bioRxiv preprint doi: https://doi.org/10.1101/2021.06.06.446826; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1

Evolution of enhanced innate immune evasion by the SARS-CoV-2 B.1.1.7 UK variant

Lucy G Thorne't, Mehdi Bouhaddou?®#°+, Ann-Kathrin Reuschl'+, Lorena Zuliani-Alvarez?345%,
Ben Polacco?®*°, Adrian Pelin®®*® Jyoti Batra®**°, Matthew V.X. Whelan', Manisha
Ummadi®**®, Ajda Rojc?**°, Jane Turner', Kirsten Obernier>**°, Hannes Braberg®**°, Margaret
Soucheray?3#5, Alicia Richards®**®, Kuei-Ho Chen?***° Bhavya Harjai***°, Danish Memon’,
Myra Hosmillo®, Joseph Hiatt>**® Aminu Jahun®, lan G. Goodfellow®, Jacqueline M. Fabius?®*®,
Kevan Shokat?*4%® Natalia Jura®*®°, Klim Verba®*°, Mahdad Noursadeghi', Pedro Beltrao?’,
Danielle L. Swaney?**°, Adolfo Garcia-Sastre®'%'"'2 Clare Jolly'*, Greg J. Towers'*, and Nevan
J. Krogan?3®4%*

T These authors contributed equally
*Corresponding authors. Email: nevan.krogan@ucsf.edu (NJK), g.towers@ucl.ac.uk (GJT), and
c.jolly@ucl.ac.uk

' Division of Infection and Immunity, University College London, London, WC1E 6BT, United
Kingdom

2 Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco,
CA 94158, USA

% Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco,
CA, 94158, USA

* J. David Gladstone Institutes, San Francisco, CA 94158, USA

® Department of Cellular and Molecular Pharmacology, University of California, San Francisco,
San Francisco, CA 94158, USA

® Howard Hughes Medical Institute, San Francisco, CA 94158, USA.

" European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome
Genome Campus, Hinxton, Cambridge, UK.

8 Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's
Hospital, Hills Road, Cambridge CB2 2QQ, UK

% Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA
94158, U.S.A.

10 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029,
USA

" Global Health and Emerging Pathogens Institute, lcahn School of Medicine at Mount Sinai,
New York, NY, 10029, USA

2 The Tisch Cancer Institute, lcahn School of Medicine at Mount Sinai, New York, NY, 10029,
USA


https://doi.org/10.1101/2021.06.06.446826
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.06.446826; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2

Abstract

Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests
viral adaptations to host selective pressures resulting in more efficient transmission. Although
much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7
mutations outside Spike likely contribute to enhance transmission. Here we used unbiased
abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to
show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway
epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and
protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b
alone suppressed the innate immune response through interaction with TOM70, a mitochondrial
protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was
regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding
region to more effectively antagonise host innate immune responses through upregulation of
specific subgenomic RNA synthesis and increased protein expression of key innate immune
antagonists. We propose that more effective innate immune antagonism increases the likelihood
of successful B.1.1.7 transmission, and may increase in vivo replication and duration of infection.

Main

The SARS-CoV-2 B.1.1.7 lineage was detected in the United Kingdom in September 2020 and
quickly became the dominant variant worldwide'. Epidemiologically, B.1.1.7 human-to-human
transmission is superior to other SARS-CoV-2 lineages®*, making it a variant of concern (VOC),
threatening public health containment measures®. B.1.1.7 infection has been associated with
enhanced clinical severity in the community in the UK, although a clear association with increased
mortality has not yet emerged #*°*.

B.1.1.7 is defined by a constellation of 23 mutations’: 17 that alter protein sequence (14 non-
synonymous mutations and 3 deletions) and 6 synonymous mutations (Fig. 1a). Protein coding
changes concentrate in Spike, which facilitates viral entry through interaction with the human
receptor ACE2®. This has led the field to focus on understanding viral escape from wave one
(early-lineage) driven adaptive immunity and its implications for infection control and vaccine
development. Fortunately, despite adaptation of Spike, B.1.1.7 remains sensitive to vaccine- and
infection-induced neutralising antibodies®'". B.1.1.7 variant of concern (VOC)-defining mutations
outside Spike suggest that Spike-independent adaptation to host may contribute to the B.1.1.7
transmission advantage. Most B.1.1.7 coding changes map to non-structural proteins Nsp3,
Nsp6, accessory protein Orf8 and nucleocapsid protein (N), all of which have been shown to
modulate the innate immune response'?~'®. Furthermore, it is unclear whether any of the B.1.1.7-
specific mutations impact the expression levels of viral proteins. In sum, the impact of these
additional mutations on viral replication, transmission and pathogenesis has not been
characterised.

Innate immune responses can exert strong selective pressure during viral transmission "='° and
play an important role in determining clinical outcomes to SARS-CoV-2 infection®2??, We
therefore reasoned that B.1.1.7 may have evolved to enhance innate immune escape. We and
others have recently shown that infection of naturally permissive Calu-3 human lung epithelial
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cells with a wave one SARS-CoV-2 lineage B isolate (BetaCoV/Australia/VIC01/2020, VIC)
induces a robust but delayed innate response, driven by activation of RNA sensors RIG-I and
MDADS5 2%, A delayed response, compared to rapid viral RNA replication, suggests effective innate
immune antagonism and evasion by SARS-CoV-2 early in infection'*?*. Furthermore, the gene
expression changes observed during late innate responses in infected Calu-3 cells reflect the
overarching inflammatory signatures observed at the site of infection and those associated with
severe COVID-19 2, Here, we used the Calu-3 cell model to evaluate differences between
B.1.1.7 and wave one SARS-CoV-2 viruses.

Comparative analysis of virus replication kinetics and interferon induction

We compared replication and innate immune activation for B.1.1.7 and two first wave (early
lineage) isolates, B lineage isolate BetaCoV/Australia/VIC01/2020 (VIC) and B.1.13 lineage
isolate hCoV-19/England/IC19/2020 (IC19) (Fig. 1a) in Calu-3 lung epithelial cells. Input dose was
normalised using viral genome copies measured by RT-gPCR for the envelope (E) coding region.
We found that B.1.1.7 replication was comparable to both wave one isolates at high and low
multiplicity of infection (MOI), measuring intracellular E copies, positivity for nucleocapsid protein
and infectious virion production by TCID50 on Hela-ACE2 cells (Fig. 1b, 1c). We observed a small
but significant increase in N positivity for B.1.1.7 (Fig. 1b, 1c), which we explain later in the context
of differences in viral protein expression.

Identical replication of all three isolates enabled direct comparison of the innate immune response
without differences in the amount of viral RNA produced, the principal pathogen associated
molecular pattern (PAMP)?, being a confounding factor. We found that B.1.1.7 infection led to
lower levels of IFNB expression and secretion, at both high and low MOI (Fig. 1d, 1e). Similar
replication, but reduced IFN induction by B.1.1.7 was confirmed with two additional independent
B.1.1.7 isolates (Fig. 1f), suggesting consistent enhancement of innate immune antagonism, or
evasion, for B.1.1.7 lineage isolates.

As IFN resistance correlates with enhanced transmission of other pandemic viruses'”'8, we
compared sensitivity to IFN inhibition of B.1.1.7 and first wave isolates. B.1.1.7 was consistently
less sensitive to IFNB pre-treatment over a wide dose range, compared to first wave isolate VIC
(lineage B) (Fig. 1g), suggesting that B.1.1.7 infection not only induces less IFNB (Fig. 1d, 1e) but
that it is also less sensitive to its effects. Interestingly, wave one IC19 (B.1.13) showed a similar
reduction in IFNB sensitivity as B.1.1.7. This may be due to the shared Spike mutation D614G in
IC19 and B.1.1.7, but not VIC, which is associated with enhanced transmissibility and increased
entry efficiency®*'. Indeed, D614G has been associated with resistance to a range of Type | and
Il [FNs across several SARS-CoV-2 lineages, and contributes to the enhanced IFN-evasion of
B.1.1.7°2. Type | IFN restriction of SARS-CoV-2 is mediated in part by interferon induced
membrane protein 2 (IFITM2) suppression of viral entry, and IFITM2 sensitivity is influenced by
the Spike sequence®?*. We therefore focused on characterising the mechanism of enhanced
antagonism of the innate response which was unique to the B.1.1.7 lineage.
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Figure 1. SARS-CoV-2 B.1.1.7 antagonises innate immune activation more efficiently than early-
lineage isolates. a. SARS-CoV-2 viruses compared in this study. Protein coding changes in B.1.1.7
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(red), IC19 (grey) and VIC (blue) are indicated in comparison to the Wuhan-Hu-1 reference genome
(MN908947).B.1.1.7 changes include 23 lineage defining mutations, plus additional changes compared
to Wuhan-Hu-1, totalling 29. b and c. Calu-3 cells were infected with either (b) 5000 E copies/cell or (c)
5 E copies/cell of B.1.1.7, VIC and 1C19. Measurements of replication of SARS-CoV-2 genomic and
subgenomic E RNAs (RT-gPCR) (left), % infection by intracellular nucleocapsid positivity (centre) or
infectious virion production by TCID50/ml (right) over time are shown. d and e. Fold induction of IFNf
gene expression and protein secretion over time from cells in (b) and (c) respectively. f. Replication
(24hpi), IFNB induction (24hpi) and IFNB secretion (48hpi) by multiple independent B.1.1.7 isolates
compared to IC19 and VIC at 250 E copies/cell. g. SARS-CoV-2 infection at 2000 E copies/cell after 8h
pre-treatment with IFNB at the indicated concentrations. Infection is shown as intracellular N levels
normalised to untreated controls at 24hpi. Data shown are mean +/- SEM of one of three representative
experiments performed in triplicate. Statistical comparisons are performed by Two Way ANOVA
(a,b,c,d,g) or One Way ANOVA with a Tukey post-comparison test (f). Blue stars indicate comparison
between B.1.1.7 and VIC (blue lines and symbols), grey stars indicate comparison between B.1.1.7 and
IC19 (grey lines and symbols). * (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001). ns: non-significant.
E: viral envelope gene. Hpi: hours post infection.

Global proteomic and genomic analyses reveal enhanced innate immune suppression by
B.1.1.7

To compare cellular host responses to SARS-CoV-2 variants, we performed global mass
spectrometry-based protein abundance and phosphorylation profiling (i.e. phosphoproteomics)
as well as total RNAseq on infected Calu-3 cells at 10 and 24 hours post infection (hpi) (Fig. 2a,
Table S1). The proteomic analysis was performed using a data-independent acquisition (DIA)
approach, which decreases sample-to-sample and time point variability in peptide detection over
the traditional data-dependent acquisition (DDA) mode, strengthening the comparative potential
of these datasets (see Methods). Compared to mock infection, we observed robust changes in
RNA abundance and protein phosphorylation after infection, with fewer changes at the level of
protein abundance (Fig. S1a). After quality control data filtering was performed (see Methods),
principal components analysis (PCA; Fig. S1b) and Pearson’s correlation (Fig. S1c) confirmed
strong correlation between biological replicates, time points, and conditions. On average, we
quantified 15,000-16,000 mRNA transcripts above background levels (Fig. S1d), 33,000-40,000
peptides mapping to 3,600-4,000 proteins for protein abundance (Fig. S1e), and 22,000-30,000
phosphorylated peptides mapping to 3,200-3,800 proteins for phosphoproteomics (Fig. S1f).

Gene set pathway enrichment® analysis comparing B.1.1.7 to wave one isolates VIC and IC19
highlighted innate immune system-related pathways among the top 5 terms for all three data types
(RNA, protein abundance, and phosphorylation) (Fig. 2b, S1g-i, Table S2). Top scoring terms
were related to interferon alpha beta signalling and cytokine/chemokine signalling, and most
predominantly enriched for the RNA and protein phosphorylation datasets (Fig. 2b). Concordantly,
in addition to the reduction of IFNB production (Fig 1d, 1e, 1f), B.1.1.7 infection resulted in reduced
induction of interferon-stimulated genes (ISGs) measured in the RNAseq and protein abundance
datasets using a predefined set of ISGs*® (detailed in the Methods, Table S3). This was evident
at 10 and 24hpi at the RNA level (Fig. 2c-d, S2a, S2c) and at 24hpi for protein (Fig. 2d, S2b). For
a subset of genes (CXCL10, IFIT2, MX1, IFIT1, and RSADZ2), we confirmed reduced ISG
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induction by multiple B.1.1.7 isolates, compared to VIC and IC19 at 24hpi, using RT-qPCR (Fig.
2e).

Consistent with reduced innate immune activation by B.1.1.7, we observed lower overall changes
in protein phosphorylation early in infection (10hpi) for B.1.1.7 compared to wave one isolates
(Fig. 2f). Accordingly, gene set enrichment analysis revealed that the pathways highlighted by
reduced phosphorylation at 10hpi are related to the innate immune response. These observations
are indicative of enhanced innate immune antagonism by this variant. Strikingly, this was reversed
at 24hpi as B.1.1.7 caused enhanced phosphorylation later in infection (Fig. S1i).

This notion of enhanced evasion at early time points, but increased activation at later time points
by B.1.1.7 led us to investigate the differential regulation of kinase signalling cascades between
B.1.1.7 and wave one viruses, especially in relation to innate immune signaling. We used the
phosphoproteomics data to estimate kinase activities for 191 kinases based on regulation of their
known substrates®’*® (Table S4), and grouped kinases according to their temporal dynamics (Fig.
S2e). In a targeted approach, we compiled a list of kinases from the top enriched term (“Reactome
innate immune system”; Fig. 2b) that were previously implicated in innate immune regulation and
significantly dysregulated during infection. This identified 24 kinases, which we clustered by
similar pathway membership (Fig. 2g and Methods). At 10hpi, we observed decreased activity of
TBKH1, a central kinase in nucleic acid sensing, as well as decreased activity in protein kinase A,
PRKDC, RET, AKT/mTOR, ERK, and JNK pathways. Intriguingly, at 24hpi, TBK1, PRKDC, JNK,
ERK, and PKA kinase activity was increased for B.1.1.7 compared to VIC (Fig. 2g), consistent
with the increased phosphorylation in innate immune system enriched pathway terms (Fig. S1i).
Thus, B.1.1.7 enhanced innate immune antagonism at the level of protein phosphorylation is only
observed at early time points after infection suggesting a delay in the activation of the signalling
pathways involved in viral recognition compared to early lineage viruses. However, later during
infection as viral replication ramps up, it triggers the phosphorylation cascades leading to the
activation of these pathways (Fig. 2f and Fig. S1i).


https://doi.org/10.1101/2021.06.06.446826
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.06.446826; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

7

a > RNA sequencing
SARS-CoV-2 SARS-CoV-2 SARS-CoV-2 Mock

B.1.1.7 early-lineage VIC early-lineage IC19 Mass spectrometry

* ’ * abundance proteomics
IO - [P T T Mass spectromety
= = = 10h 24h phosphoproteomics
b Biological triplicates per time point in Calu-3 cells
RNAseq Abundance Proteomics Phosphoproteomics
Reactome interferon alpha beta signaling -| I Naba ECM regulators { I Reactome Inna!e immune system I
y ini system |l Reactome scavenging of heme from plasma - N system -| IS
i bind i I KEGG complement and coagulation cascades | N KEGG MAPK swgnallng pathway | N
Reactome interferon signaling -| I Biocarta AMI pathway - NN Reactome hemostasis -| I
Reactome interleukin-10 signaling | I Reactome interferon alpha beta signaling { IR Reactome membrane trafficking -| I
02468 01 2 3 4 0 3 6 9
Avg -log10(p) Avg -log10(p) Avg -log10(p)
(B.1.1.7/VIC and IC19) (B.1.1.7/ VIC and IC19) (B.1.1.7/ VIC and IC19)
C Interferon-stimulated genes d  Interferon-stimulated genes e f Phosphoproteomics
RNAseq 80 IFIT2 @ 5000
10n  24n ez § 60/ & 4000
L6 1on 2] P=2e1s S i T
E ADAR & 2 40 2 3000
| SP110 & 1 k] e ek o
] EIF2AK2 & £ 20 e “ £ 2000
] [P'TFFW o 0 |3-1 m s o~ B.1.1.7/Mock
21
— PARP12 gg 07 © 1000 ~e- VIC / Mock
- B (=)
E_ g:T|4AzT;1 3 - 501 IFIT1 o . —e—|C19 / Mock
] Eggﬁgf R — S 409 & 10 12 14 16 18 20 22 24
5 - "
] DHX58 RNAseq oy Ptete 3 30 Hours post infection
—— 1] g‘g;(zéo 24h =7e o5 < 20 -
i i P 2 10l - g 10h 24h
- coLe 3 . [l
ol IFITM1 o 0 g - 5 0
| 1SG20 e A
— STAT2 D 1007 RSAD2 - CIEIE PKM
DDX58 o IR ;
- UBE2L6 = ' o é 80 ~ g!- _?EKKPC ‘ Nucleic acid
HH 27 - 3 601 = KT e
— IFITS g 404 5 o -| E PAKA Regulation of
Ej CMPK2 u—? 2 D en E PAK2 cytoskeleton
[ | PARP14 10h 2 - s . - ns **(** *f;«x £
] 0AS1 —E 0 79 o g o —{] [ PRKCQ
IFIT2 @ 1] s ST T PRKACA .
| IEIT1 193] — 3 n PRKAGB Protein
] IFI16 o 207 MX1 £ kinase A
H 1 SAMDOL 2o * # &b c IS PRKACG
i 1SG15 > o £ 159 ; i [CJSRC RET
LGALS9 o 4 . 3 10 a © E $E’§‘1 pathway
DDX60L e 104 o°
HERCe Abundance i kel "“,m — o
[ Fiss ) 2 S 5 i o (| PDPKY . |AKT/mTOR
R proteomics p=0.0001 2~ - RPSEKA1
I =0. » pathway
[ "|RSAD2 24h ? Moo oL B8 I I ﬁ 3 RPSBKA2
[ | |IF1aaL p=0 . O MAPKA
| MX1 CIRE 150+ B vAPK3  |ERK
] ons2 o % c cxcLio MAP2K pathway
2 0 ; S
[ EPSTH 2 T 5 100 ®
UsP18 S - F 3 MAPSR7 |ank
= B = . 3 5 - Mapke |Patway
1 . T 504
CXCL10 2 I & oo ch K i
Q2 Q¢ Log2FC O 0 o o 5356 4lnazseo.:‘lczlvn‘);
20 290 9 > >5 2920 4.
NN 4.2 0 2 4 5 ~ = S i P |
e =53 o =N~ PR Ki
e =T = = = oDl s Bt inase
Do D5 []p-value <0.01 oz oo [ activity > 1.5
or<-15

Figure 2. Global RNAseq and proteomics reveal innate immune suppression by B.1.1.7.

a. Calu-3 cells were infected with SARS-CoV-2 B.1.1.7 (red) or early lineages VIC (blue) and IC19 (grey)
at 5000 E copies/cell or mock-infected. At 10 and 24hpi, samples were harvested for phosphoproteomics
and abundance proteomics analysis using a data-independent acquisition (DIA) approach. Separate
wells were harvested for total RNA-sequencing. b. Unbiased pathway enrichment analysis was
performed to compare B.1.1.7 to VIC and IC19 (see Methods). The -log10(p-values) were averaged for
enrichments using B.1.1.7/VIC and B.1.1.7 /IC19 at 10 and 24hpi (4 data points total) and used to rank
terms. The top 5 terms for each data type are displayed. Terms associated with the innate immune
system are bolded. ¢. Heatmap depicting log2 fold change (color) of interferon-stimulated genes (1ISGs)3®
comparing B.1.1.7 to VIC or IC19 at 10 and 24hpi (see Methods[rak1] ). Squares outlined in black indicate
a statistically significant fold change (p-value < 0.01). d. Box plots show log2 fold change of interferon
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stimulated genes (ISG) between B.1.1.7/VIC (blue), B.1.1.7/IC19 (blue) or IC19/VIC (black) in RNAseq
and abundance proteomics dataset at 10 and 24hpi. Two-tailed student’s t-tests were performed for each
comparison and p-values are displayed. e. Confirmatory RT-gPCR analysis of bolded ISGs from (a)
expressed in Calu-3 cells infected with multiple B.1.1.7 isolates, VIC or IC19 at 2000 genomes/cell. f.
The number of phosphorylation sites significantly dysregulated for B.1.1.7, VIC, or IC19 versus mock at
10 or 24hpi. Statistical significance was determined as absolute log2 FC > 1 and adjusted p-value < 0.05.
d. Kinase activities for members of the top enriched terms for the phosphoproteomics dataset “Reactome
innate immune system” (b, right), for each time point. Kinase activities were estimated from
phosphoproteomics data using prior knowledge of kinase-substrate relationships. Kinases were clustered
along the rows based on frequency of co-membership in pathway terms and manually annotated (see
Methods). Data shown are mean +/- SEM (e). Statistical comparisons are performed by Two-tailed
student’s t-tests (d) or Two Way ANOVA with a Tukey’s multiple comparisons post-test (e). Blue stars
indicate comparison between B.1.1.7 and VIC (blue bars), grey stars indicate comparison between
B.1.1.7 and IC19 (grey bars). * (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001), or exact p-value are
shown (d). ns: non-significant.

B.1.1.7 has enhanced expression of subgenomic RNA and protein for key innate immune
antagonists

We next examined the RNAseq and protein abundance mass spectrometry data of the viral genes
and proteins seeking to further understand the differences between B.1.1.7 and wave one isolates
that underlie the contrasting host responses (Fig. 3a, S3a, Table S6, Table S7). As RNA
replication, measured by genomic and subgenomic E levels, was similar between variants (Fig.
1b, 1c), we determined the levels of each subgenomic RNA by selecting transcripts with a 5’
leader sequence, i.e. the segment derived from the 5 genomic RNA during sgRNA transcription
(Fig. 3a, S4). Importantly, we observed similar levels of viral Nsp1/2/3 protein translated from
genomic RNA (Fig. 3a), which was again consistent with comparable levels of infection, enabling
effective comparisons of transcription and protein expression between variants.

Strikingly, we found a large (over 80-fold) increase in innate immune antagonist Orf9b sgRNA
levels®, leading to a 6.5-fold increase in Orf9b protein levels for B.1.1.7 compared to VIC (Fig.
3a, 3b). Similarly, a 6.7-fold increase in protein and 64.5-fold increase in RNA was observed at
24hpi for B.1.1.7 compared to IC19 (Fig. S3a). Differential ORF9b expression was evident by
10hpi at the RNA and protein levels (Fig. 3a, 3b). The increase in B.1.1.7 OrfOb transcription might
be attributable to the D3L mutation in N, which introduces an enhanced transcriptional regulator
sequence (TRS) upstream of Orf9b, expressed as an alternative reading frame within N*.
Alternatively, the D3L mutation close to the ATG of Orf9b might enhance its translation from the
N sgRNA. In addition, when comparing B.1.1.7 to VIC, we found a significant but modest 1.5-fold
increase in sgRNA levels for a second innate immune regulator, Orf6'*%* (2.1-fold compared to
IC19). This corresponded to a 3.9-fold increase in Orf6 protein levels (4.6-fold compared to IC19)
at 24hpi (Fig. 3a, 3c, Table S6).

Additionally, we detected elevated sgRNA levels in B.1.1.7 of a third innate immune regulator,
nucleocapsid (N)'®. B.1.1.7 N RNA was increased 1.7-fold and 2.3-fold compared to VIC and
IC19, respectively, corresponding to a 2.4-fold and 2.3-fold increase in N protein levels (Fig. 3a,
3d). This increase in N might also be a contributor to the enhanced expression of Orfb, as much
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of Orf9b is thought to be expressed from the same subgenomic RNA as the N protein. These
results are consistent with the increase in N+ cells measured during Calu-3 infection (Fig. 1b,1c).
We also observed enhancement of Orf3a, M, and Orf7b proteins at 24hpi for B.1.1.7, with only
very modest changes observed at the RNA level (Fig. S3c,d). We confirmed upregulation of
B.1.1.7 Orf9b, Orf6, N and Orf3a sgRNA using RT-gPCR (Fig. 3e, S3b) and confirmed heightened
expression of B.1.1.7 Orf6 and N proteins by western blot (Fig. 3f). Unfortunately, we do not have
a suitable ORF9b antibody for western blot. These findings are in line with the reported enhanced
expression of B.1.1.7 sgRNA encoding Orf9b, Orf6, and N in clinical samples*°. The proportion of
each sgRNA of the total sgRNA reads are summarised for B.1.1.7 and wave one VIC in Fig. 3g
and S3e. Intriguingly, we observed an additional sgRNA, N* 4°, with an in-frame start codon at
M210 encoding the C-terminal portion of N (Fig. 3h, Table S7), amounting for 0.9% of the total
sgRNA for B.1.1.7 (Fig. 3g). We did not detect N* sgRNA in VIC or IC19 above background levels
suggesting that the B.1.1.7 N R203K and R204K mutations, just upstream of the new N* start
codon, may create a novel transcriptional regulatory sequence (TRS) permitting N* transcription,
as previously hypothesised®. Indeed, sgRNA abundance measurements were consistent with
Orf9b and N* being the most differentially expressed sgRNA between B.1.1.7 and VIC at 24hpi
(Fig. 3i).
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Figure 3. SARS-CoV-2 B.1.1.7 variant upregulates innate immune antagonists at the subgenomic

RNA and protein level.

a. Log?2 ratio of B.1.1.7 to VIC subgenomic RNA (sgRNA) containing a leader sequence normalised to
total genomic RNA per time point and virus (top). Log2 ratio of B.1.1.7 to VIC viral proteins quantified as
determined from the abundance proteomics dataset (bottom). Peptide intensities are summed per viral
protein. Only peptides detected in both B.1.1.7 and VIC are used for quantification. Bars depict the mean
of three biological replicates. ND: not detected. b. c. and d. Quantification of Orf9b (b), Orf6 (c) and N (d)
sgRNA from RNAseq dataset. Counts are normalised to genomic RNA abundance at each time point
and virus (top). Bottom panels show summed peptides per viral protein from proteomics dataset (no
normalisation). e. Quantification of Orf9b & N (left) or Orf6 (right) sgRNA abundance via RT-gPCR in
independent B.1.1.7 isolates, VIC, or IC19. f. Western blot of Orf6, N and S expression in Calu-3 cells

10


https://doi.org/10.1101/2021.06.06.446826
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.06.446826; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

11

infected with B.1.1.7, VIC, or IC19 at 24hpi. g. Pie chart depicting proportion of total sgRNA mapping to
each viral sgRNA (containing leader sequence) for B.1.1.7. VIC percentages in parentheses. h. sgRNA
log2 normalised counts (dot height) at 24hpi for B.1.1.7 (top) or VIC (bottom) projected onto their
identified start sites on the SARS-CoV-2 genome. Only canonical and two non-canonical sgRNAs (Orf9b
and N*) are depicted. All other non-canonical sgRNAs were excluded. i. Scatter plot of sgRNA abundance
in B.1.1.7 or VIC at 24hpi. Grey dots indicated other non-canonical sgRNAs containing a leader sequence
but no clear start codon. For (a-e), mean +/- SEM are shown. Statistical comparisons for (c-e) were
performed by Two Way ANOVA with Tukey’s multiple comparisons post-test. * (p<0.05), ** (p<0.01), ***
(p<0.001), **** (p<0.0001). ns: non-significant.

Orf9b antagonises innate immune activation by interacting with human TOM70

To further understand the transcription pathways differentially activated by B.1.1.7, we used the
RNAseq dataset to estimate transcription factor activities by mapping target genes to
corresponding transcriptional regulators (Fig. S2d, Table S5). We extracted significantly regulated
transcription factors within the top 5 most enriched terms from the unbiased RNAseq pathway
enrichment analysis (Fig 2a, left). This revealed that IRF and STAT transcription factor families
are significantly less activated by B.1.1.7 compared to wave one viruses (Fig. 4a). Consistently,
measuring IRF3 nuclear translocation by single-cell immunofluorescence demonstrated reduced
IRF3 activation after B.1.1.7 infection compared to VIC (Fig. 4b). STAT1/STAT2/IRF9 lie
downstream of the Type | IFN receptor, and potent inhibition by B.1.1.7 is consistent with
increased Orf6 levels, known to inhibit STAT1, and IRF3, nuclear translocation®?,

Decreased TBK1 activity in B.1.1.7 infection (Fig. 2g) also suggests potent antagonism upstream
of IRF3 by additional mechanisms. We have previously reported that SARS-CoV-2 Orf9b, which
is expressed to significantly higher levels by B.1.1.7 (Fig. 3), interacts with human TOM70*', a
mitochondrial import receptor required for MAVS activation of TBK1 and IRF3 and subsequent
Type | interferon production*? downstream of RNA sensors. A recent study has corroborated this
interaction and demonstrated inhibition of Type | interferon production by Orf9b through TOM70
interaction®®. We previously found that two serine residues buried within the Orf9b-TOM70 binding
pocket, Orf9b S50 and S53, are phosphorylated during SARS-CoV-2 infection***° (Fig. 4c). Here
we discovered that mutating Orf9b S53 or S50/S53 to the phosphomimetic glutamic acid, and to
a lesser extent alanine, disrupted co-immunoprecipitation of Orfd9b and TOM70 (Fig 4d).
Accordingly, the phosphomimetic mutations S50/53E abolished Orf9b antagonism of /ISG56-
luciferase reporter gene activation induced by poly I:C transfection that mimics RNA sensing (Fig.
4e), presumably by preventing interaction with TOM70. This suggests that OrfOb suppresses
signalling downstream of MAVS by targeting TOM70 and that this process is regulated by
phosphorylation (Fig. 4f). Intriguingly, we detected lower levels of B.1.1.7 Orf9b S53
phosphorylation at 10hpi compared to VIC (Fig. 4g), an effect weakened at 24hpi, in line with
suppression of host kinase activity in the early stages of B.1.1.7 infection (Fig. 2f, 2g). This
suggests that not only does B.1.1.7 express more Orf9b early in infection, lower kinase activation
ensures maximal Orf9b innate antagonism. At later time points (24hpi), this difference in Orf9b
phosphorylation is less pronounced, consistent with a modest increase in kinase activity at 24hpi
for B.1.1.7 compared to first wave isolates (Fig. 2g).
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SARS-CoV-2 N has also been shown to inhibit activation of RNA sensing®. B.1.1.7 has a modest
increase in N expression (Fig. 3a, 3d), and has acquired 4 N coding changes (Fig. 1a). We
therefore tested whether B.1.1.7 N displays enhanced innate immune antagonism. In fact, B.1.1.7
N antagonism of poly I:C activation of a ISG56-luciferase reporter was comparable to antagonism
by VIC N, suggesting the coding changes do not enhance B.1.1.7 N potency (Fig. 4h).
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Figure 4. Orf9b binds TOM70 and antagonises innate immune activation downstream of RNA
sensing.

a. Transcription factor (TF) activities in the 5 top enriched terms for the RNAseq dataset (Fig. 2b, left), for each
time point. TFs are clustered hierarchically along rows based on activity magnitude. Squares outlined in black
depict activities > 1.5 or < -1.5. b. IRF3 nuclear to cytoplasmic log2 ratio in cells infected with either B.1.1.7 of
VIC at an MOI of 2000 E copies/cell at 24hpi measured by single cell immunofluorescence analysis. Shown
are 1000 randomly sampled cells for each condition with a cut-off of 0.1>=<5. ¢. Cryogenic electron microscopy
(Cryo-EM) of SARS-CoV-2 Orf9b (yellow) in complex with TOM70 (blue) from Gordon et al. (2020b).
Highlighted in red are serines (S50 and S53) in Orf9b in the TOM70 binding site. d. Co-immunoprecipitation
of streptavidin-tagged wild-type (WT) Orf9b, and various Orf9b point mutants expressed in HEK293T cells with
Flag-TOM70. Forward slash indicates the presence of both mutations. e. ISG56-reporter activation by poly:IC
in the presence of Orf9b WT, Orfob S50/53E or empty vector (EV) expression in HEK293T cells. f. Model
schematic depicting proposed mechanism of innate immune antagonism by Orf9b. (i) When S53 is
unphosphorylated, Orfob binds to TOM70 and inhibits its activity in innate immune signaling. Conversely, (ii)
when Orf9b is phosphorylated on S53, it can no longer interact with TOM70 and is unable to antagonise innate
immune activation. g. Ratio between the intensity of Orfob peptide phosphorylated on S53 and total Orfob (as
calculated in Fig. 3b, bottom) from phospho- and abundance proteomics of Calu-3 cells infected with indicated
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viruses for either 10 or 24 hpi (as depicted in Fig. 2a). h. ISG56-reporter activation by poly:IC in the presence
of N (VIC), N (B.1.1.7) or empty vector (EV) expression in HEK293T cells. Statistical comparisons are
performed by Mann-Whitney Test comparison (b), Two Way ANOVA with Tukey’s multiple comparison post
test (e,g,h). For (e) black stars indicate the comparison between ORF9b WT and ORF9b S50/53E, For (g),
blue stars indicate comparison between B.1.1.7 and VIC (blue bars). For (h), blue stars indicate comparison
between VIC and EV and red stars indicate comparison between B.1.1.7 and EV. * (p<0.05), ** (p<0.01), ***
(p<0.001), **** (p<0.0001).
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Figure 5. Model schematic depicting how B.1.1.7 antagonises innate immune activation.

Highly transmissible SARS-CoV-2 B.1.1.7 has evolved to more effectively antagonise the innate immune
response. SARS-CoV-2 wave one isolates activate a delayed innate response in airway epithelial cells relative
to rapid viral replication, indicative of viral antagonism of innate immune responses early in infection. It is known
that Orf9b, Orf6 and N are innate immune antagonists, acting at different levels to inhibit RNA sensing. Orf6é
inhibits IRF3 and STAT1 nuclear translocation'®?, N prevents activation of RNA sensor RIG-1'® and here we
show that Orf9b inhibits RNA sensing through interaction with TOM70 regulated by phosphorylation. We find
that B.1.1.7 has evolved to produce more sgRNA for these key innate immune antagonists leading to increased
protein levels and enhanced innate immune antagonism as compared to first wave isolates.
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Discussion

Our data reveal how the SARS-CoV-2 B.1.1.7 lineage has adapted to the host by enhancing
antagonism of the innate immune response. Strikingly, we find that B.1.1.7 has specifically
increased subgenomic RNA synthesis and expression of key viral innate antagonists, Orf9b as
well as Orf6 and nucleocapsid (N) protein (Fig. 5). This remarkable and novel observation
suggests evolution of B.1.1.7 nucleotide sequences that modulate specific sgRNA production,
and selection for increased sgRNA synthesis and protein expression, rather than selection of
protein coding changes to alter or enhance viral antagonist function. Accordingly, we found that
B.1.1.7 nucleocapsid protein coding changes did not enhance inhibition of RNA sensing.
However, given SARS-CoV-2 encodes multiple, functionally overlapping innate immune
antagonists'>', it is possible that B.1.1.7 protein variation, for example in Nsp3 or Nsp6, could
also contribute to enhanced immune antagonism. Importantly, increased detection and
expression of Orfb, Orf6 and N sgRNA has been reported in B.1.1.7 patient samples®,
supporting the in vivo relevance of our findings.

Coronavirus sgRNAs are produced by discontinuous transcription during negative-strand RNA
synthesis, regulated by RNA elements called transcriptional regulatory sequences (TRS)*.
Complementarity between the TRS upstream of each Orf and the TRS near the leader sequence
at the 5’ end of the genome (TRS-L) mediates production of nascent sgRNAs with a 5’ leader
derived from genomic RNA. Orf9b is an alternative reading frame in N, expressed from its own
sgRNA. In wave one isolates, the Orf9b TRS has weak complementarity with TRS-L, consistent
with low levels of Orf9b protein and sgRNA. However enhanced B.1.1.7 Orf9b sgRNA synthesis
is likely mediated by changes in N (28,880 GAT>CAT, D3L) that enhance complementarity
between the Orfob TRS and TRS-L surrounding sequences*. At this moment, we cannot exclude
whether the increase in Orf9b protein expression detected by proteomics is due to increased
levels of Orf9b subgenomic RNA or to its increased translation from the N sgRNA, or to both. It is
striking that Orfob is not only enhanced in expression in B.1.1.7 but appears to be regulated by
phosphorylation which is in turn particularly repressed during B.1.1.7 infection. This suggests that
Orf9b inhibition of innate immunity is regulated by the host innate response itself. In this model,
unphosphorylated Orf9b is maximally active early after infection to permit effective innate
antagonism and viral production, but as host activation begins, Orf9b becomes phosphorylated
and switched off, enabling subsequent innate immune activation. Such an inflammatory switch
may have evolved by coronaviruses to enhance transmission by increasing inflammation at the
site of infection once virus production is high, leading to symptoms that promote transmission
such as mucosal secretions and coughing.

Detection of the N* sgRNA in B.1.1.7 infected cells can be explained by a triple nucleotide change
spanning amino acids R203K/G204R (28881 GGG>AAC), which creates a novel TRS, near a
downstream start codon, predicted to generate a short C-terminal form of N called N**47 which
may have innate immune antagonist activity. Orf6 is known to antagonise the innate response
through inhibition of transcription factor STAT1 and IRF3 nuclear entry'®?*. Intriguingly, the
increase in Orf6 sgRNA expression cannot be explained by any changes around its TRS, which
has weak complementarity to the TRS-L, suggesting evolution of a different regulatory
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mechanism in B.1.1.7 to increase Orf6 expression. Future studies will be important to understand
which genotypic adaptations confer this phenotype.

We propose that enhanced innate immune antagonism by the B.1.1.7 lineage contributes to its
transmission advantage, as has been observed for HIV, another emergent pandemic virus''8.
We hypothesise that more effective innate immune antagonism permits enhanced transmission
through reduced and delayed host responses which otherwise protect cells from infection. We
propose that our model captures the earliest interactions between the virus and airway epithelial
cells, in which the virus outpaces the innate response through a combination of antagonism and
evasion. In the Calu-3 system, differences in innate immune antagonism between variants do not
translate to differences in viral replication kinetics. We have previously shown that even for wave
one isolates, the innate response occurs too late to restrict replication in Calu-3 cells?®. We
hypothesise that in vivo, enhanced innate antagonism could promote B.1.1.7 replication to higher
levels and permit in vivo dissemination, in line with observations of delayed symptom onset for
B.1.1.7 infections, and enhanced inflammatory disease °°. This is also consistent with reports of
prolonged viral shedding of B.1.1.744° suggesting less effective control of B.1.1.7 replication,
both of which may enhance transmission.

Our data highlight that changes in protein expression levels may have significant impact on the
virus-host interaction. This has important implications for management of the ongoing pandemic.
It is expected that expanding ongoing sequencing efforts to monitor subgenomic RNA levels*® will
be critical in identification of future SARS-CoV-2 variants of concern. Other reports suggest
increased affinity of the B.1.1.7 spike protein for human ACE2°°, which may enhance viral entry
efficiency and therefore transmission, and is in line with B.1.1.7 adaptation to its new human host.
Our findings highlight the importance of studying changes outside Spike to understand the
phenotype of B.1.1.7, other current variants, and future variants, and to emphasise the importance
of innate immune evasion in the ongoing process of adaptation of SARS-CoV-2 to a new host.
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Supplemental Tables
Table S1. Fold changes and p-values for RNAseq, abundance proteomics, and
phosphoproteomics datasets.
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Table S2. Full pathway enrichment results of RNAseq, abundance proteomics, and
phosphoproteomics datasets (i.e. Figures 2b and S1g-i).

Table S3. Fold changes and p-values for interferon stimulated genes from RNAseq and
abundance proteomics datasets (i.e. Figures 2c-d).

Table S4. Full table of calculated kinase activities for comparisons between B.1.1.7, VIC, and
IC19.

Table S5. Full table of calculated transcription factor activities for comparisons between B.1.1.7,
VIC, and IC19.

Table S6. Viral RNA and protein quantities and ratios for B.1.1.7 to VIC and IC19 (i.e. Figure 3
and S3).

Table S7. Read counts of subgenomic RNA mapped to SARS-CoV-2 genome (i.e. Figure 3i).

Data availability

Abundance proteomics and phosphoproteomics datasets have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier
PXD026302. Reviewers may access the raw data with the username
“reviewer_pxd026302@ebi.ac.uk” and password “KBANyPDu”. Raw RNAseq data files are
available from the corresponding authors upon request.
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Figure S1. Omics data quality control and pathway enrichments.

a. Significantly changing genes for RNA, proteins for protein abundance, and phosphorylation sites for
phosphoproteomics data. Significance was defined as abs(log2FC)>1 and adjusted p-value<0.05. Red
depicts positive log2 fold changes whereas blue depicts negative log2 fold changes.

b. Principal components analysis (PCA) on normalised RNA transcripts per million (TPM), protein
intensities, or phosphorylation site intensities. Non-finite values were removed and detections
(transcripts, proteins, or phosphorylation sites) not shared (non-finite) between all conditions were

discarded prior to analysis.

c. Pairwise Pearson’s correlation between RNA, protein, or phosphorylation site abundance among
replicates within the same condition (red) or between distinct conditions (black).
d. Number of genes expressed above baseline in RNAseq dataset per replicate.
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e. Number of peptides and proteins detected per replicate in the abundance proteomics dataset.

f. Number of phosphorylated peptides and corresponding proteins from phosphoproteomics dataset.
d. Gene set enrichment analysis based on log2FC method using RNA dataset (as in Fig. 2b, see
Methods). Ranking is based on the average of the absolute value z-scores across the indicated
contrasts involving B.1.1.7 (per row). Enrichments with an adjusted p-value<0.05 are indicated with a
black border.

h. Same as in g, but for abundance proteomics dataset.

i. Same as in g, but for phosphoproteomics dataset. If a protein possessed multiple phosphorylation
sites, the maximum absolute value log2FC was used as the representative value for the protein. Finite
values (non-infinite) were prioritised over quantitative values.
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Figure S2. Omics data highlights recruitment of innate immune signaling.
a. Expression of interferon-stimulated genes from Lui et al (2018)% (see Methods) using the RNAseq
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dataset. Significant fold changes with an adjusted p-value<0.05 are indicated with black borders.

b. Same as in (a) using the abundance proteomics dataset. N.D. indicates proteins either not detected
in one condition (thus, Inf or -Inf) or not detected in both conditions.
c. RNA expression per biological replicate of interferon-stimulated genes (ISGs) for each virus versus
mock.

d. Full kinase activity analysis of indicated contrasts. Only kinases with an absolute value z-score>2 were
kept. Kinases were separated into four distinct clusters using k-means clustering, which naturally reveals
groups depicting kinases downregulated for the entire time course (“Down”), downregulated early and
upregulated late (“Down-Up”), upregulated early and downregulated late (“Up-Down”), or upregulated or
constant throughout the time course (“Up”). Panel on right depicts the average Z-score for each distinct
cluster per time point, collapsing across B.1.1.7/VIC and B.1.1.7/IC19 comparisons.

e. Transcription factor (TF) activities were estimated from the RNAseq dataset using known TF-target
gene interactions (see Methods). Only transcription factors with an absolute value NES>2.5 were kept.
TF are clustered using ward hierarchical clustering based on similar activity patterns across time.
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Figure S3. Expression of viral RNA and protein for SARS-CoV-2 variants.
a. Log2 ratio of B.1.1.7 to IC19 subgenomic RNA (sgRNA) abundance as determined from the RNAseq
dataset. sgRNA reads are counted only if they possess a leader sequence and normalised to total

genomic RNA per time point and virus (see Methods).
b. Log2 ratio of B.1.1.7 to IC19 viral proteins quantified as determined from the abundance proteomics
dataset. Peptide intensities are summed per viral protein. Only peptides detected in both B.1.1.7 and

IC19 are used for quantification. Bars depict the mean of three biological replicates. Error bars depict the

standard error.

c. Quantification of sgRNAs for M, S, Orf8, Orf7a, Orf3a, E and N* from the RNAseq dataset. Counts are
normalised to genomic RNA abundance at each time point and virus.
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d. Quantification of Orf3a (left) or S (right) sgRNA abundance via RT-qPCR in distinct B.1.1.7 isolates,
VIC, or IC19.

e. Summed peptides per viral protein for M, S, Nsp1, Orf7b, and Orf3b from the abundance proteomics
dataset.

f. Quantification of Orf6 and N protein from western blot in Figure 3f for B.1.1.7, VIC, and 1C19.

g. Pie chart depicting proportion of total sgRNA mapping to each viral sgRNA (containing leader
sequence) for IC19.

h. Comparison of percentages of total sgRNA mapping to each viral sgRNA across B.1.1.7, VIC, and
IC19.

* (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001). ns: non-significant.

a
B.1.1.7 Leader sequence Orfob start
B.1.1.7 orf9b CTTTCEATCTCTTCTAGATCTCTTCTCTAAATEGACCCCAARATCAGCGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAGT — Counts Orfdb = 11,320
B1.17N | CTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACAAACTAAATETCTETAAATGGACCCCAAAATCAGCGARATGCACCCCGCATTACGTTTGGTGGA Counts N = 1,410,561
Genomic position 28257 (VIC) TRS N start N D3L mutation increases similarity to TRS in B.1.1.7
b vIC Leader sequence Orf9b start
VIC orf9b CTTTCGATCTCTTCTACATCTGTTCTCTAAATGGACCCCARAATCAGCGARATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAA Counts Orf9b = 136
VICN = CITTCGATCTCTTGTAGATCTGTTCTCTAAACGAACAAACTAAAATGTCTGATAATGGACCCCAARATCAGCGARATGCACCCCGCATTACGTTTGGTGG Counts N = 852,013
TRS N start
Cc
IC19 Leader sequence Ori9b start
1C19 orf9b CTTTCCATCTCTTGTAGATCTGTTCTCTAAATGGACCCCARAATCAGCGARATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTG Counts Orf9b = 175
IC19N = CTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACAAACTAARATGTC TGATAATGGACCCCARAATCAGCGARATGCACCCCGCATTACGTTTGGTGE Counts N = 600,582
TRS N start

Figure S4. Examples of leader-containing reads for Orf9b and N from RNAseq dataset.

a. Representative sequence for Orfob (top) and N (bottom) sgRNA from B.1.1.7. Leader sequences used
in this analysis to identify sgRNAs are highlighted in yellow. The sequence following the leader sequence
is used to differentiate Orf9b versus N sgRNAs. Orf9b and N start codons are indicated in maroon. The
site of the N-protein D3L mutation is indicated in green, which results in increased similarity to the
transcriptional regulatory sequence (TRS) for B.1.1.7. Read counts of Orf9b and N are indicated to the
right. Counts are normalized to mean genomic reads per replicate.

b. Same as in a but for VIC.

c. Same as in a but for IC19.
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Methods

Cell culture

Calu-3 cells were purchased from ATCC (HTB-55) and Caco-2 cells were a kind gift from Dr.
Dalan Bailey (Pirbright Institute, USA). Hela-ACE2 cells were a kind gift from Dr. James E Voss
(TSRI, USA)*'. HEK293T cells were a kind gift from Jeremy Luban. Cells were cultured in
Dulbecco’s modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated FBS
(Labtech), 100U/ml penicillin/streptomycin, with the addition of 1% Sodium Pyruvate (Gibco) and
1% Glutamax. All cells were passaged at 80% confluence. For infections, adherent cells were
trypsinised, washed once in fresh medium and passed through a 70 uym cell strainer before
seeding at 0.2x10° cells/ml into tissue-culture plates. Calu-3 cells were grown to 60-80%
confluence prior to infection as described previously®.

Viruses

SARS-CoV-2 isolate VIC was provided by NISBC, and IC19, B.1.1.7, B.1.1.7 (B) and B.1.1.7 (C)
are reported in ", full isolate names and GISAID references are listed below. Viruses were
propagated by infecting Caco-2 cells at MOI 0.01 TCID50/cell, in culture medium at 37°C. Virus
was harvested at 72 hours post infection (hpi) and clarified by centrifugation at 4000 rpm for 15
min at 4°C to remove any cellular debris. We have previously shown that infection of Caco-2 cells
in these conditions does not result in activation of the innate response or cytokine carryover 2.
Virus stocks were aliquoted and stored at -80°C. Virus stocks were quantified by extracting RNA
from 100ul of supernatant with 1ug carrier RNA using Qiagen RNeasy clean up RNA protocol,
before measuring viral E RNA copies per ml by RT-qCPR as described below.

Virus ID in manuscript | Isolate name PANGO lineage GISAID Accession ID
VIC BetaCoV/Australia/VIC01/2020 B -

IC19 hCoV-19/England/IC19/2020 B.1.13 EPI_ISL_475572
B.1.1.7 hCoV-19/England/204690005/2020 | B.1.1.7 EPI_ISL_693401
B.1.1.7 (B) hCoV-19/England/205090256/2020 | B.1.1.7 EPI_ISL_747517
B.1.1.7 (C) hCoV-19/England/205080610/2020 | B.1.1.7 EPI_ISL_723001

Viral sequencing and assembly

Viral stocks were sequenced to confirm each stock was the same at consensus level to the
original isolate. Sequencing was performed using a multiplex PCR-based approach using the
ARTIC LoCost protocol and v3 primer set as described®?>®. Amplicon libraries were sequenced
using MinlON flow cells v9.4.1 (Oxford Nanopore Technologies, Oxford, UK). Genomes were
assembled using reference-based assembly to the MN908947.3 sequence and the ARTIC
bioinformatic pipeline using 20x minimum coverage cut-off for any region of the genome and
50.1% cut-off for calling single nucleotide polymorphisms.

Infection of human cells

For infections, multiplicities of infection (MOI) were calculated using E copies/cell quantified by
RT-gPCR. Cells were inoculated with diluted virus stocks for 2h at 37°C, subsequently washed
once with PBS and fresh culture medium was added. At indicated time points, cells were
harvested for analysis.

24


https://doi.org/10.1101/2021.06.06.446826
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.06.446826; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

25

Virus quantification by TCID50

Virus titres were determined by 50% tissue culture infectious dose (TCID50) on Hela-ACE2 cells.
In brief, 96 well plates were seeded at 5x10° cells/well in 100 pl. Eight ten-fold serial dilutions of
each virus stock or supernatant were prepared and 50 ul added to 4 replicate wells. Cytopathic
effect (CPE) was scored at 2-3 days post infection. TCID50/ml was calculated using the Reed &
Muench method, and an Excel spreadsheet created by Dr. Brett D. Lindenbach was used for
calculating TCID50/mL values®.

RT-qPCR of viral proteins in infected cells

RNA was extracted using RNeasy Micro Kits (Qiagen) and residual genomic DNA was removed
from RNA samples by on-column DNAse | treatment (Qiagen). Both steps were performed
according to the manufacturer’s instructions. cDNA was synthesised using SuperScript Il with
random hexamer primers (Invitrogen). RT-qPCR was performed using Fast SYBR Green Master
Mix (Thermo Fisher) for host gene expression and subgenomic RNA expression or TagMan
Master mix (Thermo Fisher) for viral RNA quantification, and reactions performed on the
QuantStudio 5 Real-Time PCR systems (Thermo Fisher). Viral E RNA copies were determined
by a standard curve, using primers and a Tagman probe specific for E, as described elsewhere
% and below. The primers used for quantification of viral subgenomic RNA are listed below, the
same forward primer against the leader sequence was used for all reactions, and is as described
by the Artic Network**2, Using the 2-AACt method, sgRNA levels were normalised to GAPDH to
account for differences in RNA loading and then normalised to the level of ORF1a gRNA
quantified in the same way for each variant to account for differences in the level of infection. Host
gene expression was determined using the 2-AACt method and normalised to GAPDH expression
using primers listed below.

The following primers and probes were used:

SARS-CoV-2 5-ACAGGTACGTTAATAGTTAATAGCGT-3
E_Sarbeco F
SARS-CoV-2 5'-FAM-ACACTAGCCATCCTTACTGCGCTTCG-TAMRA-3’

E_Sarbeco_Probe1

SARS-CoV-2 5-ATATTGCAGCAGTACGCACACA-3’
E_Sarbeco R

5 Leader_F ACCAACCAACTTTCGATCTCTTGT
Orfta_R CCTCCACGGAGTCTCCAAAG
Orf6_sg R GAGGTTTATGATGTAATCAAGATTC
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Orf9b_N_sgRNA_R CACTGCGTTCTCCATTCTGG

S_sgRNA_R GTCAGGGTAATAAACACCACGTG
Orf3a_sgRNA_R GCAGTAGCGCGAACAAAATCTG
CXCL10 Fwd 5-TGGCATTCAAGGAGTACCTC-3’

Rev 5-TTGTAGCAATGATCTCAACACG-3’

GAPDH Fwd 5-GGGAAACTGTGGCGTGAT-3’
Rev 5-GGAGGAGTGGGTGTCGCTGTT-3’

IFIT1 Fwd 5-CCTCCTTGGGTTCGTCTACA-3’
Rev 5-GGCTGATATCTGGGTGCCTA-3’

IFIT2 Fwd 5-CAGCTGAGAATTGCACTGCAA-3’
Rev 5-CGTAGGCTGCTCTCCAAGGA-3’

IFNB1 Fwd 5-AGGACAGGATGAACTTTGAC-3
Rev 5-TGATAGACATTAGCCAGGAG-3’

MX1 Fwd 5-ATCCTGGGATTTTGGGGCTT-3’
Rev 5-CCGCTTGTCGCTGGTGTCG-3

RSAD2 Fwd 5 -CTGTCCGCTGGAAAGTG-3’
Rev 5-GCTTCTTCTACACCAACATCC-3’

Western blot for viral proteins in infected cells

For detection of N, Orf6, spike and tubulin expression, whole cell protein lysates were extracted
with RIPA buffer, and then separated by SDS-PAGE, transferred onto nitrocellulose and blocked
in PBS with 0.05% Tween 20 and 5% skimmed milk. Membranes were probed with rabbit-anti-
SARS spike (Invitrogen, PA1-411-1165, 0.5ug/ml), rabbit-anti-Orf6 (Abnova, PAB31757, 4ug/ml),
Cr3009 SARS-CoV-2 cross-reactive human-anti-N antibody (1ug/ml) (a kind gift from Dr. Laura
McCoy, UCL) , mouse-anti-alpha-tubulin (SIGMA, clone DM1A) followed by IRDye 800CW or
680RD secondary antibodies (Abcam, goat anti-rabbit, goat anti-mouse or goat anti-human). Blots
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were Imaged using an Odyssey Infrared Imager (LI-COR Biosciences) and analysed with Image
Studio Lite software.

Flow cytometry of infected cells

For flow cytometry analysis, adherent cells were recovered by trypsinisation and washed in PBS
with 2mM EDTA (PBS/EDTA). Cells were stained with fixable Zombie UV Live/Dead dye
(Biolegend) for 6 min at room temperature. Excess stain was quenched with FBS-complemented
DMEM. Unbound antibody was washed off thoroughly and cells were fixed in 4% PFA prior to
intracellular staining. For intracellular detection of SARS-CoV-2 nucleoprotein, cells were
permeabilised for 15 min with Intracellular Staining Perm Wash Buffer (BioLegend). Cells were
then incubated with 1ug/ml CR3009 SARS-CoV-2 cross-reactive antibody (a kind gift from Dr.
Laura McCoy, UCL) in permeabilization buffer for 30 min at room temperature, washed once and
incubated with secondary Alexa Fluor 488-Donkey-anti-Human IgG (Jackson Labs). All samples
were acquired on a BD Fortessa X20 using BD FACSDiva software. Data was analysed using
FlowJo v10 (Tree Star).

Innate immune sensing assay

HEK293T cells were seeded in 48-well plates (5x10* cells/well) the day before transfection. For
viral protein expression, cells were transfected with 100ng of empty vector or vector encoding
either ORF9b, ORF9bS50/53E, VIC N or B.1.1.7 N (pLVX-EF1alpha-IRES-Puro backbone),
alongside 10ng of 1SG56-firefly luciferase reporter plasmid (kindly provided by Andrew Bowie,
Trinity College Dublin), and 2.5ng of a Renilla luciferase under control of thymidine kinase
promoter (Promega), as a control for transfection. Transfections were performed with 0.75uL
fugene (Promega) and 25ul Optimem (Gibco) per well. Cells were stimulated 24 hours post
plasmid transfection with poly I:C (Invivogen), concentrations stated in figures (final 250ul volume
per well), using Lipofectamine 2000 (Invitrogen) at a 3:1 ratio and 25ul optimem. Cells were lysed
with 100 pl passive lysis buffer (Promega) 24 h after stimulation, 30 pl of cell lysis was transferred
to a white 96-well assay plate and firefly and renilla activities were measured using the Dual-Glo®
Luciferase Assay System (Promega), reading luminescence on a GloMax ®-Multi Detection
System (Promega). For each condition, data were normalized by dividing the firefly luciferase
activity by renilla luciferase activity and then compared to the empty-vector transfected mock-
treated control to generate a fold induction.

Immunofluorescence staining and microscopy imaging

Cells were fixed using 4% PFA-PBS for 1h and subsequently washed with PBS. A blocking step
was carried out for 1h at room temperature with 10% goat serum/1%BSA in PBS. Nucleocapsid
(N) protein detection was performed by primary incubation with human anti-N antibody (Cr3009,
1ug/ml) for 18h, and washed thoroughly in PBS. Where appropriate, N-protein staining was
followed by incubation with mouse anti-IRF3 (sc-33641, Santa Cruz) for 1h. Primary antibodies
were detected by labelling with secondary anti-human AlexaFluor-568 and anti-mouse AlexaFluor
488 conjugates (Jackson Immuno Research) for 1h. All cells were then labelled with HCS
CellMask DeepRed (H32721, Thermo Fisher) and Hoechst33342 (H3570, Thermo Fisher).
Images were acquired using the WiScan® Hermes High-Content Imaging System (IDEA Bio-
Medical, Rehovot, Israel) at magnification 10X/0.4NA or 40X/0.75NA. Four channel automated
acquisition was carried out sequentially (DAPI/TRITC, GFP/Cy5). Images were acquired at 40X
magnification, 35% density/ 30% well area resulting in 102 FOV/well.

Image analysis of immunofluorescence experiments

IRF3 raw image channels were pre-processed using a batch rolling ball background correction in
FlJl imagej software package56 prior to 514 quantification. Automated image analysis was carried
out using CellProfiler®’. Firstly, Nuclei were identified as primary objects by segmentation of the
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Hoechst33342 channel. Cells were identified as secondary objects by nucleus-dependent
segmentation of the CellMask channel. Cell cytoplasm was segmented by subtracting the nuclear
objects mask from the cell masks. Nucleocapsid positive cells were identified by identifying
nucleocapsid signal as primary objects followed by generation of a nucleocapsid mask which was
then applied to filter the segmented cell population. Intensity properties were calculated for the
nuclei, cytoplasm and cell object populations. Nuclear:cytoplasmic ratio was calculated as part of
the pipeline by dividing the Integrated Intensity of the nuclei object by the integrated intensity of
corresponding cytoplasm object. Plotted are 1000 randomly sampled cells selected for each
condition using the 'Pandas' data processing package in Python 3 with a filter of 0.1>=<5.

Coimmunoprecipitation of Tom70 with Orf9b

HEK293T were transfected with the indicated mammalian expression plasmids using
Lipofectamine 2000 (Invitrogen). Twenty-four hours post-transfection, cells were harvested and
lysed in NP-40 lysis buffer [0.5% Nonidet P 40 Substitute (NP-40; Fluka Analytical), 50 mM Tris-
HCI, pH 7.4 at 4°C, 150 mM NaCl, 1 mM EDTA] supplemented with cOmplete mini EDTA-free
protease and PhosSTOP phosphatase inhibitor cocktails (Roche). Clarified cell lysates were
incubated with Streptactin Sepharose beads (IBA) for 2 hours at 4°C, followed by five washes
with NP-40 lysis buffer. Protein complexes were eluted in the SDS loading buffer and were
analyzed by western blotting with the indicated antibodies. Antibodies: Rabbit anti—Strep-tag Il
(Abcam #ab232586); Rabbit anti-beta-actin (Cell Signaling Technology #4967); Monoclonal
mouse anti-FLAG M2 antibody (Sigma Aldrich, F1804), Polyclonal rabbit anti-FLAG antibody
(Sigma Aldrich, F7425)

Cell lysis and digestion for proteomics

Following the infection time course, cells in 6-well plates were washed quickly three times in ice
cold 1x PBS. Next, cells were lysed in 250uL/well of 6M guanidine hydrochloride (Sigma) in
100mM Tris-HCI (pH 8.0) and scraped with a cell spatula for complete collection of the sample.
Samples were then boiled for 5 minutes at 95C to inactivate proteases, phosphatases, and virus.
Samples were frozen at -80C and shipped to UCSF on dry ice. Upon arrival, samples were
thawed, an additional 250ulL/sample of 6M guanidine hydrochloride buffer was added, and
samples were sonicated for 3x for 10 seconds at 20% amplitude. Insoluble material was pelleted
by spinning samples at max speed for 10 minutes. Supernatant was transferred to a new protein
lo-bind tube and protein was quantified using a Bradford assay. The entire sample (approximately
600ug of total protein) was subsequently processed for reduction and alkylation using a 1:10
sample volume of tris-(2-carboxyethyl) (TCEP) (10mM final) and 2-chloroacetamide (4.4mM final)
for 5 minutes at 45°C with shaking. Prior to protein digestion, the 6M guanidine hydrochloride was
diluted 1:6 with 100mM Tris-HCI pH8 to enable the activity of trypsin and LysC proteolytic
enzymes, which were subsequently added at a 1:75 (wt/wt) enzyme-substrate ratio and placed in
a 37°C water bath for 16-20 hours. Following digestion, 10% trifluoroacetic acid (TFA) was added
to each sample to a final pH ~2. Samples were desalted under vacuum using 50mg Sep Pak
tC18 cartridges (Waters). Each cartridge was activated with 1 mL 80% acetonitrile (ACN)/0.1%
TFA, then equilibrated with 3 x 1 mL of 0.1% TFA. Following sample loading, cartridges were
washed with 4 x 1 mL of 0.1% TFA, and samples were eluted with 2 x 0.4 mL 50% ACN/0.25%
formic acid (FA). 60ug of each sample was kept for protein abundance measurements, and the
remainder was used for phosphopeptide enrichment. Samples were dried by vacuum
centrifugation.

Phosphopeptide enrichment for proteomics

IMAC beads (Ni-NTA from Qiagen) were prepared by washing 3x with HPLC water, incubating
for 30 minutes with 50mM EDTA pH 8.0 to strip the Ni, washing 3x with HPLC water, incubating
with 50mM FeCI3 dissolved in 10% TFA for 30 minutes at room temperature with shaking,
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washing 3x with and resuspending in 0.1% TFA in 80% acetonitrile. Peptides were enriched for
phosphorylated peptides using a King Flisher Flex. For a detailed protocol, please contact the
authors. Phosphorylated peptides were found to make up more than 90% of every sample,
indicating high quality enrichment.

Mass spectrometry data acquisition for proteomics

Digested samples were analysed on an Orbitrap Exploris 480 mass spectrometry system (Thermo
Fisher Scientific) equipped with an Easy nLC 1200 ultra-high pressure liquid chromatography
system (Thermo Fisher Scientific) interfaced via a Nanospray Flex nanoelectrospray source. For
all analyses, samples were injected on a C18 reverse phase column (25 cm x 75 pm packed with
ReprosilPur 1.9 um particles). Mobile phase A consisted of 0.1% FA, and mobile phase B
consisted of 0.1% FA/80% ACN. Peptides were separated by an organic gradient from 5% to 30%
mobile phase B over 112 minutes followed by an increase to 58% B over 12 minutes, then held
at 90% B for 16 minutes at a flow rate of 350 nL/minute. Analytical columns were equilibrated with
6 pL of mobile phase A. To build a spectral library, one sample from each set of biological
replicates was acquired in a data dependent manner. Data dependent analysis (DDA) was
performed by acquiring a full scan over a m/z range of 400-1000 in the Orbitrap at 60,000
resolving power (@200 m/z) with a normalised AGC target of 300%, an RF lens setting of 40%,
and a maximum ion injection time of 60 ms. Dynamic exclusion was set to 60 seconds, with a 10
ppm exclusion width setting. Peptides with charge states 2-6 were selected for MS/MS
interrogation using higher energy collisional dissociation (HCD), with 20 MS/MS scans per cycle.
For phosphopeptide enriched samples, MS/MS scans were analysed in the Orbitrap using
isolation width of 1.3 m/z, normalised HCD collision energy of 30%, normalised AGC of 200% at
a resolving power of 30,000 with a 54 ms maximum ion injection time. Similar settings were used
for data dependent analysis of samples used to determine protein abundance, with an MS/MS
resolving power of 15,000 and a 22 ms maximum ion injection time. Data-independent analysis
(DIA) was performed on all samples. An MS scan at 60,000 resolving power over a scan range
of 390-1010 m/z, a normalised AGC target of 300%, an RF lens setting of 40%, and a maximum
injection time of 60 ms was acquired, followed by DIA scans using 8 m/z isolation windows over
400-1000 m/z at a normalised HCD collision energy of 27%. Loop control was set to All. For
phosphopeptide enriched samples, data were collected using a resolving power of 30,000 and a
maximum ion injection time of 54 ms. Protein abundance samples were collected using a
resolving power of 15,000 and a maximum ion injection time of 22 ms.

Spectral library generation and raw data processing for proteomics

Raw mass spectrometry data from each DDA dataset were used to build separate libraries for
DIA searches using the Pulsar search engine integrated into Spectronaut version
14.10.201222.47784 by searching against a database of Uniprot Homo sapiens sequences
(downloaded February 28, 2020) and 29 SARS-CoV-2 protein sequences translated from
genomic sequence downloaded from GISAID (accession EPI_ISL_406596, downloaded March
5, 2020) including mutated tryptic peptides corresponding to the variants assessed in this study.
For protein abundance samples, data were searched using the default BGS settings, variable
modification of methionine oxidation, static modification of carbamidomethyl cysteine, and filtering
to a final 1% false discovery rate (FDR) at the peptide, peptide spectrum match (PSM), and protein
level. For phosphopeptide enriched samples, BGS settings were modified to include
phosphorylation of S, T, and Y as a variable modification. The generated search libraries were
used to search the DIA data. For protein abundance samples, default BGS settings were used,
with no data normalisation performed. For phosphopeptide enriched samples, the Significant PTM
default settings were used, with no data normalisation performed, and the DIA-specific PTM site
localization score in Spectronaut was applied.
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Mass spectrometry data pre-processing

Quantitative analysis was performed in the R statistical programming language (version 3.6.1,
2019-07-05). Initial quality control analyses, including inter-run clusterings, correlations, principal
components analysis, peptide and protein counts and intensities were completed with the R
package artMS (version 1.8.1). Based on obvious outliers in intensities, correlations, and
clusterings in PCA analysis, 1 run was discarded from the protein phosphorylation dataset (IC19
24h replicate 2). Statistical analysis of phosphorylation and protein abundance changes between
mock and infected runs, as well as between infected runs from different variants (e.g. Kent versus
VIC) were computed using peptide ion fragment data output from Spectronaut and processed
using artMS. Specifically, quantification of phosphorylation based on peptide ions were processed
using artMS as a wrapper around MSstats, via functions artMS::doSiteConversion and
artMS::artmsQuantification with default settings. All peptides containing the same set of
phosphorylated sites were grouped and quantified together into phosphorylation site groups. For
both phosphopeptide and protein abundance MSstats pipelines, MSstats performs normalisation
by median equalization, imputation of missing values and median smoothing to combine
intensities for multiple peptide ions or fragments into a single intensity for their protein or
phosphorylation site group, and statistical tests of differences in intensity between infected and
control time points. When not explicitly indicated, we used defaults for MSstats for adjusted p-
values, even in cases of N = 2. By default, MSstats uses Student’s t-test for p-value calculation
and Benjamini-Hochberg method of FDR estimation to adjust p-values.

Refining and filtering phosphorylation and abundance data

MSstats phosphorylation results had to be further simplified to effects at single sites. The results
of artMS/MSstats are fold changes of specific phosphorylation site groups detected within
peptides, so one phosphorylation site can have multiple measurements if it occurs in different
phosphorylation site groups. This complex dataset was reduced to a single fold change per site
by choosing the fold change with the lowest p-value, favoring those detected in both conditions
being compared (i.e. non-infinite log2 fold change values). This single-site dataset was used as
the input for kinase activity analysis and enrichment analysis. Protein abundance data was
similarly simplified when a single peptide was mapped to multiple proteins; that is, by choosing
the fold change with the lowest p-value, favoring those detected in both conditions being
compared (see Table S1 for final refined data).

RNA quality control

Thirty total RNA samples were submitted for RNA quality control. Total RNA samples were run
on the Agilent Bioanalyzer, using the Agilent RNA 6000 Nano Kit. Three samples were excluded
from library preparation due to severe degradation and/or low amounts of RNA present.

Library preparation for RNAseq

Twenty-seven total RNA samples were processed using the lllumina Stranded Total RNA w/Ribo-
Zero Plus assay. One-hundred nanograms of each total RNA sample (quantitated on the
Invitrogen Qubit 2.0 Fluorometer using the Qubit RNA HS Assay Kit) was subjected to ribosomal
RNA (rRNA) depletion through an enzymatic process, which includes reduction of human
mitochondrial and cytoplasmic rRNAs. Following rRNA depletion and purification, RNA was
primed with random hexamers for first-strand cDNA synthesis, then second-strand cDNA
synthesis. During second-strand cDNA synthesis, deoxyuridine triphosphate (dUTP) was
incorporated in place of deoxythymidine triphosphate (dTTP) to achieve strand specificity in a
subsequent amplification step. Next, adenine (A) nucleotide was added to the 3’ ends of the blunt
fragments to prevent ends from ligating to each other. The A-tail also provides a complementary
overhang to the thymine (T) nucleotide on the 3’ end of the adapter. During adapter ligation and
amplification, indexes and adapters were added to both ends of the fragments, resulting in 10bp,
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dual-indexed libraries, ready for cluster generation and sequencing. The second-strand was
quenched during amplification due to the incorporation of dUTP during second-strand cDNA
synthesis, allowing for only the antisense strand to be sequenced in Read 1. Thirteen cycles of
amplification were performed.

Library quality control and quantification for RNAseq

Each library was run on the Agilent Bioanalyzer, using the Agilent High Sensitivity DNA Kit, to
assess the size distribution of the libraries. They were quantitated by quantitative polymerase
chain reaction (QPCR) using a Roche KAPA Library Quantification Complete Kit (ABI Prism), and
run on the Applied Biosystems QuantStudio 5 Real-Time PCR System.

Sequencing for RNAseq

Each library was normalised to 10nM, then pooled equimolarly for a final concentration of 10nM.
Pooled libraries were submitted to the University of California San Francisco Center for Advanced
Technology (UCSF CAT) for one lane of sequencing on the lllumina NovaSeq 6000 S4 flow cell.
The run parameter was 100x10x10x100bp.

Viral RNA quantification from RNASeq Dataset

Viral RNA were characterised by the junction of the leader with the downstream subgenomic
sequence. Reads containing possible junctions were extracted by filtering for exact matches to
the 3’ end of the leader sequence “CTTTCGATCTCTTGTAGATCTGTTCTC” using the bbduk
program in the BBTools package (BBTools - Bushnell B. - sourceforge.net/projects/bbmap/). This
subset of leader-containing reads were left-trimmed to remove the leader, also using bbduk. The
filtered and trimmed reads were matched against SARS2 genomic sequence with the bbmap
program from BBtools with settings (maxindel=100, strictmaxindel=t, local=t). The left-most
mapped position in the reference was used as the junction site. All strains were mapped against
a reference SARS-Cov-2 sequence (accession NC_045512.2), except B.1.1.7 was mapped
against a B.1.1.7-specific sequence (GISAID: EPI_ISL_693401) and the resultant positions
adjusted to the reference based on a global alignment. Junction sites were labeled based on
locations of TRS sequences, or other known site with a +/- 5 base pair window as follows (genomic
=67, S = 21553, orf3 = 25382, E = 26237, M = 26470, orf6 = 27041, orf7 = 27385, orf8 = 27885,
N = 28257, orfOb = 28280, N* = 28878). Junction reads were counted per position, a pseudocount
of 0.5 was added at all positions, counts between replicates and strains were normalised to have
equal “genomic” reads, and counts were averaged across replicate samples. Means and standard
errors of counts averaged across replicates were subsequently calculated. To calculate the ratios
between B.1.1.7 and VIC, counts averaged across replicates from B.1.1.7 were divided in a
condition and time point matched fashion by values from VIC or IC19. The standard error (se) of
the ratios was calculated as (A/B) * sqrt( (se.A/A)? + (se.B/B)?).

Host RNA analysis

All reads were mapped to the human host genome (ensembl 101) using HISAT2 aligner®®. Host
transcript abundances were estimated using human annotations (ensembl 101) using StringTie®°.
Differential gene expression were done on read counts extracted for each protein coding gene
using featureCount and significance was determined by the DESeq2 R package®.

Viral protein quantification

Median normalized peptide feature (peptides with unique charge states and elution times)
intensities (on a linear scale) were refined to the subset that mapped to SARS-CoV-2 protein
sequences using Spectronaut (see Methods). Peptide features found in the same biological
replicate (i.e. due to different elution times, for example) were averaged. Next, for each timepoint
separately, we selected the subset of peptides that were consistently detected in all biological
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replicates across all conditions (no missing values), isolating the set of peptides with the best
comparative potential. We then summed all peptides mapping to each viral protein for each time
point separately which resulted in our final protein intensity per viral protein per time point per
biological replicate. Resulting protein intensities were averaged across biological replicates and
standard errors were calculated for each condition. To calculate the ratios between B.1.1.7 and
VIC, averaged intensities for B.1.1.7 were divided in a condition and time point matched fashion
by values from VIC or IC19. The standard error (se) of the ratios was calculated as (A/B) * sqrt(
(se.A/A)? + (se.B/B)?).

Kinase activity analysis of phosphoproteomics data

Kinase activities were estimated using known kinase-substrate relationships in literature®'. The
resource comprises of a comprehensive collection of phosphosite annotations of direct substrates
of kinases obtained from six databases, PhosphoSitePlus, SIGNOR, HPRD, NCI-PID, Reactome,
and the BEL Large Corpus, and using three text-mining tools, REACH, Sparser, and RLIMS-P.
Kinase activities were inferred as a Z-score calculated using the mean log2FC of phosphorylated
substrates for each kinase in terms of standard error (Z = [M - u] / SE), comparing fold changes
in phosphosite measurements of the known substrates against the overall distribution of fold
changes across the sample. A p-value was also calculated using this approach using a two-tailed
Z-test method. This statistical approach has been previously shown to perform well at estimating
kinase activities®®®2. We collected substrate annotations for 400 kinases with available data.
Kinase activities for kinases with 3 or more measured substrates were considered, leaving us with
191 kinases with activity estimates in at least one or more infection time points. Kinases were
clustered based on pathway similarity by constructing a kinase tree based on co-membership in
pathway terms (from CP “Canonical Pathways” MSigDBv7.1).

Pathway enrichment analysis

The pathway gene sets were obtained from the CP (i.e. “Canonical Pathways”) category of
Molecular Signature Database (MSigDBv7.1)*. We used the same approach for this pathway
enrichment analysis as we used for the kinase activity analysis. Namely, we inferred pathway
regulation as Z-score and an FDR-corrected (0.05) p-value calculated from a Z-test (two-tailed)
comparing fold changes in phosphosite, protein abundance, or RNA abundance measurements
of genes designated for a particular pathway against the overall distribution of fold changes in the
sample. All resulting terms were further refined to select non-redundant terms by first constructing
a pathway term tree based on distances (1-Jaccard Similarity Coefficients of shared genes in
MSigDB) between the terms. The pathway term tree was cut at a specific level (h = 0.8) to identify
clusters of non-redundant gene sets. For results with multiple significant terms belonging to the
same cluster, we selected the most significant term (i.e. lowest adjusted p-value). Next, we filtered
out terms that were not signifficant (FDR corrected p-value < 0.05) for at least one contrast.
Terms were ranked according to either the absolute value z-score across contrasts that included
B.1.1.7 (see Fig. S1g-i) or by averaged -log10(p-values) across time-matched contrasts involving
B.1.1.7 (see Fig. S2b).

Transcription factor activity analysis

Transcription factor activities were estimated from RNAseq data using DoRothEA®® which
provides a comprehensive resource of TF-target gene interactions and annotations indicating
confidence level for each interaction based on the number of supporting evidence. We restricted
our analysis to A, B, and C levels which comprise of the most reliable interactions. For the TF
activity enrichment analysis, VIPER® was executed with the t-statistic derived from the differential
gene expression analysis between variant infected and controls (wild-type) infected cells.
Transcription factor activity is defined as the normalised enrichment scores (NES) derived from
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the VIPER algorithm. VIPER algorithm was run with default parameters except for the eset.filter
parameter which was set to FALSE and consider regulons with at least five targets.

Selection of interferon stimulated genes (ISGs)

Interferon stimulated genes (ISGs) were taken from a prior experimental study® and annotated
as I1SGs. To this list of 38 genes, we added the following based on manual curation from the
literature: IF116, IFI135, IFIT5, LGALS9, OASL, CCL2, CCL7, IL6, IFNB1, CXCL10, and ADAR.
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