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Abstract

A central challenge in the computational modeling of neural dynamics is the trade-off between accuracy
and simplicity. At the level of individual neurons, nonlinear dynamics are both experimentally established
and essential for neuronal functioning. One may therefore expect the collective dynamics of massive net-
works of such neurons to exhibit an even larger repertoire of nonlinear behaviors. An implicit assumption
has thus formed that an “accurate” computational model of whole-brain dynamics must inevitably be non-
linear whereas linear models may provide a first-order approximation. To what extent this assumption
holds, however, has remained an open question. Here, we provide new evidence that challenges this as-
sumption at the level of whole-brain blood-oxygen-level-dependent (BOLD) and macroscopic field potential
dynamics by leveraging the theory of system identification. Using functional magnetic resonance imaging
(fMRI) and intracranial electroencephalography (iIEEG), we model the spontaneous, resting state activ-
ity of 700 subjects in the Human Connectome Project (HCP) and 122 subjects from the Restoring Active
Memory (RAM) project using state-of-the-art linear and nonlinear model families. We assess relative model
fit using predictive power, computational complexity, and the extent of residual dynamics unexplained by
the model. Contrary to our expectations, linear auto-regressive models achieve the best measures across
all three metrics. To understand and explain this linearity, we highlight four properties of macroscopic
neurodynamics which can counteract or mask microscopic nonlinear dynamics: averaging over space, av-
eraging over time, observation noise, and limited data samples. Whereas the latter two are technological
limitations and can improve in the future, the former two are inherent to aggregated macroscopic brain
activity. Our results demonstrate the discounted potential of linear models in accurately capturing macro-
scopic brain dynamics. This, together with the unparalleled interpretability of linear models, can greatly
facilitate our understanding of macroscopic neural dynamics, which in turn may facilitate the principled
design of model-based interventions for the treatment of neuropsychiatric disorders.

Throughout the recent history of neuroscience, tational modeling, but particularly challenging in
computational models have been developed and used computational neuroscience, is the trade-off between
ubiquitously in order to decompose the complex (cross-validated) accuracy and simplicity. Both finely
neural mechanisms underlying cognition and behav- detailed models [4] and broadly simplified ones [5, 6]
ior [1-3]. A dilemma that is inherent to compu- have their respective proponents. One of the many
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facets of this trade-off pertains to the use of lin-
ear versus nonlinear models.
namics is inevitable at the (micro) scale of individ-
ual neurons [7] and their components [8], and has
been demonstrated, though less comprehensively, at
the (meso) scale of neuronal populations [9]. Fur-
ther supported by theoretical derivations [10] and
motivated by the much larger repertoire of behav-
iors of nonlinear systems (including chaos, multi-
stability, and meta-stability), an assumption has thus
formed [11-14] that accurate models of neurodynam-

Nonlinearity of dy-

ics at the macroscale (of brain regions) must in-
evitably be nonlinear.

This assumption begs the question of whether non-
linear models will in fact perform better than lin-
ear ones in accounting for the dynamics of neu-
roimaging and neurophysiological data. Specifically,
can nonlinear models explain neuroimaging or neuro-
physiological data more accurately than linear ones?
This pragmatic modeling question, importantly, is
different from the general question of whether any
signs of “nonlinearity” can be found in neuroimaging
time series [15-17] (see Discussion). Few investiga-
tions [18-20] have indeed sought to answer the for-
mer question directly by comparing the “fit” of lin-
ear and nonlinear models to neurophysiological (EEG
and iIEEG) time series. Even these few works are lim-
ited, however, in that each provides a single compari-
son between a linear and a nonlinear family of models,
which need not be the best representatives of linear
and nonlinear models in general. These works have
also arrived at inconsistent conclusions, providing lit-
tle resolution as to the ultimate choice of models to
be implemented in computational neuroscience.

In this work, we first provide a side-by-side compar-
ison of various state-of-the-art families of linear and
nonlinear ordinary differential equation (ODE) mod-
els of neurodynamics in terms of their cross-validated
fit to resting state fMRI time series of 700 sub-
jects from the Human Connectome Project (HCP)
and resting state iEEG time series from 122 subjects
from the Restoring Active Memory (RAM) project
(see Methods). Our modeling and model comparison
approaches are based on the theory of system identi-
fication [21], a core discipline in systems and control
theory concerned with the data-driven model con-
struction and evaluation of dynamical systems. Mo-
tivated by the prediction error framework in system
identification theory, we use three metrics for compar-

ison, namely, the normalized sum of squared predic-
tion errors, the whiteness of residuals, and the com-
putational complexity of each method. These metrics
measure, respectively, how accurately the model can
predict future values of the time series from its past,
how much unmodeled dynamics have remained in the
model fitting residuals, and how much CPU time it
takes to fit the model and cross-validate its prediction
accuracy. Across all measures, we find that linear
models outperform nonlinear ones, thereby simulta-
neously maximizing accuracy and simplicity (both as
quantified by our aforementioned measures).

In the second part of the paper, we seek to answer
the question of why nonlinear models do not provide
more accurate predictions than linear ones despite the
fact that neurodynamics are inevitably nonlinear at
the microscale. Specifically, we numerically demon-
strate, using a simple sigmoidal nonlinearity, that
four properties of macroscopic brain dynamics can
fundamentally counteract or apparently mask non-
linear dynamics present at the microscale: averag-
ing over the activity of large populations of neurons
to obtain a single macroscopic time series (averag-
ing over space), natural low pass-filtering properties
of brain processes (averaging over time), observation
noise, and limited data samples. While the effects of
observation noise and limited data samples are tech-
nology dependent but otherwise independent from
the form of nonlinearity, the effects of spatiotempo-
ral averaging are fundamental to macroscopic neural
dynamics, and may depend on the functional form of
the microscale nonlinearity. We thus also verify and
demonstrate the effects of spatiotemporal averaging
using a data-driven and biophysically grounded spik-
ing neuron model [22]. Together, our results provide
important evidence against the common presumption
of nonlinearity in computational neuroscience, as well
as a methodology based on system identification the-
ory to quantitatively define a “best” model of whole
brain dynamics given a set of specified costs.

Results

System identification and data-driven compu-
tational modeling. Among the diverse categories
of computational models used in neuroscience, we fo-
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cus on ODE models of the general form

x(t) = f(x(t) + ex(d),
y(t) = h(x(t)) + ea(t)

where y(t) is an n-dimensional time series of recorded
brain activity, in this case via resting state fMRI
(rsfMRI) or iEEG (rsiEEG), x(t) is an m-dimensional
time series of “internal” brain states, f and h are gen-
erally nonlinear vector fields, and e;(¢) and es(t) are
time series of process and measurement noise with
arbitrary statistics (Figure la-b). It is possible, al-
though not necessary, that m = n. As with any dif-

x(0) = xg (1a)

(1b)

ferential equation, the description would not be com-
plete without the initial condition x(0) = xg, deter-
mining the state of the brain at the initial record-
ing time t = 0. Note that no external input u(t) is
considered due to the resting state condition of the
experiments. Also, given that we can only sample
y(t) in discrete time, we implement Eq. (1) by ap-
proximating the derivative %(t) as a first difference
x(t) — x(t — 1) (see Methods).

Throughout the field of computational neuro-
science, numerous models of the form in Eq. (1) or
its discretization (see Methods) are constructed and
used, each with different functional forms and noise
statistics [4,5,7,10,13,20,23]. The critical but fairly
overlooked quest of system identification [21] is then
to find the “best” model, among all the available op-
tions, against experimental data. This comparison,
indeed, depends on one’s measure of a model’s good-
ness of fit.

A natural choice, referred to as the prediction error
(PE) approach, is based on how well a given model
can predict the future of the measured time series
from its current and past values (Figure 1c). Note
that this prediction is precisely what an ODE such
as Eq. (la) defines: it models the change x(t), and
thus the immediate future, of the system’s state (and
therefore output) from its current state x(t). Since
the state x(t) is not directly available, it should in
turn be estimated from the current and past measure-
ments of the output y(¢). Therefore, the PE approach
in its simplest form seeks to minimize, within any
given parametric or non-parametric family of mod-
els, the one-step ahead PE

e(t) =y(t) —y(t[t = 1) (2)

where y(t|t — 1) is the Bayes-optimal, minimum
variance estimate of y(¢) given all of the history

{y(0),...,y(t — 1)} of y up to time ¢t — 1 [21] (Fig-
ure 1c). Notably, the PE approach focuses on the
prediction accuracy of the time series itself, rather
than the prediction accuracy of functional connectiv-
ity (Figure 1d) or other statistics of the time series
(cf. Discussion and Supplementary Figure 1).

The task of system identification does not end once
the parameters of a given family of models are fit to
the (training) data. The critical next step is to assess
the quality of the fit, particularly to data withheld
during the training (cross-validation). In the PE ap-
proach, the two most widely used measures are the
variance and the whiteness of the PE [21], where the
former is often measured by

R2 =1— Zt gi(t)Q
’ Zt(yz(t) —7i)?
and the latter is often assessed via a x2 test of white-
ness (see Methods), for each channel i = 1,...,n.

3)

In Eq. (3), &(t) is the same one-step-ahead predic-
tion error in Eq. (2), and §; is the temporal average
of y;(t) (often equal to zero due to mean centering)
and corresponds to a constant predictor which always
predicts y(t) equal to its average y. Therefore, it is
clear that R? is always less than or equal to 1 but
can be negative. A value of R? = 1 indicates a per-
fect model (for channel/region i), R? = 0 indicates a
model as good as the constant predictor, and R? < 0
indicates a model worse than the constant predictor.

Linear models: maximum prediction accuracy
with minimum computational complexity. In
this work, we fit and compare several families of linear
and nonlinear models, as described below (see Meth-
ods for details). We fit each family of models to the
data for each subject, thereby finding the optimal
model at the global or local level (if the correspond-
ing optimization algorithm is convex or non-convex,
respectively). We then compare the resulting best
models in each family in terms of their cross-validated
fit to held-out data of the same subject (see Meth-
ods). The most important ground for comparison is
the accuracy of their fit, measured by R? according
to Eq. (3).

First, consider the results for the fMRI data (Fig-
ure 2a-b). While we describe the results obtained
using a relatively coarse parcellation here, similar re-
sults also hold for finely-parcellated and unparcel-
lated data (cf. Supplementary Figures 11-13). Over-
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Figure 1: Prediction error method for system
identification. (a) The general category of computa-
tional models M studied in this work, represented by
an ODE describing the resting state evolution of in-
ternal states x(t) and an output model that maps in-
ternal states to fMRI/iEEG time series y(t), as shown
for fMRI in panel (b). A total of ngri = 116 re-
gions are used throughout (see Methods) for fMRI, while
13 < nigre < 175 channels are used for each iEEG sub-
ject. (c¢) A schematic representation of the prediction
error system identification framework used in this work.
At each time ¢, all of {y(0),. ..

y(t), simultaneously across all channels, which is denoted

,¥(t—1)} is used to predict

for simplicity by y(¢t|t — 1). §; denotes the temporal av-
This estimate should
not be confused with estimates of functional connectivity

erage of y;(t) for each channel i.

(FC). (d) FC measures the covariation between pairs of
channels or, equivalently, how well each y;(t) (y1(¢) in the
figure) can be predicted from each other y;(t) (y2(t) in
the figure), at the same time t.

all, linear models that directly fit the BOLD time se-
ries without (de)convolving with an HRF, either with
dense or sparse effective connectivity, and with or
without higher-order auto-regressive lags, achieve the
highest R2. Among nonlinear models, the manifold-
based locally-linear model achieves a comparable R2.
Yet, upon closer inspection of this model, we ob-
serve that its window size (which is chosen optimally,
see Methods and Supplementary Figure 9) is very
large, effectively making it a globally-linear model.
The lack of nonlinearity becomes even clearer when
examining the pairwise models. Here, we see that a
simple linear model performs as well as the MMSE
model, or even slightly better (Figure 2b, right panel)
due to the numerical errors of distribution estimation.
We thus infer that the former achieves the highest
prediction accuracy achievable by any generally non-
linear model, albeit for pairwise prediction.

The second ground for comparison is the whiteness
of model residuals, also in held-out data, which indi-
cates that all the dynamics in the data are captured
by the model and have not leaked into the resid-
uals (Figure 2c-d).
higher than nonlinear models; all except the subspace
method have median p-values above 0.05, indicating
that their residuals are white enough for the null hy-
pothesis of whiteness not to be rejected (x? test of
whiteness, see Methods).

Here, linear models also score

The autoregressive (AR)
models clearly outperform the others. Generally, the
number of lags and sparsity patterns have little ef-
fect on the prediction accuracy of linear AR models
for rsfMRI data, a positive but weak effect on the
whiteness of the residual, and a negative effect on
the computational complexity (Supplementary Fig-
ure 6). Similar to the comparison of R? values, the
only nonlinear model whose whiteness of residuals is
comparable to the linear ones is the manifold-based
locally-linear model which, as explained above, is ef-
fectively linear at the global scale. Also as before,
the pairwise linear models achieve a degree of white-
ness that is almost identical to the pairwise MMSE
estimator, ensuring their optimality among all linear
and nonlinear pairwise predictors.

Third and finally, we can compare the models by
considering the total time that it takes for their learn-
ing and prediction (Figure 2e). When comparing the
most efficient linear and nonlinear models, we find
that linear models take at least one order of magni-
tude less time to fit than nonlinear models, as ex-
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Figure 2: Linear vs. nonlinear models of rsfMRI activity. (a) The distribution of cross-validated regional
R?, combined across all 116 regions and 700 subjects (sample size = 81200), for linear (green) and nonlinear (yellow)
models. The gray box corresponds to the zero model used as a baseline (see Methods for an explanation of each model).
The 10 methods on the left are brain-wise in the sense that they use information from all regions simultaneously to
predict each region’s next time point; in contrast, the two methods on the right are pairwise, predicting the next time
point of each region based on the history of every other region (including itself) alone. The boxplots of the latter
two methods thus contain 1162 x 700 samples. Negative values of R? indicate that models have a worse prediction
performance than a constant predictor which always predicts the next value of a signal to be equal to its mean.
(b) The p-value of one-sided Wilcoxon signed rank test performed between all pairs of brain-wise distributions (left)
and all pairs of pairwise distributions (right) of R? in panel (a). Warm (cold) colors indicate that the distribution
labelled on the row has significantly larger (smaller) samples than the distribution labelled on the column. Gray
hatches indicate non-significant differences at an « = 0.05 with BH-FDR correction for multiple comparisons. (c,
d) Similar to panels (a, b) but for the statistic @) of the multivariate test of whiteness relative to its rejection
threshold Q¢ny (cf. Methods). Smaller Q/Q¢n: indicates whiter (better) residuals, with Q/Qtnr < 1 required for the
null hypothesis of whiteness not to be rejected. (e, f) Similar to panels (a, b) except for the time that it took for
the learning and out of sample prediction of each model to run, per subject per cross validation (see Methods). In all
box plots, the center line, box limits, and whiskers represent the median, upper and lower quartiles, and the smallest
and largest samples, respectively.
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pected. However, linear methods can also be ex-
tremely complex to learn; linear models with states
at the neural level (‘Linear w/ HRF’) require the
most time to learn due to their high flexibility. No-
tably, this additional complexity of the ‘Linear w/
HREF’ or nonlinear methods is not counterbalanced by
any benefits in their accuracy or whiteness of residu-
als, making the simplest linear models the preferred
choice across all measures.

Next, we perform the same comparisons between
linear and nonlinear models, but now on the basis
of their fit to resting state iEFEG field potential dy-
namics (Figure 3). Similar to rsfMRI data, linear
AR models provide the best fit to the data, in terms
of both the magnitude and whiteness of their cross-
validated prediction error. These models also have
lower computational complexity than nonlinear ones,
with about an order of magnitude (or higher) advan-
tage in computation time.

Alongside these similarities between the rsfMRI
and rsiEEG data, two major distinctions are notable.
First, the R? values are generally much higher for
iEEG, as evidenced by the R? distributions of the
zero model between the two cases. This difference
is due to the fact that the iEEG time series has a
much higher sampling rate and is therefore smoother.
As a result, even predicting each sample equal to its
previous sample (i.e., the zero model) has a median
accuracy of more than 97% (see Supplementary Fig-
ures 14-16 for a more detailed assessment of the ef-
fects of sampling rate on models’ R?). This fact only
highlights the importance of the zero model; without
it, the R? of all models might have seemed satisfacto-
rily high. In comparison to the zero model, however,
it becomes clear that a simple 1-lag linear model, for
example, has in fact a very low predictive power.

The second major distinction between the two
modalities is the amount of history and temporal de-
pendency within them. fMRI data is almost Marko-
vian, so that y(¢t — 1) contains almost all the infor-
mation available for the prediction of y(t). Little
information is also contained in y(¢ — 2), but almost
no information is contained in time points further in
the past (Figure 2a). When considering iEEG data,
in contrast, increasing the number of autoregressive
lags up to about 100 still improves the R?, although
the exact optimal number of lags varies between data
segments. In this comparison, it is also important to
take into account the vast difference in the sampling

frequencies between the modalities, where 2 lags in
the fMRI dataset amounts to 1.44 seconds while 100
lags of the ECoG data sums to only 0.2 seconds. This
greater richness of iEEG dynamics from a model-
ing perspective is also responsible, at least in part,
for the markedly lower whiteness of residuals of all
model families with respect to fMRI (see Figure 3c
vs. Figure 2¢). This greater richness of iEEG is also
consistent with, though not necessarily a direct con-
sequence of, the fact that iEEG data reflects neural
signals more directly than fMRI.

Why linear? The linearizing effects of macro-
scopic neurodynamics and neuroimaging. The
above results pose the natural question of why non-
linear models were not able to capture the dynamics
in rs-fMRI/rs-iIEEG data beyond linear ones, even
though microscopic neuronal dynamics are funda-
mentally nonlinear. Here, we focus on four proper-
ties of macroscopic neurodynamics and neuroimag-
ing, and show that, in principle, they either funda-
mentally counteract or apparently mask nonlinear-
ities. Due to its unique position in neural model-
ing [9,10], we will use the sigmoidal nonlinearity to
illustrate these effects; we note, however, that the ef-
fects are otherwise applicable to other forms of non-
linearity.

The first property that can fundamentally coun-
teract microscopic nonlinearities is spatial averaging.
Imaging tools that are capable of measuring macro-
scopic brain dynamics detect a signal that reflects
an average over the activity of hundreds, thousands,
or even millions of neurons. This spatial averaging
can weaken, rather quickly, the nonlinear relation-
ships in the dynamics of individual units (neurons or
small-scale neuronal populations) as long as the units
are not perfectly correlated, and can completely nul-
lify nonlinearities when correlations decay with dis-
tance (Figure 4a-c). Note that this distance can be
the physical distance between the units, as assumed
here, or in any relevant space such as that of neu-
ral codes and stimulus preference. The key factor in
the linearizing effect of spatial averaging is the de-
cay of pairwise correlations between neurons so that
not all pairs of neurons in a region are significantly
correlated (a state of blanket global synchrony).

This linearizing effect of spatial averaging is similar
to, but different from, stochastic linearization (a.k.a.,

quasi-linearization) [24]. While the latter approwi-
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Figure 3: Linear versus nonlinear models of rsiEEG activity. Panels parallel those in Figure 2. (a) The
distribution of cross-validated regional R?, combined across all electrodes (the number of which varies among subjects)
and all the recording sessions of the 122 subjects (sample size = 776484). Linear and nonlinear methods are depicted
by green and yellow boxes, respectively (see Methods for an explanation of each model). Unlike data presented in
Figure 2, pairwise linear or pairwise MMSE models are not included due to the observation that between-electrode
connections decrease the cross-validated accuracy of the top model (cf. the 4th and 5th box plots). In contrast,
including scalar autoregressive lags is highly beneficial in iEEG, whereas it is not so in rsfMRI. Therefore, the MMSE
model here is scalar, conditioning on the past lags of each region itself. The lower whisker of the box plots are
trimmed to allow for better illustration of the interquartile ranges. (b) The p-value of the one-sided Wilcoxon signed
rank test performed between all pairs of distributions of R? in panel (a). Warm (cold) colors indicate that the
distribution labelled on the row is significantly larger (smaller) than the distribution labelled on the column. Gray
hatches indicate non-significant differences evaluated at o = 0.05 with BH-FDR correction for multiple comparisons.
(c, d) Similar to panels (a, b) but for statistic  of the multivariate test of whiteness relative to its rejection
threshold Q¢nr (cf. Methods). Smaller Q/Q¢nr indicates whiter (better) residuals, with Q/Qtnr < 1 required for the
null hypothesis of whiteness not to be rejected. (e, f) Similar to panels (a, b) but for the time that it took for
the learning and out-of-sample-prediction of each model. In all box plots, the center line, box limits, and whiskers
represent the median, upper and lower quartiles, and the smallest and largest samples, respectively.
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mates the relationship y = o(z) using its expected
slope E[0y/0x], spatial averaging as discussed here
can result in a relationship that is truly linear. Also,
the same effect can be observed when averaging other
forms of nonlinearity than the sigmoid. Supplemen-
tary Figure 2 shows the effect of spatial averaging on
spiking neurons evolving according to the Izhikevic
model [22]. This model has completely different non-
linearities than the sigmoid (polynomial and discon-
tinuous) and shows a robust nonlinear phenomenon
(limit cycle). Although more than a few (but still
no more than 100-10%) neurons are required, spatial
averaging still dissolves the nonlinear aspects of the
dynamics, while mostly sparing the linear ones.

The second property capable of completely coun-
teracting microscale nonlinearities is temporal aver-
aging. Macroscopic neural dynamics are often ob-
served, or even defined, through signals that are low-
pass filtered versions of micro- and meso-scale vari-
ables. The most notable of these is perhaps the
BOLD signal captured by fMRI, which can be seen
as an observation of neural activity passed through
the low-pass filter of the HRF. Similarly, although
to a lesser extent, the local field potentials captured
by iEEG most strongly reflect the aggregate pyra-
midal post-synaptic currents [25], which are them-
selves low-pass filtered observations of spiking activ-
ity through synaptic transmission and neuronal mem-
branes’ resistive-capacitive circuit. The effect of low-
pass filtering, in essence, is temporal averaging, which
impacts nonlinearities in a manner that is similar to
that of spatial averaging (Figure 4e-f). The paral-
lel of spatial correlations here is the autocorrelation
function or its frequency-domain representation, the
power spectral density (PSD). Autocorrelation repre-
sents how the correlation between adjacent samples
of a signal decay with the temporal distance between
those samples. As expected, the smaller the band-
width of the signal (i.e., the faster their PSD decays
with frequency before low-pass filtering), the weaker
the linearizing effect of low-pass filtering. As a result,
stronger low-pass filtering would also be required to
completely nullify nonlinear relationships in signals
with narrower bandwidth (Figure 4d). The lineariz-
ing effect of temporal averaging also holds for de-
terministic dynamics, albeit with the resulting linear
dynamics (post averaging) also being deterministic
(Supplementary Figure 3).

A third property that can counteract or mask non-

linearities is noise. Although both process noise and
observation (scanner or electrode) noise may have lin-
earizing effects, here we focus only on the latter. As
with any neuroimaging time series, various sources
of observation noise can affect the fMRI/iEEG time
series [26,27] and, in turn, “blur” nonlinear relation-
ships, even if they exist between the underlying noise-
free BOLD/LFP time series (Figure 4g-h). In fact,
when the power of noise reaches the power of the sig-
nal (SNR ~ 1), it can completely mask a nonlinear
relationship in the absence of any spatial or temporal
averaging. In reality, however, the linearizing effect
of observation noise can combine with spatiotemporal
averaging, making the 2 < SNR < 14 that we have
in rsfMRI data (Supplementary Figure 8) potentially
more than enough to mask any remaining nonlinear-
ities post-spatiotemporal averaging. Ironically, the
use of linear filtering to “clean the data” is more likely
to further linearize the dynamics of the time series
due to temporal averaging effects discussed above,
instead of recovering nonlinearities lost due to noise
(Supplementary Note 1). Nonlinear post-processing
steps, on the other hand, may leave their own po-
tentially nonlinear signatures in the data, but such
signatures should not be confused with true nonlin-
ear relationships in the original BOLD/LFP signal.
Further, although we let the noise in Figure 4g-h be
independent of the signal, as is typically the case for
measurement noise, this linearizing effect would still
hold if the noise is linearly dependent on the signal.

The fourth and final property that we will discuss is
the number of samples required for detecting nonlin-
ear relationships in large dimensions. Let us assume,
despite our discussion so far, that a perfect noise-free
nonlinear relationship exists between n-dimensional
fMRI or iEEG time series and a noise-free sensor
can capture it perfectly. When only N ~ 1000 data
points are available, we find that the manifold-based
predictor — which was our most predictive nonlinear
method both for fMRI and iEEG - is still unable to
predict the nonlinear relationship better than a lin-
ear model in n ~ 40 dimensions or higher (Figure 4i-
j). This loss in the predictive power of this nonlinear
predictor with increasing dimensionality can be easily
seen from the fact that the smallest mesh, having two
points per dimension, requires an exponentially large
N = 2" data points. Indeed, incorporating structural
bias into the learning algorithm can arbitrarily re-
duce this sample complexity if the incorporated bias
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Figure 4: The linearizing properties of macroscopic brain dynamics and of neuroimaging measure-
ments. (a) The effect of spatial averaging. For each panel, Naye pairs of signals x;(t),t = 1,...,2000 were randomly
and independently generated, y;(t) = tanh(z;(t)) was calculated, and their averages (x;) and (y;) were computed.
The quantities (z;) and (y;) possess a linear relationship as Nave ~ 5 or higher. (b) The cross-validated R? of the
optimal nonlinear (MMSE) and linear predictors for the (z;)-(y;) relationships in panel (a). (c) The effect of spatial
correlation on spatial averaging. Here, we assign (z;(t), y:(t)) pairs to spatial locations in a unit sphere (left) and make
each z;(t) and z;(t) correlated in a manner that depends on their spatial distance (middle). The difference between
nonlinear and linear R? always decays with Nave and vanishes if the correlation decays, even slowly, with distance
(right). (d) The effect of temporal averaging. One pair of z(t¢),y(t) = tanh(z(t)) is generated, independently over
time, and passed through a low-pass Gaussian filter (LPF) with a cutoff frequency feutor that is normalized to the
Nyquist frequency; thus, feutor = 1 means no low-pass filtering. (e) Same as panel (b) but for the LPF{z}-LPF{y}
relationships in panel (d). (f) Similar to panel (c) but for temporal averaging. We varied the PSD decay rate of z(t)
(left) and then low-pass filtered z(¢) and y(t) = tanh(x(¢)) as in panel (d). The difference between the optimal linear
and nonlinear R? eventually vanishes as fcutonr decreases, but it happens at smaller fouton for larger decay rates p.
(g) The effect of observation noise. The quantities x(¢) and y(t) = tanh(z(t)) are as in panel (d) and their additive
noises are generated independently. (h) Same as panel (e) but for the (z + noise)-(y + noise) relationships shown
in panel (g). (i) The effect of dimensionality. The values x1(t),...,zn(t) are generated as in panel (a) but here
y(t) = tanh(z1(¢) + - - - + zn(t)) generates a one-dimensional nonlinearity in n + 1 dimensions. No noise is included;
no spatial or temporal averaging is applied. (j) Right: similar to panels (b, e, h) except that a manifold-based
(locally-linear) nonlinear predictor is used since the conditional density estimation required for MMSE loses accuracy
in high dimensions with fixed number of data points (see Methods). Left: the optimal window size of the manifold-
based predictor as a function of dimension n. As n increases, the locally-linear predictor automatically chooses larger
windows to be able to make reliable predictions, thereby effectively degrading to a globally linear predictor (see also
Supplementary Figure 5). In all box plots, the center point, box limits, and whiskers represent the median, upper
and lower quartiles, and the smallest and largest samples, respectively. Error bars in panels (c, f, j) represent one
standard error of the mean. 9
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is consistent with the underlying data [28] (e.g., if one
looks for relationships of the form y = o(z1+- - -+2,,)
in Figure 4i-j). However, using predictors with struc-
tural bias can also be arbitrarily misleading if their
form of nonlinearity is not consistent with the given
data [29], which is one potential reason for the lower
performance of most nonlinear methods in Figures 2
and 3. This discussion also makes it clear that the in-
ability of our nonlinear system identification methods
to outperform linear ones in Figures 2 and 3 over the
entire brain is not a proof that no nonlinear method
can possibly do so. We can, nevertheless, be certain
about this for pairwise or scalar AR models (for fMRI
and iEEG, respectively) where the optimal MMSE
predictor was computable and performed as well as a
linear one.

In conclusion, the process of averaging over space,
the process of averaging over time, the existence of
observation noise, and the acquisition of limited data
are each characteristic of macroscale brain dynamics
or neuroimaging measurements, and can transform
microscopically nonlinear dynamics into macroscop-
ically linear ones. In reality, their effects are likely
all combined, rendering the optimality of linear mod-
els in our comparisons not as unexpected as it might
originally seem. This linearity has significant impli-
cations for computational neuroscience, as we discuss
next.

Discussion

Summary. In this work, we set out to test the hy-
pothesis that macroscopic neural dynamics are non-
linear, and using linear models for them results in an
inevitable loss of accuracy in exchange for simplic-
ity. We thus compared linear and nonlinear mod-
els in terms of how well they can predict rsfMRI
and rsiEEG data in a cross-validated prediction er-
ror (PE) system identification framework, where the
quality of each model’s fit was assessed by the vari-
ance and whiteness of its PE (residual). We found
that linear models, and AR models in particular,
achieve the lowest PE variance and highest PE white-
ness, outperforming neural mass models, deep neu-
ral networks, manifold-based models, and the opti-
mal MMSE predictors. Interestingly, the spatial (re-
gional) distribution of the R? of the best model also
shows significant differences across established cor-
tical functional networks, a remarkably lower pre-
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dictability of subcortical regions relative to cortical
ones, and a close alignment between most methods
(all but ‘Linear w/ HRF’) (Supplementary Figure 4).
This distinction in predictability highlights signifi-
cant differences in how spatio-temporally correlated
the fMRI time series of different regions are, while the
mechanistic physiological and technological reasons
behind this distinction remains a warranted avenue
for future research.

To further understand the possible causes of the
optimality of linear models, we analyzed the effects
of common elements of macroscopic neural dynam-
ics: averaging over space and time, observation noise,
and limited data samples. We showed that they can
each counteract or mask the nonlinearities present at
smaller scales. These linearizing effects will add up
when combined, suggesting that linear models pro-
vide a useful choice for macroscopic neural dynamics
at rest; of course, in certain experimental conditions,
rigorous system identification methods might still un-
cover nonlinear dynamics in future studies.

The observed optimality of linear models for the
resting state is accompanied by both challenges and
opportunities. Having a linear model for neuroscience
investigations is computationally ideal, given the ex-
tent to which the behavior of linear systems and their
response to stimuli are mapped out. Nevertheless,
to what extent these linearly-interacting macroscopic
signals are informative of, and have a causal influ-
ence on, the underlying microscopic activity, remains
unclear and represents an invaluable area for future
investigation. Our observations also warrant the ex-
ploration and development of both linear and nonlin-
ear models of macroscopic neural dynamics beyond
those tested here and available in the literature.

Connections to Prior Literature. It is impor-
tant to distinguish the pragmatic, modeling question
that drove our analysis from the rather philosophical
question of whether any signs of “nonlinearity” can be
found in neuroimaging time series. The latter ques-
tion has been extensively investigated [15-17,30], and
often uses determinism or chaos as a proxy for nonlin-
earity. To answer our distinct modeling question, we
used a system identification approach that allows for
a direct, side-by-side comparison of linear and nonlin-
ear models. In contrast, the aforementioned studies
often resort to indirect, surrogate-based comparisons
that rely on strong (and debated) assumptions about
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the constructed surrogates [31]. Also related to, but
different from, our work are studies that seek to deter-
mine whether the end-to-end input-output mapping
between stimuli and neuroimaging signals (EEG or
BOLD) is nonlinear (e.g., see Refs. [32,33]). Our
focus here, however, is on the internal network dy-
namics of the brain, as well as on studies that have
examined the performance of linear models per se in
fitting neuroimaging time series (e.g., [34]) without a
comparison to nonlinear models.

Our analysis of the linearizing effect of spatial cor-
relation is also related to the large body of work in-
vestigating the effect of spatial correlations on the
information content and decoding accuracy of neural
population codes (see, e.g., [35]). As expected, the
stronger the correlation between neurons, the weaker
the linearizing effects of spatial averaging. However,
nonlinearities can in principle have two opposing ef-
fects on the neural code. On the one hand, non-
linearities can substantially increase the computa-
tional complexity and expressivity of a neural net-
work, making correlations beneficial for the neuronal
encoding. On the other hand, if the expressivity is
too high, the decodability of one neural population
by another may decrease, potentially making the lin-
earizing effects of low correlations favorable. Deter-
mining which effect dominates, and whether an op-
timal point exists at the levels of neural correlation
observed, remain areas of future research in vivo.

Results and Implications. The implications of the
linearity of brain dynamics are far-reaching. Linear
systems fundamentally have a more limited repertoire
of dynamic behaviors than nonlinear ones, exclud-
ing the possibility of multi-stability, chaos, limit cy-
cles, or cross-frequency coupling, to name a few [36].
When driven by noise, linear systems act as linear
filters that shape the power spectrum of their output
(here, fMRI or iEEG time series) through their fre-
quency response, essentially amplifying the frequency
content near their resonance frequencies and damp-
ening it elsewhere. Importantly, this effect of shaping
the power spectrum of linear systems acts indepen-
dently over different frequencies; in contrast, non-
linear systems can drive arbitrarily complex cross-
frequency interactions [37].

The linearity of brain dynamics has even greater
The de-
sign and analysis of optimal, robust, adaptive, and

implications for network control [38,39].
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many other forms of control are much better under-
stood in the context of linear systems than nonlin-
ear ones. This contrast in tractability only grows for
large-scale systems like the brain, thus motivating the
recent surge of interest and advancements in using
linear control theory in neuroscience [40-42]. Non-
linear models also present additional challenges be-
yond network control, including analytical and mech-
anistic understanding of their functionality, obtaining
provable guarantees on their performance, and even
hardware requirements for their use in chronic im-
plantable devices. In this context, the present work
shows that the favorable tractability and simplicity
of linear models do not necessarily come at the often-
presumed cost of model inaccuracy, and also provide
the necessary tools for identifying the most accurate
models for any datasets of interest.

In the analysis of fMRI data, we found that incor-
porating an HRF component in the model, instead of
modeling the dynamics directly at the BOLD level,
results in a loss of accuracy in linear models (see ‘Lin-
ear (sparse)’ vs. ‘Linear w/ HRF’), and is almost inef-
fective in nonlinear models (see ‘NMM’ vs. ‘NMM w/
HREF’). It was also in light of this observation that we
did not include an HRF component in the majority of
our models, such as the DNN or the manifold-based
models. This lack of advantage of an explicit HRF
component (within the specific context of modeling
resting state IMRI dynamics using ODEs) is under-
standable on a number of grounds. First, in order
to include an HRF component in the model, either
one should learn the HRF from the data, such as in
our ‘linear w/ HRF’ model, which will create marked
model flexibility and therefore increase the likelihood
of over-fitting; or, one should use a typical HRF, such
as in our ‘NMM w/ HRF’ model, which is a source
for additional error. Second, by including the HRF
in the model, we ultimately seek to recover neural
information that is lost through the HRF. This task
is difficult, if not impossible, without a high signal-
to-noise ratio as well as more accurate HRF models
than those currently available. Finally, a linear auto-
regressive model can automatically capture a linear
approximation of the HRF dynamics [43], precisely as
present in the observed time series. Ultimately, our
results encourage a side-by-side comparison of models
with and without the inclusion of an HRF component
in order to assess the costs and benefits of such in-
clusion for any datasets of interest.
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A very similar argument also applies to including
colored noise in the model, both for fMRI and iEEG.
Even though the so-called “noise floor” in neural sig-
nals, over which neural oscillations are detected [44],
has a clear power-law (1/f) PSD, its decay can be
well modeled by white noise passing through a linear
filter. This property of the 1/f noise is in fact why
the AR models, which assume a white noise signal
e(t), have prediction errors that are maximally white.
This latter fact can be directly seen from Figures 2c
and 3c, when noting that any model’s prediction er-
rors are, by construction, the model’s estimate of the
noise e(t) [21].

In addition to considering linear and nonlinear
models, we wish to underscore the importance of the
zero model. It is not uncommon in the modeling lit-
erature to assess the quality of a fitted model per se,
without any grounds for comparison. For instance,
our ‘DNN (MLP)’ model for fMRI had a median R? of
about 14% and for some subjects it had a median R?
(among all regions) of over 50%. Even more notably,
the ‘DNN (MLP)’ model for iEEG had a median R?
of over 97%. Without any comparisons, these num-
bers may suggest that these models are quite accu-
rate; yet, as seen in Figures 2b and 3b, the predictive
accuracy of these models are in fact lower than the
zero model in fMRI, and indistinguishable from it in
iEEG. The act of comparing to a baseline model is
therefore an essential step in the assessment of any
model’s goodness-of-fit.

We restricted our analyses here in the main text
to certain spatiotemporal resolutions for both fMRI
(a coarse parcellation) and iEEG (a high sampling
rate), naturally raising the question of how robust our
findings are to our choices of resolutions. As shown
in Supplementary Figures 11-16, our main finding
(higher predictive power of linear autoregressive mod-
els over all other model families) holds across all res-
olutions tested. We do, however, observe certain dif-
ferences between resolutions. In iEEG data, we ob-
serve that using lower sampling rates (and therefore
longer time intervals) increases the benefit of model-
ing network interactions, even whilst lowering the R?
values across all models. In fMRI data, we interest-
ingly see that as we move towards more fine-grained
parcellations and ultimately unparcellated data, (i)
the simpler ‘Linear (sparse)’ model with less parame-
ters gains advantage over the more populated ‘VAR-3
(sparse)’, and (ii) the overall R? values of all mod-
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els is reduced, potentially due to the improvement
in signal-to-noise ratio resulting from averaging in
coarser parcellations.

Methodological Considerations. Despite the
solid theoretical foundations of the PE method for
system identification, our results may still beg a prac-
tical question: would the same system identification
and side-by-side comparison procedure be able to
identify nonlinear dynamics, should they actually ex-
ist in the time series? A direct answer to this ques-
tion can be given, e.g., by applying the same proce-
dure to simulated time series generated from a non-
linear model whose ground truth functional form we
know. The result of such an analysis is provided di-
rectly in Supplementary Figures 2 and 3, but also
indirectly in Figure 4. Note that in the latter, we
compared the cross-validated predictive power of lin-
ear and (MMSE or manifold-based) nonlinear models
in identifying the sigmoidal relationship y = o(x) and
its variants, after averaging or noise addition. This
relationship can be equally viewed as a nonlinear dy-
namical system & = o(x), the nonlinearity of which
was only identified until counteracted or masked by
the four macroscopic effects we discussed therein.

As for the comparison of linear and nonlinear mod-
els, one might expect nonlinear models to perform
at least as well as linear ones, but not worse, given
that the space of nonlinear models includes all linear
models as a special case. In our comparison, however,
we saw that most of our nonlinear methods actually
have a worse prediction performance than linear ones.
This behavior can be understood in light of at least
two facts. First, many nonlinear models, such as the
neural mass models and DNNs, do not include linear
models as a special case and have structural biases
that can be a source of error if not consistent with
the data [29]. Second, even nonlinear models that do
not have structural biases and contain linear models
as a special case, such as MMSE or manifold-based
models, still have a marked flexibility relative to a
linear model. These models indeed achieve the high-
est R? among nonlinear models both for fMRI and
iEEG. However, their immense flexibility would in
general lead to overfitting unless (i) abundant data
is available, which is not currently the case for most
neuroimaging modalities, or (ii) strict regularization
is used, which is itself another source of bias and may
not be consistent with the underlying data.
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A further noteworthy aspect of our study specifi-
cally, and the prediction error framework more gener-
ally, is the focus on fitting the time series rather than
its derivative statistics, such as the functional con-
nectivity (FC) [45-47] or power spectral density [48].
While the choice of one approach over the other ul-
timately depends upon the anticipated use of the
learned model, it is important to note that the map-
ping from dynamical systems to FC (or any other
such statistic) is not a one-to-one mapping [49]. In
fact, linear systems of the form y(¢) —y(t — 1) =
Wy(t—1)+e(t) with completely different W matri-
ces can give rise to almost identical FC matrices (see
Supplementary Figure 1). Therefore, when consider-
ing the accuracy of a general purpose model of the
brain, the time series contains the maximum amount
of information and thus provides the best target for
model fitting.

One modeling approach that we did not employ in
this study is dynamic causal modeling (DCM) [50].
The reason is that neither of the current variants of
DCM are feasible, due to their computational com-
plexity at the scale of our analysis: whole brain fMRI
with n = 116 parcellations or large-scale iEEG with
up to 175 and a median of 98 electrodes. The most ef-
ficient variant, spectral DCM for fMRI, for instance,
is applicable to ~ 30-40 nodes, whereas stochastic
DCM (the most relevant to our study) is only applica-
ble to much smaller systems. However, in light of our
results thus far, the great computational complexity
of the DCM approach, and thus its potential for over-
fitting, we would not expect its cross-validated R? to
reach that of a linear model, although this compari-
son remains unknown at the present.

In this work, we demonstrated four properties of
macroscopic neurodynamics that can counteract or
mask microscopic nonlinearity. In doing so, we pur-
posefully kept the discussion at a conceptual level and
generally abstained from tying it to specific micro-
or mesoscopic neural models, as doing so would re-
quire building on assumptions that our study explic-
itly seeks to avoid. For instance, it is currently un-
clear whether, and to what extent, the dynamics of
the mesoscopic local field potentials or population fir-
ing rates that seem to be the main neural drivers of
fMRI or iEEG are nonlinear and, if so, what the pre-
cise form of their nonlinearity is at each brain region.
A warranted avenue for future research would be the
re-analysis of the effects of spatial and temporal aver-
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aging, observation noise, and limited data samples on
precise, data-driven models of mesoscopic brain dy-
namics, should they possess nonlinear interactions.

Limitations. Finally, we would like to highlight
some of the limitations of the present study. First,
it is important to note that the space of all nonlin-
ear models in tens to hundreds of dimensions is in-
tractably large, and the fact that our tested nonlinear
models did not outperform linear ones is not a proof
that no nonlinear model may ever do so. Our work
thus seeks to provide rigorous evidence and method-
ology towards resolving the linear vs. nonlinear mod-
eling dilemma in computational neuroscience, rather
than a final resolution thereof. We can be confident,
nevertheless, about the optimality of linear models
at the pairwise level for fIMRI or scalar AR level for
iEEG given the equal or higher prediction power of
linear regression relative to the optimal MMSE pre-
dictor. Moreover, our modeling framework is cur-
rently only applicable to resting state dynamics with
no inputs, and has been tested on the two modal-
ities of fMRI and iEEG. Inclusion of input signals
for system identification of task fMRI/iEEG data re-
quires accurate data-driven ‘input models’ of how ex-
perimental stimuli, as well as subjects’ voluntary re-
sponses, influence the BOLD or LFP signals in each
brain region, and is a highly warranted avenue for
future research [51,52]. Under intensive task condi-
tions, moreover, it is more likely, or perhaps certain,
to observe nonlinearities at least in the form of sat-
uration effects in the BOLD/LFP signal. However,
the precise form and extent of this nonlinearity needs
to be determined using rigorous system identification
routines.

In conclusion, our work sought to ask the often
unasked question of whether the brain is macroscopi-
cally linear. We compared various linear and nonlin-
ear families of models to determine their relative ad-
vantages and disadvantages. Our findings show that
simple linear models explain the rsfMRI and rsiEEG
data as well as, or even better than, an array of non-
linear ones, thus challenging the commonly held, yet
untested assumption of higher accuracy of nonlinear
models. However, the costs and benefits of nonlinear
models are ultimately case-specific. Therefore, in-
stead of offering a universal recommendation on the
preferable choices for the modeling of neural dynam-
ics, we rather provide the groundwork for rigorous in-
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vestigation and informed decision-making in the con-
text of rsfMRI/rsiEEG. When feasible, following a
similar system identification routine is always recom-
mended for computational modeling of any datasets
of interest, in order to ensure the optimal fit of the
models used for subsequent analysis or design.

Methods

Data and pre-processing. For the fMRI analysis,
we used ICA-FIX resting state data from the S1200 Hu-
man Connectome Project release [53,54]. rsfMRI images
were collected with the following parameters: TR = 720
ms, TE = 33.1 ms, flip angle = 52 deg, FOV = 208x108
mm, matrix = 104x90, slice thickness = 2.0 mm, number
of slices = 72 (2.0 mm isotropic), multi factor band =
8, and echo spacing = 0.58 ms. Brains were normalized
to fslr32k via the MSM-AII registration and global sig-
nal was removed. No bandpass filtering was performed
(see Supplementary Note 1). Finally, we removed sub-
jects from further analysis if any of their four resting
state scans had excessively large head motion, defined
by having frames with greater than 0.2 mm frame-wise
displacement or a derivative root mean square (DVARS)
above 75. Also, subjects listed in [55] under “3T Func-
tional Preprocessing Error of all 3T RL fMRI runs in 25
Subjects” or “Subjects without Field Maps for Structural
scans” were removed, leaving a total of 700 subjects that
were used for all the analyses. We parcellated the brain
into 100 cortical regions (Schaefer 100x7 atlas [56]) and
16 subcortical ones (Melbourne Scale I atlas [57]).

For iEEG preprocessing, raw data from the RAM data
set we have published on previously [58-60] was seg-
mented into task free epochs from either before or after
task completion that were at least 5 minutes in length.
This process resulted in a total of 283 recordings from
122 subjects. Data were then downsampled to the low-
est sampling rate used across recording sites (500 Hz).
Electric line noise and its harmonics at 60, 120, and 180
Hz were filtered out using a zero phase distortion 4-th
order stop-band Butterworth filter with a 1 Hz width.
This procedure was implemented using the butter() and
filtfilt() functions in MATLAB. We then rejected noisy
channels that were either (i) marked as noisy in the RAM
dataset notes, (ii) had a line length greater then three
times the mean, (iii) had z-scored kurtosis greater than
1.5, or (iv) had a z-scored power-spectral density dissim-
ilarity measure greater than 1.5. The dissimilarity mea-
sure used was the average of one minus the Spearman’s
rank correlation with all channels. Data were then de-
meaned and detrended. Channels were grouped according
to whether they were grid or depth electrodes, and then
common average referenced within each group. Following

the common average referencing step, plots of raw data
and power spectral densities were visually inspected by
an expert researcher with 6 years of experience working
with electrocorticography data to ensure that data were
relatively clean.

Computing. All the computations whose run time was
measured and reported in Figures 2e and 3e were per-
formed on the CUBIC cluster at the University of Penn-
sylvania, using 1 CPU core and 16 or 64 GB of memory
per fMRI or iEEG computing jobs, respectively.

Linear and nonlinear families of models. The
continuous-time dynamics in Eq. (1) is first discretized.
With a slight abuse of notation, we also represent the
discretized dynamics as

x(t) —x(t—1) = f(x(t — 1)) + e1(t), x(0) =x%0 (4a)
t=1,...,N
y(t) = h(x(t)) + ea2(t), t=0,...,N (4b)
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where the time index ¢ is now an integer, for simplicity of
notation, but the discretization step size is always equal to
0.72 seconds for the HCP data (equivalent to 1 TR) and 2
milliseconds for the RAM data. This choice means that,
e.g., the map f in Eq. (4a) equals 1 time step multiplied
by the map f in Eq. (la), and T" = 864s in Eq. (la)
corresponds to N = 1200 in Eq. (4a) for the fMRI data.
Recall that in this general form, the noise signals e1(t)
and ez (t) can have arbitrary statistics, including white or
colored PSD. We then learn the dynamics in Eq. (4) using
the following families of models. The hyper-parameters
used for each model are listed in Table 1 (see ‘Hyper-
parameter selection’ below and Supplementary Figures 9
and 10 for details).

Linear models with states at the BOLD/LFP level
(‘Linear (dense)’, ‘Linear (sparse)’): This model is our
simplest. In it, we let y(t) = x(t), modeling the dynam-
ics directly at the BOLD/LFP level. This also allows for
combining the noise signals e;(¢) and ex(t) into a single
noise signal e(t), which is then taken to be white. These
simplify Eq. (4) to

y(@) —y(t—1) = fly(t—1)) +e(t). (11)
If we further let f(y(t)) = Wy(¢) be linear, then we
get Eq. (5) (see Table 1) where W is an n-by-n matrix of
effective connectivity between brain regions. We fit and
compare this model both when W is dense and when it is
sparse. The latter is motivated by the facts that (i) from
a mechanistic perspective, an important property of brain
networks and other large-scale complex networks is their
sparsity; while (ii) from a machine learning perspective,
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Table 1: Linear and nonlinear families of models used in this study. The marks T and ¥ indicate, respectively, that

a method is used

only for fMRI or iEEG. See Methods for a description of each model.

Label Title Equation Hyper-parameters
Linear (dense) L els with None
inear models wi
. y(t)—y(t—1)=Wy(t—1)+e(t) (5) A =0.95 (fMRI)
Linear (sparse) , Sia;)ei z;:cpt}lle 1 A = 1.2 (iEEG)
Linear (pairwise)f / eve yi(t) — vt — 1) = wizy;(t — 1) +ei(t), 4,5 =1,... None

AR-2 (sparse)f

VAR-2 (sparse)T

AR-3 (sparse)’

Linear autoregressive

VAR-3 (sparse)T

models

AR-100 (sparse)®

AR-100 (scalar)?

y(t) = y(t—1) = Wy(t — 1) + Day(t - 2)
T Day(t —3) + -
+Duy(t —d) +e(t)

d =2, =0.95, diagonal Dy

d=2,A=09

d=3,1=0.5, diagonal Dy, D3

d=3,A=0.35

d=100,A=1.5

d =102

x(t) —x(t —1) = Wx(t — 1) + G1(¢q)é1(t) (7a)
Linear models with v = H((i):((t) ol
Linear w/ HRF' states at the neural H(q) = Zp;1 diag(H. )¢~ " (Tb) np=ng=mny=5r=11
level 1 Mg . =
Filg) =T-G7'(q)=)_ " diag(®.,)qg (7e)
Fol) =T-G5' (@) =3 " diag(¥.p)g™" (7d)
x(t) —x(t —1) = Wx(t — 1) + e1(t)
Linear models V&.’lth y(t) = Cx(t) + ex(t) (8) s=1,7=3,n=25 (fMRI)
Subspace abstract data-driven R
el (t) Q M s=11,r = 49,n = 436 (iEEG)
states Cov 1 =
ez(t) MT R
MINDy default (fMRI)
NMM y(#)—y(t—1)= Wia(y(t—1)) =Dyt —1)Ar+e(t) A =X =02)X3=2,

Nonlinear neural

NMM w/ HRF?

mass models

A = 0.5 (iEEG)

x(t) —x(t — 1) = (Wipa(x(t — 1)) — Dx(t — 1))Arp

+ el(t)
y(t) = H(g)x(t) + ea(t)

9)

MINDy default

Nonlinear models via

multi-layer _ 1) — _ _ d=1,D=6,W =2 (fMRI)
y y@) —y(t-1)=flyt—-1),....y(t=d) +e(t) (10) ' '
DNN (MLP) perceptron deep d=06,D=4,W =26 (iEEG)
neural networks
d=17,D =2,lq; =7,
Nonlinear models via Tiile :71371’?;3};1;1 ’
DNN (CNN) convolutional deep  y(t) —y(t—1)= f(y(t—1),..., y(t —d)) +e(t) Z‘T”};D’ e 9
neural networks T T b
ngy = 13, Npool = 1,
Parop = 0.5 ((IEEG)
Nonlinear models via W =12 (fMRI)
LSTM (IIR t)—y(t—1) = t—1),...,y(0 t
(IIR) long short-term yt) —y(t—=1) = flyt—1),...,5(0)) +e(t) W = 1 (EEG)
memory recurrent . d=1,W =16 (fMRI)
LSTM (FI t)—yt—1)= t—1),...,y(t—d t
S (FIR) neural networks y(t) =¥l )= )iyt —d)) +e(t) d=7,W =1 (iEEG)
Nonlinear
. ) B d=1,h =830 (fMRI)
Manifold manifold-based yt)—yt—1)=f(y(t—1),...,y(t — d)) +e(t) d=7.h=12x 10 GEEG)
models
MMSE (pairwise)! ~ Nonlinear minimum  y;(t) —y;(t—1) = Ely; (t) —y:(t —1)|y;(t—1)],4,5 =1,...,n N =280, § = 0.156

MMSE (scalar)*

mean squared error
models (optimal)

yi(t) —vi(t — 1) = E[yi(t)

=it = Dyt = 1),...,
yi(t—d),i=1,...,n

d=15,N = 300, 8 = 0.007

Zero

Zero model

y() —y(t—1) =e(®)

None
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regularization and reducing the number of free parame-
ters in a model can prevent over-fitting and improve gen-
eralization. To promote sparsity, we use standard 1-norm
(LASSO) regularization with a A hyper-parameter that is
tuned separately for fMRI and iEEG.

Linear autoregressive models (‘AR-2 (sparse)’, ‘VAR-
2 (sparse)’, ‘AR-3 (sparse)’, ‘VAR-3 (sparse)’, ‘AR-100
(sparse)’, “AR-100 (scalar)’): motivated by the long his-
tory of AR models in neuroscience [23,61,62], here we
extend Eq. (5) to Eq. (6) (see Table 1) for an ‘AR-d’
model. The number of lags d was tuned separately for
fMRI and iEEG, and the matrix W is either made sparse
using LASSO or enforced to be diagonal. Note that the
latter results in n scalar AR models at each node which
are completely decoupled from each other. We restricted
the matrices D2, D3, ... to be diagonal in ‘AR’ models
but not so in full vector auto-regressive (‘VAR’) models.
In both cases, we use LASSO regularization to promote
sparsity in the regressors, signified by the ‘(sparse)’ suf-
fix in method identifiers, with the regularization hyper-
parameter A chosen optimally and separately for each
model (cf. ‘Hyper-parameter selection’ below). In gen-
eral, we found that A\ is a moderately sensitive parame-
ter, more so for the whiteness of residuals than R? (cf.
Supplementary Figure 7 for an example).

Linear models with states at the neural level (‘Linear w/
HRF”, only applicable to fMRI data): A standard step in
the computational modeling of fMRI dynamics is to in-
corporate a model of the hemodynamic response function
(HRF), and to separate the underlying neuronal variables
from the observed BOLD signals. In this family of mod-
els, we thus separate the states x from the outputs y,
while keeping a one-to-one relationship between the two
(m = n). We then let the latter be a filtered version of
the former through the HRF. For generality and given
the natural and important variability of HRF across the
brain [63,64], we allow the HRF to vary regionally and
learn it from the data for all regions in addition to the ef-
fective connectivity matrix W. Furthermore, for the sake
of generality, we allow both e:(t) and ex(t) to be colored,
with power spectral densities that can also be different
between regions and are learned from data. Note that
this choice includes, as a special case, white e1(¢) and
e2(t). The result is a highly flexible linear model given
by Eq. (7) (see Table 1). Since LASSO regression pro-
duced the best results in our BOLD-level linear models,
we use LASSO to promote sparsity in W here. H(q) is a
diagonal matrix whose (4, ) entry is a linear finite-impulse
response (FIR) approximation of the HRF in region i,
parameterized as in Eq. (7b) (¢7' is the standard delay
operator, such that ¢ 'z(t) = z(t — 1), see [21]). Sim-
ilarly, G1 and G2 are diagonal filters, parameterized by
the inverse FIR forms in Eq. (7c)-(7d). Since the state
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vector x(t) is not measured, we learn this model by iter-
ating between state estimation and parameter estimation
in an expectation-maximization (EM)-like manner. Note
that the presence of filters increases the effective state
dimension of the system to n-max{ng +1,n, +ny}, sig-
nificantly increasing the computational complexity of the
state estimation step. The final model is taken from the
EM iteration with the highest (training) R?.

Linear models with abstract data-driven states (‘Sub-
space’): The previous model, despite and because of its
extreme generality and flexibility, has a very large state
dimension and is extremely difficult to fit. If we forgo the
physiological interpretability of the states, then signifi-
cantly simpler and lower-dimensional models of the form
in Eq. (8) (see Table 1) can be learned via subspace iden-
tification methods [21]. Unlike the model above, states
represent abstract low-dimensional regularities within the
data, with a dimension m that is chosen optimally for
each data type. The noise sequences e;(t) and ex(t) are
assumed to be white but can be correlated, and the covari-
ance matrices Q, M, and R are also learned from data.
We note here that the subspace method used for learning
this model is not technically a PE method, but we still use
the PE framework for the cross-validated computation of
R? and whiteness of residuals.

Nonlinear neural mass models (‘NMM’, ‘NMM w/
HRF’): Learning of the models above, except for the ‘Lin-
ear w/ HREF’, involves a convex optimization that can be
efficiently solved to find its unique global optimum. In
contrast, the learning of nonlinear models is less straight-
forward. Recently, Singh et al. [65] developed an algo-
rithm called MINDy that uses state-of-the-art optimiza-
tion techniques for learning a neural mass model of the
form in Eq. (9) (see Table 1) using rsfMRI data. In this
model, x(t) has the same dimension as y(¢) (one neural
mass per brain region), Ar is the sampling time, W is
a sparse connectivity matrix, D is a diagonal self decay
matrix, ¥q(-) is an element-wise sigmoidal nonlinearity
whose steepness is determined by each element of the vec-
tor a (which is also the same size as x), and H(q) is a
scalar linear HRF that is the same and fixed a priori for
all regions. The associated toolbox that we use allows the
user to either deconvolve y(t) using a canonical HRF to
obtain the state x(¢) (‘NMM w/ HRF’), or set H(q) =1
and directly fit the model to y(¢) (‘NMM’). We use both
methods for fMRI data but only the latter for iIEEG. Since
the MINDy algorithm was originally tuned for fMRI, we
re-tune its regularization hyper-parameters A1, ..., A4 for
use with iEEG data.

Nonlinear models via multi-layer perceptron deep neu-
ral networks (‘DNN (MLP)’): Here we use a model of the
form in Eq. (11) for fMRI and train a rectified linear unit
(ReLU) MLP DNN to approximate the function f(-). The
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structure of the DNN consists of an input layer, D ReLLU
layers, each preceded with fully connected and batch nor-
malization layers and succeeded with a 50% dropout layer,
a final fully connected layer, and the output layer. Given
the importance of AR lags in the modeling of iEEG, for
this modality we generalize Eq. (11) as Eq. (10) (see Ta-
ble 1 for the latter) and similarly approximate f(-) using
an MLP DNN. We use MATLAB’s Deep Learning Tool-
box for the training and evaluation of the DNN and tune
the depth D and width W of the DNN separately for
fMRI and iEEG (see ‘Hyper-parameter selection’ below).

Nonlinear models via convolutional deep meural net-
works (‘DNN (CNN)’): Given the recent success of CNNs
in complex learning problems, we also included a model
similar to ‘DNN (MLP)’ but with a CNN to approximate
the function f(-). The network consists of an input layer,
D one-dimensional convolutional layers (convolving over
time using ngiy filters of size lgi;) each succeeded by a
batch normalization layer, a ReLLU layer, and an average
pooling layer with a pool size of npoo1, a final dropout
layer with probability parop, @ fully connected layer, and
the output layer. Spatial convolution was not included
in the model, as is the standard in modeling dynamical
systems with CNNs, due to the arbitrary nature of chan-
nel numbering. Temporal convolution is nevertheless the
basis of this model and we thus consider d > 1 autore-
gressive lags for both fMRI and iEEG.

Nonlinear models via long short-term memory neu-
ral networks (‘LSTM (IIR)’, ‘LSTM (FIR)’): The above
DNN models are inherently static (i.e., feedforward),
whereas various recurrent neural network architectures
have also been proposed for directly modeling dynamical
systems. One of the most successful such architectures are
LSTMs which we implemented here in two forms: infinite
impulse response (ITR) and finite impulse response (FIR).
These two forms correspond, respectively, to the two com-
mon sequence-to-sequence and sequence-to-one forms of
In both cases, the
network consists of an input layer, a layer of W LSTM

modeling time series using LSTMs.

units, a fully connected layer, and an output layer. The
difference is that in the IIR model, the network is ini-
tialized once at time 0 and run forward, continuously re-
ceiving y(¢t — 1) as input and generating y(¢t) — y(¢t — 1)
as output. Each output, therefore, depends on the entire
In the FIR model, on the other
hand, the model is initialized and run forward once for

7y(t7 1) as

history of the inputs.

each time point ¢, receiving only y (¢t — d), ...
input when predicting y(¢) — y(t — 1).
Nonlinear manifold-based models (‘Manifold’): Con-
sider Eq. (11) or Eq. (10) and assume, for simplicity,
that f is differentiable. Each of these systems of equa-
tions consists of n scalar equations, each of which defines
a manifold (surface) in n + 1-dimensional space. Various
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methods have been developed in the machine learning and
system identification literature [66,67] and used in com-
putational neuroscience [18,68] to capitalize on the fact
that in the small vicinity of a point, the manifold can be
approximated by a linear hyperplane tangential to it at
that point. Here, we use the simple method of local poly-
nomial modeling of order 1 [66] where, in the vicinity of
any test point yo, we approximate

f(z) ~c+ W(z —z0)

and fit c and W using the training points that are “close”
to yo. Same applies for approximating f in Eq. (10). To
define which points are close, this method uses a window
function with a width hyper-parameter h > 0 that de-
termines how wide that window should be. We tuned h
separately for IMRI and iEEG (see ‘Hyper-parameter se-
lection’ below), giving rise to values that are so large that
they essentially result in a globally linear model (Supple-
mentary Figure 5). The value of h was independently
optimized for the computations reported in Figure 4i-j,
as described below.

Nonlinear minimum mean squared error models (opti-
mal) (‘MMSE (pairwise)’, ‘MMSE (scalar)’): The mod-
els in Eq. (11) (for fMRI) or Eq. (10) (for iEEG) ul-
timately define a stochastic mapping from y(t — 1) or
(y(t =1),...,y(t — d)) to y(t) — y(t — 1) such that ob-
serving the values of the former provides information to
predict the latter. It is not hard to show that for two
random variables U and V, the optimal (i.e., minimum
variance) prediction of U given V = v is given by its
conditional expectation & = E[U|V = v] known as the
MMSE prediction [69]. Therefore, the optimal prediction
ofy(t) —y(t—1) given y(t—1) or (y(t —1),...,y(t—d))
is given by E[y(t) —y(t — 1)|y(t — 1)] and E[y(t) — y(t —
D]y(t—1),...,y(t—d)], respectively. Due to its optimal-
ity, it provides a theoretical upper bound on the achiev-
able accuracy of any nonlinear model. The difficulty in
calculating this estimate, however, is the estimation of the
conditional distribution of y(¢)—y(¢—1) given an observa-
tion of y(t—1) or (y(t—1),...,y(t—d)). Without impos-
ing additional assumptions (e.g., Gaussianity), this task is
not feasible in n ~ 100 dimensions with our limited data
points per recording segment. However, this distribution
is indeed feasible (i) on a pairwise basis, giving us the op-
timal predictions E[y;(¢) — yi(t — 1)]y; (¢t — 1)] for all pairs
i,7 =1,...,n, or (ii) on a scalar AR basis, yielding the
yi(t—d)]
separately for each ¢ = 1,...,n. We use the former for
fMRI and the latter for iEEG. To estimate this condi-
tional distribution for fMRI, we use a Gaussian window

optimal predictions E[y; (¢)—y: (t—1)|y: (t—1), . ..

with a standard deviation equal to 8 times the range of
y;(t) in the training data to detect the training points
close to each test y;(¢ — 1) and then use an N-point
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weighted histogram to estimate the (conditional) distri-
bution. The case for iEEG is similar. § and N are hyper-
parameters that are tuned separately for fMRI and iEEG
(see ‘Hyper-parameter selection’ below).

Zero model (‘Zero’): So far, we have discussed several
families of models. Comparisons among them will provide
a clear picture of which family provides the best fit to the
data relative to the others. Note though that this process
does not necessarily imply that the best model is good in
any absolute sense. In other words, all models may be
estimating y(¢|t — 1) at chance level or lower. Therefore,
we also consider the zero model (a.k.a. zero-order hold,
naive, or random walk)

y(t) —y(t—1) =e(?)

with the trivial estimate y(t|t — 1) = y(¢t — 1). Note that
this expression corresponds to Eq. (11) with f(y(t—1)) =
0 and is only meant to provide a baseline for comparison,
not to act as a formal model itself. Also note that this
model is different from, and often performs better than,
the constant predictor y(¢|t — 1) = y which constitutes
the denominator of RZ.

Hyper-parameter selection. For all models that in-
volve the choice of a design hyper-parameter, we simul-
taneously optimized over all the hyper-parameters using
stochastic gradient descent (SGD) with minibatch, sepa-
rately for fMRI and iEEG. Let Nparam denote the num-
ber of hyper-parameters in any of the models. Starting
from an initial estimate of the hyper-parameter vector, in
each iteration, 3/Vparam hyper-parameter vectors were gen-
erated, constituting a hyper-cubic mesh around the cur-
rent hyper-parameter estimate. For integer-valued hyper-
parameters, we moved 1 point in each direction while
for real-valued hyper-parameters, we moved 10~¢ units.
Using a minibatch of randomly selected data segments,
the mean-over-minibatch of the median-over-regions of
the model R? was computed and maximized over the
mesh. The random minibatch selection was independent
between mesh points and between iterations. For integer-
valued hyper-parameters, their value was updated to that
of the maximizing mesh point. For real-value hyper-
parameters, a gradient-ascent step was taken in the di-
rection of the largest R2. The process was repeated un-
til the hyper-parameters stopped having a consistent de-
crease/increase and hovered around a steady state value
(which always happens due to the stochastic nature of
SGD) and/or the R? stopped having a consistent increase.
The hyper-parameter and R? values throughout the pro-
cess are shown in Supplementary Figures 9 and 10 for
fMRI and iEEG data, respectively, and the final values
of the hyper-parameters selected for each model are re-
ported in Table 1. Note that the initial hyper-parameter
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estimates were chosen based on prior experience, not ran-
domly, which is why they are often very close to or the
same as the final values.

Nonlinear predictors used for the analysis of
the linearizing effects of macroscopic dynam-
ics. Our discussions of linear and nonlinear models and
their hyper-parameters so far applies to the comparisons
shown in Figures 2 and 3 on neuroimaging time series.
In our numerical analysis of the linearizing effects of
macroscopic brain dynamics in Figure 4, we also con-
struct linear and nonlinear predictors and compute their
R?. The linear predictor is always a simple linear regres-
sion model, while the nonlinear predictor is the MMSE
predictor for two-dimensional predictions (Figure 4a-h),
and the manifold-based predictor for higher-dimensional
predictions (Figure 4i-j). The MMSE predictor was as
above, except that 8 was adjusted as 0.02 + 0.02/SNR
for Figure 4g-h. For the manifold-based predictor, we
used a Gaussian window and swept logarithmically over
its hyper-parameter h from 0.1 to 10 in every iteration
and chose the value of h that gave the largest R?. Fig-
ure 4j-left panel shows the average of the resulting optimal
h for 100 iterations.

Cross-validation. For the comparisons of Figure 2 on
HCP data, we performed the cross-validation as follows,
with slightly different procedures for brain-wide and re-
gional methods. For the brain-wide methods, for each of
the 700 subjects, we split each of the 4 resting scans of
that subject into 2 halves, giving a total of 8 segments,
each of length 600 samples. All of our methods were then
applied using an 8-fold cross-validation where each time
one of the 8 segments was used for testing and the remain-
ing 7 were used for training. For pairwise methods, we
were forced to lower the sample size due to the extremely
high computational complexity of the MMSE predictor.
Therefore, instead of each of the above 8 segments (per
subject), we used the second quarter of that segment, giv-
ing us still an 8-fold cross-validation but on segments of
length 150 samples each.

For the comparisons of Figure 3 on RAM data, we first
split each of the 283, 5-minute recordings into 8490, 10-
second segments. Even though having longer segments
would in principle benefit model fitting, 10-second seg-
ments ensured that all of our methods could run using the
64 GB available memory per node on the CUBIC cluster.
From the 8490 segments, those that contained any NaN
entries (316 segments) or for which the subspace method
produced NaN predictions (30 segments, due to the bad
conditioning of the ® matrix therein) were removed from
further analysis. Since each recording is already split into
30 segments, and due to the large number of segments,


https://doi.org/10.1101/2020.12.21.423856
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423856; this version posted August 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

we performed only a single-fold cross-validation on each
segment, with the first 8 seconds used for training and
the final 2 second used for cross-validation.

Multivariate test of whiteness. A standard mea-
sure of the goodness of fit in the prediction error method is
the whiteness of residuals, measuring the extent to which
all temporal structure (i.e., dynamics) in the data has
been captured by the model. Note that a multivariate
time series e(t) is “white” if it has no statistical depen-
dence across time (i.e., e(s) and e(t) are independent if
s # t) even though it can have arbitrary statistical de-
pendence across channels (i.e., e;(t) and e;(t) can be de-
pendent at the same time t). Parametric (x?) statistical
tests have been devised for multivariate whiteness, such
as the classical Box-Pierce portmanteau test [70] and its
modifications by Ljung & Box [71] and Li & McLeod [72].
Under strong assumptions, all of these tests have a statis-
tic @ (defined slightly differently between them) that is
asymptotically (at infinite samples) x? distributed. In our
datasets we found, however, that Q is not x? distributed,
and therefore we use randomization to generate the true
null distribution of @ by shuffling the time indices of e(t)
100 times, computing @ for each of them, and comput-
ing the 95th percentile of the randomized @ values as the
threshold Qqn, for significance. We use the original defi-
nition of @ [70],

M
Q=(N-M)Y trace (Re(i)Tﬁe(O)_lﬂe(i)Re(O)_1)
i=1
where N is the number of (test) samples, M is the number
of cross-correlation lags, and

N-M-1

R ! > et+i)e)’, i=0,1,...
t=0

R =§_m

M.

is a finite-sample estimate of the cross-correlation ma-

trix between channels of e(t) at lag ¢. Since in prac-

tice Re(0) may be singular or near-singular, we use the
pseudo-inverse of Re(O) instead of its inverse in comput-
ing Q. Finally, only in the case of “pairwise” fMRI mod-
els where the residuals are inherently univariate, we use
the simpler x? test of whiteness for univariate time se-

ries [21, §16.6].

Estimation of rsfMRI SNR. Here we describe our
method for the estimation of rsfMRI time series scanner
noise and the resulting SNR reported in Supplementary
Figure 8. From the 700 subjects used for the study, 50
were selected uniformly at random, and for each selected
subject, one of their 4 rest scans was selected also uni-
formly at random. The following was then performed
for each of the 50 subject-scans. The rest scan was mo-
tion corrected using intra-modal linear registration with

6 degrees of freedom (in general, we kept the amount
of pre-processing as minimal as possible throughout the
SNR estimation algorithm since each preprocessing step
often involves averaging and/or interpolation steps that
can bias SNR estimates). The first volume of the motion-
corrected rest scan was visually inspected and 10 voxels
outside of the head were selected. Due to the unavailabil-
ity of phantom scans, we used these voxels to estimate
the scanner noise, while the two have been shown to yield
consistent noise estimates [73]. For each of the 10 voxels,
we calculated the temporal variance of the corresponding
time series and averaged the results, providing an esti-
mate of scanner noise variance o%. To estimate the sig-
nal power, a gray matter mask was extracted using each
subject’s T1 scan and linearly registered back to the sub-
ject’s motion corrected rest scan. We then computed the
temporal variance of each gray matter voxel and averaged
the results, yielding an estimate of the combined signal
and noise variance. Assuming statistical independence
between scanner noise and the subjects’ BOLD activity,
this combined variance is precisely the sum o% + o3 of
signal variance and noise variance. The SNR was then
calculated as o0s/on. Note that this process is inherently
conservative and provides an upper bound on the SNR, as
it, for instance, does not include any physiological signals
into “noise”. Therefore, the ratio between the power of
signals of neural origin over all other signals contributing
to rsfMRI time series may be much lower than 6.5. An
SNR of about 6.5, however, is still low enough to yield a
significant linearizing effect, highlighting the importance
of measurement noise in downstream computational mod-
eling.
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