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Abstract 1 

Cryogenic electron tomography (cryoET) allows visualization of cellular structures in situ. 2 

However, anisotropic resolution arising from the intrinsic <missing-wedge= problem has 3 

presented major challenges in visualization and interpretation of tomograms. Here, we have 4 

developed IsoNet, a deep learning-based software package that iteratively reconstructs the 5 

missing-wedge information and increases signal-to-noise ratio, using the knowledge learned 6 

from raw tomograms. Without the need for sub-tomogram averaging, Isonet generates 7 

tomograms with significantly reduced resolution anisotropy. Applications of IsoNet to three 8 

representative types of cryoET data demonstrate greatly improved structural interpretability: 9 

resolving lattice defects in immature HIV particles, establishing architecture of the 10 

paraflagellar rod in Eukaryotic flagella, and identifying heptagon-containing clathrin cages 11 

inside a neuronal synapse of cultured cells. Therefore, by overcoming two fundamental 12 

limitations of cryoET, IsoNet enables functional interpretation of cellular tomograms without 13 

sub-tomogram averaging. Its application to high-resolution cellular tomograms should also 14 

help identify differently oriented complexes of the same kind for near-atomic resolution sub-15 

tomogram averaging. 16 

Introduction 17 

The advent of single-particle cryoEM has made it routine to determine structures of isolated 18 

macromolecular complexes at 2-4 Å resolution by averaging hundreds of thousands of 19 

particles, enabling atomic modeling. The biological functions of these complexes, however, 20 

are carried out through their interactions and often depend on their spatial arrangements 21 

within cells or sub-cellular organelles1,2. Examples abound, ranging from pleomorphic 22 

viruses, to cellular organelles, to large-scale cellular structures like synapses between 23 

neurons. Many viruses, notably those involved in devastating pandemics such as SARS-24 

CoV-2, influenza viruses, and human immunodeficiency viruses (HIV), are pleomorphic in 25 
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the organizations of their proteins and genomes. Cellular organelles, such as axonemes 26 

containing microtubule doublets surrounding a central pair3, though largely conserved in 27 

their core elements across different species, rely on their non-conserved and variable 28 

attachment of peripheral components that define their characteristic species-specific 29 

functions4. In neurons, organizations of molecules, rather than molecules alone, inside the 30 

synapse might underlie synaptic plasticity that is generally regarded as the cellular basis of 31 

learning and memory5,6. Such organizational information, or <molecular sociology=, 32 

unfortunately is lost in single-particle cryoEM. 33 

To reveal such molecular sociology across viruses or inside cells, cryogenic electron 34 

tomography (cryoET) has become the tool of choice. This technique requires collecting a 35 

series images of the sample at different tilt angles, called <tilt series=. Due to radiation 36 

damage, limited electron dosage must be further fractionated throughout the tilt series, 37 

resulting in low signal-to-noise ratio (SNR) for the cryo tomogram. Furthermore, as tilting 38 

increases the effective thickness of the sample, the tilt range for cryoET is usually restricted 39 

to about ±70°. The missing views at higher tilt angles result in anisotropic resolution of the 40 

reconstructed 3D tomograms, with the resolution along the Z-axis the lowest (Supplementary 41 

Fig. 1). In Fourier space, these missing views lead to devoid of information in two 42 

continuous, opposing wedge-shaped regions, commonly referred to as the <missing-wedge=, 43 

along the tilt axis. This missing-wedge causes severe artifacts in 3D reconstruction of 44 

cellular cryoET, manifesting as, e.g., oval-shaped synaptic vesicles7 (Supplementary Fig. 1). 45 

Thus, together with the low SNR in the reconstructed tomograms, the presence of missing-46 

wedge artifacts prohibits direct interpretation of the reconstructed densities in 3D, which is 47 

key to the promise of cryoET to resolve molecule organization in situ. 48 

Previous attempts have been made to partially recover information in the missing-49 

wedge8-10 with a priori assumptions (e.g., density positivity and solvent flatness) to constraint 50 

the structural features in reconstructed tomograms. However, such assumptions have limited 51 
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information content (or <entropy=) and may not always hold true, given the complexity of 52 

biological systems. Alternatively, dual-axis tomography relies on imaging the same sample 53 

with two perpendicular tilt axes, reducing the two missing-wedges to two missing pyramids; 54 

thus it has the potential to alleviate artifacts in resulting tomograms11. However, acquisition 55 

and alignment of dual-axis tilt series are substantially more complicated than that of single-56 

axis tilt series and could waste the already limited electron dose used for tilt series 57 

aquisition12. Consequently, dual-axis tomography, while implemented in high-end 58 

instruments such as the Thermo-Fisher Titan Krios, has not been practically attractive. 59 

Indeed, to date, no structure with better than nanometer resolution was obtained from dual-60 

axis tomography.  61 

Deep neural networks are known to learn relationships of complex data that are non-62 

linear or have high dimensionality. In the field of computer vision, convolutional neural 63 

network (CNN) has been applied to various tasks, such as object recognition, image 64 

segmentation, and classification, often achieving high performance. In cryoEM field, CNN-65 

based neural networks are applied to particle picking tasks and outperform conventional 66 

methods such as the Laplacian of Gaussian approach13. CNN is also introduced to cryoEM 67 

reconstruction to analyze heterogeneity of protein complexes with remarkable 68 

performance14. However, whether CNN can also recover missing-wedge information in 69 

cryoET has not been explored.  70 

Here, we have developed a CNN-based software system, called IsoNet, for isotropic 71 

reconstruction of electron tomogram. IsoNet trains deep CNN that iteratively restores 72 

meaningful contents to compensate missing-wedge, using the information learned from the 73 

original tomogram. The resolution at Z-axis reaches about 30Å resolution as measured by 74 

the gold-standard Fourier shell correlation (FSC) criterion. By applying IsoNet to processing 75 

tomograms representing viral, organelle, and cellular samples, we demonstrate its superior 76 

performance in resolving novel structures of lattice defects in immature human immune-77 
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deficiency virus capsid, the scissors-stack-network architecture of the paraflagellar rod, and 78 

heptagon containing clathrin cage inside a neuronal synapse. The resulting tomograms with 79 

isotropic resolution from IsoNet should help direct interpretation and segmentation of 3D 80 

structure in cells and 3D picking hundreds of thousands of sub-tomogram particles for future 81 

near-atomic resolution cryoET studies.  82 

Results  83 

Workflow of IsoNet 84 

In spite of anisotropic resolution, tomograms generated by cryoET reconstruction contain 85 

rich information with structural features such as plasma membranes, organelles, and protein 86 

complexes. Thus, it is possible to recover the missing information by merging information 87 

from similar features present in the same tomograms but at different orientations relative to 88 

each other. An example of filling such missing information is through subtomogram 89 

averaging, which aligns and averages structures of particles that are identified to be identical 90 

but at different orientations in the tomogram. IsoNet is designed to expand this technique to 91 

reconstruct missing-wedge information by training the neural network targeting the 92 

subtomograms at different rotations for both regular and polymorphous structures.  93 

The workflow of IsoNet contains five steps (Fig. 1a). Among them, three are major 94 

and required: Extract, Refine and Predict; and the other two are optional: Deconvolve CTF 95 

and Generate Mask. Each of these steps can be performed with one command of IsoNet in 96 

Linux terminal. Among the 5 steps, Refine and Predict relies on graphical processing unit 97 

(GPU) that provides superior processing power. The input of IsoNet is either from a single or 98 

multiple tomograms. Based on the principle of machine learning, more tomograms will 99 

generate more reliable results but takes longer processing time. In practice, the typical 100 

number of tomograms for IsoNet is from one to five. The tomogram(s) can be reconstructed 101 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.17.452128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.17.452128
http://creativecommons.org/licenses/by-nc/4.0/


5 | P a g e  

 

by either weighted back projection (WBP) or iterative methods, such as simultaneous 102 

iterative reconstructive technique (SIRT).  103 

 We implemented IsoNet in Python using Linux as the native operating system. The 104 

package takes advantage of the Keras interface of well-established Tensorflow platform15 105 

and can be run standard-alone, independent of other software packages. The package can 106 

be run either through command line or through a graphical user interface (GUI) (Fig. 1b), 107 

thus meeting to the needs of both seasoned and novice cryoET investigators. The GUI 108 

contains three tabs to facilitate navigation. In each tab, information of the tomograms and the 109 

parameters for each command can be specified. By clicking <Deconvolve=, <Generate Mask=, 110 

<Extract=, <Refine= and <Predict= buttons, user can execute the corresponding command. The 111 

<only print command= option prints out the corresponding command for each step which can 112 

be executed on other computers or submitted to computer clusters. 113 

Deconvolve CTF and Generate Mask steps.  These two optional steps are performed 114 

on the input tomograms prior to the subtomogram extraction in Extract step (Fig. 1a). The 115 

Deconvolve CTF step has two purposes: to enhance low-resolution information and 116 

compensate for the contrast transfer function (CTF) in the tomograms acquired at certain 117 

underfocus conditions. Due to the presence of zeros in CTF, we used a Weiner filter for CTF 118 

compensation, as implemented in Warp16. The Generate Mask step uses statistical methods 119 

to detect <empty= areas in the tomograms (including vacuum above and below the sample 120 

and those only containing ice or carbon) to be excluded from the subsequent analysis. Both 121 

steps could improve performance and efficiency of neural network training. 122 

Extract step.  This step allows randomly cropping subtomograms in the original tomograms 123 

or the region-of-interest of the tomograms defined by masks. The maximum sizes of 124 

subtomograms depend on the memory of graphics processing units (GPU), and 643 or 963 125 

voxels are often used. The extracted subtomograms can be split into random halves to train 126 
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the neural network independently (Fig. 1a), allowing users to perform 3D gold-standard 127 

FSC17,18 to determine the resolution of IsoNet reconstructed tomograms over different 128 

angular directions, particularly on Z-axis. 129 

Refine Step.  Central to the IsoNet workflow is the Refine step, which iteratively trains 130 

neural networks to perform missing-wedge correction and denoising (Fig. 1c). Training of the 131 

neural network requires paired subtomograms as the <inputs= and the <targets.= The <targets= 132 

for IsoNet are the extracted subtomograms rotated at different orientations. In total, 20 133 

different orientations are defined in IsoNet, generating 20 <target= subtomograms for each 134 

extracted subtomogram (Supplementary Fig. 2). For each <target= subtomogram, the 135 

missing-wedge is computationally imposed in Fourier space to generate the corresponding 136 

<input= subtomograms (Fig. 1c). After generating the paired dataset, we train a neural 137 

network to map the <input= to the <target=, enabling the network to recover the imposed 138 

missing-wedge artifacts. The neural network used in IsoNet adopts U-Net architecture19, 139 

containing an encoder path that extracts low-dimensional representation retaining essential 140 

properties, a decoder path to reconstruct from the encoded representation, and skip-141 

connections between encoder and decoder to preserve high-resolution information 142 

(Supplementary Fig. 3). 143 

However, the <target= in the data pairs described above are not ideal subtomograms. 144 

These subtomograms, though rotated, still miss information in other directions. To recover 145 

that information and make <target= subtomograms resembling <ground truth=, we adopt an 146 

iterative approach: In the first iteration, we train the network with subtomograms generated 147 

from the Extract step and obtain the IsoNet-predicted subtomograms. Then, the gained 148 

information in the missing-wedge region in the Fourier space of the predicted subtomograms 149 

was added to the original subtomograms, generating the first-iteration missing-wedge 150 

corrected subtomograms (Fig. 1c). To further improve miss-wedge correction with more 151 

iterations, the corrected subtomograms from the previous iteration are used for the paired 152 
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data generation in the next iteration because they are closer to missing-wedge-free 3D 153 

volumes than the extracted original subtomograms. The trained network from the previous 154 

iteration is then refined with the newly generated data pairs. Through multiple iterations, the 155 

missing-wedge information is gradually added to the subtomograms (Fig. 1c and 156 

Supplementary Fig. 4). Usually, after 10-20 iterations, the refinement converges when the 157 

mean square error no longer decreases. The result of this Refine step is a trained network 158 

that will be applied to the full tomograms and produce the isotropic reconstruction in the 159 

Predict step (Fig. 1a). 160 

Within the Refine step of IsoNet, we also implemented a denoising module based on 161 

the noisier-input strategy20,21. When this optional denoising module is enabled in the Refine 162 

step, in each iteration, 3D noise volumes are reconstructed by the back-projection algorithm 163 

from a series of 2D images containing only Gaussian noise. Those 3D noise volumes are 164 

then added to <input= subtomograms, with the <target= subtomograms staying the same. With 165 

this strategy, IsoNet can be robustly trained with these noisier <input= subtomograms to 166 

eliminate the added noise and improve the SNR of final isotropic reconstructions (Fig. 1c 167 

and Supplementary Fig. 4).  168 

Predict step.  This step performs missing-wedge correction by applying networks obtained 169 

in Refine step to the tomograms of interest. This Predict step runs much faster than the 170 

Refine step. The tomograms used for Predict step are typically (preferably because there are 171 

no concerns of bias) the same or a subset of the tomograms used to train the network. 172 

Nonetheless, users can in theory apply the trained network to tomograms of other similar 173 

samples.  174 

Benchmarking with simulated data 175 

We first perform IsoNet reconstruction on simulated subtomograms using the public 176 

available atomic models. Two scenarios have been considered: apoferritin22 for the first test 177 
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because it has been widely used as a benchmarking specimen in high-resolution cryoEM 178 

and ribosome23 as the second test due to its asymmetric shape and primarily nucleic acid 179 

content. For both tests, density maps are simulated from the atomic models using molmap 180 

function in Chimera24 and filtered to 8Å resolution (Figs. 1d and e). The simulated maps 181 

were then rotated in 10 random directions and imposed missing-wedge in Fourier space, 182 

resulting in simulated subtomograms with missing-wedge artifacts (leftmost columns in both 183 

Figs. 1d and e).  184 

As evident in both tests with simulated subtomograms, features such as alpha-185 

helices perpendicular to the Z-direction are smeared out in those simulated subtomograms 186 

due to the missing-wedge artifact. IsoNet was then used to process those simulated 187 

subtomograms. As expected, the missing information was recovered during this iterative 188 

refinement process (Figs. 1d and e). After 7 iterations, all the alpha helices are visible and 189 

identical to the ground truth structures in the first test. The cubic symmetry of apoferritin 190 

gradually emerged even though we did not impose symmetry during the processing using 191 

IsoNet. In the second test, the distortion in the shapes of ribosome is reduced during the 192 

Refine step, with the major and minor grooves of the RNA become distinguishable (Fig. 1e). 193 

These results indicate that IsoNet performed well with simulated round/symmetric protein 194 

complex as well as asymmetric complex containing both protein and nucleic acid.  195 

Application to virus tomograms 196 

To further demonstrate the superior performance of IsoNet in real-world examples, we 197 

perform the IsoNet reconstruction with the well-characterized cryoET datasets of virus-like 198 

particles (VLP) of immature HIV-1, which is publicly available from the Electron Microscopy 199 

Pilot Image Archive25,26 (EMPIAR-10164). 200 

After reconstructed with IsoNet, gold beads in the tomogram appear spherical (Fig. 201 

2a), as they should, instead of the <X= shape due to the missing-wedge problem. Notably, 202 
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the top and the bottom of the VLP can now be observed in the IsoNet generated tomogram. 203 

When examined in the Fourier space, the missing-wedge region on the XZ slices was filled 204 

with values compared to the Fourier transform of the original tomogram devoid of the 205 

information (Fig. 2a). To quantify the resolution of the filled information, we spilt the extract 206 

subtomograms into two random subsets, trained two neural networks using those two 207 

subsets independently, and then performed 3D FSC calculation17. The resolution on the XY 208 

plane is higher than other planes (Fig. 2b), with the resolution along the X and Y axis 209 

reaching the Nyquist resolution, showing our network preserves the high-resolution 210 

information of the original tomograms. The Z-axis resolution of the isotropic resolution is 211 

about 30Å (Fig. 2b), which is the lowest resolution in all directions. This result demonstrates 212 

that our isotropic reconstruction can faithfully reconstruct the missing-wedge information at 213 

least 30Å resolution.  214 

Importantly, our isotropic 3D reconstruction shows that the quality of the structure is 215 

similar across all directions, allowing biological structures to be interpreted adequately (Fig. 216 

2c and Supplementary Video 1). We resolved those broken viruses, sheared along top and 217 

bottom planes of the tomograms (Fig. 2c and Supplementary Video 2), indicating that the air-218 

water interfaces caused deformation of the capsid, as well-recognized in the cryoEM field27. 219 

The denatured Gag proteins, which are subunits of capsids, at the air-water interfaces are 220 

mostly featureless.  221 

The spherical viruses that were fully embedded in ice are made of hexagonal lattices 222 

(Fig. 2c), whereas no pentagon subunit is observed, consistent with the subtomogram 223 

averaging results of immature HIV particles26. Lattice defects are incorporated onto the 224 

hexagonal lattices, making gaps between patches of the lattices (Fig. 2c). These defects and 225 

slight curvature on the hexagonal lattices could enable the formation of the spherical shape 226 

without pentagons. On lattice edges, small density protrusions extending from the hexagons 227 

were observed (Fig. 2d), indicating the complete hexagons are not assembly units of HIV. In 228 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.17.452128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.17.452128
http://creativecommons.org/licenses/by-nc/4.0/


10 | P a g e  

 

concert with this observation, a recent study shows the Gag dimers are the basic assembly 229 

units of the HIV-1 particle28. These protrusions could be Gag dimers and are prone to 230 

structural changes during proteolytic cleavage28. Those 3D details on HIV lattices can only 231 

be directly visualized after processed by IsoNet. Taken together, the above observations 232 

demonstrate that IsoNet can effectively compensate for the missing-wedge problem for 233 

relatively thin but heterogeneous structures, such as the immature HIV particles, and reach 234 

about 30Å Z-axis resolution.  235 

Application to tomograms of cellular organelles 236 

Next, we tested the performance of IsoNet on resolving structures within cellular organelles 237 

by processing tomograms of flagella of Trypanosoma. Brucei using IsoNet. The missing-238 

wedge compensated tomogram shows relatively uniform or isotropic structures, in all three 239 

dimensions (Figs. 3a and b). The overall contrast is better than the original tomogram 240 

partially due to the denoising of the network. One noticeable missing-wedge artifact is that it 241 

is difficult to recognize the well-established 9 (outer doublets) + 2 (central-pair singlets) 242 

microtubule arrangement in the cross-section view (i.e., XZ view in Fig. 3a). This 243 

arrangement can be readily visible in the result generated by IsoNet (Fig. 3b). The missing-244 

wedge effect is also reflected by the broken and oval-shaped microtubules and severe 245 

artifacts in XZ and YZ planes in the original tomogram reconstructed with SIRT algorithm 246 

(Fig. 3a). In tomograms generated by IsoNet, the microtubules become complete and 247 

circular-shaped with some visible tubulin subunits (Fig. 3b and Supplementary Fig. 5). 248 

Binding to the microtubules, the arrays of outer (red arrows in Fig. 3b) and inner (blue arrows 249 

in Fig. 3b) arm dynein proteins are now clearly distinguishable in the IsoNet generated 250 

tomogram. And radial spokes connecting the outer doublets to the central pair can be 251 

distinguished in all three orthogonal slices (Fig. 3a-b). 252 
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On one side of 9+2 microtubules lies paraflagellar rod (PFR). The structure of PFR is 253 

obscure in the tomogram reconstructed by SIRT (Fig. 3c), which has given rise to the long-254 

lasting debate of the PFR organization29-31. The IsoNet generated tomograms showed a 255 

much clearer picture of PFR. PFR density consists of parallelly arranged planes, and the 256 

angle between those planes and the direction of the axoneme is 45°. Within these planes, 257 

scissors-like densities stack upon each other, forming a scissors-stack-network (Figs. 3d). 258 

This highly organized mesh structure could serve as a biological spring to assist the 259 

movement of the flagella. This unique PFR structure observed here is consistent with the 260 

organization resolved through tedious efforts of sub-tomogram averaging of thousands of 261 

sub-tomograms32. The above observations demonstrate that IsoNet can compensate for the 262 

missing-wedge problem for nonspherical cellular organelles, such as those in the Eukaryotic 263 

flagella, and unveil structure with meticulous details without the need of sub-tomogram 264 

averaging. 265 

Applications to tomograms of cells 266 

To evaluate IsoNet’s performance for much larger and more complex structures in cells, we 267 

applied IsoNet to tomograms of synapses in cultured hippocampal neurons7. Hippocampal 268 

synapses are key devices in brain circuits for information processing and storage. They are 269 

about 200-1000 nm in size, rich in proteins, lipid membranes, vesicles, mitochondria, and 270 

other organelles7,33,34. These samples are thicker7 (300-500 nm) than the above-described 271 

flagella and virus samples, thus are representative of low SNR tomograms. The intrinsic 272 

molecular crowding and structural complexity of the synapse also present difficulties for 273 

missing-wedge correction. Arguably, synaptic cryoET tomograms are among the most 274 

challenging datasets for any analysis algorithm. 275 

IsoNet achieved isotropic reconstruction of the synaptic tomogram with substantially 276 

higher contrast and better structural integrity (Figs. 4a, b, and Supplementary Videos 3-5). 277 
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Synaptic vesicles that were smeared out along the Z-axis in the original tomograms now 278 

become spherical (Fig. 4c). The linker proteins between vesicles that are hardly seen in the 279 

original tomograms now become visible in XZ and YZ planes (Figs. 4c). Even some 280 

horizontally oriented features can be resolved. For example, large patches of membrane on 281 

the top and the bottom of the synapse and the endoplasmic reticulum (ER) now appear 282 

smooth and continuous in the isotropic reconstruction (Figs. 4b and e). These structural 283 

integrity improvements facilitate the segmentation of the cellular structure, since the missing-284 

wedge corrected structures can be directly displayed based on their density threshold in 3D. 285 

Particularly, placing the artificial spheres to represent synaptic vesicles, as in previous 286 

studies7,33, is no longer needed (Fig. 4e). As the elongation effect of microtubules in the Z-287 

axis being corrected, the protofilaments of microtubules have now become visible (Figs. 4d 288 

and f). Inside synapses, numerous small black dots can be observed in the cytoplasm but 289 

not in vesicular lumens. These dots represent small cytoplasmic proteins (orange arrows in 290 

Fig. 4c), indicating our reconstruction preserves delicate structural features.  291 

As a prominent example, tomograms from IsoNet revealed various types of clathrin 292 

coats in hippocampal synapses. Clathrin-mediated endocytosis is a well-known presynaptic 293 

vesicle recycling mechanism and is a critical step in synaptic transmission35,36. Clathrin 294 

proteins are also present in postsynaptic compartment for neurotransmitter receptor 295 

endocytosis, a process playing essential roles in synaptic plasticity37. Those clathrin proteins 296 

are known to form cages that consist of pentagons and hexagons38. We observed structures 297 

similar to clathrins cages of various sizes in the postsynaptic compartment in synaptic cryo 298 

tomogram. However, due to the missing-wedge effect, the geometry of these clathrin cages 299 

cannot be directly resolved in situ in typical cellular tomograms. We applied IsoNet software 300 

to one synaptic tomogram that contains many putative clathrin cages in the postsynaptic 301 

compartment (Figs. 5a and b, Supplementary Fig. 6). After the isotropic reconstruction, all 302 

the pentagons and hexagons, which made up the clathrin cages, are revealed (Figs. 5c and 303 
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d). This contrasts with the original tomograms, where the polygons are smeared, especially 304 

in XZ and YZ planes.  305 

The 25 clathrin cages can be categorized into five types based on their geometry 306 

(Supplementary Video 6). The most abundant type is minicoat, which is the smallest cages 307 

the clathrin proteins can form39. Intriguingly, the largest clathrin cage contains two 308 

heptagons, in addition to 8 hexagons and 14 pentagons (Fig. 5d, Supplementary Fig. 7), 309 

which has not been reported in previous single-particle analysis38,39. This geometry of the 310 

cage deviates from the common belief that a closed polyhedral protein cage contains 12 311 

polygons. This heterogeneous in the Platonic cages of the clathrin arises from the specific 312 

yet variable forms of clathrin triskelion interactions. Adapting those heptagons in neurons 313 

could likely be strategy to scale up the size of the clathrin coats that enables accommodating 314 

different sizes of vesicles. Intriguingly, we did not observe vesicles inside these clathrin 315 

cages, suggesting that clathrin protein molecules may spontaneously self-assemble into 316 

cages even when not involved in the endocytosis. It is important to note that the unexpected 317 

heptagon containing clathrin cage would be lost in averaging-based methods because it only 318 

has a single instance in the tomogram. Thus, these observations made in neurons 319 

demonstrated that IsoNet enables compensating for missing-wedge for structures that are 320 

highly heterogeneous, with limited copy numbers, and in the complex cellular environment. 321 

Discussion 322 

Here we have developed a deep learning-based package, IsoNet, to overcome the limitation 323 

of missing-wedge problem and low SNR plaguing all current cryoET methods. IsoNet 324 

embodies several measures that prevent the neural network from <inventing= molecule 325 

features. First, the neural network was initialized with random numbers, and all the 326 

information comes from original tomograms without prior knowledge. Second, we introduced 327 

the dropout factor of 0.5 in the neural network so that with 50% of randomly picked neurons 328 
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remaining, the network can still reproduce the result. Third, to further prevent over-fitting, the 329 

extracted subtomograms for training can be divided into random halves, and the resolution 330 

estimation is based on the gold-standard 3D FSC.  331 

 To demonstrate its robustness, we have applied IsoNet to process three 332 

representative types of cryoET data4pleomorphic virus HIV, cellular organelle axoneme 333 

with PFR, and neuronal synapse4representing three levels of length and complexity. IsoNet 334 

significantly improved structural interpretability in all these cases, allowing us to resolve 335 

novel structures of lattice defects in immature HIV capsid, dynein subunits, and scissors-336 

stack-network architecture of the paraflagellar rod in eukaryotic flagella, and heptagon 337 

containing clathrin cage inside a neuronal synapse. In the resulting tomograms, the in situ 338 

protein features appear isotropic and have high quality that sometimes matches that 339 

obtained through subtomogram averaging. For amorphous structures in the tomograms, 340 

such as membranes, IsoNet allows the network to learn the feature representation from 341 

many other similar structures in the tomogram and recover the missing information. Thus, 342 

IsoNet expands the utility of cryoET by overcoming its inherent missing-wedge problem, 343 

enabling 3D visualization of structures that are either complex as those in cells (Figs. 4 and 344 

5) or are rare as those tomograms of patients tissues40. 345 

 Philosophically speaking, no information can emerge from vacuum/nothing. So where 346 

does IsoNet recover the missing information from? The questions touch upon the 347 

fundamentals of deep learning and can be thought of as relating to non-locality of 348 

information in space. That is, by learning from information scattered around in original 349 

tomograms with recurring shapes of molecules, IsoNet sophistically eliminates distorted or 350 

missing information. The great advantage of the IsoNet approach is that similar features 351 

across different dimensions can be automatically discovered and =averaged= without human 352 

intervention. Such features could be related in translation and rotation manners in the three 353 

Cartesian dimensions, such as crystalline PFR subunits and axonemal microtubules and 354 
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dyneins (Fig. 3); they could also be related through symmetries, such as those pentagons 355 

and hexagons of clathrin cages; ultimately, they could also be related biologically, such as 356 

the facts that proteins are made up of only 20 amino acids and nucleic acid of four bases, 357 

and both are geometrically constrained as a linear molecule. IsoNet learns their relationships 358 

in the same tomogram or across multiple tomograms and reconstructs these features 359 

automatically. In essence, therefore, IsoNet and sub-tomogram averaging compensate the 360 

missing-wedge problem through the same principle.  361 

Regardless of the details of information recovery, the substantial improvement in 362 

map interpretability afforded by IsoNet now allows visualization of structures for functional 363 

interpretation without the need of tedious and time-consuming sub-tomogram averaging, 364 

which typically involves a priori feature identification and manual particle picking. Visualizing 365 

such structures in cellular tomograms by IsoNet would also improve localization and 366 

subsequent sub-tomogram averaging of hundreds of thousand copies of like-structures, 367 

leading to in situ atomic resolution structures of cellular complexes in their native cellular 368 

environment.  369 
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Figures:  370 

371 

Fig. 1 | Principle and workflow of IsoNet. 372 
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a, Workflow of the IsoNet software. b, GUI of IsoNet. c, Illustration of Refine step: First, 373 

subtomograms are rotated and then applied with additional missing-wedge artifacts to 374 

produce paired data for training. Second, the paired data is used to train a neural network 375 

with U-net architecture. Third, the trained neural network is applied to the extracted 376 

subtomograms to produce missing-wedge corrected subtomograms. The recovered 377 

information in these subtomograms is added to the original subtomograms, producing new 378 

datasets for the next iteration. d, Validation of IsoNet with simulated sub-tomogram of 379 

apoferritin and ribosome. Surface views from three orthogonal directions of the 380 

reconstructions are shown after increasing iterations of IsoNet processing. Blue arrows 381 

indicate segments of RNA duplexes. 382 

  383 
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 384 

Fig. 2 | IsoNet reveals lattice defects in immature HIV capsid. 385 
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a, XZ slice views of tomogram reconstructed with WBP (top), CTF deconvoluted WBP 386 

tomogram (middle), and missing-wedge corrected tomograms (bottom), with their Fourier 387 

transforms on the right. Orange arrow indicates a gold bead. b, 3D FSC of the two 388 

independent isotropic reconstructions, the left panel shows the FSC along the X, Y and Z 389 

directions. Three panels on the right show the 3D FSC at 0.5 and 0.143 cutoffs on XY, XZ, 390 

and YZ planes, respectively. c, 3D rendering of the missing-wedge corrected tomogram. 391 

Dashed lines show the air-water interfaces. d, Examples (left) and illustrations of the lattice 392 

edges of HIV capsids. Red arrows point out the density protrusions on the edges of 393 

hexagonal lattices.  394 

  395 
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 396 

Fig. 3 | Architecture of the PFR revealed after missing-wedge correction. 397 

a-b, Orthogonal slices of a tomogram of flagellar for SIRT reconstruction (a) and IsoNet 398 

reconstruction (b). DMT: Doublet microtubule; CPC: central pair complex; RS: radial spoke; 399 

Red arrows: outer arm dyneins; Blue arrow: inner arm dynein. c, YZ slices show the cross-400 

sections corresponding to the cyan lines in (a) and (b). d, 3D rendering of PFR in the IsoNet 401 

generated tomogram. Left panel is the 3D view of PFR in the direction corresponding to (c). 402 

Right panel shows the en face view of a PFR scissors-stack-network (SSN) plane.  403 

 404 

  405 
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 406 

Fig. 4 | IsoNet recovers missing information in the tomograms of neuronal synapses. 407 
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a-b, Orthogonal slices of a synaptic tomogram reconstructed with WBP (a) and IsoNet (b). 408 

SV: synaptic vesicle; Mito: mitochondria; MT: microtubule; PSD: postsynaptic density. c-d, 409 

Zoomed-in orthogonal slices of WBP reconstruction and IsoNet produced reconstruction. 410 

Magenta arrows: vesicle linker; Orange arrows: small cellular proteins; Green arrow: 411 

microtubule luminal particles; Red arrows: microtubule subunits. e, 3D rendering of the 412 

tomogram shown in (b). f, 3D rendering of a slab of tomogram with WBP reconstructions 413 

and Isotropic reconstructions, showing microtubules and vesicles.  414 
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 416 

Fig. 5 | IsoNet reveals various types clathrin coats in a synapse. 417 

a-b, Orthogonal slice views of another synaptic tomogram reconstructed with SIRT algorithm 418 

(a) and IsoNet (b). c, 3D rendering of the tomogram shown in (b). d, 3D views of the five 419 

types of clathrin cages in (c). 420 
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Methods 556 

Software implementation 557 

We implemented IsoNet in Python using Linux as the native operating system. Typical 558 

hardware setup includes one node with four Nvidia GeForce 1080Ti GPU cards of 11 559 

gigabytes memory, which is common in a cryoET research laboratory. The package can be 560 

run from command line and relies on Keras that acts as interface for Tensorflow15, and the 561 

package can be downloaded from Github (https://github.com/Heng-Z/IsoNet). A detailed 562 

document is provided, accompanied by the IsoNet software. Tutorial dataset and video can 563 

be found in: https://github.com/Heng-Z/IsoNet_tutorial. 564 

 This package is standard-alone and does not rely on other software such as IMOD, 565 

while some common Python modules must be installed prior to running IsoNet. Such Python 566 

modules are easy to install with the <pip= command. For example, the IsoNet uses Python 567 

module <mrcfile= for the read and write tomogram or subtomogram, and <numpy= for the 568 

image processing such as rotation and Fourier transform. The U-net neural network is built 569 

by stacking multiple layers (Supplementary Fig. 3) provided in <tensorflow.keras.layers=. For 570 

example, three <Conv3D= layers are stacked together in each depth of the encoding path of 571 

the U-net.  572 

The package can be launched through a single command entry, either <isonet.py= or 573 

<isonet.py gui=, for Linux command line operations or a graphical user interface (GUI) (Fig. 574 

1b), respectively. Users can then access all the processing steps of the IsoNet procedure. 575 

The IsoNet procedure contains five steps, including three major steps: Extract, Refine, and 576 

Predict and two accessary steps: CTF deconvolve and mask generate. Each of these steps 577 

corresponds to one command of IsoNet in Linux terminal and will be described in the 578 

following sections. 579 

Dataset preparation 580 

To use IsoNet, users should prepare a folder containing all tomograms. Binning the 581 

tomograms to a pixel size of about 10Å is recommended. Typically,a folder containing 1 to 5 582 

tomograms is used as input. These input tomograms can either be reconstructed by SIRT or 583 

WBP algorithm. The tilt axis is the Y-axis, and recommended tilt range is -60 to 60°, while 584 

other tilt ranges might also work. The tilt series can be collected with any tilt schemes, 585 

continuous, bidirectional, or dose-symmetric. 586 
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 IsoNet uses Self-defining Text Archive and Retrieval (STAR) file format to store 587 

information of tomograms and program parameters been used during Isonet processing. 588 

Thus, it inter-operates seamlessly with such leading cryoEM software packages as Relion41. 589 

Tomogram STAR file, default named as tomograms.star, is required to run IsoNet and this 590 

file can be prepared with IsoNet GUI, with a text editor, or with the following command: 591 

$ isonet.py prepare_star [tomogram_folder]  592 

Deconvolve CTF 593 

For the tilt series imaged without Volta phase plate (VPP), the sinusoidal CTF suppresses or 594 

even inverts information at certain frequencies. To enhance the contrast of the tomograms 595 

and promote information retrieval, CTF deconvolution, similar to what is implemented in 596 

Warp software, is applied to tomograms in this step.  597 

IsoNet uses Wiener-like filter16 for CTF deconvolution, with spectral signal-to-noise 598 

ratio (SSNR) set empirically: 599 

þþ�ý = �−�×100� × 10� × �� 600 

 Where f denotes the spatial frequency, H a high-pass filter, F the custom fall-off 601 

parameter, and S denotes the custom strength parameter. Because the SSNR of the 602 

Weiner-like filter is determined empirically, users can tune the SSNR fall-off or deconvolve 603 

strength parameters to enhance contrast of the tomograms. This step can be performed by 604 

<CTF deconvolve= function in GUI or with the following command: 605 

$ isonet.py deconv [tomogram_star] --snrfalloff 1.0 --deconvstrength 1.0 606 

Generate mask  607 

Subtomograms for training would be better to contain rich information than empty areas with 608 

only ice, air, or carbon. In this optional mask generation step, IsoNet uses statistical methods 609 

to detect empty regions from which subtomograms will not be extracted. Two different types 610 

of masks can be applied: density mask that excludes areas with low cryoET density and 611 

standard deviation mask that excludes areas with low standard deviation.  612 

The density mask will first suppress the noise with a Gaussian filter and then apply a 613 

sliding window maximum filter to the contrast-inverted tomogram. The areas with relatively 614 

smaller density values in the filtered tomogram will be deemed as empty space and 615 
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excluded in the mask. The parameter <density_percentage= defines the percentage of the 616 

area kept in the tomogram by the density mask.  617 

The standard deviation mask is achieved by calculating the standard deviation of 618 

voxels in a small cubic volume centered at each evaluating voxel. The voxels having 619 

relatively lower standard deviation will be excluded. The parameter <std_percentage= defines 620 

the percentage of voxels kept by the standard deviation mask.  621 

IsoNet uses the intersection of these two masks. The parameters for mask 622 

generation can be tuned to cover the region of interest but exclude empty areas. In addition 623 

to these two types of masks, IsoNet allows excluding top and bottom parts of tomograms 624 

which usually are empty areas by the <z_crop= parameter.  625 

 Usually, the default parameters will provide a good mask to exclude empty areas; 626 

users can also tune the parameters using GUI by <Generate mask= function or the following 627 

command, for example:  628 

$ isonet.py make_mask [tomogram_star] --density_percentage 50 629 

Extract subtomograms  630 

In each tomogram, specified number of seeds are randomly generated within the whole 631 

tomogram or the region of interest defined by the mask. Then, cubic volumes centered at the 632 

generated seeds are boxed out and saved as subtomograms. The extracted subtomograms 633 

should be large enough to cover typical features in tomograms, such as a patch of 634 

membrane or vesicle. However, due to the GPU memory limitation, this size cannot be 635 

arbitrarily large. We usually extract 300 subtomograms of 963 voxels in total. After extraction, 636 

the contrast of those subtomograms is inverted. Then, tomograms are normalized by 637 

percentile to ensure 80% of the voxel values fit into the range between zero and one. The 638 

subtomograms can be randomly split into two halves and used for performing missing-639 

wedge correction independently to eliminate overfitting and calculate gold-standard FSC. 640 

The information of extracted subtomograms is stored in another STAR file, default 641 

named as subtomo.star. Subtomogram extraction can be performed by either IsoNet GUI or 642 

the following command: 643 

$ isonet.py extract [tomogram_star]  644 

Refine 645 
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This process iteratively trains neural networks to fill the missing-wedge information using the 646 

same tomograms whose missing-wedge artifacts were added to other directions. The 647 

denoising module can also be enabled in this step, making the network capable of reducing 648 

noise and recovering the missing-wedge. After refinement, the resulting subtomograms and 649 

neural network model in each iteration are saved. The network models with a suffix of <.h5= 650 

can be used for the prediction step.  651 

Four steps, including training dataset generation, adding noise, network training, and 652 

subtomograms prediction, will be performed during each iteration. These steps will be 653 

described in the following sections. The missing-wedge restored subtomograms by 654 

subtomograms prediction in every iteration will be used for training dataset generation in the 655 

next iteration. Usually, 10-15 iterations in the refine step are sufficient to obtain a well-trained 656 

network for the missing-wedge correction, whereas more iterations can be performed for 657 

refinement with denoising. 658 

The refine step can be performed from the GUI or with the following command, for 659 

example:  660 

$ isonet.py refine [tomogram_star] --iterations 30 --gpuID '0,1,2,3' 661 

Users can also continue training from the previous iterations using <continue_from= or 662 

from previously trained models using <pretrained_model= parameter.  663 

Refine step 1: training dataset generation 664 

To generate paired datasets for neural network training, IsoNet rotates the extracted 665 

subtomograms to different orientations. Twenty rotated copies can be obtained for each 666 

extracted subtomogram as follows (Supplementary Fig. 2). First, each subtomogram is a 667 

cube with six faces. Each face can be rotated with an out-of-plane angle to face toward the 668 

positive direction of the Z-axis. Second, each out-of-plane rotation can be followed by four 669 

in-plane rotations, making 24 possible rotations. However, among the 24 rotations, four of 670 

them result in subtomograms with the same missing-wedge direction as the original 671 

subtomograms. Thus, these four rotations are excluded, resulting in 20 orientations for each 672 

subtomograms. This rotation process enlarges the original dataset by 20 times for training, 673 

making it possible to achieve a good performance of missing-wedge correction even with a 674 

small dataset, e.g., a single tomogram.  675 
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After the rotation, the IsoNet program then applies missing-wedge filter to the rotated 676 

subtomograms. The missing-wedge filter volume has the same size as that of the 677 

subtomograms. In the missing-wedge filter volume, voxel value is zero inside the missing-678 

wedge region and one in the rest of the volume. Then, the Fourier transforms of the rotated 679 

subtomograms are multiplied by the missing-wedge filter volume and then transformed back 680 

to the real space, generating missing-wedge filtered subtomograms. 681 

To avoid the incomplete information along the edge of the subtomograms when 682 

applying missing-wedge filter, both rotated subtomograms and missing-wedge filtered 683 

rotated subtomograms are trimmed into smaller volumes (often 643 voxels), generating 684 

<target= and <input= for the network training, respectively. These generated data pairs are 685 

used to train neural network that maps the <input= to <target=. 686 

Refine step 2: adding noise. 687 

This optional step allows performing missing-wedge correction and denoising simultaneously 688 

using IsoNet. IsoNet uses a noisier-input strategy20,21 that learns to map <input= with 689 

additional noise to the <target=.  690 

IsoNet simulates the noise pattern in reconstructed tomograms with the assumption 691 

that in every acquired projection, the noise is an additive Gaussian noise and independent 692 

among all images acquired in a tilt series. During the adding noise step, a set of 3D noise 693 

volumes are constructed by back-projecting a series of  2D Gaussian noise images to reflect 694 

the effect of the back-projection algorithm on noise formation.  695 

The denoise level is defined as the ratio of the standard deviation between the 696 

subtomograms and the added noise. The noise volumes are scaled to match the denoise 697 

level before being added to the <input= subtomograms. Thus, the lower denoise value means 698 

less noise is added to individual subtomograms.  699 

Because the added noise may further corrupt the 3D subtomograms, making the 700 

network hard to train, it is recommended to start the first several iterations of refinement 701 

without denoising. After the refinement results are nearly converged, the noise volume can 702 

then be added to the <input= subtomograms in the following iterations. A typical routine is to 703 

train ten iterations without denoising and then increase the denoise level by 0.05 for every 704 

five iterations. This step-wised noise addition can be performed automatically in the refine 705 

step of the IsoNet software.  706 
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Refine step 3: network training 707 

Neural network used in IsoNet is based on U-net, which is well recognized in biomedical 708 

image restoration and segmentation19. The main building blocks of the U-net are 3D 709 

convolution layers with non-linear activation functions called Rectified Linear Units (Relu), 710 

which are applied per voxel. Those convolution layers have kernel sizes of 3x3x3. Three 3D 711 

convolution layers are stacked together to form a convolution block in our network, which 712 

can extract complicated features. 713 

By stacking the convolutional blocks, the U-net is built based on encoder-decoder 714 

architecture (Supplementary Fig. 3). The encoder path is a set of convolution blocks and 715 

strided convolution layers that compress 3D volumes. Strided convolution layers reduce the 716 

spatial size of the input of this layer by 2x2x2, allowing the network to learn more abstract 717 

information. A convolution block followed by a strided convolution layer makes one encoder 718 

block in the contracting path. Total three encoder blocks form the entire encoding path. The 719 

number of convolution kernels for each convolution layer doubles after each encoder block. 720 

After the encoder path, the 3D volumes are processed with a convolution block and enter the 721 

decoder path of the network. The decoder path is symmetrical to the encoder but uses 722 

transpose convolution layers, opposite to strided convolution layers, to enlarge the 723 

dimension of features. 724 

Although the down-sampling of the 3D volumes captures the essence of the features, 725 

high-resolution information is lost by stride convolution operations. In particular, the skip 726 

connections that concatenate the feature layers of the same dimension in two paths are 727 

implemented to preserve the high-resolution information. Dropout strategy that randomly set 728 

50% of neurons’ activation to 0 in the convolution layers is used to prevent overfitting during 729 

the training.  730 

This network uses the mean absolute error between the output of the network and 731 

the target subtomograms as loss function. The loss function is minimized by employing 732 

Adam optimizer42 with an initial learning rate of 0.0004. The neural network training is 733 

performed on GPU and consists of several epochs or cycles (typically ten epochs). Each 734 

epoch will traverse through the paired dataset. The data pairs are grouped into batches 735 

(which generally have a size of 8 or 16) to feed into each epoch. After the training, the 736 

trained neural networks are saved for the next iteration of the refine step. 737 

Refine step 4: Subtomogram prediction 738 
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After each iteration of refinement, the network is applied to the original subtomograms, 739 

generated predicted subtomograms. Then IsoNet generates an inverse missing-wedge filter 740 

volume with value one inside the missing-wedge region but zero in the rest of the 3D 741 

volume. The predicted subtomograms are then transformed to Fourier space and multiplied 742 

with the inverse missing-wedge filter volume to extract the added information inside the 743 

missing-wedge regions. Then, these filtered volumes are added to the original 744 

subtomograms, generating the missing-wedge restored subtomograms for subsequent 745 

iterations of refinement. 746 

Predict 747 

After the refine step, the trained network is saved in a model file. It will be used to correct the 748 

missing-wedge for the original tomogram or other similar tomograms. For most tomograms, 749 

the full-size 3D images can hardly fit into the memory of a regular GPU. Thus, the IsoNet 750 

program splits the entire tomogram into smaller 3D chunks to apply the network on them 751 

separately. Then output 3D chunks are montaged to produce the final output. To avoid the 752 

line artifact between adjacent chunks caused by the loss of information on the edges of 753 

subtomograms. We implemented a seamless reconstruction method called overlap-tile 754 

strategy, which predicts the overlapping chunks to avoid the edge effect. The <crop_size= 755 

parameter defines the size of the cubic chunks. This predicting step can be performed with 756 

IsoNet GUI or with the following command, for example: 757 

$isonet.py predict [tomogram_star] [output_folder] --model [network_model] 758 

Benchmarking with simulated data  759 

We performed IsoNet reconstruction on simulated subtomograms using the public available 760 

atomic models: apoferritin model22 (PDB: 6Z6U)  and ribosome model23 (PDB: 5T2C). For 761 

both tests, density maps were simulated from the atomic models using <molmap= function in 762 

ChimeraX24 and filtered to 8Å resolution (Fig. 1d, e). Those simulated maps with 2.67 Å/pix 763 

pixel size were then rotated in 10 random directions and imposed with missing-wedge filter 764 

in Fourier space, resulting in simulated subtomograms with missing-wedge artifacts (leftmost 765 

columns in both Fig. 1d, e).  766 

For the simulated Apoferritin maps, we created a subtomogram STAR file with the 767 

<isonet.py prepare_subtomo_star= command. With this subtomogram STAR file as input, we 768 

performed an IsoNet refine step for ten iterations without denoising. For benchmarking with 769 

the simulated ribosome maps, we extracted eight smaller subtomograms (963 voxels) from 770 
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each ribosome map due to the larger dimension of the ribosome map. The subtomogram 771 

STAR file generated in the extract step was used for subsequent refine step. After ten 772 

iterations, trained network was obtained and was then used to produce missing-wedge 773 

corrected maps of ribosome using <isonet.py predict= command. 774 

Processing tomograms of HIV virus 775 

For pleomorphic viruses, we downloaded an HIV dataset from public repository EMPIAR-776 

1016426. Three tilt series,TS_01, TS_43 and TS_45, were used for testing. The movie stacks 777 

were drift corrected with MotionCorr43 and reconstructed with IMOD11 using WBP algorithm. 778 

The defocus value of each image was determined by CTFFIND444. Eight-time binned 779 

tomograms with 10.8Å pixel size were used for further processing. For the CTF 780 

deconvolution of the tomograms, SSNR fall-off and the deconvolve strength parameters 781 

were set to 0.7 and 1, respectively. Then, we created one mask for each tomogram using 782 

<isonet.py make_mask= command. Total 300 subtomograms with 963 voxels were randomly 783 

extracted from the three tomograms and then split into random halves. For each half of the 784 

subtomograms, we performed refine step for 35 iterations independently, generating two 785 

trained neural networks. In the predict step of IsoNet, tomogram TS_01 was used to 786 

generate two missing-wedge corrected tomograms by the two independently trained 787 

networks. These two tomograms were then averaged to create a final map.   788 

These two missing-wedge corrected tomograms enabled calculating gold-standard 789 

FSC. Instead of calculating a global FSC, we performed 3D FSC calculation for all the 790 

directions17 to measure the resolution anisotropy of the missing-wedge corrected tomogram. 791 

Because the 3D FSC calculation works for cubic volumes while the size of the tomogram is 792 

non-cubical, we cropped the generated tomograms into cubic subtomograms for the 3D FSC 793 

calculation. As for the HIV dataset, the 3D FSC was calculated for four 2003 volumes 794 

cropped from both missing-wedge corrected HIV tomograms. The resulting four 3D FSC 795 

were then averaged to produce the final 3D FSC, the orthogonal sections of which are 796 

shown in Figure 2b.  797 

Processing tomograms of the Eukaryotic flagella 798 

For cellular organelles, we chose the demembraned flagella of Trypanosoma. Brucei. The 799 

datasets described here were obtained in our previous studies32,45. Tilt series were recorded 800 

with SerialEM46 by tilting the specimen stage from −60° to +60° with 2° increments. The 801 

cumulative electron dosage was limited to 100 to 110 e−/Å2 per tilt series. The movie stacks 802 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.17.452128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.17.452128
http://creativecommons.org/licenses/by-nc/4.0/


35 | P a g e  

 

were drift corrected with MotionCorr43 and reconstructed with IMOD using SIRT algorithm. 803 

The tomograms were binned by four, resulting in a pixel size of 10.21 Å/pixel. 804 

Three tomograms were chosen for missing-wedge correction. These tilt series were 805 

acquired with VPP so that we did not perform the CTF deconvolution. We generated one 806 

mask for each tomogram using <isonet.py make_mask= command. Then, we extracted a 807 

total of 360 cubic subtomograms with 1283 voxels from three tomograms. Using these 808 

subtomograms, we trained a network by running the refine step for 35 iterations with default 809 

denoise levels, which were automatically changed from 0 to 0.2. Trained network produced 810 

in the refine step was then used to run the predict step of IsoNet to obtain a final missing-811 

wedge corrected tomogram, which is shown in Figure 3.  812 

Processing tomograms of hippocampal neurons 813 

Tomograms of hippocampal neurons were obtained in our previous study7. The two 814 

tomograms used in this study were collected on a Titan Krios microscope equipped with K2 815 

summit in counting mode. The energy filter (Gatan image filter) slit was set at 20 eV. The 816 

Titan Krios was operated at an acceleration voltage of 300 KV. Tilt series were acquired 817 

using SerialEM46 with tilt scheme: from +48° to -60° and from +50° to +66° at an interval of 818 

2°. The total accumulated dose was ~150 e-/Å2. The pixel size of the tomograms is 4.35 819 

Å/pixel.  Each recorded movie stack was drift-corrected and averaged to produce a 820 

corresponding micrograph using MotionCorr43. The tilt series were aligned using IMOD11. 821 

One tilt series of the tomogram shown in Figure 4 was imaged with VPP, while the other 822 

shown in Figure 5 was acquired without VPP. When VPP was used, the defocus value was 823 

maintained at -1 μm; otherwise, it was kept at -4 μm.  824 

For the tilt series recorded with VPP, the aligned tilt series were reconstructed using 825 

NovaCTF47, generating a tomogram reconstructed with WBP. The tomogram was binned by 826 

four, and 300 subtomograms (963 voxels) were extracted from that tomogram. Those 827 

subtomograms were then used 35 iterations of refinement. The trained network produced in 828 

refine step was used for missing-wedge correction for the entire tomogram (Fig. 4). 829 

For the tilt series recorded without VPP, the defocus value of each image was 830 

determined by CTFFIND444, and CTF phase flipped tomogram was obtained by NovaCTF47. 831 

This tomogram (Fig. 5) was reconstructed with SIRT-like filter, with CTF phase flipping 832 

performed on the individual tilt images. The tomogram was binned by four for missing-wedge 833 

correction with IsoNet. Then, 200 subtomograms (963 voxels) were extracted from the 834 
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tomogram in the extract step of IsoNet. A trained network was obtained with the refine step 835 

of IsoNet for 35 iterations. The trained network was then used for the predict step of IsoNet, 836 

producing a missing-wedge corrected tomogram (Fig. 5).  837 

3D visualization 838 

IMOD48 was used to visualize the 2D tomographic slices. UCSF ChimeraX24 was used to 839 

visualize the resulting IsoNet generated tomograms in their three dimensions. Segmentation 840 

of densities maps and surface rendering were performed by the volume tracer and color 841 

zone in UCSF ChimeraX.  842 

End notes 843 

Supplementary information. Supplementary Information is linked to the online version of 844 

the paper. 845 
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Supplementary Figures and Videos: 874 

 875 

 876 

Supplementary Fig. 1│a, Orthogonal views of the WBP reconstructed tomograms and their 877 

corresponding Fourier transforms. b, Orthogonal views of the IsoNet reconstructed 878 

tomograms and their corresponding Fourier transforms.   879 

  880 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.17.452128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.17.452128
http://creativecommons.org/licenses/by-nc/4.0/


39 | P a g e  

 

 881 

 882 

Supplementary Fig. 2 │ Rotation schemes. Twenty rotated copies are obtained for each 883 

extracted subtomograms demonstrated in the center. First, each subtomogram has six faces. 884 

Each face can be rotated with an out-of-plane angle to face toward six positive directions of 885 

the Y-axis. Second, each out-of-plane rotation is followed by four in-plane rotations, making a 886 

total of 24 possible rotations. However, among the 24 rotations copies, four have the same Z-887 

axis missing-wedge as the original subtomograms. Thus, these four rotations are excluded 888 

(red cross).  889 
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 891 

 892 

Supplementary Fig. 3 │The architecture of neural network based on U-net. The values 893 

at the bottom left of boxes show sizes of 3D feature maps or subtomograms, while the 894 

values on top of the boxes are their numbers.   895 
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 897 

 898 

Supplementary Fig. 4 │ Iteratively filling the missing-wedge region.   XZ slice views of 899 

subtomograms and corresponding power spectrum at different iterations in refine step. 900 
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 902 

 903 

 904 

  905 

 906 

Supplementary Fig. 5 │ XZ slices of microtubule doublets in axoneme.  Left: XZ slices 907 

of the SIRT reconstructions. Right: the slices of the corresponding tomogram generated by 908 

IsoNet. Red arrows indicate microtubule subunits. 909 
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 911 

 912 

Supplementary Fig. 6 | Orthogonal views of the tomogram containing clathrin cages 913 

reconstructed with the SIRT algorithm in IMOD. PSD: postsynaptic density. 914 
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 916 

Supplementary Fig. 7 | 3D views for the shape of the heptagon containing clathrin 917 

cage 918 
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 920 

Supplementary Video 1 | 3D tomogram of HIV particles. This video shows 3D structures 921 

in an IsoNet generated tomogram. The tomogram density is sliced through three orthogonal 922 

directions. 923 
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 925 

Supplementary Video 2 | 3D rendering of HIV particles. The HIV particles are rendered in 926 

yellow (fully embedded in ice) and blue (at air-water interface). The rest cryoEM density is 927 

shown in transparent gray. 928 
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 930 

Supplementary Video 3 | 2D slices of a tomogram of a neuronal synapse. Left: IsoNet 931 

generated tomogram. Right: The original tomogram reconstructed with WBP. 932 
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 934 

Supplementary Video 4 | 3D tomogram of a neuronal synapse. This video shows 3D 935 

structures in an IsoNet generated tomogram. The tomogram density is sliced through three 936 

orthogonal directions. 937 

 938 
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 940 

Supplementary Video 5 | 3D rendering of the neuronal synapse.  941 
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 943 

Supplementary Video 6 | 3D tomogram clathrin cages in a neuronal synapse. This 944 

video shows 3D structures of an IsoNet generated tomogram. The tomogram density is 945 

sliced through three orthogonal directions. Then, 3D rendering of clathrin cages is shown 946 

and rotated. 947 
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