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ABSTRACT

We develop a generalizable Al-driven workflow that leverages het-
erogeneous HPC resources to explore the time-dependent dynamics
of molecular systems. We use this workflow to investigate the mech-
anisms of infectivity of the SARS-CoV-2 spike protein, the main
viral infection machinery. Our workflow enables more efficient in-
vestigation of spike dynamics in a variety of complex environments,
including within a complete SARS-CoV-2 viral envelope simula-
tion, which contains 305 million atoms and shows strong scaling
on ORNL Summit using NAMD. We present several novel scien-
tific discoveries, including the elucidation of the spike’s full glycan
shield, the role of spike glycans in modulating the infectivity of the
virus, and the characterization of the flexible interactions between
the spike and the human ACE2 receptor. We also demonstrate how
Al can accelerate conformational sampling across different systems
and pave the way for the future application of such methods to
additional studies in SARS-CoV-2 and other molecular systems.

KEYWORDS

molecular dynamics, deep learning, multiscale simulation, weighted
ensemble, computational virology, SARS-CoV-2, COVID19, HPC,
GPU, Al

ACM Reference Format:

Lorenzo Casalino”, Abigail Dommer!, Zied Gaieb”, Emilia P. Barros!,
Terra Sztain', Surl-Hee Ahn', Anda Trifan?®, Alexander Brace?, Anthony
Bogetti", Heng Ma?, Hyungro Lee®, Matteo Turilli®, Syma Khalid®, Lillian
Chong*, Carlos Simmerling’, David J. Hardy?®, Julio D. C. Maia3, James C.
Phillips3, Thorsten Kurth®, Abraham Stern®, Lei Huangg, John McCalping,
Mahidhar Tatineni'®, Tom Gibbs®, John E. Stone®, Shantenu Jha®, Arvind
Ramanathan?*, Rommie E. Amaro**. 2020. AI-Driven Multiscale Simulations
[luminate Mechanisms of SARS-CoV-2 Spike Dynamics. In Supercomputing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Supercomputing 20, November 16—19, 2020, Virtual

© 2020 Association for Computing Machinery.

ACM ISBN ISBN... $15.00

https://doi.org/finalDOI

"20: International Conference for High Performance Computing, Networking,
Storage, and Analysis. ACM, New York, NY, USA, 14 pages. https://doi.org/
finalDOI

1 JUSTIFICATION

We:

o develop an Al-driven multiscale simulation framework to
interrogate SARS-CoV-2 spike dynamics,

o reveal the spike’s full glycan shield and discover that glycans
play an active role in infection, and

e achieve new high watermarks for classical MD simulation
of viruses (305 million atoms) and the weighted ensemble
method (600,000 atoms).

2 PERFORMANCE ATTRIBUTES

Performance Attribute Our Submission

Category of achievement Scalability, Time-to-solution
Type of method used Explicit, Deep Learning
Results reported on the basis of  Whole application including I/O

Precision reported Mixed Precision
System scale Measured on full system
Measurement mechanism Hardware performance counters,
Application timers,
Performance Modeling

3 OVERVIEW OF THE PROBLEM

The SARS-CoV-2 virus is the causative agent of COVID19, a world-
wide pandemic that has infected over 35 million people and killed
over one million. As such it is the subject of intense scientific inves-
tigations. Researchers are interested in understanding the structure
and function of the proteins that constitute the virus, as this knowl-
edge aids in the understanding of transmission, infectivity, and
potential therapeutics.

A number of experimental methods, including x-ray crystallogra-
phy, cryoelectron (cryo-EM) microscopy, and cryo-EM tomography
are able to inform on the structure of viral proteins and the other
(e.g., host cell) proteins with which the virus interacts. Such struc-
tural information is vital to our understanding of these molecular
machines, however, there are limits to what experiments can tell us.
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For example, achieving high resolution structures typically comes
at the expense of dynamics: flexible parts of the proteins (e.g., loops)
are often not resolved, or frequently not even included in the exper-
imental construct. Glycans, the sugar-like structures that decorate
viral surface proteins, are particularly flexible and thus experimen-
tal techniques are currently unable to provide detailed views into
their structure and function beyond a few basic units. Additionally,
these experiments can resolve static snapshots, perhaps catching
different states of the protein, but they are unable to elucidate the
thermodynamic and kinetic relationships between such states.

In addition to the rich structural datasets, researchers have used
a variety of proteomic, glycomic, and other methods to determine
detailed information about particular aspects of the virus. In one
example, deep sequencing methods have informed on the functional
implications of mutations in a key part of the viral spike protein [57].
In others, mass spectrometry approaches have provided information
about the particular composition of the glycans at particular sites
on the viral protein [54, 69]. These data are each valuable in their
own right but exist as disparate islands of knowledge. Thus there is
a need to integrate these datasets into cohesive models, such that
the fluctuations of the viral particle and its components that cause
its infectivity can be understood.

In this work, we used all-atom molecular dynamics (MD) sim-
ulations to combine, augment, and extend available experimental
datasets in order to interrogate the structure, dynamics, and func-
tion of the SARS-CoV-2 spike protein (Fig. 1). The spike protein
is considered the main infection machinery of the virus because
it is the only glycoprotein on the surface of the virus and it is the
molecular machine that interacts with the human host cell receptor,
ACE2, at the initial step of infection. We have developed MD simula-
tions of the spike protein at three distinct scales, where each system
(and scale) is informative, extensive, and scientifically valuable in
its own right (as will be discussed). This includes the construction
and simulation of the SARS-CoV-2 viral envelope that contains
305 million atoms, and is thus among one of the largest and most
complex biological systems ever simulated (Fig. 1A). We employ
both conventional MD as well as the weighted ensemble enhanced
sampling approach (which again breaks new ground in terms of
applicable system size). We then collectively couple these break-
through simulations with artificial intelligence (AI) based methods
as part of an integrated workflow that transfers knowledge gained
at one scale to ‘drive’ (enhance) sampling at another.

An additional significant challenge faced in bringing this work
to fruition is that it pushes the boundaries of several fields simulta-
neously, including biology, physics, chemistry, mathematics, and
computer science. It is intersectional in nature, and requires the
collective work of and effective communication among experts in
each of these fields to construct, simulate, and analyze such sys-
tems - all while optimizing code performance to accelerate scientific
discovery against SARS-CoV-2.

Our work has brought HPC to bear to provide unprecedented
detail and atomic-level understanding of virus particles and how
they infect human cells. Our efforts shed light on many aspects
of the spike dynamics and function that are currently inaccessible
with experiment, and have provided a number of experimentally
testable hypotheses - some of which have already been experimen-
tally validated. By doing so, we provide new understandings for
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vaccine and therapeutic development, inform on basic mechanisms
of viral infection, push technological and methodological limits for
molecular simulation, and bring supercomputing to the forefront
in the fight against COVID19.

3.1 Methods

Full-length, fully-glycosylated spike protein. In this work, we built
two full-length glycosylated all-atom models of the SARS-CoV-2 S
protein in both closed and open states, fully detailed in Casalino
et al [10]. The two all-atom models were built starting from the
cryo-EM structures of the spike in the open state (PDB ID: 6VSB
[70]), where one receptor binding domain (RBD) is in the “up” con-
formation, and in the closed state, bearing instead three RBDs in
the “down” conformation (PDB ID: 6VXX [66]). Given that the
experimental cryo-EM structures were incomplete, the remain-
ing parts, namely (i) the missing loops within the head (residues
16-1141), (ii) the stalk (residues 1141-1234) and (iii) the cytosolic
tail (residues 1235-1273), were modelled using MODELLER [51]
and I-TASSER [79]. The resulting full-length all-atom constructs
were subsequently N-/O-glycosylated using the Glycan Reader &
Modeler tool [24] integrated into Glycan Reader [25] in CHARMM-
GUI [38]. Importantly, an asymmetric glycoprofile was generated
(e.g., not specular across monomers) taking into account the N-/O-
glycans heterogeneity as described in the available glycoanalytic
data [54, 69]. The two glycosylated systems were embedded into
their physiological environment composed of an ERGIC-like lipid
bilayer [11, 65] built using CHARMM-GUI [24, 72], explicit TIP3P
water molecules [26], and neutralizing chloride and sodium ions
at 150 mM concentration, generating two final systems each tally-
ing ~1.7 million atoms. Using CHARMM36 all-atom additive force
fields [19, 21] and NAMD 2.14 [42], the systems were initially re-
laxed through a series of minimization, melting (for the membrane),
and equilibration cycles. The equilibrated systems were then sub-
jected to multiple replicas of all-atom MD simulation production
runs of the open (6x) and closed (3x) systems on the NSF Fron-
tera computing system at the Texas Advanced Computing Center
(TACC). A cumulative extensive sampling of ~4.2 and ~1.7 ps was
attained for the open and closed systems, respectively. Additionally,
a third, mutant system bearing N165A and N234A mutations was
built from the open system in order to delete the N-linked glycans
and delineate their structural role in the RBD dynamics. This system
was also simulated for ~4.2 ps in 6 replicas [10].

ACE2-RBD complex MD simulations. The model of the ACE2-RBD
complex was based on cryo-EM structure trapping ACE2 as a homo-
dimer co-complexed with two RBDs and BOAT1 transporter (PDB
ID 6M17 [73]). Upon removal of BOAT1, ACE2 missing residues at
the C terminal end were modeled using I-TASSER [79], whereas
those missing at the N terminal end were taken from 6M0J and prop-
erly positioned upon alignment of the N terminal helix. Zinc sites
including the ions and the coordinating residues were copied from
1R42. The construct was fully N-/O-glycosylated using CHARMM-
GUI tools [24, 25, 38] for glycan modeling, reproducing the glycan
heterogeneity for ACE2 and RBD reported in the available glycoan-
alytic data [53, 62, 81]. Similarly, the apo ACE2 homo-dimer was
also built upon removal of the RBDs from the holo construct. The
glycosylated models were embedded into separate lipid patches
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Figure 1: Multiscale modeling of SARS-CoV-2. A) All-atom model of the SARS-CoV-2 viral envelope (305 M atoms), including
24 spike proteins (colored in gray) in both the open (16) and closed states (8). The RBDs in the “up” state are highlighted in
cyan) N-/O-Glycans are shown in blue. Water molecules and ions have been omitted for clarity. B) Full-length model of the
glycosylated SARS-CoV-2 spike protein (gray surface) embedded into an ERGIC-like lipid bilayer (1.7 M atoms). RBD in the
“up” state is highlighted in cyan. C) The glycan shield is shown by overlaying multiple conformations for each glycan collected
at subsequent timesteps along the dynamics (blue bushlike representation). Highlighted in pink and red are two N-glycans
(linked to N165 and N234, respectively) responsible for the modulation of the RBD dynamics, thus priming the virus for
infection. The RBD “up” is depicted with a cyan surface. D) Two-parallel-membrane system of the spike-ACE2 complex (8.5 M
atoms). The spike protein, embedded into an ERGIC-like membrane, is depicted with a gray transparent surface, whereas ACE2
is shown with a yellow transparent surface and it is embedded into a lipid bilayer mimicking the composition of mammalian
cell membranes. Glycans are shown in blue, whereas water has been omitted for clarity. Visualizations were created in VMD
using its custom GPU-accelerated ray tracing engine [23, 58-61].

with a composition mimicking that of mammalian cellular mem-
branes [11, 65] and simulated in explicit water molecules at 150 mM
ion concentration, affording two final systems of ~800,000 atoms
each. MD simulations were performed using CHARMMS36 all-atom
additive force fields [19, 21] along with NAMD 2.14 [42]. The MD
protocol was identical to that adopted for the simulation of the
full-length spike and it is fully described in Casalino et al [10]. This
work is fully detailed in Barros et al [5].

Weighted ensemble simulations of spike opening. The spike must
undergo a large conformational change for activation and binding
to ACE2 receptors, where the receptor binding domain transitions
from the “down’, or closed state to the “up,” or open state [71]. Such
conformational changes occur on biological timescales generally
not accessible by classical molecular dynamics simulations [37].
To simulate the full unbiased path at atomic resolution, we used
the weighted ensemble (WE) enhanced sampling method [22, 82].
Instead of running one single long simulation, the WE method runs
many short simulations in parallel along the chosen reaction coor-
dinates. The trajectories that rarely sample high energy regions are
replicated, while the trajectories that frequently sample low energy

regions are merged, which makes sampling rare events computa-
tionally tractable and gives enhanced sampling. The trajectories
also carry probabilities or weights, which are continuously updated,
and there is no statistical bias added to the system. Hence, we are
able to directly obtain both thermodynamic and kinetic properties
from the WE simulations [78].

For this study, the closed model of the glycosylated spike from
Casalino et al. [10], was used as the initial structure by only keeping
the head domain. The WE simulations were run using the highly
scalable WESTPA software [83], with the Amber GPU accelerated
molecular dynamics engine [20, 52], version 18. Chamber [13] was
used to convert CHARMMS36 [19, 21] force fields and parameters
from the system developed by Casalino et al. [10] into an Amber
readable format. A TIP3P [27] water box with at least 10 A between
protein and box edges was used with 150 mM NaCl, leading the total
number of atoms to 548,881. Amber minimization was carried out
in two stages. First the solvent was minimized for 10,000 cycles with
sugars and proteins restrained with a weight of 100 kcal/mol A2,
followed by unrestrained minimization for 100,000 cycles. Next the
system was incrementally heated to 300 K over 300 ps. Equilibration
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Figure 2: Opening of the spike protein. VMD visualization of
weighted ensemble simulations shows the transition of the
spike’s RBD from the closed state to the open state. Many
conformations of the RBD along its opening pathway are
represented at the same time using cyan cartoons and a
transparency gradient. Glycans appear as dark blue.

and production were carried out in 2 fs timesteps with SHAKE [49]
constraints on non-polar hydrogens and NPT ensemble. Pressure
and temperature were controlled with Monte Carlo barostat and
Langevin thermostat with 1 ps-1 collision frequency. The particle-
mesh Ewald (PME) method was used with 10 A cutoff for non-
bonded interactions. The system was first equilibrated for 21 ns of
conventional MD. The RMSD of the alpha carbons began to level
off around 16 ns, and 24 structures were taken at regular intervals
between 16 and 21 ns to use as equally weighted basis states for
the WE simulation.

For each WE, tau was set to 100 ps of MD production followed by
progress coordinate evaluation, and splitting / merging of walkers
and updating weights, with a maximum of 8 walkers per bin. A two
dimensional progress coordinate was defined by (i): the distance
between the center of mass (COM) of the alpha carbons in the
structured region of the spike helical core, and the alpha carbons in
the four main beta sheets of the RBD (refers to RBD from chain A
unless otherwise specified) and (ii): the RMSD of the alpha carbons
in the four main beta sheets of the RBD to the initial structure
(obtained from 1 ns equilibration). This simulation was run for 8.77
days on 80 P100 GPUs on Comet at SDSC collecting a comprehen-
sive sampling of ~7.5 ps, with bin spacing continuously monitored
and adjusted to maximize sampling.

After extensive sampling of the RBD closed state, the second
progress coordinate was changed to the RMSD of the alpha carbons
in the four main beta sheets of the RBD compared to the final
open structure, obtained from system 1, after 1 ns of equilibration
carried out with identical methods as the closed structure described
above, which was initially calculated as 11.5 A. This allowed more
efficient sampling of the transition to the open state by focusing
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sampling on states which are closer in rotational or translational
space to the final state, rather than sampling all conformations
that are distinctly different from the closed state. Bin spacing was
continuously monitored and adjusted to maximize traversing the
RMSD coordinate. The full transition was confirmed when the
RMSD coordinate reached below 6 A and the RBD COM coordinate
reached above 8.5 A (Fig. 2). The simulation was stopped for analysis
after 1099 iterations, upon running for 26.74 days on 100 V100 GPUs
on Longhorn at TACC and harvesting ~70.0 ps.

A second, independent WE simulation was conducted to deter-
mine if the findings of the initial simulation were reproducible, and
to use the information on the free energy landscape of the success-
ful transition in the first WE to inform bin spacing and target state
definition to run an unsupervised simulation. After 19.64 days on
100 V100 GPUs on TACC Longhorn and ~51.5 ps of comprehensive
sampling, successful transitions to the open state were observed,
as well as further open states, in which the RBD was observed to
be peeling off of the spike core.

Two-parallel-membrane system of the spike-ACE2 complex. The
SARS-CoV-2 virus gains entry into the host cell through a mem-
brane fusion process taking place upon the recognition of the ACE2
receptors exposed on the host cell. This binding event triggers sev-
eral, dramatic conformational changes within the spike protein,
which becomes primed to pull the two membranes together for
fusion, allowing the virus to pour the viral RNA into the host cell.
In order to disentangle the mechanistic intricacies underlying this
key process, we exploited the wealth of information obtained from
the individual simulations described above to assemble an all-atom
complex between the full-length spike and the ACE2 dimer. As a
first step, equilibrated structures of the spike in the open state and
of the ACE2-RBD complex were extracted from their respective
individual simulations [5, 9]. Subsequently, the spike protein was
superimposed onto the ACE2-RBD complex by aligning the spikes’s
RBD “up” with the RBD of the ACE2-RBD complex, allowing for a
fairly vertical arrangement of the new construct. In order to pre-
serve the best possible binding interface, the RBD of the spike was
discarded, whereas the RBD from the ACE2-RBD complex was re-
tained and linked to the rest of the spike. The spike-ACE2 complex
was embedded into a double membrane system: the spike’s trans-
membrane domain was inserted into a 330 A x 330 A ERGIC-like
lipid bilayer, whereas for ACE2 a mammalian cellular membrane of
the same dimension was used [11, 65]. The two membranes were
kept parallel to each other, allowing the use of an orthorhombic
box. In order to facilitate the water and ion exchange between the
internal and external compartment, an outer-membrane-protein-G
(OmpG) porin folded into a beta barrel was embedded into each
membrane. The OmpG equilibrated model was obtained from Chen
et al [12]. The generated two-membrane construct was solvated
with explicit TIP3P water molecules, with the total height of the
external water compartment matching the internal one exhibiting
a value of 380 A. Sodium and chloride ions were added at a con-
centration of 150 mM to neutralize the charge and reshuffled to
balance the charge between the two compartments.

The composite system, counting 8,562,698 atoms with an or-
thorhombic box of 330 A x 330 A x 850 A, was subjected to all-
atom MD simulation on the Summit computing system at ORNL
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using NAMD 2.14 [42] and CHARMMS36 all-atom additive force
fields [19, 21]. Two cycles of conjugate gradient energy minimiza-
tion and NPT pre-equilibration were conducted using a 2 fs timestep
for a total of ~3 ns. During this phase, the ACE2 and spike proteins
and the glycans were harmonically restrained at 5 kcal/mol, allow-
ing for the relaxation of the two lipid bilayers, the OmpG porins,
water molecules and ions within the context of the double mem-
brane system. We remark that the two lipid patches were previously
equilibrated, therefore not requiring a melting phase at this stage.
The dimension of the cell in the xy plane was maintained constant
while allowing fluctuation along the z axis. Upon this initial pre-
equilibration phase, a ~17 ns NPT equilibration was performed by
releasing all the restraints, preparing the system for production
run. From this point, three replicas were run or a total of ~522 ns
comprehensive simulation time. By using the trained Al learning
model, three conformations were extracted from this set of simula-
tions, each of them representing a starting point of a new replica
with re-initialized velocities. A total of three additional simulations
were therefore performed, collecting ~180 ns and bringing the total
simulation time to ~702 ns.

SARS-CoV-2 viral envelope. The full-scale viral envelope was
constructed using the LipidWrapper program (v1.2) previously de-
veloped and described by Durrant et al. [14]. A 350 A x 350 A lipid
bilayer patch used as the pdb input was generated using CHARMM-
GUI with an ERGIC-like lipid composition and an estimated area per
lipid of 63 A. An icospherical mesh with a 42.5 nm radius, in accor-
dance with experimentally-observed CoV-2 radii, was exported as a
collada file from Blender (v2.79b) and used as the surface file [31].!
LipidWrapper was run in a Python 2.7 conda environment with
lipid headgroup parameters “_P,CHL1_03”, a lipid clash cut-off of
1.0 A, and filling holes enabled.? The final bilayer pdb was solvated
in a 110 nm cubic box using explicit TIP3P water molecules and
neutralized with sodium and chloride ions to a concentration of
150 mM. The final system contained 76,134,149 atoms.

Since the LipidWrapper program operates via tessellation, lipid
clash removal, and a subsequent lipid patching algorithm, the bi-
layer output attains a lower surface pressure than that of a bilayer
of the same lipid composition at equilibrium [9]. Due to this artifact,
as the bilayer equilibrates, the lipids undergo lateral compression
resulting in the unwanted formation of pores. Thus, the envelope
was subjected to multiple rounds of minimization, heating, equi-
libration, and patching until the appropriate equilibrium surface
pressure was reached.

All-atom MD simulations were performed using NAMD 2.14 and
CHARMMS36 all-atom additive force fields. The conjugate-gradient
energy minimization procedure included two phases in which the
lipid headgroups were restrained with 100 and 10 kcal/mol weights,
respectively, at 310K for 15,000 cycles each. The membrane was then
melted by incremental heating from 25K to 310K over 300 ps prior
to NPT equilibration. The equilibration sequentially released the
harmonic restraints on the lipid headgroups from 100 to 0 kcal/mol
over 0.5 ns. Following this sequence, the structure was visually eval-
uated to determine whether to continue equilibration or to proceed
with pore patching. Most structures continued with unrestrained

thttps://www.blender.org/
Zhttps://docs.anaconda. com/
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equilibration for 4-26 ns prior to patching, with longer unrestrained
equilibrations attributed to later, more stable envelopes.

Patching of the envelope was done by overlapping the initial
LipidWrapper bilayer output with the newly-equilibrated envelope.
All superimposed lipids within 2.0 A of the equilibrated lipids were
removed to eliminate clashes. Superimposed lipids within 4.0 A of
an equilibrated cholesterol molecule were also removed to eliminate
ring penetrations. The patched system, with new lipids occupying
the pores, was then re-solvated, neutralized, and subjected to the
next round of minimization, heating, and equilibration.

After ten rounds of equilibration and patching, 24 spike proteins
with glycans, 8 in the closed and 16 in the open state, were in-
serted randomly on the envelope using a house tcl script. A random
placement algorithm was used in accordance with experimental
microscopy imaging which has suggested that there is no obvi-
ous clustering of the spikes and no correlation between RBD state
and location on the spike surface [31]. The number of spikes was
selected based on experimental evidence reporting a concentra-
tion of 1000 spikes/nm? on the envelope [31]. The new structure
containing spikes was re-solvated, neutralized, and processed to
remove clashing lipids prior to further simulation. The resulting
cubic solvent box was 146 nm per side and contained 304,780,149
atoms. The spike-inclusive envelope was then subjected to three
more equilibration and patching sequences. The final virion used
for all-atom MD production runs had a lipid envelope of 75 nm
in diameter with a full virion diameter of 120 nm. The complete
equilibration of the viral envelope totaled 41 ns on the TACC Fron-
tera system and 75 ns on ORNL Summit. Full-scale viral envelope
production simulations were performed on Summit for a total of
84 ns in an NPT ensemble at 310 K, with a PME cutoff of 12 A for
non-bonded interactions.

4 CURRENT STATE OF THE ART

4.1 Parallel molecular dynamics

NAMD [41] has been developed over more than two decades, with
the goal of harnessing parallel computing to create a computational
microscope [34, 55] enabling scientists to study the structure and
function of large biomolecular complexes relevant to human health.
NAMD uses adaptive, asynchronous, message-driven execution
based on Charm++[28, 29]. It was one of the first scientific appli-
cations to make use of heterogeneous computing with GPUs [43],
and it implements a wide variety of advanced features supporting
state-of-the-art simulation methodologies. Continuing NAMD and
Charm++ developments have brought improved work decompo-
sition and distribution approaches and support for low overhead
hardware-specific messaging layers, enabling NAMD to achieve
greater scalability on larger parallel systems [32, 44]. NAMD incor-
porates a collective variables module supporting advanced biasing
methods and a variety of in-situ analytical operations [16]. Simula-
tion preparation, visualization, and post-hoc analysis are performed
using both interactive and offline parallel VMD jobs [23, 59-61].
NAMD has previously been used to study viruses and large pho-
tosynthetic complexes on large capability-oriented and leadership
class supercomputing platforms, enabling the high-fidelity deter-
mination of the HIV-1 capsid structure [80], the characterization of
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substrate binding in influenza [15], and the structure and kinetics
of light harvesting bacterial organelles [56].

4.2 Weighted Ensemble MD simulations

The weighted ensemble (WE) method is an enhanced sampling
method for MD simulations that can be orders of magnitude more
efficient than standard simulations in generating pathways and rate
constants for rare-event processes. WE runs many short simula-
tions in parallel, instead of one long simulation, and directly gives
both thermodynamic and kinetic properties, which most enhanced
sampling methods cannot do. The simulations go through “resam-
pling" where simulations are merged for over-sampled regions and
replicated for rare regions so that regions are continuously sampled
regardless of energy barriers. The simulations also carry probabili-
ties or “weights" that are continuously updated and no statistical
bias is added to the system, so we are able to directly obtain both
thermodynamic (e.g., free energy landscape) and kinetic (e.g., rates
and pathways) properties from the simulation. In addition, the
WE method is one of the few methods that can obtain continuous
unbiased pathways between states, so this was the most suitable
method for us to obtain and observe the closed to open transition
for the spike system. Before the WE method was applied to the
spike system under investigation here (about 600,000 atoms), the
largest system used for the WE method was the barnase-barnstar
complex (100,000 atoms)[50].

4.3 Al-driven multiscale MD simulations

A number of approaches, including deep learning methods, have
been developed for analysis of long timescale MD simulations [36].
These linear, non-linear, and hybrid ML approaches cluster the sim-
ulation data along a small number of latent dimensions to identify
conformational transitions between states [6, 46]. Our group devel-
oped a deep learning approach, namely the variational autoencoder
that uses convolutional filters on contact maps (from MD simula-
tions) to analyze long time-scale simulation datasets and organize
them into a small number of conformational states along biophysi-
cally relevant reaction coordinates [7]. We have used this approach
to characterize protein conformational landscapes [48]. However,
with the spike protein, the intrinsic size of the simulation posed a
tremendous challenge in scaling our deep learning approaches to
elucidate conformational states relevant to its function.

Recently, we extended our approach to adaptively run MD sim-
ulation ensembles to fold small proteins. This approach, called
DeepDriveMD [35], successively learns which parts of the confor-
mational landscape have been sampled sufficiently and initiates
simulations from undersampled regions of the conformational land-
scape (that also constitute “interesting” features from a structural
perspective of the protein). While a number of adaptive sampling
techniques exist [2, 8, 30, 33, 47, 67, 68], including based on re-
inforcement learning methods [39], these techniques have been
demonstrated on prototypical systems. In this paper, we utilize the
deep learning framework to suggest additional points for sampling
and do not necessarily use it in an adaptive manner to run MD
simulations (mainly due to the limitations posed by the size of the
system). However, extensions to our framework for enabling sup-
port of such large-scale systems are straightforward and further
work will examine such large-scale simulations.
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5 INNOVATIONS REALIZED

5.1 Parallel molecular dynamics

Significant algorithmic improvements and performance optimiza-
tions have been required for NAMD to achieve high performance on
the GPU-dense Summit architecture [1, 42, 58]. New CUDA kernels
for computing the short-range non-bonded forces were developed
that implement a “tile list” algorithm for decomposing the workload
into lists of finer grained tiles that more fully and equitably distrib-
ute work across the larger SM (streaming multiprocessor) counts in
modern NVIDIA GPUs. This new decomposition uses the symmetry
in Newton’s Third Law to eliminate redundant calculation with-
out incurring additional warp-level synchronization [58]. CUDA
kernels also were added to offload the calculation of the bonded
force terms and non-bonded exclusions [1]. Although these terms
account for a much smaller percentage of the work per step than
that of the short-range non-bonded forces, NAMD performance on
Summit benefits from further reduction of CPU workload. NAMD
also benefits from the portable high-performance communication
layer in Charm++ that communicates using the IBM PAMI (Parallel
Active Messaging Interface) library, which improves performance
by up to 20% over an MPI-based implementation [1, 32].

Additional improvements have benefited NAMD performance on
Frontera. Recent developments in Charm++ now include support
for the UCX (Unified Communication X) library which improves
performance and scaling for Infiniband-based networks. Following
the release of NAMD 2.14, a port of the CUDA tile list algorithm to
Intel AVX-512 intrinsics was introduced, providing a 1.8x perfor-
mance gain over the “Sky Lake” (SKX) builds of NAMD.

A significant innovation in NAMD and VMD has been the devel-
opment of support for simulation of much larger system sizes, up
to two billion atoms. Support for larger systems was developed and
tested through all-atom modeling and simulation of the protocell as
part of the ORNL CAAR (Center for Accelerated Application Readi-
ness) program that provided early science access to the Summit
system [42]. This work has greatly improved the performance and
scalability of internal algorithms and data structures of NAMD and
VMD to allow modeling of biomolecular systems beyond the previ-
ous practical limitation on the order of 250 million atoms. This work
has redefined the practical simulation size limits in both NAMD and
VMD and their associated file formats, added new analysis methods
specifically oriented toward virology [17], and facilitates modeling
of cell-scaled billion-atom assemblies, while making smaller model-
ing projects significantly more performant and streamlined than
before [1, 17, 42, 58, 60].

5.2 Multiscale molecular dynamics simulations

Often referred to as “computational microscopy,” MD simulations
are a powerful class of methods that enable the exploration of com-
plex biological systems, and their time-dependent dynamics, at the
atomic level. The systems studied here push state of the art in both
their size and complexity. The system containing a full-length, fully-
glycosylated spike protein, embedded in a realistic viral membrane
(with composition that mimics the endoplasmic reticulum) contains
essentially all of the biological complexity known about the SARS-
CoV-2 spike protein. The composite system contains ~1.7 million
atoms and combines data from multiple cryoEM, glycomics, and
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lipidomics datasets. The system was simulated with conventional
MD out to microseconds in length, and several mutant systems
were simulated and validated with independent experiments.

A related set of experiments utilizing the weighted ensemble
method, an enhanced sampling technique, explored a truncated
version of the spike protein (~600,000 atoms with explicit solvent)
in order to simulate an unbiased spike protein conformational tran-
sition from the closed to open state. This is the largest system, by an
order of magnitude, that has been simulated using the WE method
(biggest system until now was ~60,000 atoms). Using calculations
optimized to efficiently make use of extensive GPU resources, we
obtained several full, unbiased paths of the glycosylated spike re-
ceptor binding domain activation mechanism.

The second system increases the complexity by an order of mag-
nitude by combining the spike system described above with a full-
length, fully-glycosylated model of the ACE2 receptor bound into a
host cell plasma membrane. This system represents the encounter
complex between the spike and the ACE2 receptor, contains two
parallel membranes of differing composition, has both the spike and
ACE2 fully glycosylated, and forming a productive binding event at
their interface. The composite system contains ~8.5 Million atoms
with explicit water molecules and provides unseen views into the
critical handshake that must occur between the spike protein and
the ACE2 receptor to begin the infection cascade.

Our final system is of the SARS-CoV-2 viral envelope. This sys-
tem incorporates 24 full-length, fully-glycosylated spike proteins
into a viral membrane envelope of realistic (ER-like) composition,
where the diameter of the viral membrane is ~80nm and the di-
ameter of the virion, inclusive of spikes, is 146 nm. Until now, the
largest system disclosed in a scientific publication was the influenza
virus, which contained ~160 million atoms. The SARS-CoV-2 vi-
ral envelope simulation developed here contains a composite 305
million atoms, and thus breaks new ground for MD simulations of
viruses in terms of particle count, size, and complexity.

Moreover, typical state of the art simulations are run in isolation,
presenting each as a self-contained story. While we also do that
for each of the systems presented here, we advance on state of the
art by using an Al-driven workflow that drives simulation at one
scale, with knowledge gained from a disparate scale. In this way,
we are able to explore relevant phase space of the spike protein
more efficiently and in environments of increasing complexity.

5.3 Using Al for driving multiscale simulations

Using deep learning to characterize conformational states sampled in
the SARS-CoV-2 spike simulations. MD simulations such as the ones
described above generate tremendous amounts of data. For e.g.,
the simulations of the WE sampling of the spike protein’s closed-
to-open state generated over 100 terabytes of data. This imposes
a heavy burden in terms of understanding the intrinsic latent di-
mensions along which large-scale conformational transitions can
be characterized. A key challenge then is to use the raw simula-
tion datasets (either coordinates, contact matrices, or other data
collected as part of a standard MD runs) to cluster conformational
states that have been currently sampled, to identify biologically
relevant transitions between such states (e.g., open/closed states
of spike), and suggest conformational states that may not be fully
sampled to characterize these transitions [46].
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To deal with the size and complexity of these simulation datasets,
approaches that analyze 3D point clouds are more appropriate. In-
deed, such approaches are becoming more commonly utilized for
characterizing protein binding pockets and protein-ligand interac-
tions. We posited that such representations based on the C* repre-
sentation of protein structures could be viable to characterize large-
scale conformational changes within MD simulation trajectories.
We leverage the 3D PointNet based [45] adversarial autoencoder
(3D-AAE) developed by Zamorski and colleagues [77] to analyze
the spike protein trajectories. In this work, we employ the chamfer
distance based reconstruction loss and a Wasserstein [4] adversarial
loss with gradient penalty [18] to stabilize training. The original
PointNet backbone treats the point cloud as unordered, which is
true for general point clouds. In our case however, the protein is
essentially a 1D embedding into a 3D space. This allows us to define
a canonical order of points, i.e. the order in which they appear in
the chain of atoms. For that reason, we increase the size-1 1D con-
volutional encoder kernels from the original PointNet approach to
larger kernels up to size 5. This allows the network to not only learn
features solely based on distance, but also based on neighborhood
in terms of position of each atom in the chain. We found that a 4-
layer encoder network with kernel sizes [5, 3,3, 1, 1] and filter sizes
[64, 128, 256, 256, 512] performs well for most tasks. A final dense
layer maps the vectors into latent space with dimensionality 64. For
the generator, we only use unit size kernels with filter dimensions
[64, 128,512, 1024, 3] respectively (the output filter size is always
the dimensionality of the problem). The discriminator is a 5 layer
fully connected network with layer widths [512, 512, 128, 64, 1].

The trajectories from the WE simulations were used to build a
combined data set consisting of 130,880 examples. The point cloud
data, representing the coordinates of the 3,375 backbone C* atoms
of the protein, was randomly split into training (80%) and validation
input (20%) and was used to train the 3D-AAE model for 100 epochs
using a batch size of 32. The data was projected onto a latent space
of 64 dimensions constrained by a gaussian prior distribution with
a standard deviation of 0.2. The loss optimization was performed
with the Adam optimizer, a variant of stochastic gradient descent,
using a learning rate of 0.0001. We also added hyperparameters to
scale individual components of the loss. The reconstruction loss
was scaled by 0.5 and the gradient penalty by a factor of 10.

The embedding learned from the 3D-AAE model summarizes a
latent space that is similar to variational autoencoders, except that
3D-AAEs tend to be more robust to outliers within the simulation
data. The embeddings learned from the simulations allow us to
cluster the conformations (in an unsupervised manner) based on
their similarity in overall structure, which can be typically measured
using quantities such as root-mean squared deviations (RMSD).

We trained the model using several combinations of hyperparam-
eters, mainly varying learning rate, batch size and latent dimension.
For visualizing and assessing the quality of the model in terms
latent space structure, we computed t-SNE [64] dimensionality re-
ductions on the high-dimensional embeddings from the validation
set. A good model should generate clusters with respect to relevant
biophysical observables not used in the training process. Therefore,
we painted the t-SNE plot with the root mean squared deviation
(RMSD) of each structure to the starting conformation and observed
intelligible clustering of RMSD values. We tested this model on a
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Figure 3: 3D-AAE training and test results. A) The loss pro-
gression for reconstruction, discriminator and validation
loss over 100 epochs. B) The t-SNE plot visualization of the
reduced latent space, with training embeddings represented
in grey and test examples represented in color over the range
of RMSD values. Outliers identified in the outlier detection
stage are represented with an outlined diamond. C) VMD
visualization of outlier structures (yellow, orange, dark or-
ange) aligned and compared to the starting structure (blue).

set of trajectories from the full scale spike-ACE2 system, using
the same atom selection (3,375 C* atoms) as the corresponding
WE spike protein. We subsequently performed outlier detection
using the local outlier factor (LOF) algorithm, which uses distance
from neighboring points to identify anomalous data. The goal of
the outlier detection step is to identify conformations of the pro-
tein that are most distinct from the starting structure, in order to
story board important events in the transition of the protein from
an open to closed conformation. Although the number of outlier
conformations detected can be a parameter that the end-user can
specify, we selected 20 outlier conformations, based on the extreme
LOF scores. These conformations were visualized in VMD [23, 58],
and further analyzed using tilt angles of the stalk and the RBD. The
final selection included 3 structures which were used as the start-
ing conformations for the next set of simulations. These ‘outlier’
conformers are cycled through additional MD simulations that are
driven by the ML-methods.
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Table 1: NAMD AVX-512 FP operation breakdown.

FP Instr. Ops % total || FP Instr. Ops % total
DblScalar | 4.99e16 | 26.9% || SglScalar | 2.09e15 1.1%
Dbl128b 6.86e15 3.7% Sg1128b 3.61el5 1.9%
Dbl256b 1.06e17 57.1% Sg1256b 1.18e16 6.3%
Dbl512b 4.96e15 2.7% Sg1512b 3.43el14 0.2%

6 HOW PERFORMANCE WAS MEASURED
6.1 3D-AAE

Since this application dominantly utilizes the GPU, we do not need
to profile CPU FLOPs. Instead, we measure FLOPs for all precisions
using the methodology explained in [74] with the NVIDIA NSight
Compute 2020 GPU profiling tool. We collect floating point instruc-
tions of relevant flavors (i.e. adds, mults, fmas (fused multiply adds)
and tensor core operations for FP16, FP32 and FP64) and multiply
those with weighting factors of {1, 1, 2, 512} respectively in order
to transform those into FLOP counts. The sum of all these values
for all precisions will yield our overall mixed precision FLOP count.
To exclude FLOPs occuring during initialization and shutdown,
we wrap the training iteration loop into start/stop profiler hooks
provided by the NVIDIA CuPy Python package.’

6.2 NAMD

NAMD performance metrics were collected on TACC Frontera,
using the Intel msr-tools utilities, with NAMD 2.14 with added Intel
AVX-512 support. FLOP counts were measured for each NAMD
simulation with runs of two different step counts. The results of
the two simulation lengths were subtracted to eliminate NAMD
startup operations, yielding an accurate estimate of the marginal
FLOPs per step for a continuing simulation [40].

FLOP counts were obtained by reading the hardware perfor-
mance counters on all CPU cores on all nodes, using the rdmsr
utility from msr-tools.* At the beginning of each job, the “TACC
stats” system programs the core performance counters to count
the 8 sub-events of the Intel FP_ARITH INST RETIRED.? Counter
values are summed among the 56 cores in each node, and ultimately
among each node. Each node-summed counter value is scaled by
the nominal SIMD-width of the floating point instruction being
counted and the 8 classes are added together to provide the total
FLOP count per node. The hardware counters do not take masked
SIMD instructions into account. SIMD lanes that are masked-out
still contribute to the total FLOPs, however static analysis of the
AVX-512-enabled NAMD executable showed that only 3.7% of FMA
instructions were masked.

A breakdown of floating point instruction execution frequency
for the AVX-512 build of NAMD across 2048 nodes is shown in Ta-
ble 1. For CPU versions of NAMD, arithmetic is performed in double
precision, except for single-precision PME long-range electrostatics
calculations and associated FFTs. In the GPU-accelerated NAMD
on Summit, single-precision arithmetic is used for both PME and

3https://cupy.dev/
4https://github.com/intel/msr-tools
Shttps://github.com/TACC/tacc_stats


https://doi.org/10.1101/2020.11.19.390187
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390187; this version posted November 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Al-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics

Table 2: 3D-AAE training performance on one V100 GPU.

Latent Dimensions | Peak TFLOP/s | Sustained TFLOP/s
32 2.96 0.97
64 3.16 2.28
128 3.13 0.91

also for short-range non-bonded force calculations, significantly in-
creasing the fraction of single-precision instructions, at the cost of
requiring a mixed-precision patch-center-based atomic coordinate
representation to maintain full force calculation precision [42, 58].

7 PERFORMANCE RESULTS
7.1 3D-AAE training performance

We used the aforementioned recipe for GPU profiling to determine
the performance for the 3D-AAE training. We measure the FLOP
counts individually for 2 training and 1 validation steps for a batch
size of 32. The latent dimension of the model is a free hyperparame-
ter and affects the FLOP count. We trained three models with latent
dimensions [32, 64, 128] in order to determine an optimal model
for the task and thus we profile and report numbers for all of those.
All models were trained for 100 epochs with batch size 32 on a
single V100 GPU each. As mentioned above, the train/valdiation
dataset split is 80%/20% and we do one validation pass after each
training epoch. Thus, we can assume that this fraction translates
directly into the FLOP counts for these alternating two stages. Our
sustained performance numbers are computed using this weighted
FLOP count average and the total run time. In order to determine
peak performance, we compute the instantaneous FLOP rate for
the fastest batch during training. Note that the 3D-AAE does ex-
clusively use float (FP32) precision. The performance results are
summarized in table 2. Although the model is dense linear algebra
heavy, it is also rather lightweight so it cannot utilize the full GPU
and thus only delivering 20% of theoretical peak performance.

As expected, the peak performance is very consistent between
the runs. The big difference in sustained performance between
latent dim 64 and the other two models is that the frequency for
computing the t-SNE was significantly reduced, i.e. from every
epoch to every 5th. The t-SNE computation and plotting happens
after each validation in a background thread on the CPU, but the
training epochs can be much shorter than the t-SNE time. In that
case, the training will stall until the previous t-SNE has completed.
Evidently, decreasing the t-SNE frequency reduces that overhead
significantly. We expect that the other models would perform simi-
larly if we would have enabled this optimization for those runs as
well. The remaining difference in peak vs. sustained performance
can be explained by other overhead, e.g. storing embedding vectors,
model checkpoints and the initial scaffolding phase. Furthermore,
it includes the less FLOP-intensive validation phase whereas the
peak estimate is obtained from the FLOP-heavy training phase.

7.2 NAMD simulation performance

Low-level NAMD performance measurements were made on the
TACC Frontera system, to establish baseline counts of FLOPs per
timestep for the four different biomolecular systems simulated as
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Figure 4: NAMD scaling on Summit and Frontera for 8.5M-
atom spike-ACE2 complex (upper lines) and 305M-atom
virion (lower line). Thin lines indicate linear scaling.

Table 3: NAMD simulation floating point ops per timestep.

NAMD Simulation Atoms FLOPS/step

ACE2-RBD complex | 800k | 21.57 GFLOPS/step
Single Spike 1.7M | 47.96 GFLOPS/step
Spike-ACE2 complex | 8.5M | 243.7 GFLOPS/step
SARS-CoV-2 virion 305M | 8.3511 TFLOPS/step

Table 4: NAMD performance: 8.5M-atom Spike-ACE2.

Nodes Frontera Summit Summit

CPU-only CPU-only | CPU + GPU
64 7.52ns/day | 6.67ns/day | 52.15ns/day
128 13.00 ns/day | 12.59ns/day | 79.68 ns/day
256 22.09ns/day | 24.19ns/day | 105.54ns/day
512 | 34.32ns/day | 41.31ns/day | 135.31ns/day
1024 | 41.88ns/day | 66.31ns/day | 162.22ns/day

Table 5: NAMD performance: 305M-atom virion.

Nodes Summit | Speedup | Efficiency
CPU + GPU
128 4.23 ns/day ~1.0X ~100%
256 8.02 ns/day 1.9% 95%
512 15.32 ns/day 3.6X 91%
1024 25.66 ns/day 6.1X 75%
2048 44.27 ns/day 10.5X 65%
4096 68.36 ns/day 16.2X 51%

part of this work, summarized in Table 3, with the breakdown of
CPU FLOPs described in Table 1. Sustained NAMD performance
measurements were obtained using built-in application timers over
long production science runs of several hours, including all I/O, and
reported in units of nanoseconds per day of simulation time. NAMD
sustained simulation performance for the spike-ACE2 complex is
summarized for the TACC Frontera and ORNL Summit systems
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Table 6: Peak NAMD FLOP rates, ORNL Summit

NAMD Simulation Atoms | Nodes Sim rate | Performance
Spike-ACE2 complex | 8.5M 1024 | 162ns/day | 229 TFLOP/s
SARS-CoV-2 virion 305M 4096 | 68ns/day | 3.06 PFLOP/s

in Table 4 and Fig. 4. NAMD sustained simulation performance,
parallel speedup, and scaling efficiency are reported for the full
SARS-CoV-2 virion in Table 5. Peak NAMD mixed-precision FLOP
rates on ORNL Summit are estimated in Table 6 by combining
sustained performance measurements with FLOPs/timestep mea-
surements.

8 IMPLICATIONS

Our major scientific achievements are:

(1) We characterize for the first time the glycan shield of the
full-length SARS-CoV-2 spike protein (including the stalk),
and find that two N-glycans linked to N165 and N234 have
a functional role in modulating the dynamics of the spike’s
RBD. This unprecedented finding establishes a major new role of
glycans in this system as playing an active role in infection, beyond
shielding (Fig. 1C) [10].

(2) We discover that the human ACE2 receptor has a flexible
hinge in the linker region near the membrane that enables
it to undergo exceptionally large angular motions relative to
the plane of the membrane. We predict this flexibility will aid
forming productive complexes with the spike protein and may serve
as a mechanical energy source during the cell fusion process [5].

(3) We openly share our models, methods, and data, mak-
ing them freely available to the scientific community. We
are committed to the shared set of principles outlined in Ref. [3]:
depositing findings as preprints in advance of formal peer review,
making available our models at the time of deposition into a preprint
server [5], and releasing the full datasets upon peer review [10].
By doing so, the reproducibility and robustness of our findings
and methods are enhanced, and the scientific findings from our
simulations are amplified through reuse by others.

(4) We describe for the first time unbiased pathways for the
full closed-to-open transition of the spike’s RBD (Fig. 2), where
knowledge of this pathway has the potential to inform on
mechanisms of viral infection as well as potentially aid in
the discovery of novel druggable pockets within the spike.
Our work set a new milestone for the use of the weighted ensemble
method in biomolecular simulation, increasing applicable system
size by an order or magnitude over current state of the art.

(5) We characterize the spike’s flexibility in the context of
ACE2 binding. One of the most important properties of the spike
protein is its intrinsic flexibility, a key feature that facilitates the
interaction with the ACE2 receptors exposed on the host cell. Cry-
oEM and cryoET structural data revealing the architecture of the
SARS-CoV-2 viral particle showed that the spike can tilt up to 60°
with respect to the perpendicular to the membrane [31, 75]. Behind
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this flexibility is the structural organization of the extra-virion por-
tion of the spike, composed of two major domains, the stalk and
the head, that are connected through a flexible junction that has
been referred to as “hip” (Fig. 5A) [10, 63]. Moreover, the stalk can
be further divided into an upper and a lower leg, which correspond
to the extra-virion alpha-helices of the coil-coiled trimeric bundle,
and the transmembrane domain, which can be intended as the foot
of this organizational scaffold. The stalk’s upper leg, lower leg and
the foot are interspersed by highly flexible loops defined as “knee”
and “ankle” junctions (Fig. 5A) [63].

We then harnessed DeepDriveMD to perform adaptive MD on
the Spike-ACE2 8.5 million atoms system. Following this workflow,
we extracted three conformations from the first set of Spike-ACE2
MD simulations (replicas 1-3) and subsequently used them as start-
ing points for a new round of MD (replicas 4-6). We then calculated
the distribution of the overall spike tilting with respect to the per-
pendicular to the membrane (Fig. 5E) and of other three angles
involving the stalk, namely the “hip” angle between the stalk’s up-
per leg and the head (Fig. 5B), the “knee” angle between the stalk’s
lower and upper legs (Fig. 5C), and the “ankle” angle between the
perpendicular to the membrane and the stalk’s lower leg (Fig. 5D).

The Al-driven adaptive MD approach expanded the conforma-
tional space explored, especially for the knee and hip angles, show-
ing average values of 18.5° + 7.7° and 13.8° + 7.6° for replicas 1-3,
shifted to 30.4° + 5.1° and 18.8° + 6.0° for the subsequent set of MD
(replicas 4-6), respectively. The population shift is less pronounced
for the ankle, exhibiting an average angle of 21.8° + 2.7°. These
results, in agreement with the data from Turonova et al. [63] that
however did not consider the spike in complex with ACE2, reveal
large hinge motions throughout the stalk and between the stalk
and the head that accommodate the interaction between the spike’s
RBD and the ACE2 receptor, preventing the disruption of the bind-
ing interface. This is further highlighted by the overall tilting of the
spike that remains well defined around 7.3° £ 2.0° (Fig. 5E), showing
that the stalk’s inner hinge motions prevent a larger scale bending
that could potentially disrupt the RBD-ACE2 interaction.

(6) Our approach points to the very near term ability to accel-
erate the sampling of dynamical configurations of the com-
plicated viral infection machinery within in the context of
its full biological complexity using Al The enormous amount
of data arising from MD and WE simulations of the single spike
served to build and train an Al model using the variational autoen-
coder deep learning approach, which we demonstrate to accelerate
dynamical sampling of the spike in a larger, more complex system
(i.e., the two parallel membrane spike-ACE2 complex). Thus, the
combination of the Al-driven workflows together with the ground-
breaking simulations opens the possibility to overcome a current
major bottleneck in the development and use of such ultra-large
scale MD simulations, which relates to the efficient and effective
sampling of the conformational dynamics of a system with so many
degrees of freedom. The scientific implications of such a techno-
logical advance, in terms of understanding of the basic science of
molecular mechanisms of infection as well as the development of
novel therapeutics, are vast.
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Figure 5: Flexibility of the spike bound to the ACE2 receptor. A) Schematic representation of the two-parallel-membrane
system of the spike-ACE2 complex. (B-E) Distributions of the ankle, knee, hip and spike-tilting angles resulting from MD
replicas 1-3 (darker color) and 4-6 (lighter color). Starting points for replicas 4-6 have been selected using DeepDriveMD.

(7) We establish a new high watermark for the atomic-level
simulation of viruses with the simulation of the SARS-CoV-
2 viral envelope, tallying 305 million atoms including ex-
plicit water molecules, and exhibiting a strong scaling on
Summit . The virion has a realistic ERGIC-like membrane, con-
tains 24 fully glycosylated full-length spikes (in both the open and
closed states) and replicates the spatial patterning and density of
viral proteins as determined from cryoelectron tomography exper-
iments [31]. These groundbreaking simulations, just now in the
process of being fully analyzed, set the stage for future work on
SARS-CoV-2 that will be unprecedented in terms of their ability to
more closely mimic realistic biological conditions. This includes,
for example, the ability to explore the interactions of the virus
with multiple receptors on the host cell, or multiple antibodies. It
will allow researchers to explore the correlated dynamics of the
molecular pieceparts on the surface of the virus and the host cell,
and the effects of curvature on such behavior. It will be used as the
ground-truth in the development of other simulation approaches,
including coarse grained simulation methods, which are under de-
velopment [76]. It will aid in the development of methods related
to the construction of complicated biological membranes [17]. And
the list goes on.

(8) We developed an Al-driven workflow as a generalizable
framework for multiscale simulation. Though we focus here
on advances made relevant to COVID19, the methods and work-
flow established here will be broadly applicable to the multiscale
simulation of molecular systems.
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