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Many biological functions, such as the cell division cycle, are intrinsically single-cell pro-
cesses regulated in part by protein synthesis and degradation. Investigating such processes
has motivated the development of single-cell mass spectrometry (MS) proteomics. To further
advance single-cell MS proteomics, we developed a method for high throughput, automated
nano-ProteOmic sample Preparation (nPOP). nPOP uses piezo acoustic dispensing to iso-
late individual cells in 300 picoliter volumes and performs all subsequent preparation steps
in small droplets on a fluorocarbon coated slide. This design enables simultaneous sample
preparation of thousands of single cells, including lysing, digesting, and labeling individual
cells in volumes below 20 nl. Single-cell protein analysis using nPOP classified cells by cell
type and by cell cycle phase. Furthermore, the data allowed us to quantify the covariation
between cell cycle protein markers and thousands of proteins. Based on this covariation,
we identify cell cycle associated proteins and functions that are shared across cell types and
those that differ between cell types.

Introduction

Single-cell measurements are essential for understanding biological systems composed of different
cell types'?. Recent advances in single-cell RNA® and protein*> analysis methods have facilitated
the study of single-cell heterogeneity at unprecedented scale and depth. These emerging single-
cell methods have the potential to go beyond classifying cell types, enabling the characterization
of intrinsically single-cell processes®, such as the cell division cycle (CDC). Indeed, single-cell
analysis of the CDC obviates the need to synchronize cell populations and the associated perturba-
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tion artifacts’~"'. Such analysis offers the possibility to explore, the coordination of the cell cycle
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with metabolism and cell growth that had been observed in synchronized cell cultures'>'*. Crucial

aspects of the CDC are regulated post-transcriptionally by protein synthesis and degradation,’'>!¢
and their characterization demands single-cell protein analysis®.

Traditionally, single-cell proteomic analyses have been performed by using fluorescent pro-
teins or affinity reagents'’. While these approaches are powerful®!’, mass spectrometry (MS)
has the potential to increase the specificity and depth of single-cell protein quantification’->%!8,
For decades, MS has been a powerful tool for measuring the relative abundance of thousands of
proteins in bulk samples consisting of thousands of cells or more”'*~>!. Advances in sample prepa-
ration, mass-spectrometry data acquisition, and data analysis have enabled quantifying thousands
of proteins in single cells as reviewed by ref.*>.

Bulk samples are often prepared for liquid chromatography tandem MS analysis by using rela-
tively large volumes (hundreds of microliters) and chemicals (detergents or chaotropic agents like
urea) that are incompatible with MS analysis and require removal by cleanup procedures. The large
volumes and cleanup procedures entail sample losses that may be prohibitive for small samples,

1,5,17

such as single mammalian cells>'". Thus, numerous methods have been developed for prepar-
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ing sub-microgram protein samples and single-cell samples™”. To enable some degree of

parallel processing, some methods have been automated using multiwell plates®>*>*°. Preparing

small samples often uses sophisticated custom-made equipment”’="

. While cleanup may result
in significant sample losses, some methods, such as SP3?>** and iST**, perform cleanup very ef-
ficiently even with submicrogram samples and might be used for single-cell analysis albeit such
applications are not extensively tested.

We sought to develop a miniaturized and massively parallel sample preparation method to
improve single-cell protein quantification and to use it for cell cycle analysis. Specifically, we
aimed to develop a widely accessible, robust, and automated method that further reduces sample
preparation volumes to a few nanoliters. Our goal was to carry out parallel sample preparation
of thousands of single cells to increase the size of experimental batches and thus reduce batch
effects’”. To achieve high precision, we aimed to avoid any movement the samples during the

sample preparation stage so that we could repeatedly dispense tiny volumes of reagents to each

droplet containing a single cell. To achieve these goals, we used the the CellenONE cell sorting
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and liquid handling system and developed nano-PrOteomic sample Preparation (nPOP), which al-
lowed a 100-fold reduction of the sample volumes over the Minimal ProteOmic sample Preparation
(mPOP) method®- %! Reducing sample volumes directly enabled more comprehensive CDC
analysis than was previously possible with mPOP* . Integrating nPOP with the Single Cell Pro-
tEomics by Mass Spectrometry (SCoPE2) workflow allowed us to classify cells based on the CDC
phase. Furthermore, joint analysis of CDC proteins in U-937 and HeLa cells showed similarities

and differences between the cell cycle progression of these cell types.

Results

A challenge for any small volume sample preparation method is choosing a suitable method for cell
lysis. As demonstrated previously, we sought to obviate clean-up by avoiding MS-incompatible

chemicals®>*!

. In carrying out the lysis on an open surface, we needed to control for several
additional factors. First, the precision dispensing of the CellenONE relies on returning to the same
XY coordinates. Since moving the surface reduces the accuracy of the dispensing reagents to the
single-cell samples, we design nPOP without any slide movements. This required the cell lysis
to be performed at room temperature on open surface. To satisfy these conditions, we sought to
use 90 % dimethyl-sulfoxide (DMSO) for cell lysis. The low vapor pressure of DMSO at room

temperature allows for precise control of evaporation. To test the efficacy of DMSO for cell lysis,

we conducted bulk experiments to compare DMSO lysis to the more standard 6M urea lysis.

Using DMSO for Cell Lysis

We compared the efficiency of extracting proteins between DMSO and urea using SILAC quan-
tification as shown in Fig. 1a. Equal amounts of light and heavy U-937 cells were lysed with Urea
or DMSO. The samples were then diluted and combined for digestion. These results suggest that
DMSO allows for efficient cell lysis without detectable biases against proteins originating from

different cell compartments, Fig. la. .
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Figure 1 | Evaluating the efficiency of protein extraction by DMSO cell lysis. (a) Equal number of U-937 cells labeled
with “Light” and “Heavy” isotopes via SILAC were lysed with urea or DMSO, diluted, and combined for digestion.
The SILAC ratios for proteins from different cellular compartments show comparable protein recovery for DMSO and
urea cell lysis. (b) Equal number of SILAC labeled “Light” Jurkat and “Heavy” U-937 cells were combined, and the
mixed sample was then divided for cell lysis either by urea or or by DMSO. The agreement between the SILAC ratios
from the two methods supports the use of DMSO lysis for quantitative protein analysis.

Next, we evaluated the accuracy of relative protein quantification with DMSO lysis. We lysed
U-937 monocytes and Jurkat T-cells with both DMSO and urea and compared the protein ratios
estimated from the cells lysed with DMSO and with urea, Fig. Ic. U-937 monocytes cultured
in heavy SILAC media and Jurkat T-Cells cultured in standard media were combined in equal
amounts and lysed with either 90 % DMSO or 6M urea as shown in Fig. 1c. The correlation be-
tween the protein ratios estimated for each condition suggests that DMSO lysis is compatible with
accurate protein quantification, Fig. 1d. This gave us further confidence that DMSO lysis is well
suited for miniaturizing sample preparation on an open surface without using MS-incompatible

chemicals.
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nPOP Workflow

The workflow for nPOP sample preparation includes cell isolation, cell lysis, protein digestion,
peptide labeling, and sample pooling as illustrated in Fig. 2a. Sample preparation starts with
dispensing droplets of 4 nl DMSO for cell lysis. The droplets are organized as regular grids
(Fig. 2b) to facilitate their pooling at the end of the experiment. The second step of nPOP is the
isolation and dispensing of single cells into the DMSO droplets. Each single cell is isolated in a 0.3
nl droplet of PBS and added to a DMSO droplet for lysis, Fig. 2a. After 20 minutes for cell lysis,
a perimeter of 12 nl droplets of water (for maintaining high local humidity) is deposited around
the four sample arrays. The next nPOP step is protein digestion into peptides by the addition of
trypsin with HEPES buffer. The addition brings the total volume to 13.5 nl, Fig. 2a. Samples are
digested by 75 ng/ul trypsin for 5 hours. To further control evaporation, nPOP uses a humidifier
to keep relative humidity inside the CellenONE at 75 %. During digestion, the temperature of
the slide is dynamically controlled to 1 °C' above the dew point, around 17 °C'. After digestion,
humidity is reduced, and the slide is brought to room temperature for labeling. The single cell
droplets dry down on the slide to volumes of approximately 4 nl before labeling. TMT labels
dissolved in DMSO are dispensed in volumes of 20 nl to the single cell droplets. Dissolving labels
in DMSO is a distinctive aspect of nPOP that facilitates the manipulation of sub-nanoliter droplets
of TMT solution. The most commonly used solvent for TMT, acetonitrile, is difficult to handle
with CellenONE due to its density, volatility, and low surface tension. After samples are labeled
for one hour at room temperature, labeling is quenched with two sequential 20 nl additions of 5 %
hydroxylamine. Each addition is followed by a 20-minute incubation.

To pool all single-cell samples into a set, 1 ul of water is dispensed by a pipette onto each array
of labelled samples. Samples are then pipetted directly into injection vial glass inserts containing
isobaric carrier and reference previously prepared using the mPOP protocol®. To improve the re-
covery of labeled peptides, the footprint of each array is washed by 4 ul of acetonitrile, which is
collected and added to the corresponding combined set. This wash is option and used to maximize

the recovery of labeled peptides from the slide.
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Figure 2 | Workflow of nano-PrOteomic sample Preperation (nPOP) (a) A schematic of the nPOP sample preparation
method illustrates the steps of cell lysis, protein digestion, peptide labeling with TMT, and quenching with two addi-
tions of hydroxylamine. These steps are performed in parallel for all single cells and take place in small droplets. (b)
A representative field of droplets post trypsin addition. Droplets with single cells are clustered in groups of 13, the
number of cells labeled and combined into one SCoPE2 sets using TMTpro. The single-cell droplets are surrounded
by a perimeter of water droplets for maintaining high local humidity. (¢) Total ion current chromatograms from three
runs demonstrate low contaminants and consistent chromatography.

Single-cell protein analysis with nPOP

nPOP is a general sample preparation method that can be used for either label-free MS analysis or
multiplexed MS analysis as part of existing workflows reviewed by ref.*. Here, we demonstrate
sample preparation by nPOP as part of the SCoPE2 protocol***’. Specifically, we replaced Min-
imal ProteOmic sample Preparation (mPOP) module® with nPOP and used all other modules of
the SCoPE2 workflow, including an isobaric carrier*’, Data-Driven Optimization of Mass Spec-
trometry (DO-MS)*}, Data-driven Alignment of Retention Times for IDentification (DART-ID)*,

and the SCoPE2 data analysis pipeline*>*>4¢,
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To evaluate the performance of nPOP for single-cell analysis, we applied it to two cell types,
Hela cells and U-937 monocytes. The sample preparation was performed on two different days
so that the data may reflect day-specific batch effects. The resulting SCoPE?2 sets were run us-
ing roughly five days of instrument time, and the MS data were processed and evaluated via the
SCoPE2 pipeline’®*>. As a first benchmark for contaminant signal, we evaluated the RI intensity
in negative controls. The negative controls correspond to droplets that did not receive single cells,
and their RI intensities reflect cross-labeling and nonspecific background noise***°. The RI in-
tensities in two representative negative controls shown in Fig. 3a,b are mostly absent or very low,
indicating that background noise is low for samples prepared with nPOP. The RI intensities for
single cells also show that, as expected and previously observed®®, peptides from Hela cells are
more abundant than peptides from U937 cells, likely reflecting the different cell sizes.

To further evaluate the single-cell data, the SCoPE2 pipeline calculates the coefficient of vari-
ation (CV) of relative levels for all peptides belonging to the same protein. The relatively low CV
values indicate that protein quantification derived from different peptides is internally consistent,
Fig. 3c. Furthermore, the small spread of the distribution for the median CVs indicates that each
cell is treated consistently by the automated sample preparation technique.

Next, we performed principal component analysis (PCA) of the single-cell protein dataset us-
ing all quantified proteins, Fig. 3c. The PCA indicates two distinct clusters of cells. The clusters
correspond the cell types and separate along the first principal component (PC1), which accounts
for 66 % of the variance.To further validate the single cell quantification of proteins in single cell
samples, we took the ratio of average proteins expression in the Hela cells and Monocytes and
compared them to the ratios observed in bulk samples. Similar to previous analysis®®***%%  the
protein ratios in bulk samples agreed well with ratios in the single cells single cells. A Pearson cor-
relation of 0.8 indicates that the single-cell protein quantification is consistent with the proteomic

measurements of established bulk methods.
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Figure 3 | Reporter ion intensities in single cells and in negative controls. The reporter ion intensities for a repre-
sentative SCoPE2 sets prepared with nPOP are shown in (a). The panels show distributions of reporter ion intensities
relative to the corresponding isobaric carrier for the set. Rl intensities are mostly absent from negative control wells,
which contains all reagents but not a single cell. (b) The consistency of protein quantification is estimated as the coef-
ficient of variation (CV) of the relative levels of peptides originating from the same protein. The median CVs per cells
are tightly distributed, suggesting high consistency of sample preparation. (¢) Principal component analysis separates
single-cell samples corresponding to HeLa cells or to U937 monocytes. (d) The peptides measurements in single cells
within a cell type are averaged and correlated to samples of 200 cells prepared in bulk show that the relative protein
quantification is consistent between single-cell and bulk samples.

Cell Cycle Analysis

We next sought to identify biological processes with concerted CDC dynamics that are common
and those that are different between the cell division cycles of an epithelial cell line (HeLa) and
a monocytic cell line (U-937). As a first step towards this analysis, we evaluated the potential to
classify individual cells by their cell cycle phase. We intersected the list of confidently identified

proteins in our data with a list of genes previously found to be CDC periodic*’. We then pro-
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Figure 4 | Covariation of proteins and biological processes with the cell cycle (a) Common Principal Component
Analysis (CPCA) of HeLa and U-937 cells in the space of CDC periodic genes. Cells in each CPCA plot are colored
by the mean abundance of proteins annotated to M/G1, S, and G2 phases based on previous analysis*’. (b) The
boxplots display distributions for correlations between the phase markers and proteins from the large ribosomal subunit
assembly GO term. The difference between these distributions was evaluated by 1-way ANOVA analysis to estimate
statistical significance, p < 0.0002. The distributions for other GO terms that covary in a similar way between the two
cell lines are summarized with their medians plotted as a heatmap. (c¢) Similar analysis and display as in panel a was
used to visualize GO terms whose covariation with the CDC is cell type specific. Shown GO terms are at FDR < 5%.

jected the proteomes of both Hela and U937 cells into a joint 2-dimensional space (Fig. 4) defined
by common principal component analysis (CPCA); see methods. The CPCA was performed as
previously described*’>", and each cell was color-coded based on the mean abundance of protein
markers for M/G1, S, and G2 phase. The cells from both cell types cluster by CDC phase (Fig. 4a),
which suggests that the data capture CDC related protein dynamics.

Next we focused on identifying proteins that covary with the CDC periodic proteins used for

defining CDC phases in Fig. 4a. To identify such covariation, we first estimated a marker vector
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for each cell cycle phase as the median level of marker proteins for that phase. The phase marker
vectors were correlated to the measured protein abundances of all proteins quantified across many
single cells. Many proteins correlate strongly to the phase marker vectors, and for 34 of these
proteins the correlations are statistically significant, sugesting that these proteins are CDC periodic.

To increase the statistical power of our covariation analysis, we next focused on the covaria-
tion of phase markers and proteins with similar functions as defined by the gene ontology (GO).
Specifically, we compared the distributions of correlations between the 3 phase marker vectors and
all quantified proteins from a GO term, as shown with the boxplots in Fig. 4b. For microtubule-
based process, the distributions of correlations differ significantly between the CDC phases, and
this phase-specific covariation is similar for the two cell types, Fig. 4b. Many other GO terms show
covariation to the phase markers that is similar for the two cell types, and instead of displaying the
boxplot distributions for all of them, we summarized the distributions of correlations with their
medians displayed as a heatmap, Fig. 4b. Such functions with shared covariation include DNA
repair, protein kinase activity, and cellular protein metabolic processes.

We performed similar protein set enrichment analysis on the correlations between proteins and
phase markers to identify biological functions that covary with the cell cycle phases in a different
way for the two cell types, Fig. 4c. Such functional groups of proteins that differed in CDC

covariation include protein phosphate 2A binding, proteolysis, and protein transport, Fig. 4c.

Discussion

Existing single-cell omics methods excel at classifying cells by cell type. However, the regulatory
dynamics resulting in cell to cell variability within a cell type are more challenging to analyze. To
support such analysis, we introduce a highly parallel sample preparation that allows us to prepare
hundreds to thousands of single cells in a given experiment. It allows for reduced volumes and
increased consistency of single-cell proteomic sample preparation. Furthermore, it can enable
processing thousands of single cells in parallel and thus empower high-throughput high-power
biological analysis’'.

To maximize access and flexibility, nPOP used only commercially available equipment and

10
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prepares single cells on an open surface that can be pragmatically reconfigured and adopted to
different experimental designs. The open environment also obviates all sample movements and
maximizing the consistency and precision of the sample preparation. The open layout using a
hydrophobic slide can scale up to simultaneously preparing thousands of single cells. Furthermore,
nPOP is amenable to different coatings or hydrophobic surfaces which have the potential to further
improve recovery. While nPOP performed very well in our experiments, we have not tested it
with samples contaminated by chemicals undermining MS analysis. Such samples are likely to be
better handled by SP3?>?* and iST**.

nPOP allowed for deeper single cell proteomic analysis of the cell division cycle than our
previous sample preparation method, mPOP*. The data allowed us to identify new proteins and
functional groups of proteins associated with the cell cycle without the artifacts associated with
synchronizing cell cultures''. These initial results demonstrate the feasibility of inferring co-

regulation of biological processes from single-cell proteomics measurements.

Supplemental website Data and other resources can be found at: scope2.slavovlab.net/nPOP

Acknowledgments: We thank A. Chen for early experiments with the organic solvent lysis,
A. Murphy for assistance with using CellenONE, and H. Specht for discussions and constructive
comments. This work was funded by a New Innovator Award from the NIGMS from the National
Institutes of Health to N.S. under Award Number DP2GM123497, an Allen Distinguished Investi-
gator award through the Paul G. Allen Frontiers Group to N.S., a Seed Networks Award from CZI
CZF2019-002424 to N.S., through a Merck Exploratory Science Center Fellowship, Merck Sharpe

& Dohme Corp. to N.S. Funding bodies had no role in data collection, analysis, and interpretation.

Competing Interests: The authors declare that they have no competing financial interests.

Correspondence: Correspondence and materials requests should be addressed to nslavov@alum.mit.edu

11


https://scope2.slavovlab.net/nPOP
https://scope2.slavovlab.net/nPOP
mailto:nslavov@alum.mit.edu
https://doi.org/10.1101/2021.04.24.441211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.24.441211; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Author Contributions

Experimental design: A.L., G.H. and N.S.
Single-cell LC-MS/MS: A.L., G.H.
Sample preparation: A.L

Raising funding & supervision: N.S.
Data analysis: A.L. and N.S.

Writing & editing: A.L. and N.S.

12


https://doi.org/10.1101/2021.04.24.441211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.24.441211; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Methods

Cell Culture Hela cells were grown as adherent cultures in DMEM with high glucose (Sigma-
Aldrich D5796), supplemented with 10 fetal bovine serum (FBS, Millipore Sigma F4135) and 1
penicillin-streptomycin (pen/strep, ThermoFisher 15140122). U-937 and Jurkat cells were grown
as suspension cultures in RPMI medium (HyClone 16777-145) supplemented with 10 fetal bovine
serum (FBS, Millipore Sigma F4135) and 1 penicillin-streptomycin (pen/strep, ThermoFisher
15140122). Cells were passaged when a density of 106 cells/ml was reached, approximately every
two days.

Mass spectrometry analysis MS analysis was designed and performed according to the SCoPE2

guidelines and protocol*®#*-+?

. Specifically, the single cells pooled into SCoPE2 sets were sepa-
rated via online nL.C on a Dionex UltiMate 3000 UHPLC; 1 ul out of 1.2 ul of sample was loaded
onto a 25cm x 75 pl IonOpticks Aurora Series UHPLC column (AUR2-25075C18A). Buffer A
was 0.1 % formic acid in water and buffer B was 0.1% formic acid in 80 acetonitrile / 20% water.
A constant flow rate of 200nl/min was used throughout sample loading and separation. Samples
were loaded onto the column for 20 minutes at 1% B buffer, then ramped to 5 B buffer over two
minutes. The active gradient then ramped from 5% B buffer to 25% B buffer over 53 minutes.
The gradient then ramped to 95% B buffer over 2 minutes and stayed at that level for 3 minutes.
The gradient then dropped to 1% B buffer over 0.1 minutes and stayed at that level for 4.9 min-
utes. Loading and separating each sample took 95 minutes total. All samples were analyzed by
a Thermo Scientific Q-Exactive mass spectrometer from minute 20 to 95 of the LC loading and
separation process. Electrospray voltage was set to 1.8 V, applied at the end of the analytical col-
umn. To reduce atmospheric background ions and enhance the peptide signal-to-noise ratio, an
Active Background Ion Reduction Device (ABIRD, by ESI Source Solutons, LLC, Woburn MA,
USA) was used at the nanospray interface. The temperature of ion transfer tube was 250 °C' and
the S-lens RF level was set to 80. After a precursor scan from 450 to 1600 m/z at 70,000 resolving
power, the top 7 most intense precursor ions with charges 2 to 4 and above the AGC min threshold
of 20,000 were isolated for MS2 analysis via a 0.7 Th isolation window with a 0.3 Th offset. These
ions were accumulated for at most 300ms before being fragmented via HCD at a normalized colli-

sion energy of 33 eV (normalized to m/z 500, z=1). The fragments were analyzed by an MS2 scan
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with 70,000 resolution. Dynamic exclusion was used with a duration of 30 seconds with a mass
tolerance of 10ppm.

DMSO and urea lysis sample preparation Jurkat cells and U-937 cells cultured in heavy SILAC
media (containing +10Da Arg and +8Da Lys) were washed and re-suspended in PBS at 20,000
cells per pl. Two solutions of equal cell count containing Jurkat and U-937 cells were made mixed
in 1:1 ratios. One sample was lysed by diluting cells in 90 % DMSO and the other was lysed in 6M
urea. The DMSO cell lysate was diluted to a concentration of 33 % DMSO and urea lysate was
diluted to 0.5 M. Both solutions were digested in 15 ng/ul of trypsin for 12 hours. Each sample
was then desalted using C18 stage tips and run using data dependant acquisition.

Sample layout and Experimental Design nPOP reactions are carried out on the surface of a
fluorocarbon coated glass slide. The layout is very flexible and adjustable to the experimental
parameters. The droplets used for single-cell sample preparation are arranged in clusters, and
the number of droplets per cluster equals the number of single cells per SCoPE2 set. Here we
used TMTpro 16plex and 12 droplets per cluster, corresponding to the 12 isobaric labels used for
single cells. Our design allowed fitting 36 clusters per slide and 4 glass slides, which results in
simultaneously processing up to 12 x 36 x 4 = 1,728 single cells. With TMTpro 18plex, this
design can simultaneously process up to 14 x 36 x 4 = 2,016 single cells. Reducing the space
between the clusters can further increase the number of clusters per slide and thus the number
of simultaneously prepared single cells. The droplet geometry was optimized to keep droplets
from the same set close in proximity but prevent reaction volumes from merging. Negative control
droplets in this context are defined as droplets that experience all sample preparation steps, except
that no single cell is dispensed to these droplets. This layout of droplets is flexible and can be
easily adopted to different configurations or larger array sizes.

Reagent Handling with CellenONE The CellenONE is set up with two nozzles. One nozzle
handles cell suspensions. The other tip handles organic solvents and protein solutions. Reagents
are loaded into a 384 well plate in volumes of 30 p/. When aspirating protein solutions, make sure
to aspirate 20 pl to ensure the mixture is not diluted with system water. When dispensing DMSO,
it is important to shut off humidifyer. This allows leftover DMSO on the tip to evaporate quickly

so dispensing is not effected. After each sample preparation, tips are washed methanol and cleaned
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under sonication to remove built up material from inside of tip and ensure optimal performance.
Carrier and reference channel preparation in bulk The isobaric carrier consisting of a 1:1
mixture of Hela and monocyte cells was prepared in bulk and aliquoted into carriers corresponding
to 200 cells each. A single cell suspension of about 22,000 cells was transferred to a 200 ul PCR
tube (USA Scientific 1402-3900) and then processed via the mPOP sample preparation method™.
The reference channel was made from the same sample.

nPOP Sample Preparation To lyse cells, cells are dispensed into pools of DMSO. 4 nl droplets
of DMSO are dispensed over the grid in the location of each reaction volume. Single cells are
then dispensed in each each reaction volume. Cells are incubated in the 4 nL. DMSO droplets for
20 minutes. After lysis, a solution containing trypsin and HEPES buffer is added to each reaction
volume, for a final concentration of 100 ng/ul of trypsin and 1 mM HEPES and total volume of 14
nl.

The humidifier and cooling system is then turned on to prevent droplet evaporation. Relative
humidity inside the CellenONE is set to 72 % and the water chiller temperature is set to dynam-
ically chase one degree above the dew point. Mass spectrometry grade water is dispensed in a
perimeter surrounding each grid to provide further control for the local humidity of the reaction
volumes. The system is set to refresh the water droplet perimeter to control local humidity every
20 minutes for 5 hours as proteins digest.

After proteins have digested for 5 hours, the humidity and cooling controls are turned off. 20
nL of TMT labels suspended in DMSO and concentrated at 28mM are then dispensed to each re-
action volume using the organic dispensing tip. When dispensing labels, humidifier was turned off
to assist with dispensing. After single cells are left to label for 1 hour, 20 nL. of 5 % hydroxylamine
solution is added to each reaction volume to quench labeling reaction. Humidity and cooling con-
trols are returned to previous settings for quenching labeling reaction. After 20 minutes, another
addition of 30 nLL of 5 % hydroxylamine is added.

After quenching proceeds for another 20 minutes, samples are pooled on plate in 2.5 i/ of a 50
% 0.1 % formic/acetonitrile solution added via hand pipette. Samples are collected and added to a
single glass HPLC insert (ThermoFisher C4010-630) and dried down to dryness in a speed-vacuum

(Eppendorf, Germany) and either frozen at —80 °C' for later analysis or immediately reconstituted
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in 1.2 pl of 0.1 % formic acid (ThermoFisher 85178) for mass spectrometry analysis.

Analysis of raw MS data Raw data were searched by MaxQuant**? 1.6.0.16 and 1.6.2.3 against
a protein sequence database including all entries from the appropriate mouse or human SwissProt
database (downloaded July 15, 2018 and July 30, 2018, respectively) and known contaminants such
as human keratins and common lab contaminants. MaxQuant searches were performed using the
standard work flow™*. We specified trypsin specificity and allowed for up to two missed cleavages
for peptides having from 5 to 26 amino acids. Methionine oxidation (+15.99492 Da) and protein N-
terminal acetylation (+42.01056 Da) were set as a variable modifications. Carbamidomethylation
was disabled as a fixed modification. All peptide-spectrum-matches (PSMs) and peptides found
by MaxQuant were exported in the msms.txt and the evidence.txt files. SILAC data was searched
in two batches (by date acquired) with match between runs enabled, using the default settings.
Single-cell filtering and normalization The single-cell data were processed and normalized by
the SCoPE2 pipeline*®*’. This pipeline is also implemented by the scp Bioconductor package®**°.
Briefly, single cells with suboptimal quantification were removed prior to data normalization and
analysis based on objective criteria: The internal consistency of protein quantification for each
single cell was evaluated by calculating the coefficient of variation (CV) for proteins (leading
razor proteins) identified with over 5 peptides for that cell. The coefficient of variation is defined
as the standard deviation divided by the mean. The CVs were computed for the relative reporter ion
intensities, i.e., the RI reporter ion intensities of each peptide were divided by their mean resulting
in a vector of fold changes relative to the mean. Cells that fell outside the sharp CV distribution
centered around 0.27 were removed from analysis with a threshold of 0.35. Data was normalized
as by procedure outlined by Specht et al.***.

Principal component analysis for single cell data sets From the protein x single cell matrix,
all pairwise protein correlations (Pearson) were computed. Thus, for each protein, there was a
computed vector of correlations with a length the same as the number of rows in the matrix (number
of proteins). The dot product of this vector with itself was used to weight each protein prior to
principal component analysis. The principal component analysis was performed on the correlation

matrix of the weighted data.

SILAC data analysis When comparing relative protein levels in Jurkat and U-937 cells, SILAC
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ratios for peptides were computed by taking dividing each channel by its median, and then taking
the ratio of the light and heavy channels. When comparing absolute abundances between heavy
and light U-937 cells to measure efficiency of extraction, label swap experiments were ran so
that both lysis conditions were measured with both heavy and light labels. The raw intensities
for corresponding lysis methods were averaged and the ratio between different lysis methods was
plotted.

Common Principal Component Analysis To jointly analyze the cell cycle protein from HelLa and
U-937 cells, we performed Common Principal Component Analysis (CPCA) in the space of 20 cell
cycle dependant(CDC) proteins using the Krzanowski method™. Specifically, we computed the
correlation matrices of CDC proteins in the U-937, R,,, and in the HeLa cells, R, and determined
the eigenvector with the largest and second largest eigenvalue of the matrix R, + R,. Each matrix
of proteins by cells was then multiplied by the common principal components to obtain two vectors
of length number of cells. These vectors were then plotted against each other to project cells into
a joint space as seen in Fig. 4a.

Identifying proteins that covary with CDC markers To identify proteins that covary with the
phase marker vectors, we correlated the phase marker vectors to the measured protein levels. To
minimize cell-type specific effects, we converted the levels of each proteins within a cell type to
z-scores and then combined with the corresponding vector of z-scores from the other cell type.
These combined vectors were correlated to the combined phase marker vectors using Spearman
correlation.

Protein Set Enrichment Analysis To identify functionally coherent sets of proteins that covary
with the CDC phase markers, we correlated each protein to the median abundance of CDC pro-
teins that showed similarity between HelLa and U-937 cells as plotted in Fig. 4a. The resulting
correlation vectors were analyzed by protein set enrichment analysis similar to previously reported
analysis™*. In the case of cell-type specific co-variation, we also used empirical bootstrapping to
estimate the Z-score corresponding to each correlation, and then compared the distributions of Z-
scores via ANOVA for estimating the statistical significance. Only GO Terms for which we had
least 4 proteins were analyzed. We used ANOVA to estimate if the variance among the correla-

tions of the proteins from the GO term and the CDC phase markers can be explained by the CDC.
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We then used the Benjamini-Hochberg method to estimate the corresponding q values (FDR; false
discovery rare) for each GO term. Among the set of GO terms within 5 % FDR, we displayed in
Fig. 4 the 20 GO terms whose correlations to the CDC phase markers was most similar or most

different between the 2 cell lines.
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