681 virus, the P681 reversion was introduced into a subclone containing Delta spike
213 gene by overlapping fusion PCR. All primers used for the construction were listed in **Extended**
214 **Data Table 1**. The full-length infectious clones of SARS-CoV-2 variants were assembled by *in*
215 *vitro* ligation of contiguous DNA fragments. *In vitro* transcription was then performed to
216 synthesize full-length genomic RNA. For recovering recombinant viruses, the RNA transcripts
217 were electroporated into Vero E6 cells. The viruses from electroporated cells were harvested at
218 40 h post electroporation and served as P0 stocks. All viruses were passaged once on Vero E6
219 cells to produce P1 stocks for subsequent experiments. All P1 viruses were subjected to next
220 generation sequencing to confirm the introduced mutations without undesired changes. Viral
221 titers were determined by plaque assay on Vero E6 cells. All virus preparation and experiments
222 were performed in a biosafety level 3 (BSL-3) facility. Viruses and plasmids are available from
223 the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA) at the University
224 of Texas Medical Branch.

225 **RNA extraction, RT-PCR, and Sanger sequencing.** Cell culture supernatants were
226 mixed with a five-fold excess of TRIzol™ LS Reagent (Thermo Fisher Scientific, Waltham, MA,
227 USA). Viral RNAs were extracted according to the manufacturer's instructions. The RNAs were
228 amplified using a SuperScript™ III One-Step RT-PCR kit (Invitrogen, Carlsbad, CA, USA)
229 following the manufacturer's protocol. The size of desired amplicon was verified with 2 µl of
230 PCR product on an agarose gel. The remaining 18 µl of RT-PCR DNA was purified by a

231 QIAquick PCR Purification kit (Qiagen, Germantown, MD, USA). Sequences of the purified RT-
232 PCR products were generated using a BigDye Terminator v3.1 cycle sequencing kit (Applied
233 Biosystems, Austin, TX, USA). The sequencing reactions were purified using a 96-well plate
234 format (EdgeBio, San Jose, CA, USA) and analyzed on a 3500 Genetic Analyzer (Applied
235 Biosystems, Foster City, CA). The peak electropherogram height representing each mutation
236 site and the proportion of each competitor was analyzed using the QSVanalyser program. For
237 the competition assay, R software is used for the figure generation and statistical analysis. The
238 presented viral RNA ratios in the figures were normalized by the input viral RNA ratios
239 (**Extended Data Table 2**).

240 **Plaque assay.** Approximately 1.2×10^6 Vero E6 cells were seeded to each well of 6-well
241 plates and cultured at 37°C, 5% CO₂ for 16 h. Virus was serially diluted in DMEM with 2% FBS
242 and 200 μ l diluted viruses were transferred onto the cell monolayers. The viruses were
243 incubated with the cells at 37°C with 5% CO₂ for 1 h. After the incubation, overlay medium was
244 added to the infected cells per well. The overlay medium contained DMEM with 2% FBS, 1%
245 penicillin/streptomycin, and 1% sea-plaque agarose (Lonza, Walkersville, MD). After 2.5-day
246 incubation, plates were stained with neutral red (Sigma-Aldrich, St. Louis, MO, USA) and
247 plaques were counted on a light box.

248 **Next generation sequencing (NGS).** The competition results generated by Sanger
249 sequencing were confirmed using NGS methods. Briefly, viral RNA samples from competition
250 groups of (i) Delta versus Alpha and (ii) Delta versus Alpha-spike/Delta-backbone were used for
251 a specific one-step RT-PCR that containing the A23063T mutation site. Viral RNA samples from
252 competition group of Alpha versus Alpha-spike/Delta-backbone were quantified by the T14444C
253 mutation. The RT-PCR primers were listed in **Extended Data Table 1**. The PCR products were
254 purified by a QIAquick PCR Purification kit (Qiagen, Germantown, MD) according to the
255 manufacturer's protocol. Dual-indexed adapter sequences (New England BioLabs, Ipswich, MA)

256 were added with 5 cycles of PCR. Samples were pooled and sequenced on an Illumina MiniSeq
257 Mid-Output flow cell with the paired-end 150 base protocol. The reads were filtered for Q-scores
258 of 37 at the A23063T and T14444C mutation sites and adjacent bases and counted. For the
259 competition assay, R software is used for the figure generation and statistical analysis.

260 **Viral infection of cell lines.** Approximately 3×10^5 Calu-3 cells were seeded onto each
261 well of 12-well plates and cultured at 37°C, 5% CO₂ for 16 h. Equal PFUs of two viruses were
262 inoculated onto Calu-3 cells at a final MOI of 0.1. The mixed viruses were incubated with the
263 cells at 37°C for 2 h. After infection, the cells were washed thrice with DPBS to remove residual
264 viruses. One milliliter of culture medium was added into each well. At each time point, 100 µl of
265 culture supernatants were lysed in TRIzol LS reagent for the detection of competition assay,
266 and 100 µl of fresh medium was added into each well to replenish the culture volume. The cells
267 were infected in triplicate for each group of viruses. All samples were stored at -80°C until
268 analysis.

269 **Primary human airway cultures.** The EpiAirway system is a primary human airway 3D
270 mucociliary tissue model consisting of normal, human-derived tracheal/bronchial epithelial cells.
271 Different combinations of mixed viruses for competition assays were inoculated onto the culture
272 at a total MOI of 5. After 2 h infection at 37 °C with 5% CO₂, the inoculum was removed, and the
273 culture was washed three times with DPBS. The infected epithelial cells were maintained
274 without any medium in the apical well, and medium was provided to the culture through the
275 basal well. The infected cells were incubated at 37 °C, 5% CO₂. From day 1 to day 5 post
276 infection, 300 µl of DPBS were added onto the apical side of the airway culture and incubated at
277 37°C for 30 min to elute progeny viruses. All virus samples in DPBS were stored at -80°C and
278 quantified by plaque assays on Vero E6 cells.

279 **Virion purification and Western blotting.** Vero E6 expressing TMPRSS2 were
280 infected with different SARS-CoV-2 at an MOI of 0.01. At 24 h post infection, the culture

281 medium was collected, purified through a 20% sucrose cushion, and analyzed by Western blot
282 as previously described.²¹ Densitometry was performed to quantify the cleavage efficiency of
283 full-length spike to S1/S2 subunits using ImageLab 6.0.1 (Bio-Rad #12012931). The average
284 results of two experiments were presented.

285 **Spike RBD and ACE2 binding.** The human ACE2 protein was purchased from Sino
286 Biological (Beijing, China; Cat# 10108-H08H) and the human IgG1 Fc-tagged RBD proteins
287 were made in-house using a method as previously described³⁵. The affinity measurement was
288 performed on the ForteBio Octet RED 96 system (Sartorius, Goettingen, Germany). Briefly, the
289 RBD proteins (20 µg/ml) of Alpha or Delta RBDs were captured onto protein A biosensors for
290 300s. The loaded biosensors were then dipped into the kinetics buffer for 10 s for adjustment of
291 baselines. Subsequently, the biosensors were dipped into serially diluted (from 1.23 to 300 nM)
292 human ACE2 protein for 200 s to record association kinetics and then dipped into kinetics buffer
293 for 400 s to record dissociation kinetics. Kinetic buffer without ACE2 was used to correct the
294 background. The Octet Data Acquisition 9.0 software was used to collect affinity data. For fitting
295 of K_D values, Octet Data Analysis software V11.1 was used to fit the curve by a 1:1 binding
296 model using the global fitting method.

297 **Statistics.** For virus competition experiments, relative replicative fitness values for
298 different variants were analyzed according to $w=(f_0/i_0)$, where i_0 is the initial two-virus ratio and
299 f_0 is the final two-virus ratio after competition. Sanger sequencing (initial timepoint T0) counts
300 for each virus being compared were based upon average counts over three replicate samples of
301 inocula per experiment, and post-infection (timepoint T1) counts were taken from samples of
302 individual subjects. Multiple experiments were performed, so that f_0/i_0 was clustered by
303 experiment. To model f_0/i_0 , the ratio T_0/T_1 was found separately for each subject in each virus
304 group, log (base-10) transformed to an improved approximation of normality and modeled by
305 analysis of variance with relation to group, adjusting by experiment when appropriate to control

306 for clustering within experiment. Specifically, the model was of the form
307 $\text{Log10_CountT1overCountT0} \sim \text{Experiment} + \text{Group}$. Fitness ratios between the two groups [the
308 model's estimate of $w=(f_0/i_0)$] were assessed per the coefficient of the model's Group term,
309 which was transformed to the original scale as $10^{\text{coefficient}}$. This modeling approach
310 compensates for any correlation due to clustering within experiment similarly to that of
311 corresponding mixed effect models and is effective since the number of experiments was small.
312 Statistical analyses were performed using R statistical software (R Core Team, 2019, version
313 3.6.1). In all statistical tests, two-sided alpha=.05. Catseye plots³⁶, which illustrate the normal
314 distribution of the model-adjusted means, were produced using the “catseyes” package³⁷.

315

316 **Data availability.**

317 Extended Data and source data for generating main figures are available in the online
318 version of the paper. Any other information is available upon request.

319

320 **Acknowledgments**

321 P.-Y.S. was supported by National Institutes of Health (NIH) grants AI134907 and
322 UL1TR001439, and awards from the Sealy and Smith Foundation, the Kleberg Foundation, the
323 John S. Dunn Foundation, the Amon G. Carter Foundation, the Gillson Longenbaugh
324 Foundation, and the Summerfield Robert Foundation. Z.A. was supported in by a Welch
325 Foundation grant AU-0042-20030616 and Cancer Prevention and Research Institute of Texas
326 (CPRIT) Grants RP150551 and RP190561. S.C.W. was supported by NIH grant R24 AI120942.
327 V.D.M. was supported by NIH grants AI153602 and 1R21AI145400. J.L. and B.A.J. were
328 supported by James W. McLaughlin Fellowship Fund.

329

330 **Author contributions**

331 Conceptualization, Y.L., J.L., S.C.W., V.D.M., X.X., P.-Y.S.; Methodology, Y.L., J.L.,
332 B.A.J., H.X., Z.K., C.S., S.G.W., Z.A., X.X.; Investigation, Y.L., J.L., B.A.J., H.X., Z.A., S.C.W.,
333 V.D.M., X.X., P.-Y.S.; Resources, H.X., B.A.J., Z.K., Z.A. X.X.; Data Curation, Y.L., J.L., B.A.J.,
334 H.X., Z.K., C.S., S.C.W., V.D.M., X.X., P.-Y.S.; Writing-Original Draft, Y.L., J.L., X.X., P.-Y.S.;
335 Writing-Review & Editing, Y.L., J.L., B.A.J., H.X., Z.K., C.S., S.G.W., Z.A., S.C.W., V.D.M., X.X.,
336 P.-Y.S.; Supervision, X.X., S.C.W., V.D.M., P.-Y.S.; Funding Acquisition, Z.A., S.C.W., V.D.M.,
337 P.-Y.S.

338

339 **Competing financial interests**

340 X.X., V.D.M., and P.-Y.S. have filed a patent on the reverse genetic system and reporter
341 SARS-CoV-2. Other authors declare no competing interests.

342

343 **References**

- 344 1 Plante, J. A. *et al.* Spike mutation D614G alters SARS-CoV-2 fitness. *Nature* **592**, 116-121,
345 doi:10.1038/s41586-020-2895-3 (2021).
- 346 2 Chen, R. E. *et al.* Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-
347 derived polyclonal antibodies. *Nat Med* **27**, 717-726, doi:10.1038/s41591-021-01294-w (2021).
- 348 3 Hou, Y. J. *et al.* SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission
349 in vivo. *Science* **370**, 1464-1468, doi:10.1126/science.abe8499 (2020).
- 350 4 Liu, Y. *et al.* The N501Y spike substitution enhances SARS-CoV-2 transmission. *bioRxiv*,
351 doi:10.1101/2021.03.08.434499 (2021).
- 352 5 Brown, C. M. *et al.* Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine
353 Breakthrough Infections, Associated with Large Public Gatherings — Barnstable County,
354 Massachusetts, July 2021. *Morbidity and Mortality Weekly Report (MMWR)*,
355 https://www.cdc.gov/mmwr/volumes/70/wr/mm7031e7032.htm?s_cid=mm7031e7032_w&fbc_lid=lwAR7032WV7036ul_A-l_VN_7015KX7034bedb7038CeLJKRwiDWZ-blUuWmZMKbs7094xdhTiPLs (2021).

358 6 Zhou, B. *et al.* SARS-CoV-2 spike D614G change enhances replication and transmission. *Nature*
359 7 **592**, 122-127, doi:10.1038/s41586-021-03361-1 (2021).

360 8 WHO. Track SARS-CoV-2 variants. <https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/> (2021).

361 9 CDC. COVID data tracker. <https://covid.cdc.gov/covid-data-tracker/#variant-proportions> (2021).

362 10 Li, B. *et al.* Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. *medRxiv*,
<https://www.medrxiv.org/content/10.1101/2021.1107.1107.21260122v21260122> (2021).

363 11 Mlcochova, P. *et al.* SARS-CoV-2 B.1.617.2 Delta variant emergence, replication and sensitivity to
364 12 neutralising antibodies. *BioRxiv* (2021).

365 13 Chia, P. Y. *et al.* Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine2
366 14 breakthrough infections: a multi-center cohort study. *medRxiv*,
<https://www.medrxiv.org/content/10.1101/2021.1107.1128.21261295v21261291> (2021).

367 15 Xie, X. *et al.* An Infectious cDNA Clone of SARS-CoV-2. *Cell Host Microbe* **27**, 841-848 e843,
368 16 doi:10.1016/j.chom.2020.04.004 (2020).

369 17 Xie, X. *et al.* Engineering SARS-CoV-2 using a reverse genetic system. *Nature Protocols* **16**, 1761-
370 18 1784, doi:10.1038/s41596-021-00491-8 (2021).

371 19 Liu, J. *et al.* Role of mutational reversions and fitness restoration in Zika virus spread to the
372 20 Americas. *Nat Commun* **12**, 595, doi:10.1038/s41467-020-20747-3 (2021).

373 21 Wiser, M. J. & Lenski, R. E. A Comparison of Methods to Measure Fitness in *Escherichia coli*. *PLoS
374 22 One* **10**, e0126210, doi:10.1371/journal.pone.0126210 (2015).

375 23 Grubaugh, N. D. *et al.* Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors
376 24 Leads to Decreased Relative Fitness during Host Switching. *Cell Host Microbe* **19**, 481-492,
377 25 doi:10.1016/j.chom.2016.03.002 (2016).

378 26 Bergren, N. A. *et al.* "Submergence" of Western equine encephalitis virus: Evidence of positive
379 27 selection argues against genetic drift and fitness reductions. *PLoS Pathog* **16**, e1008102,
380 28 doi:10.1371/journal.ppat.1008102 (2020).

381 29 Touret, F. *et al.* Replicative Fitness of a SARS-CoV-2 20I/501Y.V1 Variant from Lineage B.1.1.7 in
382 30 Human Reconstituted Bronchial Epithelium. *mBio*, e0085021, doi:10.1128/mBio.00850-21
(2021).

383 31 Organization, W. H. Coronavirus Disease (COVID-19): Weekly Epidemiological Update.
[https://reliefweb.int/report/world/coronavirus-disease-covid-19-weekly-epidemiological-
384 32 update-11-may-2021](https://reliefweb.int/report/world/coronavirus-disease-covid-19-weekly-epidemiological-update-11-may-2021) (2021).

385 33 Coutard, B. *et al.* The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like
386 34 cleavage site absent in CoV of the same clade. *Antiviral Res* **176**, 104742,
387 35 doi:10.1016/j.antiviral.2020.104742 (2020).

388 36 Johnson, B. A. *et al.* Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. *Nature* **591**,
389 37 293-299, doi:10.1038/s41586-021-03237-4 (2021).

390 38 Peacock, T. P. *et al.* The furin cleavage site in the SARS-CoV-2 spike protein is required for
391 39 transmission in ferrets. *Nat Microbiol* **6**, 899-909, doi:10.1038/s41564-021-00908-w (2021).

392 40 Murgolo, N. *et al.* SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for
393 41 drug discovery and development. *PLoS Pathog* **17**, e1009225, doi:10.1371/journal.ppat.1009225
(2021).

394 42 Korber, B. *et al.* Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases
395 43 Infectivity of the COVID-19 Virus. *Cell* **182**, 812-827 e819, doi:10.1016/j.cell.2020.06.043 (2020).

396 44 Yurkovetskiy, L. *et al.* Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein
397 45 Variant. *Cell* **183**, 739-751, doi:10.1016/j.cell.2020.09.032 (2020).

405 26 Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor Recognition by the Novel Coronavirus
406 from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. *J Virol*
407 **94**, doi:10.1128/JVI.00127-20 (2020).

408 27 Molloy, S. S., Bresnahan, P. A., Leppla, S. H., Klimpel, K. R. & Thomas, G. Human furin is a
409 calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and
410 efficiently cleaves anthrax toxin protective antigen. *Journal of Biological Chemistry* **267**, 16396-
411 16402 (1992).

412 28 Krysan, D. J., Rockwell, N. C. & Fuller, R. S. Quantitative characterization of furin specificity.
413 Energetics of substrate discrimination using an internally consistent set of hexapeptidyl
414 methylcoumarinamides. *J Biol Chem* **274**, 23229-23234, doi:10.1074/jbc.274.33.23229 (1999).

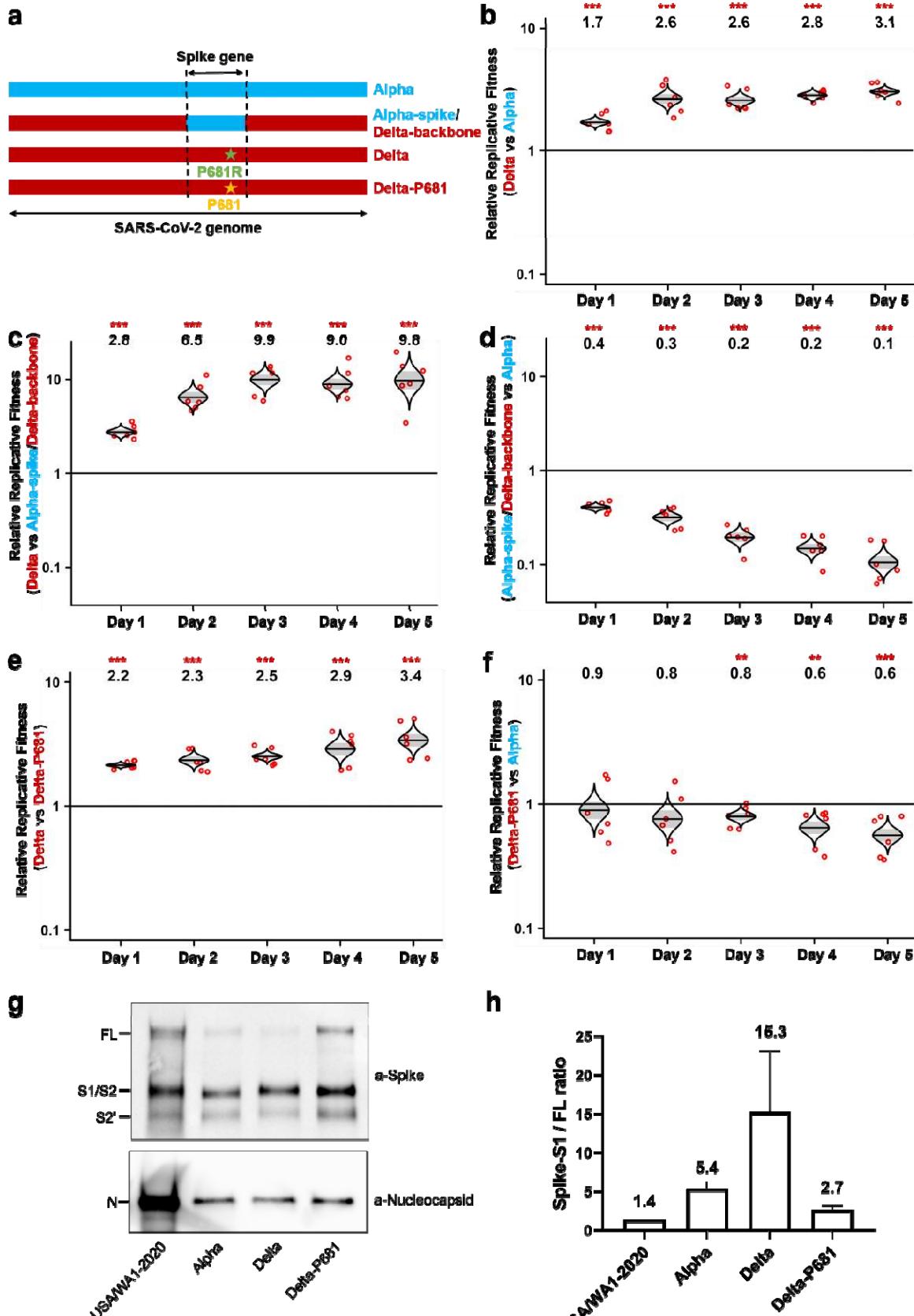
415 29 Plante, J. A. *et al.* The variant gambit: COVID-19's next move. *Cell Host Microbe* **29**, 508-515,
416 doi:10.1016/j.chom.2021.02.020 (2021).

417 30 Liu, Y. *et al.* Neutralizing Activity of BNT162b2-Elicited Serum. *N Engl J Med* **384**, 1466-1468,
418 doi:10.1056/NEJMc2102017 (2021).

419 31 Liu, Y. *et al.* BNT162b2-Elicited Neutralization against New SARS-CoV-2 Spike Variants. *N Engl J*
420 *Med*, doi:10.1056/NEJMc2106083 (2021).

421 32 Liu, J. *et al.* BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. *Nature*,
422 doi:10.1038/s41586-021-03693-y (2021).

423 33 Abu-Raddad, L. J., Chemaitley, H., Butt, A. A. & National Study Group for, C.-V. Effectiveness of
424 the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. *N Engl J Med* **385**, 187-
425 189, doi:10.1056/NEJMc2104974 (2021).

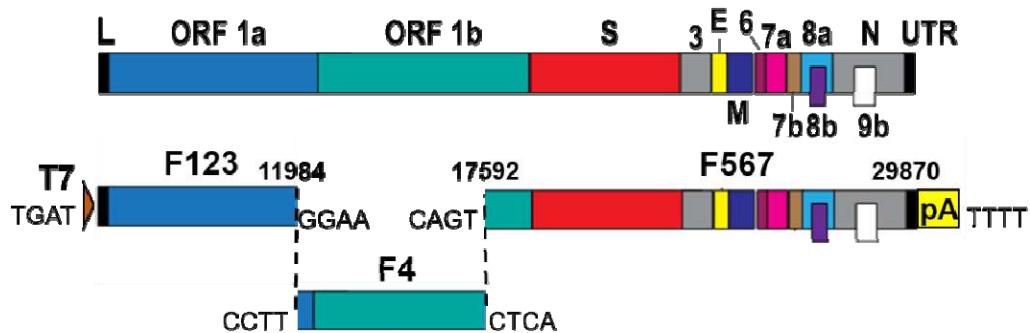

426 34 Thomas, S. J. *et al.* Six Month Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. *N*
427 *Engl J Med* In press (2021).

428 35 Ku, Z. *et al.* Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-
429 2 escape. *Nat Commun* **12**, 469, doi:10.1038/s41467-020-20789-7 (2021).

430 36 Cumming, G. The New Statistics: Why and How. *Psychol. Sci.*, 7-29,
431 doi:10.1177/0956797613504966 (2014).

432 37 Andersen, C. Catseyes: Create Catseye Plots Illustrating the Normal Distribution of the Means. R
433 package version 0.2.3. (2019).

434



436 **Figure 1. Delta P681R mutation enhances SARS-CoV-2 fitness over Alpha variant through**
437 **improving spike protein processing.**

438 **a**, Schemes of Alpha variant, Delta variant, Delta variant bearing Alpha-spike, and Delta variant
439 with a P681R-to-P681 reversion. The spike gene of Delta variant was swapped with Alpha
440 variant, resulting in chimeric SARS-CoV-2 “Alpha-spike/Delta-backbone.” The Delta P681R
441 mutation was reverted wild-type P681, resulting in “Delta-P681” virus. Blue and red colors
442 indicate Alpha and Delta variants, respectively. **b-f**, Viral replication competitions among Alpha,
443 Delta, Alpha-spike/Delta-backbone, and Delta-P681 viruses on primary human airway epithelial
444 (HAE) cells. Equal PFU of two viruses were mixed and inoculated onto HAE cells at an MOI of 5.
445 Five pairs of viral competition are presented: Delta and Alpha (**b**), Delta and Alpha-spike/Delta-
446 backbone (**c**), Alpha-spike/Delta-backbone and Alpha (**d**), Delta variant and Delta-P618 (**e**), and
447 Delta-P681 and Alpha (**f**). After 2 h incubation, the cells were washed thrice with DPBS and
448 maintained for 5 days. The secreted viruses were collected daily in DPBS after incubation at
449 37°C for 30 min. Red dots represent individual cell cultures (n=6), the horizontal lines in each
450 catseye represent the mean, shaded regions represent standard error of the mean; y-axes use
451 a log₁₀ scale. Black numbers above each set of values (catseye) indicate the ratios of two viral
452 RNA species. *P* values are calculated for group coefficient using linear regression model.
453 ***p*<0.01, ****p*<0.001. **g**, Spike cleavages of purified virions. USA/WA1-2020, Alpha, Delta, and
454 Delta-P681 viruses were purified and analyzed by Western blot using polyclonal antibodies
455 against spike and anti-nucleocapsid antibodies. Full-length spike (FL), cleaved S1/S2, and S2'
456 proteins were annotated. One representative image of two experiments is shown. **h**,
457 Quantification of spike processing of different variants from **g**. Densitometry was performed to
458 quantify the cleavage efficiency of FL spike to S1/S2 subunits using ImageLab 6.0.1. The ratios
459 of S1/S2 over FL were calculated to indicate spike processing efficiencies. The average results
460 of two experiments were presented as mean ± standard deviation.

a

SARS-CoV-2 genome

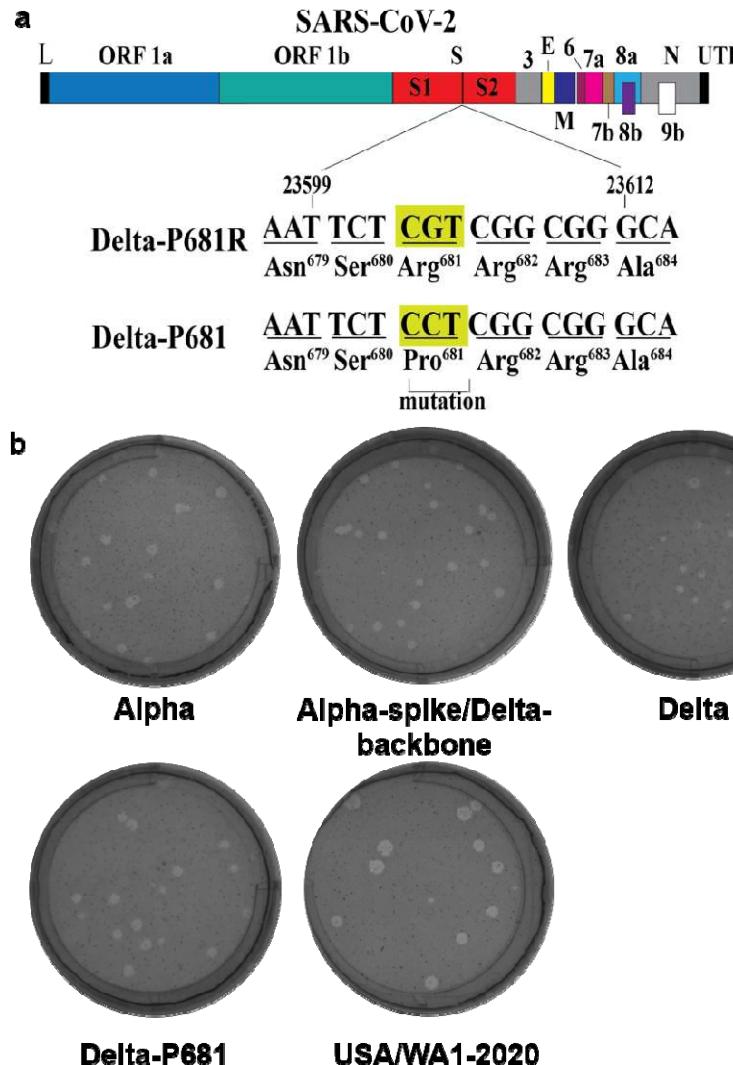
b

Alpha

Gene	Nucleotide	Amino acid
5'UTR	C241T	
ORF1ab	C913T C3037T C3177T C3267T C5388A C5986T T6954C T8782C 11288-11296 deletion C14408T C14676T C15279T T16176C	P971L T1001I A1708D I2230T SGF 3675-3677 deletion P4715L
Spike	21766-21771 deletion 21991-21993 deletion A23063T C23271A A23403G C23604A C23709T T24506G G24914C	HV 69-70 deletion Y144 deletion N501Y A570D D614G P681H T716I S982A D1118H
ORF8	C27972T G28048T A28111G C28144T	Q27stop R52I Y73C S84L
N	28280 GAT->CTA 28881 GGG->AAC C28977T	D3L R203K/G204R S235F

c

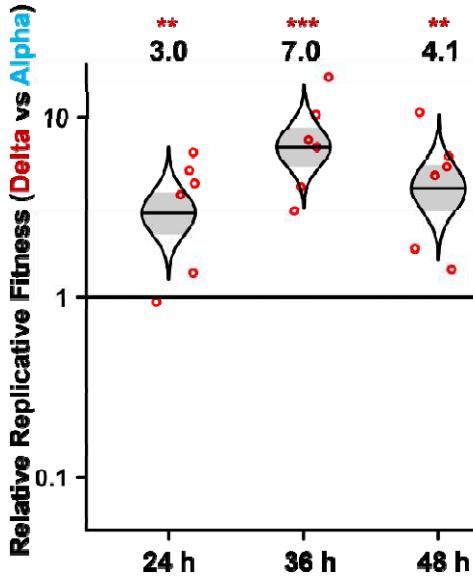
Delta


Gene	Nucleotide	Amino acid
5'UTR	C210T C241T	
ORF1ab	C1191T C1267T C3037T C5184T C6539T T8782C C9891T T11418C T12946C C14408T T14444C G15451A C16466T A20262G C20320T	P309L H2092Y A3209V V3718A P1640L P4715L V4727A G5063S P5401L H6686Y
Spike	C21618G G21987A 22029-22034 deletion T22917G C22995A A23403G C23604G G24410A C24745T	T19R G142D E156G/FR157-158 deletion L452R T478K D614G P681R D950N
ORF3a	C25469T	S26L
M	T26767C	M: I82T
ORF7a	T27638C C27739T C27752T	V82A L116F T120I
ORF8	C28144T 28248-28253 deletion	S84L DF119-120 deletion
N	A28461G G28881T G29402T G29427A	D63G R203M D377Y R385K
3'UTR	G29742T C29762T	

461

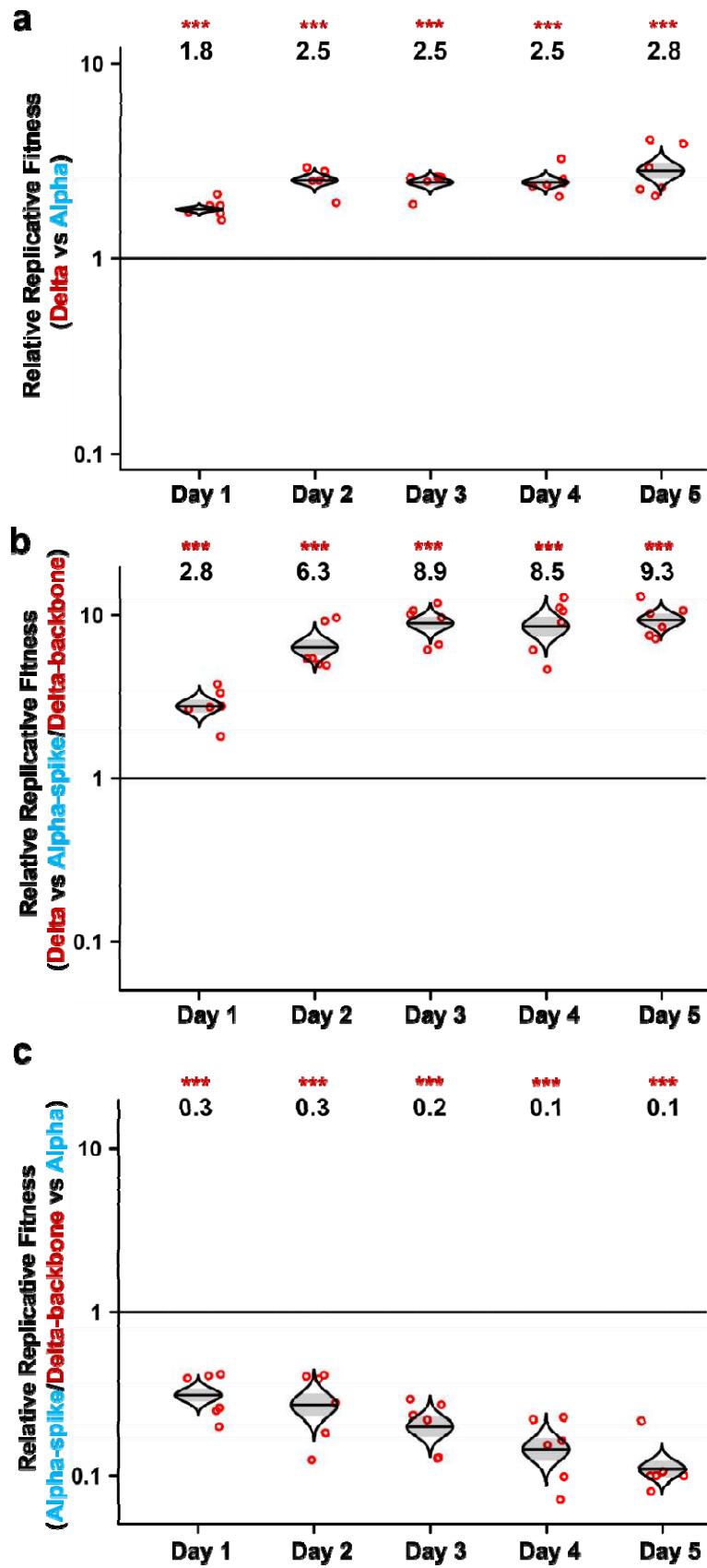
462 **Extended Data Figure 1. Construction of infectious cDNA clones for Alpha and Delta variants.**

463 **a**, Construction of infectious cDNA clones for Alpha and Delta variants. A three-fragment *in vitro* ligation was performed to construct the full-length cDNA clones of Alpha and Delta SARS-CoV-2.


466 The construction method was detailed previously.^{12,13} ORFs, the Open reading frames; L, leader
467 sequence; S, spike gene; E, envelope glycoprotein gene; M, membrane glycoprotein gene; N,
468 nucleocapsid gene; UTR, untranslated region. **b,c**, Mutations from Alpha and Delta variants.
469 The whole genome sequences of Alpha (EPI_ISL_999340) (**b**) and Delta (EPI_ISL_2100646) (**c**)
470 were compared to USA/WA1-2020 strain. Nucleotide and amino acid mutations are presented.
471

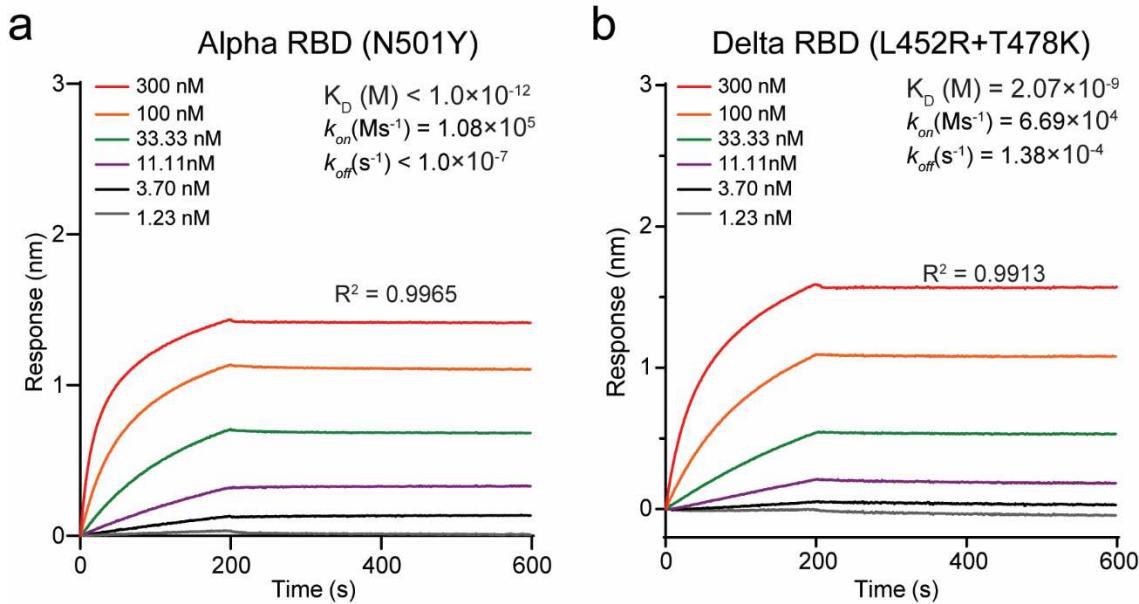
472

473 **Extended Data Figure 2. Construction of Delta-P681 SARS-CoV-2 and plaque**
474 **morphologies of different recombinant SARS-CoV-2s.**


475 **a**, Construction of revertant Delta-P681 SARS-CoV-2. Single nucleotide G-to-C substitution was
476 engineered into the Delta variant to construct Delta-P681 SARS-CoV-2. The nucleotide
477 positions of viral genome are annotated. **b**, Plaque morphologies of Alpha, Alpha-spike/Delta-
478 backbone, Delta, Delta-P681, and USA-WA1/2020 viruses. The plaque images were taken on
479 day 2.5 post infection of Vero E6 cells.

480

481 **Extended Data Figure 3. Viral replication competition between Delta and Alpha variants**
482 **on Calu-3 cells.**


483 Recombinant Delta and Alpha SARS-CoV-2s were mixed in equal PFUs to infect Calu-3 cells at
484 a total MOI of 0.1. At 2 h post infection, the cells were washed thrice with DPBS to remove free
485 viruses. Culture medium were sampled for Sanger sequencing at 24 h, 36 h, and 48 h post
486 infection. Red dots represent individual cell cultures (n=6); horizontal lines in each catseye
487 represent the mean; shaded regions represent standard error of the mean; y-axes use a log₁₀
488 scale. Black numbers above each set of values (catseye) indicate the ratios of two viral RNA
489 species. P values are calculated for group coefficient using linear regression model. **p<0.01,
490 ***p<0.001.

492 **Extended Data Figure 4. Validation of viral competition results by next generation**
493 **sequencing.**

494 **a-c**, RNA samples from competition assays between Delta and Alpha (**a**), Delta and Alpha-
495 spike/Delta-backbone (**b**), Alpha-spike/Delta-backbone and Alpha (**c**) were initially assessed
496 using Sanger sequencing (**Fig. 1b-d**). The same RNA samples were retested here using next
497 generation sequencing (NGS). Red dots represent individual cell cultures (n=6); the horizontal
498 lines in each catseye represent the mean; shaded regions represent standard error of the mean;
499 y-axes use a \log_{10} scale. Black numbers above each set of values (catseye) indicate the relative
500 fitness estimates. *P* values are calculated for group coefficient using linear regression model.
501 ****p*<0.001.

502

503

504 **Extended Data Figure 5. Binding affinities of Alpha and Delta RBDs to human ACE2**
505 **receptor.**

506 **a-b**, Alpha RBD (a) and Delta RBD (b) proteins were captured onto protein A biosensors. The
507 biosensors were then dipped into serially diluted human ACE2 protein and buffers to measure
508 the association and dissociation kinetics. The binding affinity-related parameters, including
509 association (K_{on}), dissociation (K_{off}), and affinity (K_D) are shown. The affinity of ACE2 to Alpha
510 RBD (N501Y) is below the detection limit and is presented as $<1.0 \times 10^{-12}$. The result for Alpha
511 RBD and ACE2 binding was adopted from our previous study⁴ for comparison.

512 **Extended Data Table 1. Primer list used for SARS-CoV-2 infectious clones construction,**
513 **RT-PCR and sequencing.**

Construction of Delta full length and Delta-backbone infectious clone	Forward primer	Reverse primer
C210T	GTTTCGTCGGTTGCAGCCGATCATC	GATGATCGGCTGCAAAACGGACGAAAC
C241T	ATCTAGGTTTGTCCGGGTGACCGA AAG	CTTCGGTCACACCCGGACAAAACCTAG AT
C1191T	CCAGTTGCGTCACTAAATGAATGCAAC C	GGTTGCATTCTTTAGTGACGCAACTGG
C1267T	GGCAGACGGGTGATTTGTTAAGCC	GGCTTAACAAAATCACCGTCTGCC
C3037T	GTATTGTTCTTTTACCCCTCCAGATGAG G	CCTCATCTGGAGGGTAAAAGAACATA C
C5184T	ACACAACTGATCTTAGTTCTGGTA G	CTACCCAGAAAACTAAGATCAGTTGTGT
C6539T	GAGGTTGGCTACACAGATCTAATGGC	GCCATTAGATCTGTGTAGCCAACCTC
T8782C	ACACATGGTTAGCCAGCGTGGTGGTA G	CTACCAACACGCTGGCTAAACCATGTGT
C9891T	GATACTTAGTTCTTATAATAAGTACAA G	CTTGTACTTATTATAAGAACTAAGTATC
T11418C	CTTGACACTCGCTTATAAAAGTTATTAT GG	CCATAATAACTTATAAGCGAGTGTCAA G
T12946C	GGTCCTAAAGTGAAGTACTTATACTTTA TT	AATAAAGTATAAGTACTTCACTTAGGAC C
C14408T	TACAGTGTCCCACCTACAAGTTTGGA CC	GGTCCAAAACCTGTAAGTGGAACACTG TA
T14444C	GTGAGAAAAATTTGCTGATGGTGT CCA	TGGAACACCACAGCAAATTTTCTCA C
G15451A	GGTCATGTGGCGAGTCACTATATGT T	AACATATAGTGAACTGCCACACATGACC
C16466T	GTAAATCACATAAAACTACCCATTAGTT TCC	GGAAAACTAATGGTAGTTATGTGATT AC
A20262G	GGAAATTGATTCTTGGAAATTAGCTATG G	CCATAGCTAATTCCAAGAAATCAATTCC
C20320T	GCTATGCCTTCGAATATATCGTTATGG	CCATAAACGATATATCGAAGGCATAGC
C21618G	GTGTGTTAACCTAGAACAGAACCTC	GAGTTCTGGTCTAAGATTAACACAC
G21987A	GATCCATTTTGGATGTTATTACAC	GTGGTAATAAACATCCAAAATGGATC
22029-22034 deletion	GAAAGTGGAGTTATTCTAGTGCAT AATTGC	ATAAAACCACTTCCATCCAACTTTG TGTT
T22917G	GGTGGTAATTATAATTACCGGTATAGAT TGTAGG	CCTAAACAACTATACCGGTAATTATAAT TACCAAC
C22995A	GGCCGGTAGCAAACCTTGTATGGTG	CACCAATTACAAGGTTGCTACCGGCC
A23604G	GACTAATTCTCGTCGGCGGGCACGTA GTGT	ACACTACGTGCCGCCGACGAGAATTAG TC
G24410A	GGAAAACCTCAAAATGTGGTCAACC	GGTTGACCACATTTGAAGTTTCC
C24745T	CTCATGGTAGTTCTTGCATGTGA C	GTCACATGCAAGAAAACACCATGAG
C25469T	GATGCTACTCCTTAGATTTGTTCGCG	CGCGAACAAATCTAAAGGAGTAGCATC
T26767C	CCGGTGAATTGCTACCGCAATGGCTT G	CAAGCCATTGCGGTAGCAATTCCACCGG
T27638C	CGTGCAGATCAGCTCACCTAAACTG T	ACAGTTAGGTGAAGCTGATCTGGCACG
C27739T/C27752T	TCAAAAGAAAGATAGAATGATTGAACTT TCA	CATTCTATCTTCTTTGAATGTGAAGCA AAGTG
C28144T	TCGGTAATTACAGTTCCCTGTTACC TTTAC	GTAAAAGGTAAACAGGAAACTGTATAATT ACCGA

28248-28253 deletion	GACGTTCGTGTGTTAACTAAACGA ACAAACT	AGTTTGTTCGTTAGATTAAACACAG AACGTC
28271 deletion	GAACAAACTAAATGTCTGATAATGGAC CCC	GGGGTCCATTATCAGACATTTAGTTGTT C
A28461G	CATGGCAAGGAAGGCCTTAAATTCCCT C	GAGGGAATTAAAGGCCTCCTGCCATG
G28881T	TCCAGGCAGCAGTATGGGAACCTCTCC TGC	GCAGGAGAAGTCCCATCTGCTGCCCTG GA
G29402T/G29427A	GCTTATGAAACTCAAGCCTTACCGCAG AACAGAAGAAC	GTTTCTGCGGTAAAGGCTTGAGTTCTAA GCCTCTTCTT
G29742T/C29762T	CACTCGGAGTACGATCGAGTGTATAGT GAACAAT	ACTATACACTCGATCGTACTCCGAGTGG CCTCGG
Delta-F123-F1	cattatacgaaggattatcgatgcggccgtaatacgact cactatagattaag	ggccgcacaacatgaagacagtg
Delta-F123-F2	acactgtcttcatgtgtcgcccaatgttaacaaag	aggtcgactctagaggatccacATCGAtggctcaaag gcttcagtagtatcttgc
Delta-F4	cctcttacaacagcagccaaact	caaaacactctacacgagcac
Delta-F567	tatacgaaggattatcgatgcggccgcgtctcagagtct ttggtttatgataataag	caaacatgagaattggcgcacggccc
Delta-backbone-F567-F1	tatacgaaggattatcgatgcggccgcgtctcagagtct ttggtttatgataataag	cttttgttataaaccacaaaatg
Delta-backbone-F567-F2	catttggtgttatacacaacaaag	caatcaagccagctaaaaacc
Delta-backbone-F567-F3	ggttttatagctggcttgattt	cgaggctttagaaggctca
<hr/>		
RT-PCR for Sanger sequencing	Forward primer	Reverse primer
Delta vs Delta-P681	tccactttaagtgttatggag	gttaaaggcacggttaatgtg
Delta-P681 vs Alpha	tccactttaagtgttatggag	gttaaaggcacggttaatgtg
Delta vs Alpha	tccactttaagtgttatggag	gttaaaggcacggttaatgtg
Alpha-spike/Delta-backbone vs Alpha	tgttagaaaaccagatataatt	tggaaaaccagctgtattgtc
Delta vs Alpha-spike/Delta-backbone	tccactttaagtgttatggag	gttaaaggcacggttaatgtg
<hr/>		
RT-PCR for NGS	Forward primer	Reverse primer
Delta vs Alpha	ggttttaaattgttacttcccttaca	aagaacaccctgtgcctgt
Alpha-spike/Delta-backbone vs Alpha	acagtgtcccacctacaagt	ccagaaggcgcgtcatagc
Delta vs Alpha-spike/Delta-backbone	ggttttaaattgttacttcccttaca	aagaacaccctgtgcctgt
<hr/>		
Sanger sequencing	Forward primer	
Delta vs Delta-P681	aggatgttaactgcacaga	
Delta-P681 vs Alpha	aggatgttaactgcacaga	
Delta vs Alpha	gattgctgattataattata	
Alpha-spike/Delta-backbone vs Alpha	gttgacactgacttaacaaagcc	
Delta vs Alpha-spike/Delta-backbone	gattgctgattataattata	

516 **Extended Data Table 2. The input and output viral RNA ratios in competition assays**
517 **detected by sanger sequencing.**

Groups	HAE			Calu-3		
	Days	Input ratio	Output ratio	Hours	Input ratio	Output ratio
Delta vs Alpha	Day 1	1.24	2.10	24h	1.53	4.56
	Day 2	1.24	3.24	36h	1.53	10.65
	Day 3	1.24	3.17	48h	1.53	6.21
	Day 4	1.24	3.51			
	Day 5	1.24	3.78			
Delta vs Alpha-spike/Delta-backbone	Day 1	1.07	2.97			
	Day 2	1.07	6.93			
	Day 3	1.07	10.60			
	Day 4	1.07	9.64			
	Day 5	1.07	10.53			
Alpha-spike/Delta-backbone vs Alpha	Day 1	1.45	0.59			
	Day 2	1.45	0.46			
	Day 3	1.45	0.28			
	Day 4	1.45	0.22			
	Day 5	1.45	0.15			
Delta vs Delta-P681	Day 1	0.95	2.05			
	Day 2	0.95	2.20			
	Day 3	0.95	2.38			
	Day 4	0.95	2.77			
	Day 5	0.95	3.25			
Delta-P681 vs Alpha	Day 1	1.51	1.33			
	Day 2	1.51	1.13			
	Day 3	1.51	1.21			
	Day 4	1.51	0.97			
	Day 5	1.51	0.85			

518