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Abstract

Cryogenic electron tomography (cryoET) allows visualization of cellular structures in situ.
However, anisotropic resolution arising from the intrinsic “missing-wedge” problem has
presented major challenges in visualization and interpretation of tomograms. Here, we have
developed IsoNet, a deep learning-based software package that iteratively reconstructs the
missing-wedge information and increases signal-to-noise ratio, using the knowledge learned
from raw tomograms. Without the need for sub-tomogram averaging, Isonet generates
tomograms with significantly reduced resolution anisotropy. Applications of IsoNet to three
representative types of cryoET data demonstrate greatly improved structural interpretability:
resolving lattice defects in immature HIV particles, establishing architecture of the
paraflagellar rod in Eukaryotic flagella, and identifying heptagon-containing clathrin cages
inside a neuronal synapse of cultured cells. Therefore, by overcoming two fundamental
limitations of cryoET, IsoNet enables functional interpretation of cellular tomograms without
sub-tomogram averaging. Its application to high-resolution cellular tomograms should also
help identify differently oriented complexes of the same kind for near-atomic resolution sub-

tomogram averaging.

Introduction

The advent of single-particle cryoEM has made it routine to determine structures of isolated
macromolecular complexes at 2-4 A resolution by averaging hundreds of thousands of
particles, enabling atomic modeling. The biological functions of these complexes, however,
are carried out through their interactions and often depend on their spatial arrangements
within cells or sub-cellular organelles’2. Examples abound, ranging from pleomorphic
viruses, to cellular organelles, to large-scale cellular structures like synapses between
neurons. Many viruses, notably those involved in devastating pandemics such as SARS-

CoV-2, influenza viruses, and human immunodeficiency viruses (HIV), are pleomorphic in
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the organizations of their proteins and genomes. Cellular organelles, such as axonemes
containing microtubule doublets surrounding a central pair3, though largely conserved in
their core elements across different species, rely on their non-conserved and variable
attachment of peripheral components that define their characteristic species-specific
functions*. In neurons, organizations of molecules, rather than molecules alone, inside the
synapse might underlie synaptic plasticity that is generally regarded as the cellular basis of
learning and memory®¢. Such organizational information, or “molecular sociology”,

unfortunately is lost in single-particle cryoEM.

To reveal such molecular sociology across viruses or inside cells, cryogenic electron
tomography (cryoET) has become the tool of choice. This technique requires collecting a
series images of the sample at different tilt angles, called “ilt series”. Due to radiation
damage, limited electron dosage must be further fractionated throughout the tilt series,
resulting in low signal-to-noise ratio (SNR) for the cryo tomogram. Furthermore, as tilting
increases the effective thickness of the sample, the tilt range for cryoET is usually restricted
to about £70°. The missing views at higher tilt angles result in anisotropic resolution of the
reconstructed 3D tomograms, with the resolution along the Z-axis the lowest (Supplementary
Fig. 1). In Fourier space, these missing views lead to devoid of information in two
continuous, opposing wedge-shaped regions, commonly referred to as the “missing-wedge”,
along the tilt axis. This missing-wedge causes severe artifacts in 3D reconstruction of
cellular cryoET, manifesting as, e.g., oval-shaped synaptic vesicles’ (Supplementary Fig. 1).
Thus, together with the low SNR in the reconstructed tomograms, the presence of missing-
wedge artifacts prohibits direct interpretation of the reconstructed densities in 3D, which is

key to the promise of cryoET to resolve molecule organization in situ.

Previous attempts have been made to partially recover information in the missing-
wedge?®'° with a priori assumptions (e.g., density positivity and solvent flatness) to constraint

the structural features in reconstructed tomograms. However, such assumptions have limited
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information content (or “entropy”) and may not always hold true, given the complexity of
biological systems. Alternatively, dual-axis tomography relies on imaging the same sample
with two perpendicular tilt axes, reducing the two missing-wedges to two missing pyramids;
thus it has the potential to alleviate artifacts in resulting tomograms''. However, acquisition
and alignment of dual-axis tilt series are substantially more complicated than that of single-
axis tilt series and could waste the already limited electron dose used for tilt series
aquisition'?. Consequently, dual-axis tomography, while implemented in high-end
instruments such as the Thermo-Fisher Titan Krios, has not been practically attractive.
Indeed, to date, no structure with better than nanometer resolution was obtained from dual-

axis tomography.

Deep neural networks are known to learn relationships of complex data that are non-
linear or have high dimensionality. In the field of computer vision, convolutional neural
network (CNN) has been applied to various tasks, such as object recognition, image
segmentation, and classification, often achieving high performance. In cryoEM field, CNN-
based neural networks are applied to particle picking tasks and outperform conventional
methods such as the Laplacian of Gaussian approach. CNN is also introduced to cryoEM
reconstruction to analyze heterogeneity of protein complexes with remarkable
performance’s. However, whether CNN can also recover missing-wedge information in

cryoET has not been explored.

Here, we have developed a CNN-based software system, called /soNet, for isotropic
reconstruction of electron tomogram. IsoNet trains deep CNN that iteratively restores
meaningful contents to compensate missing-wedge, using the information learned from the
original tomogram. The resolution at Z-axis reaches about 30A resolution as measured by
the gold-standard Fourier shell correlation (FSC) criterion. By applying IsoNet to processing
tomograms representing viral, organelle, and cellular samples, we demonstrate its superior

performance in resolving novel structures of lattice defects in immature human immune-
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deficiency virus capsid, the scissors-stack-network architecture of the paraflagellar rod, and
heptagon containing clathrin cage inside a neuronal synapse. The resulting tomograms with
isotropic resolution from IsoNet should help direct interpretation and segmentation of 3D

structure in cells and 3D picking hundreds of thousands of sub-tomogram particles for future

near-atomic resolution cryoET studies.

Results

Workflow of IsoNet

In spite of anisotropic resolution, tomograms generated by cryoET reconstruction contain
rich information with structural features such as plasma membranes, organelles, and protein
complexes. Thus, it is possible to recover the missing information by merging information
from similar features present in the same tomograms but at different orientations relative to
each other. An example of filling such missing information is through subtomogram
averaging, which aligns and averages structures of particles that are identified to be identical
but at different orientations in the tomogram. IsoNet is designed to expand this technique to
reconstruct missing-wedge information by training the neural network targeting the

subtomograms at different rotations for both regular and polymorphous structures.

The workflow of IsoNet contains five steps (Fig. 1a). Among them, three are major
and required: Extract, Refine and Predict; and the other two are optional: Deconvolve CTF
and Generate Mask. Each of these steps can be performed with one command of IsoNet in
Linux terminal. Among the 5 steps, Refine and Predict relies on graphical processing unit
(GPU) that provides superior processing power. The input of IsoNet is either from a single or
multiple tomograms. Based on the principle of machine learning, more tomograms will
generate more reliable results but takes longer processing time. In practice, the typical

number of tomograms for IsoNet is from one to five. The tomogram(s) can be reconstructed
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102 by either weighted back projection (WBP) or iterative methods, such as simultaneous

103 iterative reconstructive technique (SIRT).

104 We implemented IsoNet in Python using Linux as the native operating system. The
105  package takes advantage of the Keras interface of well-established Tensorflow platform's
106  and can be run standard-alone, independent of other software packages. The package can
107  be run either through command line or through a graphical user interface (GUI) (Fig. 1b),

108 thus meeting to the needs of both seasoned and novice cryoET investigators. The GUI

109  contains three tabs to facilitate navigation. In each tab, information of the tomograms and the
110 parameters for each command can be specified. By clicking “Deconvolve’, “Generate Mask’,
111 “Extract’, “Refine” and “Predict’ buttons, user can execute the corresponding command. The
112 “only print command” option prints out the corresponding command for each step which can

113  be executed on other computers or submitted to computer clusters.

114  Deconvolve CTF and Generate Mask steps. These two optional steps are performed
115  on the input tomograms prior to the subtomogram extraction in Exitract step (Fig. 1a). The
116  Deconvolve CTF step has two purposes: to enhance low-resolution information and

117  compensate for the contrast transfer function (CTF) in the tomograms acquired at certain
118 underfocus conditions. Due to the presence of zeros in CTF, we used a Weiner filter for CTF
119  compensation, as implemented in Warp'é. The Generate Mask step uses statistical methods
120 to detect “empty” areas in the tomograms (including vacuum above and below the sample
121  and those only containing ice or carbon) to be excluded from the subsequent analysis. Both

122 steps could improve performance and efficiency of neural network training.

123 Extract step.  This step allows randomly cropping subtomograms in the original tomograms
124  or the region-of-interest of the tomograms defined by masks. The maximum sizes of
125  subtomograms depend on the memory of graphics processing units (GPU), and 643 or 96°

126  voxels are often used. The extracted subtomograms can be split into random halves to train
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127  the neural network independently (Fig. 1a), allowing users to perform 3D gold-standard
128 FSC'"'8 to determine the resolution of IsoNet reconstructed tomograms over different

129  angular directions, particularly on Z-axis.

130  Refine Step. Central to the IsoNet workflow is the Refine step, which iteratively trains

131  neural networks to perform missing-wedge correction and denoising (Fig. 1c). Training of the
132 neural network requires paired subtomograms as the “inputs” and the “targets.” The “targets”
133 for IsoNet are the extracted subtomograms rotated at different orientations. In total, 20

134  different orientations are defined in IsoNet, generating 20 “target” subtomograms for each
135  extracted subtomogram (Supplementary Fig. 2). For each “target” subtomogram, the

136  missing-wedge is computationally imposed in Fourier space to generate the corresponding
137  “input” subtomograms (Fig. 1c). After generating the paired dataset, we train a neural

138  network to map the “input” to the “target”, enabling the network to recover the imposed

139  missing-wedge artifacts. The neural network used in IsoNet adopts U-Net architecture’®,

140  containing an encoder path that extracts low-dimensional representation retaining essential
141  properties, a decoder path to reconstruct from the encoded representation, and skip-

142 connections between encoder and decoder to preserve high-resolution information

143 (Supplementary Fig. 3).

144 However, the “target” in the data pairs described above are not ideal subtomograms.
145  These subtomograms, though rotated, still miss information in other directions. To recover
146  that information and make “target” subtomograms resembling “ground truth”, we adopt an
147  iterative approach: In the first iteration, we train the network with subtomograms generated
148  from the Extract step and obtain the IsoNet-predicted subtomograms. Then, the gained

149  information in the missing-wedge region in the Fourier space of the predicted subtomograms
150 was added to the original subtomograms, generating the first-iteration missing-wedge

151  corrected subtomograms (Fig. 1c). To further improve miss-wedge correction with more

152 iterations, the corrected subtomograms from the previous iteration are used for the paired

6|Page


https://doi.org/10.1101/2021.07.17.452128
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.17.452128; this version posted July 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

153  data generation in the next iteration because they are closer to missing-wedge-free 3D

154  volumes than the extracted original subtomograms. The trained network from the previous
155 iteration is then refined with the newly generated data pairs. Through multiple iterations, the
156  missing-wedge information is gradually added to the subtomograms (Fig. 1¢c and

157  Supplementary Fig. 4). Usually, after 10-20 iterations, the refinement converges when the
158 mean square error no longer decreases. The result of this Refine step is a trained network
159  that will be applied to the full tomograms and produce the isotropic reconstruction in the

160  Predict step (Fig. 1a).

161 Within the Refine step of IsoNet, we also implemented a denoising module based on
162  the noisier-input strategy?®2'. When this optional denoising module is enabled in the Refine
163  step, in each iteration, 3D noise volumes are reconstructed by the back-projection algorithm
164  from a series of 2D images containing only Gaussian noise. Those 3D noise volumes are
165 then added to “input” subtomograms, with the “target” subtomograms staying the same. With
166 this strategy, IsoNet can be robustly trained with these noisier “input” subtomograms to

167  eliminate the added noise and improve the SNR of final isotropic reconstructions (Fig. 1c

168  and Supplementary Fig. 4).

169  Predict step. This step performs missing-wedge correction by applying networks obtained
170  in Refine step to the tomograms of interest. This Predict step runs much faster than the

171  Refine step. The tomograms used for Predict step are typically (preferably because there are
172 no concerns of bias) the same or a subset of the tomograms used to train the network.

173  Nonetheless, users can in theory apply the trained network to tomograms of other similar

174  samples.

175 Benchmarking with simulated data

176  We first perform IsoNet reconstruction on simulated subtomograms using the public

177  available atomic models. Two scenarios have been considered: apoferritin?? for the first test
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178  because it has been widely used as a benchmarking specimen in high-resolution cryoEM
179  and ribosome?® as the second test due to its asymmetric shape and primarily nucleic acid
180  content. For both tests, density maps are simulated from the atomic models using molmap
181  function in Chimera2* and filtered to 8A resolution (Figs. 1d and e). The simulated maps

182  were then rotated in 10 random directions and imposed missing-wedge in Fourier space,
183  resulting in simulated subtomograms with missing-wedge artifacts (leftmost columns in both

184  Figs. 1d and e).

185 As evident in both tests with simulated subtomograms, features such as alpha-

186  helices perpendicular to the Z-direction are smeared out in those simulated subtomograms
187  due to the missing-wedge artifact. IsoNet was then used to process those simulated

188  subtomograms. As expected, the missing information was recovered during this iterative
189  refinement process (Figs. 1d and e). After 7 iterations, all the alpha helices are visible and
190 identical to the ground truth structures in the first test. The cubic symmetry of apoferritin

191  gradually emerged even though we did not impose symmetry during the processing using
192  IsoNet. In the second test, the distortion in the shapes of ribosome is reduced during the
193  Refine step, with the major and minor grooves of the RNA become distinguishable (Fig. 1e).
194  These results indicate that IsoNet performed well with simulated round/symmetric protein

195 complex as well as asymmetric complex containing both protein and nucleic acid.
196  Application to virus tomograms

197  To further demonstrate the superior performance of IsoNet in real-world examples, we
198  perform the IsoNet reconstruction with the well-characterized cryoET datasets of virus-like
199  particles (VLP) of immature HIV-1, which is publicly available from the Electron Microscopy

200 Pilot Image Archive?526 (EMPIAR-10164).

201 After reconstructed with IsoNet, gold beads in the tomogram appear spherical (Fig.

202  2a), as they should, instead of the “X” shape due to the missing-wedge problem. Notably,
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203  the top and the bottom of the VLP can now be observed in the IsoNet generated tomogram.
204  When examined in the Fourier space, the missing-wedge region on the XZ slices was filled
205  with values compared to the Fourier transform of the original tomogram devoid of the

206 information (Fig. 2a). To quantify the resolution of the filled information, we spilt the extract
207  subtomograms into two random subsets, trained two neural networks using those two

208  subsets independently, and then performed 3D FSC calculation'”. The resolution on the XY
209 plane is higher than other planes (Fig. 2b), with the resolution along the X and Y axis

210  reaching the Nyquist resolution, showing our network preserves the high-resolution

211 information of the original tomograms. The Z-axis resolution of the isotropic resolution is
212 about 30A (Fig. 2b), which is the lowest resolution in all directions. This result demonstrates
213 that our isotropic reconstruction can faithfully reconstruct the missing-wedge information at

214  least 30A resolution.

215 Importantly, our isotropic 3D reconstruction shows that the quality of the structure is
216  similar across all directions, allowing biological structures to be interpreted adequately (Fig.
217  2c and Supplementary Video 1). We resolved those broken viruses, sheared along top and
218  bottom planes of the tomograms (Fig. 2c and Supplementary Video 2), indicating that the air-
219  water interfaces caused deformation of the capsid, as well-recognized in the cryoEM field?’.
220  The denatured Gag proteins, which are subunits of capsids, at the air-water interfaces are

221  mostly featureless.

222 The spherical viruses that were fully embedded in ice are made of hexagonal lattices
223 (Fig. 2c), whereas no pentagon subunit is observed, consistent with the subtomogram

224  averaging results of immature HIV particles?®. Lattice defects are incorporated onto the

225  hexagonal lattices, making gaps between patches of the lattices (Fig. 2c). These defects and
226  slight curvature on the hexagonal lattices could enable the formation of the spherical shape
227  without pentagons. On lattice edges, small density protrusions extending from the hexagons

228  were observed (Fig. 2d), indicating the complete hexagons are not assembly units of HIV. In
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229  concert with this observation, a recent study shows the Gag dimers are the basic assembly
230 units of the HIV-1 particle?®. These protrusions could be Gag dimers and are prone to

231  structural changes during proteolytic cleavage?®. Those 3D details on HIV lattices can only
232 be directly visualized after processed by IsoNet. Taken together, the above observations
233  demonstrate that IsoNet can effectively compensate for the missing-wedge problem for
234  relatively thin but heterogeneous structures, such as the immature HIV particles, and reach

235  about 30A Z-axis resolution.

236  Application to tomograms of cellular organelles

237  Next, we tested the performance of IsoNet on resolving structures within cellular organelles
238 by processing tomograms of flagella of Trypanosoma. Brucei using IsoNet. The missing-
239  wedge compensated tomogram shows relatively uniform or isotropic structures, in all three
240  dimensions (Figs. 3a and b). The overall contrast is better than the original tomogram

241  partially due to the denoising of the network. One noticeable missing-wedge artifact is that it
242 s difficult to recognize the well-established 9 (outer doublets) + 2 (central-pair singlets)

243 microtubule arrangement in the cross-section view (i.e., XZ view in Fig. 3a). This

244 arrangement can be readily visible in the result generated by IsoNet (Fig. 3b). The missing-
245  wedge effect is also reflected by the broken and oval-shaped microtubules and severe

246  artifacts in XZ and YZ planes in the original tomogram reconstructed with SIRT algorithm
247  (Fig. 3a). In tomograms generated by IsoNet, the microtubules become complete and

248  circular-shaped with some visible tubulin subunits (Fig. 3b and Supplementary Fig. 5).

249  Binding to the microtubules, the arrays of outer (red arrows in Fig. 3b) and inner (blue arrows
250 in Fig. 3b) arm dynein proteins are now clearly distinguishable in the IsoNet generated

251  tomogram. And radial spokes connecting the outer doublets to the central pair can be

252  distinguished in all three orthogonal slices (Fig. 3a-b).
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253 On one side of 9+2 microtubules lies paraflagellar rod (PFR). The structure of PFR is
254  obscure in the tomogram reconstructed by SIRT (Fig. 3c), which has given rise to the long-
255 lasting debate of the PFR organization?®-®'. The IsoNet generated tomograms showed a

256  much clearer picture of PFR. PFR density consists of parallelly arranged planes, and the
257  angle between those planes and the direction of the axoneme is 45°. Within these planes,
258  scissors-like densities stack upon each other, forming a scissors-stack-network (Figs. 3d).
259  This highly organized mesh structure could serve as a biological spring to assist the

260 movement of the flagella. This unique PFR structure observed here is consistent with the
261  organization resolved through tedious efforts of sub-tomogram averaging of thousands of
262  sub-tomograms®. The above observations demonstrate that IsoNet can compensate for the
263  missing-wedge problem for nonspherical cellular organelles, such as those in the Eukaryotic
264  flagella, and unveil structure with meticulous details without the need of sub-tomogram

265  averaging.

266  Applications to tomograms of cells

267  To evaluate IsoNet’s performance for much larger and more complex structures in cells, we
268  applied IsoNet to tomograms of synapses in cultured hippocampal neurons’. Hippocampal
269  synapses are key devices in brain circuits for information processing and storage. They are
270  about 200-1000 nm in size, rich in proteins, lipid membranes, vesicles, mitochondria, and
271 other organelles’-*334, These samples are thicker” (300-500 nm) than the above-described
272 flagella and virus samples, thus are representative of low SNR tomograms. The intrinsic
273 molecular crowding and structural complexity of the synapse also present difficulties for
274  missing-wedge correction. Arguably, synaptic cryoET tomograms are among the most

275  challenging datasets for any analysis algorithm.

276 IsoNet achieved isotropic reconstruction of the synaptic tomogram with substantially

277  higher contrast and better structural integrity (Figs. 4a, b, and Supplementary Videos 3-5).
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278  Synaptic vesicles that were smeared out along the Z-axis in the original tomograms now
279  become spherical (Fig. 4c). The linker proteins between vesicles that are hardly seen in the
280  original tomograms now become visible in XZ and YZ planes (Figs. 4c). Even some

281  horizontally oriented features can be resolved. For example, large patches of membrane on
282  the top and the bottom of the synapse and the endoplasmic reticulum (ER) now appear

283  smooth and continuous in the isotropic reconstruction (Figs. 4b and e). These structural

284  integrity improvements facilitate the segmentation of the cellular structure, since the missing-
285  wedge corrected structures can be directly displayed based on their density threshold in 3D.
286  Particularly, placing the artificial spheres to represent synaptic vesicles, as in previous

287  studies”3, is no longer needed (Fig. 4e). As the elongation effect of microtubules in the Z-
288  axis being corrected, the protofilaments of microtubules have now become visible (Figs. 4d
289  and f). Inside synapses, numerous small black dots can be observed in the cytoplasm but
290 not in vesicular lumens. These dots represent small cytoplasmic proteins (orange arrows in

291  Fig. 4c), indicating our reconstruction preserves delicate structural features.

292 As a prominent example, tomograms from IsoNet revealed various types of clathrin
293  coats in hippocampal synapses. Clathrin-mediated endocytosis is a well-known presynaptic
294  vesicle recycling mechanism and is a critical step in synaptic transmission3%3¢, Clathrin

295  proteins are also present in postsynaptic compartment for neurotransmitter receptor

296  endocytosis, a process playing essential roles in synaptic plasticity3”. Those clathrin proteins
297  are known to form cages that consist of pentagons and hexagons3é. We observed structures
298  similar to clathrins cages of various sizes in the postsynaptic compartment in synaptic cryo
299  tomogram. However, due to the missing-wedge effect, the geometry of these clathrin cages
300 cannot be directly resolved in situ in typical cellular tomograms. We applied IsoNet software
301 to one synaptic tomogram that contains many putative clathrin cages in the postsynaptic
302 compartment (Figs. 5a and b, Supplementary Fig. 6). After the isotropic reconstruction, all

303 the pentagons and hexagons, which made up the clathrin cages, are revealed (Figs. 5¢ and
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304 d). This contrasts with the original tomograms, where the polygons are smeared, especially

305 in XZ and YZ planes.

306 The 25 clathrin cages can be categorized into five types based on their geometry

307 (Supplementary Video 6). The most abundant type is minicoat, which is the smallest cages
308 the clathrin proteins can form3°. Intriguingly, the largest clathrin cage contains two

309 heptagons, in addition to 8 hexagons and 14 pentagons (Fig. 5d, Supplementary Fig. 7),

310  which has not been reported in previous single-particle analysis®3°. This geometry of the
311  cage deviates from the common belief that a closed polyhedral protein cage contains 12

312  polygons. This heterogeneous in the Platonic cages of the clathrin arises from the specific
313  yet variable forms of clathrin triskelion interactions. Adapting those heptagons in neurons
314  could likely be strategy to scale up the size of the clathrin coats that enables accommodating
315 different sizes of vesicles. Intriguingly, we did not observe vesicles inside these clathrin

316  cages, suggesting that clathrin protein molecules may spontaneously self-assemble into

317 cages even when not involved in the endocytosis. It is important to note that the unexpected
318  heptagon containing clathrin cage would be lost in averaging-based methods because it only
319 has a single instance in the tomogram. Thus, these observations made in neurons

320 demonstrated that IsoNet enables compensating for missing-wedge for structures that are

321  highly heterogeneous, with limited copy numbers, and in the complex cellular environment.

322 Discussion

323  Here we have developed a deep learning-based package, IsoNet, to overcome the limitation
324  of missing-wedge problem and low SNR plaguing all current cryoET methods. IsoNet

325 embodies several measures that prevent the neural network from “inventing” molecule

326  features. First, the neural network was initialized with random numbers, and all the

327 information comes from original tomograms without prior knowledge. Second, we introduced
328  the dropout factor of 0.5 in the neural network so that with 50% of randomly picked neurons
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329 remaining, the network can still reproduce the result. Third, to further prevent over-fitting, the
330 extracted subtomograms for training can be divided into random halves, and the resolution

331  estimation is based on the gold-standard 3D FSC.

332 To demonstrate its robustness, we have applied IsoNet to process three

333  representative types of cryoET data—pleomorphic virus HIV, cellular organelle axoneme
334  with PFR, and neuronal synapse—representing three levels of length and complexity. IsoNet
335 significantly improved structural interpretability in all these cases, allowing us to resolve
336  novel structures of lattice defects in immature HIV capsid, dynein subunits, and scissors-
337  stack-network architecture of the paraflagellar rod in eukaryotic flagella, and heptagon

338  containing clathrin cage inside a neuronal synapse. In the resulting tomograms, the in situ
339  protein features appear isotropic and have high quality that sometimes matches that

340  obtained through subtomogram averaging. For amorphous structures in the tomograms,
341  such as membranes, IsoNet allows the network to learn the feature representation from
342  many other similar structures in the tomogram and recover the missing information. Thus,
343  IsoNet expands the utility of cryoET by overcoming its inherent missing-wedge problem,
344  enabling 3D visualization of structures that are either complex as those in cells (Figs. 4 and

345  5) or are rare as those tomograms of patients tissues*.

346 Philosophically speaking, no information can emerge from vacuum/nothing. So where
347  does IsoNet recover the missing information from? The questions touch upon the

348  fundamentals of deep learning and can be thought of as relating to non-locality of

349 information in space. That is, by learning from information scattered around in original

350 tomograms with recurring shapes of molecules, IsoNet sophistically eliminates distorted or
351  missing information. The great advantage of the IsoNet approach is that similar features

352  across different dimensions can be automatically discovered and "averaged” without human
353 intervention. Such features could be related in translation and rotation manners in the three

354  Cartesian dimensions, such as crystalline PFR subunits and axonemal microtubules and
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355 dyneins (Fig. 3); they could also be related through symmetries, such as those pentagons
356  and hexagons of clathrin cages; ultimately, they could also be related biologically, such as
357 the facts that proteins are made up of only 20 amino acids and nucleic acid of four bases,
358 and both are geometrically constrained as a linear molecule. IsoNet learns their relationships
359 in the same tomogram or across multiple tomograms and reconstructs these features

360 automatically. In essence, therefore, IsoNet and sub-tomogram averaging compensate the

361  missing-wedge problem through the same principle.

362 Regardless of the details of information recovery, the substantial improvement in
363  map interpretability afforded by IsoNet now allows visualization of structures for functional
364 interpretation without the need of tedious and time-consuming sub-tomogram averaging,
365  which typically involves a priori feature identification and manual particle picking. Visualizing
366  such structures in cellular tomograms by IsoNet would also improve localization and

367  subsequent sub-tomogram averaging of hundreds of thousand copies of like-structures,

368 leading to in situ atomic resolution structures of cellular complexes in their native cellular

369 environment.
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372 Fig. 1 | Principle and workflow of IsoNet.
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373  a, Workflow of the IsoNet software. b, GUI of IsoNet. ¢, lllustration of Refine step: First,
374  subtomograms are rotated and then applied with additional missing-wedge artifacts to

375  produce paired data for training. Second, the paired data is used to train a neural network
376  with U-net architecture. Third, the trained neural network is applied to the extracted

377  subtomograms to produce missing-wedge corrected subtomograms. The recovered

378 information in these subtomograms is added to the original subtomograms, producing new
379  datasets for the next iteration. d, Validation of IsoNet with simulated sub-tomogram of

380  apoferritin and ribosome. Surface views from three orthogonal directions of the

381  reconstructions are shown after increasing iterations of IsoNet processing. Blue arrows
382 indicate segments of RNA duplexes.

383
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384

385 Fig. 2 | IsoNet reveals lattice defects in immature HIV capsid.
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386 a, XZ slice views of tomogram reconstructed with WBP (top), CTF deconvoluted WBP

387 tomogram (middle), and missing-wedge corrected tomograms (bottom), with their Fourier
388 transforms on the right. Orange arrow indicates a gold bead. b, 3D FSC of the two

389 independent isotropic reconstructions, the left panel shows the FSC along the X, Y and Z
390 directions. Three panels on the right show the 3D FSC at 0.5 and 0.143 cutoffs on XY, XZ,
391 and YZ planes, respectively. ¢, 3D rendering of the missing-wedge corrected tomogram.
392  Dashed lines show the air-water interfaces. d, Examples (left) and illustrations of the lattice
393  edges of HIV capsids. Red arrows point out the density protrusions on the edges of

394  hexagonal lattices.

395
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Fig. 3 | Architecture of the PFR revealed after missing-wedge correction.

a-b, Orthogonal slices of a tomogram of flagellar for SIRT reconstruction (a) and IsoNet
reconstruction (b). DMT: Doublet microtubule; CPC: central pair complex; RS: radial spoke;
Red arrows: outer arm dyneins; Blue arrow: inner arm dynein. ¢, YZ slices show the cross-
sections corresponding to the cyan lines in (a) and (b). d, 3D rendering of PFR in the IsoNet
generated tomogram. Left panel is the 3D view of PFR in the direction corresponding to (c).
Right panel shows the en face view of a PFR scissors-stack-network (SSN) plane.
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WM microtubule
B vesicle

406

407  Fig. 4 | IsoNet recovers missing information in the tomograms of neuronal synapses.
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408 a-b, Orthogonal slices of a synaptic tomogram reconstructed with WBP (a) and IsoNet (b).
409  SV: synaptic vesicle; Mito: mitochondria; MT: microtubule; PSD: postsynaptic density. c-d,
410 Zoomed-in orthogonal slices of WBP reconstruction and IsoNet produced reconstruction.
411 Magenta arrows: vesicle linker; Orange arrows: small cellular proteins; Green arrow:

412 microtubule luminal particles; Red arrows: microtubule subunits. e, 3D rendering of the
413  tomogram shown in (b). f, 3D rendering of a slab of tomogram with WBP reconstructions

414  and Isotropic reconstructions, showing microtubules and vesicles.

415
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Fig. 5 | IsoNet reveals various types clathrin coats in a synapse.

a-b, Orthogonal slice views of another synaptic tomogram reconstructed with SIRT algorithm
(a) and IsoNet (b). ¢, 3D rendering of the tomogram shown in (b). d, 3D views of the five

types of clathrin cages in (c).
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556 Methods

557  Software implementation

558  We implemented IsoNet in Python using Linux as the native operating system. Typical

559  hardware setup includes one node with four Nvidia GeForce 1080Ti GPU cards of 11

560 gigabytes memory, which is common in a cryoET research laboratory. The package can be
561  run from command line and relies on Keras that acts as interface for Tensorflow's, and the
562  package can be downloaded from Github (https://github.com/Heng-Z/IsoNet). A detailed
563 document is provided, accompanied by the IsoNet software. Tutorial dataset and video can
564  be found in: https://github.com/Heng-Z/IsoNet_tutorial.

565 This package is standard-alone and does not rely on other software such as IMOD,
566  while some common Python modules must be installed prior to running IsoNet. Such Python
567  modules are easy to install with the “pip” command. For example, the IsoNet uses Python
568  module “mrcfile” for the read and write tomogram or subtomogram, and “numpy” for the

569 image processing such as rotation and Fourier transform. The U-net neural network is built
570 by stacking multiple layers (Supplementary Fig. 3) provided in “tensorflow.keras.layers”. For
571  example, three “Conv3D” layers are stacked together in each depth of the encoding path of
572 the U-net.

573 The package can be launched through a single command entry, either “isonet.py” or
574  “jsonet.py guri’, for Linux command line operations or a graphical user interface (GUI) (Fig.
575  1b), respectively. Users can then access all the processing steps of the IsoNet procedure.
576  The IsoNet procedure contains five steps, including three major steps: Extract, Refine, and
577  Predict and two accessary steps: CTF deconvolve and mask generate. Each of these steps
578  corresponds to one command of IsoNet in Linux terminal and will be described in the

579  following sections.

580 Dataset preparation

581  To use IsoNet, users should prepare a folder containing all tomograms. Binning the

582  tomograms to a pixel size of about 10A is recommended. Typically, a folder containing 1 to 5
583  tomograms is used as input. These input tomograms can either be reconstructed by SIRT or
584  WBP algorithm. The tilt axis is the Y-axis, and recommended tilt range is -60 to 60°, while
585  other tilt ranges might also work. The tilt series can be collected with any tilt schemes,

586  continuous, bidirectional, or dose-symmetric.
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587 IsoNet uses Self-defining Text Archive and Retrieval (STAR) file format to store

588 information of tomograms and program parameters been used during Isonet processing.
589  Thus, it inter-operates seamlessly with such leading cryoEM software packages as Relion*'.
590 Tomogram STAR file, default named as fomograms.star, is required to run IsoNet and this

591 file can be prepared with IsoNet GUI, with a text editor, or with the following command:
592 $ isonet.py prepare_star [tomogram_folder]
593 Deconvolve CTF

594  For the tilt series imaged without Volta phase plate (VPP), the sinusoidal CTF suppresses or
595 even inverts information at certain frequencies. To enhance the contrast of the tomograms
596  and promote information retrieval, CTF deconvolution, similar to what is implemented in

597  Warp software, is applied to tomograms in this step.

598 IsoNet uses Wiener-like filter'® for CTF deconvolution, with spectral signal-to-noise
599 ratio (SSNR) set empirically:

600 SSNR = e™/*100F x 105 x H;

601 Where f denotes the spatial frequency, H a high-pass filter, F the custom fall-off
602  parameter, and S denotes the custom strength parameter. Because the SSNR of the

603  Weiner-like filter is determined empirically, users can tune the SSNR fall-off or deconvolve
604  strength parameters to enhance contrast of the tomograms. This step can be performed by

605  “CTF deconvolve” function in GUI or with the following command:
606 $ isonet.py deconv [tomogram_star] --snrfalloff 1.0 --deconvstrength 1.0
607 Generate mask

608  Subtomograms for training would be better to contain rich information than empty areas with

609  only ice, air, or carbon. In this optional mask generation step, IsoNet uses statistical methods
610  to detect empty regions from which subtomograms will not be extracted. Two different types

611  of masks can be applied: density mask that excludes areas with low cryoET density and

612 standard deviation mask that excludes areas with low standard deviation.

613 The density mask will first suppress the noise with a Gaussian filter and then apply a
614  sliding window maximum filter to the contrast-inverted tomogram. The areas with relatively
615  smaller density values in the filtered tomogram will be deemed as empty space and
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616  excluded in the mask. The parameter “density_percentage” defines the percentage of the
617  area kept in the tomogram by the density mask.

618 The standard deviation mask is achieved by calculating the standard deviation of
619  voxels in a small cubic volume centered at each evaluating voxel. The voxels having
620 relatively lower standard deviation will be excluded. The parameter “std_percentage” defines

621  the percentage of voxels kept by the standard deviation mask.

622 IsoNet uses the intersection of these two masks. The parameters for mask

623  generation can be tuned to cover the region of interest but exclude empty areas. In addition
624  to these two types of masks, IsoNet allows excluding top and bottom parts of tomograms
625  which usually are empty areas by the “z_crop” parameter.

626 Usually, the default parameters will provide a good mask to exclude empty areas;
627  users can also tune the parameters using GUI by “Generate mask” function or the following

628 command, for example:
629 $ isonet.py make _mask [tomogram_star] --density _percentage 50
630 Extract subtomograms

631  In each tomogram, specified number of seeds are randomly generated within the whole

632  tomogram or the region of interest defined by the mask. Then, cubic volumes centered at the
633  generated seeds are boxed out and saved as subtomograms. The extracted subtomograms
634  should be large enough to cover typical features in tomograms, such as a patch of

635 membrane or vesicle. However, due to the GPU memory limitation, this size cannot be

636  arbitrarily large. We usually extract 300 subtomograms of 96° voxels in total. After extraction,
637  the contrast of those subtomograms is inverted. Then, tomograms are normalized by

638  percentile to ensure 80% of the voxel values fit into the range between zero and one. The
639  subtomograms can be randomly split into two halves and used for performing missing-

640  wedge correction independently to eliminate overfitting and calculate gold-standard FSC.

641 The information of extracted subtomograms is stored in another STAR file, default
642  named as subtomo.star. Subtomogram extraction can be performed by either IsoNet GUI or
643  the following command:

644 $ isonet.py extract [tomogram_star]

645 Refine
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646  This process iteratively trains neural networks to fill the missing-wedge information using the
647  same tomograms whose missing-wedge artifacts were added to other directions. The

648  denoising module can also be enabled in this step, making the network capable of reducing

649  noise and recovering the missing-wedge. After refinement, the resulting subtomograms and

650  neural network model in each iteration are saved. The network models with a suffix of “.h5”

651  can be used for the prediction step.

652 Four steps, including training dataset generation, adding noise, network training, and
653  subtomograms prediction, will be performed during each iteration. These steps will be

654  described in the following sections. The missing-wedge restored subtomograms by

655  subtomograms prediction in every iteration will be used for training dataset generation in the
656  next iteration. Usually, 10-15 iterations in the refine step are sufficient to obtain a well-trained
657  network for the missing-wedge correction, whereas more iterations can be performed for

658  refinement with denoising.

659 The refine step can be performed from the GUI or with the following command, for
660 example:

661 $ isonet.py refine [tomogram_star] --iterations 30 --gpulD '0,1,2,3'

662 Users can also continue training from the previous iterations using “continue_from” or

663  from previously trained models using “pretrained_model’ parameter.
664  Refine step 1: training dataset generation

665  To generate paired datasets for neural network training, IsoNet rotates the extracted

666  subtomograms to different orientations. Twenty rotated copies can be obtained for each
667  extracted subtomogram as follows (Supplementary Fig. 2). First, each subtomogram is a
668  cube with six faces. Each face can be rotated with an out-of-plane angle to face toward the
669  positive direction of the Z-axis. Second, each out-of-plane rotation can be followed by four
670  in-plane rotations, making 24 possible rotations. However, among the 24 rotations, four of
671  them result in subtomograms with the same missing-wedge direction as the original

672  subtomograms. Thus, these four rotations are excluded, resulting in 20 orientations for each
673  subtomograms. This rotation process enlarges the original dataset by 20 times for training,
674  making it possible to achieve a good performance of missing-wedge correction even with a
675 small dataset, e.g., a single tomogram.
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676 After the rotation, the IsoNet program then applies missing-wedge filter to the rotated
677  subtomograms. The missing-wedge filter volume has the same size as that of the

678  subtomograms. In the missing-wedge filter volume, voxel value is zero inside the missing-
679  wedge region and one in the rest of the volume. Then, the Fourier transforms of the rotated
680  subtomograms are multiplied by the missing-wedge filter volume and then transformed back

681  to the real space, generating missing-wedge filtered subtomograms.

682 To avoid the incomplete information along the edge of the subtomograms when
683  applying missing-wedge filter, both rotated subtomograms and missing-wedge filtered
684  rotated subtomograms are trimmed into smaller volumes (often 642 voxels), generating
685  “target” and “input” for the network training, respectively. These generated data pairs are
686  used to train neural network that maps the “input” to “target”.

687  Refine step 2: adding noise.

688  This optional step allows performing missing-wedge correction and denoising simultaneously
689  using IsoNet. IsoNet uses a noisier-input strategy?%2! that learns to map “input” with

690 additional noise to the “target”.

691 IsoNet simulates the noise pattern in reconstructed tomograms with the assumption
692  that in every acquired projection, the noise is an additive Gaussian noise and independent
693 among all images acquired in a tilt series. During the adding noise step, a set of 3D noise
694  volumes are constructed by back-projecting a series of 2D Gaussian noise images to reflect
695 the effect of the back-projection algorithm on noise formation.

696 The denoise level is defined as the ratio of the standard deviation between the
697  subtomograms and the added noise. The noise volumes are scaled to match the denoise
698 level before being added to the “input” subtomograms. Thus, the lower denoise value means

699 less noise is added to individual subtomograms.

700 Because the added noise may further corrupt the 3D subtomograms, making the
701  network hard to train, it is recommended to start the first several iterations of refinement
702  without denoising. After the refinement results are nearly converged, the noise volume can
703  then be added to the “input” subtomograms in the following iterations. A typical routine is to
704  train ten iterations without denoising and then increase the denoise level by 0.05 for every
705 five iterations. This step-wised noise addition can be performed automatically in the refine
706  step of the IsoNet software.

31|Page


https://doi.org/10.1101/2021.07.17.452128
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.17.452128; this version posted July 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

707  Refine step 3: network training

708  Neural network used in IsoNet is based on U-net, which is well recognized in biomedical
709  image restoration and segmentation’®. The main building blocks of the U-net are 3D

710  convolution layers with non-linear activation functions called Rectified Linear Units (Relu),
711 which are applied per voxel. Those convolution layers have kernel sizes of 3x3x3. Three 3D
712 convolution layers are stacked together to form a convolution block in our network, which

713  can extract complicated features.

714 By stacking the convolutional blocks, the U-net is built based on encoder-decoder
715  architecture (Supplementary Fig. 3). The encoder path is a set of convolution blocks and
716  strided convolution layers that compress 3D volumes. Strided convolution layers reduce the
717  spatial size of the input of this layer by 2x2x2, allowing the network to learn more abstract
718 information. A convolution block followed by a strided convolution layer makes one encoder
719  block in the contracting path. Total three encoder blocks form the entire encoding path. The
720  number of convolution kernels for each convolution layer doubles after each encoder block.
721  After the encoder path, the 3D volumes are processed with a convolution block and enter the
722  decoder path of the network. The decoder path is symmetrical to the encoder but uses

723  transpose convolution layers, opposite to strided convolution layers, to enlarge the

724  dimension of features.

725 Although the down-sampling of the 3D volumes captures the essence of the features,
726  high-resolution information is lost by stride convolution operations. In particular, the skip

727  connections that concatenate the feature layers of the same dimension in two paths are

728 implemented to preserve the high-resolution information. Dropout strategy that randomly set
729  50% of neurons’ activation to 0 in the convolution layers is used to prevent overfitting during

730 the training.

731 This network uses the mean absolute error between the output of the network and
732 the target subtomograms as loss function. The loss function is minimized by employing
733 Adam optimizer#? with an initial learning rate of 0.0004. The neural network training is
734  performed on GPU and consists of several epochs or cycles (typically ten epochs). Each
735  epoch will traverse through the paired dataset. The data pairs are grouped into batches
736  (which generally have a size of 8 or 16) to feed into each epoch. After the training, the
737  trained neural networks are saved for the next iteration of the refine step.

738  Refine step 4: Subtomogram prediction
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739  After each iteration of refinement, the network is applied to the original subtomograms,

740  generated predicted subtomograms. Then IsoNet generates an inverse missing-wedge filter
741  volume with value one inside the missing-wedge region but zero in the rest of the 3D

742  volume. The predicted subtomograms are then transformed to Fourier space and multiplied
743 with the inverse missing-wedge filter volume to extract the added information inside the

744  missing-wedge regions. Then, these filtered volumes are added to the original

745  subtomograms, generating the missing-wedge restored subtomograms for subsequent

746 iterations of refinement.
747  Predict

748  After the refine step, the trained network is saved in a model file. It will be used to correct the
749  missing-wedge for the original tomogram or other similar tomograms. For most tomograms,
750 the full-size 3D images can hardly fit into the memory of a regular GPU. Thus, the IsoNet
751  program splits the entire tomogram into smaller 3D chunks to apply the network on them

752  separately. Then output 3D chunks are montaged to produce the final output. To avoid the
753 line artifact between adjacent chunks caused by the loss of information on the edges of

754  subtomograms. We implemented a seamless reconstruction method called overlap-tile

755  strategy, which predicts the overlapping chunks to avoid the edge effect. The “crop_size”
756  parameter defines the size of the cubic chunks. This predicting step can be performed with
757  IsoNet GUI or with the following command, for example:

758 $isonet.py predict [tomogram_star] [output_folder] --model [network_model]
759  Benchmarking with simulated data

760  We performed IsoNet reconstruction on simulated subtomograms using the public available
761  atomic models: apoferritin model??> (PDB: 6Z6U) and ribosome model®® (PDB: 5T2C). For
762  both tests, density maps were simulated from the atomic models using “molmap” function in
763  ChimeraX2* and filtered to 8A resolution (Fig. 1d, €). Those simulated maps with 2.67 A/pix
764  pixel size were then rotated in 10 random directions and imposed with missing-wedge filter
765 in Fourier space, resulting in simulated subtomograms with missing-wedge artifacts (leftmost
766  columns in both Fig. 1d, e).

767 For the simulated Apoferritin maps, we created a subtomogram STAR file with the
768  “isonet.py prepare_subtomo_star’ command. With this subtomogram STAR file as input, we
769  performed an IsoNet refine step for ten iterations without denoising. For benchmarking with

770  the simulated ribosome maps, we extracted eight smaller subtomograms (962 voxels) from
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771  each ribosome map due to the larger dimension of the ribosome map. The subtomogram
772 STAR file generated in the extract step was used for subsequent refine step. After ten
773  iterations, trained network was obtained and was then used to produce missing-wedge

774  corrected maps of ribosome using “isonet.py predict” command.
775  Processing tomograms of HIV virus

776  For pleomorphic viruses, we downloaded an HIV dataset from public repository EMPIAR-
777 1016425, Three tilt series,TS_01, TS_43 and TS_45, were used for testing. The movie stacks
778  were drift corrected with MotionCorr*® and reconstructed with IMOD'' using WBP algorithm.
779  The defocus value of each image was determined by CTFFIND444. Eight-time binned

780  tomograms with 10.8A pixel size were used for further processing. For the CTF

781  deconvolution of the tomograms, SSNR fall-off and the deconvolve strength parameters
782  were setto 0.7 and 1, respectively. Then, we created one mask for each tomogram using
783  ‘“isonet.py make_mask” command. Total 300 subtomograms with 962 voxels were randomly
784  extracted from the three tomograms and then split into random halves. For each half of the
785  subtomograms, we performed refine step for 35 iterations independently, generating two
786  trained neural networks. In the predict step of IsoNet, tomogram TS_01 was used to

787  generate two missing-wedge corrected tomograms by the two independently trained

788  networks. These two tomograms were then averaged to create a final map.

789 These two missing-wedge corrected tomograms enabled calculating gold-standard
790 FSC. Instead of calculating a global FSC, we performed 3D FSC calculation for all the

791  directions'” to measure the resolution anisotropy of the missing-wedge corrected tomogram.
792  Because the 3D FSC calculation works for cubic volumes while the size of the tomogram is
793  non-cubical, we cropped the generated tomograms into cubic subtomograms for the 3D FSC
794  calculation. As for the HIV dataset, the 3D FSC was calculated for four 2003 volumes

795  cropped from both missing-wedge corrected HIV tomograms. The resulting four 3D FSC

796  were then averaged to produce the final 3D FSC, the orthogonal sections of which are

797  shown in Figure 2b.

798  Processing tomograms of the Eukaryotic flagella

799  For cellular organelles, we chose the demembraned flagella of Trypanosoma. Brucei. The
800 datasets described here were obtained in our previous studies®>45, Tilt series were recorded
801  with SerialEM“ by tilting the specimen stage from -60° to +60° with 2° increments. The

802  cumulative electron dosage was limited to 100 to 110 e /A2 per tilt series. The movie stacks
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803  were drift corrected with MotionCorr#® and reconstructed with IMOD using SIRT algorithm.
804  The tomograms were binned by four, resulting in a pixel size of 10.21 A/pixel.

805 Three tomograms were chosen for missing-wedge correction. These tilt series were
806  acquired with VPP so that we did not perform the CTF deconvolution. We generated one
807  mask for each tomogram using “isonet.py make_mask” command. Then, we extracted a
808 total of 360 cubic subtomograms with 1283 voxels from three tomograms. Using these

809  subtomograms, we trained a network by running the refine step for 35 iterations with default
810 denoise levels, which were automatically changed from 0 to 0.2. Trained network produced
811 in the refine step was then used to run the predict step of IsoNet to obtain a final missing-
812  wedge corrected tomogram, which is shown in Figure 3.

813 Processing tomograms of hippocampal neurons

814  Tomograms of hippocampal neurons were obtained in our previous study’. The two

815 tomograms used in this study were collected on a Titan Krios microscope equipped with K2
816  summit in counting mode. The energy filter (Gatan image filter) slit was set at 20 eV. The
817  Titan Krios was operated at an acceleration voltage of 300 KV. Tilt series were acquired
818  using SerialEM“6 with tilt scheme: from +48° to -60° and from +50° to +66° at an interval of
819  2°. The total accumulated dose was ~150 e-/A2. The pixel size of the tomograms is 4.35
820  A/pixel. Each recorded movie stack was drift-corrected and averaged to produce a

821  corresponding micrograph using MotionCorr#3. The tilt series were aligned using IMOD".
822  One tilt series of the tomogram shown in Figure 4 was imaged with VPP, while the other
823  shown in Figure 5 was acquired without VPP. When VPP was used, the defocus value was

824  maintained at -1 ym; otherwise, it was kept at -4 uym.

825 For the tilt series recorded with VPP, the aligned tilt series were reconstructed using
826  NovaCTF#, generating a tomogram reconstructed with WBP. The tomogram was binned by
827  four, and 300 subtomograms (962 voxels) were extracted from that tomogram. Those

828  subtomograms were then used 35 iterations of refinement. The trained network produced in
829  refine step was used for missing-wedge correction for the entire tomogram (Fig. 4).

830 For the tilt series recorded without VPP, the defocus value of each image was

831  determined by CTFFIND444, and CTF phase flipped tomogram was obtained by NovaCTF*’.
832  This tomogram (Fig. 5) was reconstructed with SIRT-like filter, with CTF phase flipping

833  performed on the individual tilt images. The tomogram was binned by four for missing-wedge
834  correction with IsoNet. Then, 200 subtomograms (962 voxels) were extracted from the
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835  tomogram in the extract step of IsoNet. A trained network was obtained with the refine step
836  of IsoNet for 35 iterations. The trained network was then used for the predict step of IsoNet,
837  producing a missing-wedge corrected tomogram (Fig. 5).

838 3D visualization

839  IMOD“* was used to visualize the 2D tomographic slices. UCSF ChimeraX?* was used to
840  visualize the resulting IsoNet generated tomograms in their three dimensions. Segmentation
841  of densities maps and surface rendering were performed by the volume tracer and color

842  zone in UCSF ChimeraX.

843 End notes

844  Supplementary information. Supplementary Information is linked to the online version of

845  the paper.
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g74  Supplementary Figures and Videos:

875

876

877  Supplementary Fig. 1 | a, Orthogonal views of the WBP reconstructed tomograms and their
878  corresponding Fourier transforms. b, Orthogonal views of the IsoNet reconstructed
879  tomograms and their corresponding Fourier transforms.
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883  Supplementary Fig. 2 | Rotation schemes. Twenty rotated copies are obtained for each
884  extracted subtomograms demonstrated in the center. First, each subtomogram has six faces.
885  Each face can be rotated with an out-of-plane angle to face toward six positive directions of
886 the Y-axis. Second, each out-of-plane rotation is followed by four in-plane rotations, making a
887  total of 24 possible rotations. However, among the 24 rotations copies, four have the same Z-
888  axis missing-wedge as the original subtomograms. Thus, these four rotations are excluded
889  (red cross).
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893  Supplementary Fig. 3 | The architecture of neural network based on U-net. The values
894  at the bottom left of boxes show sizes of 3D feature maps or subtomograms, while the
895  values on top of the boxes are their numbers.
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899  Supplementary Fig. 4 | Iteratively filling the missing-wedge region. XZ slice views of
900 subtomograms and corresponding power spectrum at different iterations in refine step.
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902

903

904

905

906

907  Supplementary Fig. 5 | XZ slices of microtubule doublets in axoneme. Left: XZ slices
908 of the SIRT reconstructions. Right: the slices of the corresponding tomogram generated by
909 IsoNet. Red arrows indicate microtubule subunits.
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911

912

913  Supplementary Fig. 6 | Orthogonal views of the tomogram containing clathrin cages
914  reconstructed with the SIRT algorithm in IMOD. PSD: postsynaptic density.
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916

917 Supplementary Fig. 7 | 3D views for the shape of the heptagon containing clathrin
918 cage
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920

921  Supplementary Video 1 | 3D tomogram of HIV particles. This video shows 3D structures
922 in an IsoNet generated tomogram. The tomogram density is sliced through three orthogonal
923  directions.
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925

926  Supplementary Video 2 | 3D rendering of HIV particles. The HIV particles are rendered in
927  yellow (fully embedded in ice) and blue (at air-water interface). The rest cryoEM density is
928 shown in transparent gray.
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930

931 Supplementary Video 3 | 2D slices of a tomogram of a neuronal synapse. Left: IsoNet
932  generated tomogram. Right: The original tomogram reconstructed with WBP.
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934

935 Supplementary Video 4 | 3D tomogram of a neuronal synapse. This video shows 3D
936  structures in an IsoNet generated tomogram. The tomogram density is sliced through three
937  orthogonal directions.
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940

941  Supplementary Video 5 | 3D rendering of the neuronal synapse.
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943

944  Supplementary Video 6 | 3D tomogram clathrin cages in a neuronal synapse. This
945  video shows 3D structures of an IsoNet generated tomogram. The tomogram density is
946  sliced through three orthogonal directions. Then, 3D rendering of clathrin cages is shown
947  and rotated.
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