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25 SUMMARY

26 Host cellular receptors are key determinants of virus tropism and pathogenesis. Virus
27 utilizes multiple receptors for attachment, entry, or specific host responses. However,
28 other than ACE2, little is known about SARS-CoV-2 receptors. Furthermore, ACE2
29 cannot easily interpret the multi-organ tropisms of SARS-CoV-2 nor the clinical

30 differences between SARS-CoV-2 and SARS-CoV. To identify host cell receptors

31 involved in SARS-CoV-2 interactions, we performed genomic receptor profiling to
32 screen almost all human membrane proteins, with SARS-CoV-2 capsid spike (S) protein
33 as the target. Twelve receptors were identified, including ACE2. Most receptors bind at
34 least two domains on S protein, the receptor-binding-domain (RBD) and the
35 N-terminal-domain (NTD), suggesting both are critical for virus-host interaction. Ectopic

36 expression of ASGR1 or KREMENI is sufficient to enable entry of SARS-CoV-2, but not
37 SARS-CoV and MERS-CoV. Analyzing single-cell transcriptome profiles from
38 COVID-19 patients revealed that virus susceptibility in airway epithelial ciliated and
39 secretory cells and immune macrophages highly correlates with expression of ACE2,

40 KREMENI and ASGRI respectively, and ACE2/ASGR1/KREMENI1 (ASK) together

41 displayed a much better correlation than any individual receptor. Based on modeling of
2 systemic SARS-CoV-2 host interactions through S receptors, we revealed ASK
43 correlation with SARS-CoV-2 multi-organ tropism and provided potential explanations

44 for various COVID-19 symptoms. Our study identified a panel of SARS-CoV-2 receptors

45 with diverse binding properties, biological functions, and clinical correlations or
46 implications, including ASGR1 and KREMENI1 as the alternative entry receptors,
47 providing insights into critical interactions of SARS-CoV-2 with host, as well as a useful
48 resource and potential drug targets for COVID-19 investigation.
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50 MAIN TEXT

51 The global outbreak of COVID-19 caused by SARS-CoV-2 severely threatens human
52 health 2, SARS-CoV-2 is a member of the beta-coronavirus genus, closely related to
53 severe acute respiratory syndrome coronavirus (SARS-CoV), and both viruses use ACE2
54 as an entry receptor >°. SARS-CoV-2 is more than a respiratory virus, with multi-organ
55 tropisms and causing complicated symptoms >®%. Host cellular receptors play key roles in
56 determining virus tropism and pathogenesis. Viruses bind to multiple host receptors for
57 viral attachment, cell entry, and diverse specific host responses, including inducing
58 cytokine secretion, stimulation of the immune response, or alteration of virus budding
59 and release °'?. However, apart from ACE2, little is known about SARS-CoV-2 receptors.

60 Additionally, ACE2 cannot fully interpret SARS-CoV-2 tropism. The virus was detected
61 in tissues with few ACE2 expression, such as liver, brain and blood, and even in lung,
62 only a small subset of cells express ACE2 !>!*. The primary infection sites and clinical

63 manifestations of SARS-CoV-2 and SARS-CoV also differ much, suggesting the

64 involvement of other receptor(s) in SARS-CoV-2 host interaction “>!>-13 Therefore, a
65 comprehensive understanding of SARS-CoV-2 cellular receptors is required.

66 Identification of receptors from virus-susceptible cells is limited to membrane proteins
67 on specific cell types. We previously investigated ligand-receptor interactions using a cell
68 based method, in which receptor-expressing cells were incubated with a tagged ligand
69 and then an anti-tag for labelling and detection '*?°. It closely reassembles
70 ligand-receptor interaction that occurring under physiological condition, and is usually
71 used to confirm specific interactions. Based on this method, we developed a
72 high-throughput receptor profiling system covering nearly all human membrane proteins,

73 and used it to identify SARS-CoV-2 cellular receptors. Given SARS-CoV-2 S protein is
74 the major receptor binding protein on the virus capsid, we performed profilling using S

75 protein as the target. 5054 human membrane protein-encoding genes (91.6% of predicted
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76 human membrane proteins) were expressed individually on human 293e cells, and their
77 binding with the extracellular domain of S protein (S-ECD) was measured (Fig. 1a).
78 Twelve membrane proteins were identified that specifically interact with the S-ECD (Fig.

79 1b, ¢ and Extended Data Fig.1), including the previously reported ACE2 %° and
80 SARS-CoV-specific CLEC4M (L-SIGN) 2!,

81 The dissociation constants (Kd) of these interactions ranged from 12.4 - 525.4 nM
82 (Table.1 and Extended Data Fig.2). ACE2 binds to S-ECD with a Kd of 12.4 nM,
83 comparable to the previously reported Kd 2%, and ACE2, CD207, CLEC4M, and
84 KREMENTI are all high-affinity receptors of the S protein, with comparable Kds. Binding
85 domains on S protein were also examined, including the receptor binding domain (RBD),
86 N-terminal domain (NTD) and S2 domain. The RBD and NTD are the major binding
87 sites of S receptors. ACE2 only binds to the RBD, while CD207 and ERGIC3 bind
88 exclusively with the NTD. The other receptors can bind to at least two domains, with
89 CLEC4M, KREMENI, and LILRB2 binding to all three domains, showing highest
90 binding with NTD, RBD, and RBD, respectively (Table.1 and Extended Data Fig.3).

91 Overall, these receptors showed diverse binding patterns, and they have a diverse range
92 of biological functions and signaling properties (Extended Data Fig.4).
93 To determine whether these receptors can mediate virus entry independent of ACE-2,

94 ACE2 was further knocked out in the HEK293T cell line (Extended Data Fig.5), which is
95 low-sensitive to SARS-CoV-2 and SARS-CoV **!®. We ectopically expressed the
96 receptors in ACE2-KO 293T cells individually, and infected cells separately with
97 pseudotyped SARS-CoV-2, SARS-CoV or MERS-CoV. KREMENI-expressing cells
98 showed clear evidence of SARS-CoV-2 infection, as did ASGRI1, although to a lesser
99 extent (Fig. 2a). Both receptors are specific to SARS-CoV-2, whereas ACE2 mediates the
100 entry of both SARS-CoV-2 and SARS-CoV (Fig. 2a). ASGR1- and KREMENI-

101 dependent virus entry was confirmed with patient-derived SARS-CoV-2, with ASGR1


https://doi.org/10.1101/2020.09.09.287508
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.09.287508; this version posted September 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

102 promoting higher levels of infection (Fig. 2b, ¢).

103 Direct interaction of SARS-CoV-2 S protein with KREMENI and ASGR1 was
104 confirmed by co-immuno-precipitation (Co-IP) (Fig. 2d). KREMENTI and ASGR1 bind to
105 S-ECD with Kds of 19.3 nM and 94.8 nM, respectively, the former Kd being comparable
106 to that of ACE2 (12.4 nM). ACE2 has the highest maximum binding capacity for S-ECD,
107 being ~3- and ~10-fold that of ASGR1 and KREMENI, respectively (Fig. 2e), consistent
108 with the SARS-CoV-2 sensitivities of cells expressing these receptors (Fig. 2a-c). Few
109 binding of SARS-CoV S protein was observed with ASGR1 and KREMENI (Fig. 2e and
110 Extended Data Fig.6), consistent with KREMEN1 and ASGR1 not mediating SARS-CoV
111 infections (Fig. 2a). ACE2 binds exclusively to the RBD, KREMENT1 binds to all three
112 domains of S-ECD, and with highest binding to the RBD, and ASGR1 binds to both the
113 NTD and the RBD, the latter also with higher binding (Table. 1 and Extended Data Fig.3).
114 Evidence indicates that the NTD is involved in entry coronavirus including SARS-CoV-2
115 2326 suggesting the potential importance of ASGR1 and KREMENI in SARS-CoV-2

116 infection. KREMENI is a high-affinity DKK1 receptor that antagonizes canonical WNT

117 signaling ?’, and is also the entry receptor for a major group of Enteroviruses 3. ASGR1
118 is an endocytic recycling receptor that plays a critical role in serum glycoprotein
119 homeostasis ? and has been reported to facilitate entry of Hepatitis C virus *°. Thus,

120 ASGR1 and KREMENTI directly mediate SARS-CoV-2 entry, together with ACE2, we
121 refer to them as the ASK (ACE2/ASGR1/KREMENT1) entry receptors.

122 To investigate the clinical relevance of these entry receptors for SARS-CoV-2
123 susceptibility, we analyzed a recently published single cell sequencing (scRNA-seq)

124 profile of the upper respiratory tract of 19 patients with COVID-19 3. The dataset was

125 derived from nasopharyngeal/pharyngeal swabs, and contains both the gene expression
126 and virus infection status for individual cells, which are composed mainly of epithelial
127 and immune populations. ACE2 is principally expressed in epithelial populations, as
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128 previously reported *!', whereas ASGR1 and KREMENI1 are enriched in both epithelial
129 and immune populations (Fig. 3a). The majority of ASK" cells express only one entry
130 receptor (88.5%), and KREMEN1-expressing cells are the most abundant, being ~5-fold
131 more numerous than either ACE2- or ASGR1-expressing cells (Fig. 3b and Extended
132 Data Fig.7a). SARS-CoV-2 is mainly observed in epithelial ciliated and secretory cells
133 and immune non-resident macrophages (nrMa), which are also the major populations that
134 express ASK receptors (Fig. 3b, ¢). Within SARS-CoV-2 positive cells (V* cells), only
135 10.3% expressed ACE-2, suggesting other receptors will facilitate entry (Fig. 3¢ and
136 Extended Data Fig.8).

137 We determined the correlation of the KREMEN1, ASGR1, and ACE2 entry receptors
138 with SARS-CoV-2 susceptibility. In total cells, the receptor-positive cell percentage was
139 significantly higher in V' cells than in V- cells for all three receptors (Fig. 3d). In
140 epithelial populations, both ACE2 and KREMEN1 were substantially enriched in V* cells,
141 while in immune populations, only ASGR1 correlated with virus susceptibility, especially
142 in macrophages (Fig. 3d and Extended Data Fig.7b). The epithelial ciliated and secretory
143 cells are known target cells of SARS-CoV-2 431 ACE2 displayed a more significant

144 correlation with the virus susceptibility of ciliated cells when compared with KREMENI,
145 which was the only entry receptor that highly correlates virus susceptibility in secretory
146 cells. Either in all cells or cell subpopulations, the ASK combination was usually more
147 highly correlated with virus infection than individual receptors (Fig. 3d and Extended

148 Data Fig.7b).

149 SARS-CoV-2 displays multi-organ tropism in COVID-19 patients 1%131732 However,
150 in virus-positive tissues, such as brain, liver, peripheral blood (PB) and even lung, ACE2
151 expression is few or only detected in a small subset of cells '*!*!® (Extended Data Fig.9a,

152 b), suggesting that ACE2 alone is difficult to explain the multi-organ tropisms of

153 SARS-CoV-2. To determine whether ASK expression can predict tissue tropism better
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154 than ACE2 expression, we modeled a systemic host-SARS-CoV-2 interaction based on
155 the expression of ASK entry receptors across human tissues (Fig. 4a). For a better
156 comparison of different receptors from aspect of viral binding, the mRNA level was

157 normalized with the S binding affinity of each receptor. ACE2 and ASGRI1 are highly
158 expressed in the gastrointestine and liver, respectively, while KREMENI is broadly
159 expressed throughout the body. In virus-positive tissues, we found least one of the entry
160 receptors is expressed (Extended Data Fig.9b and Fig. 4a). When ASK receptor
161 expression levels were correlated with virus infection rates in different tissues reported in
162 a recent biopsy study ¢, the three receptors together correlated much better with virus

163 susceptibility than any individual receptor (Fig. 4b). These results suggest that ASK

164 expression underlies the multi-organ tropism of SARS-CoV-2, and is therefore can
165 potentially predict viral tropism.

166 Despite functioning in viral entry, virus-host receptor interactions could also induce
167 cytokine secretion, apoptosis, and stimulation of the immune response, or alter virus
168 budding and release *'2. To gain insight into SARS-CoV-2 pathogenesis, we also

169 modeled the host—-SARS-CoV-2 interaction based on the tissue distribution of all the

170 other receptors identified, which were classified according to their functions in immune
171 regulation, the Wnt pathway, and protein trafficking. The interaction map revealed that
172 expression of immune receptors is prominent in immune organs, as well as respiratory
173 organs, and the liver (Extended Data Fig.9 and Fig. 4a), consistent with the respiratory

174 manifestation and frequent liver injury in COVID-19 patients '>**3 | Given that CD207,
175 CLEC4M, LILRB2 and SIGLECY all are mainly expressed in myeloid cells (Extended

176 Data Fig.10) and that COVID-19 is associated with hyperactivation of myeloid

177 populations '>*4% it is possible that these receptors may drive monocyte and macrophage
178 activation in COVID-19 and contribute to disease pathophysiology.
179 ERGIC3, LMAN2, and MGAT2, which are involved in protein trafficking, display an
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180 approximately similar expression levels across most human tissues (Extended Data Fig.9
181 and Fig. 4c). ERGIC3 and LMAN2 are the components of the endoplasmic
182 reticulum-Golgi intermediate compartment (ERGIC), which is essential for coronavirus
183 assembly and budding 3¢ 37, while LMAN2 and ERGIC1 were recently found to interact
184 specifically with nonstructural protein Nsp7 and Nsp10 of SARS-CoV-2 respectively 3%,
185 Whether and how they cooperate during virus life cycle are worth further investigation.
186 Expression of receptors of the Wnt pathway group is prominent in salivary gland, tongue,

187 esophagus, and brain (Extended Data Fig.9 and Fig. 4c). Wnt/B-catenin signaling is

188 critical in taste bud cell renewal and behavioral taste perception 3>*° and KREMEN1/2
189 plus FUTS are all negative regulators of this pathway 2’#!. Loss of smell and taste has
190 frequently been observed in COVID-19 patients ***, suggesting SARS-CoV-2 may act
191 through these receptors to affect Wnt/B-catenin signaling and therefore taste loss.

192 The affinity-based interactions between SARS-CoV-2 and cellular receptors are key
193 determinants of virus tropism and pathogenesis. Determining cells or tissues that express
194 receptors should allow better characterization of the pathway for virus infection and help
195 understand COVID-19 disease progression. Our genomic receptor profiling of most
19 human membrane proteins has identified two additional virus entry receptors, ASGR1

197 and KREMENI, independent of known ACE2. The combined ASK expression pattern
198 predicts viral tropism much more closely than any individual entry receptor from cell to
199 tissue levels. Our results also suggested that SARS-CoV-2 entry into different type of
200 cells rely on different receptors, and ASK receptors underlie the tropism of SARS-CoV-2.
201 Notably, ASGR1 and KREMENI do not mediate the entry of SARS-CoV, plausibly
202 explaining the difference of these two viruses in primary infection sites and clinical
203 manifestations. Unlike ACE2, which only binds to the RBD, ASGR1 and KREMEN1
204 bind to both the RBD and NTD. NTD is implicated in coronavirus entry 2°°, and several
D 2324

205 neutralizing antibodies from convalescent COVID-19 patients recognizes NT

206 suggesting that the domain plays a role during SARS-CoV-2 infection, and that
8
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207 antibodies against the NTD may act through ASGR1 or KREMENI.

208 The twelve SARS-CoV-2 receptors that bind S protein have diverse binding properties,
209 functions, and tissue distributions. Integrating this panel of receptors with virological and
210 clinical data should lead to the identification of infection and pathological mechanisms
211 and targets. It is plausible that alternative binding receptors exert context-dependent
212 regulatory effects, leading to differential signaling outcomes, ultimately influencing
213 infection patterns, immune responses and clinical progression. Our study provides insight
214 into critical virus-host interactions, tropisms, and pathogenesis of SARS-CoV-2, as well
215 as potential targets for drug development against COVID-19.
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Figure 1: Genomic receptor profiling identifies twelve SARS-CoV-2 S binding

receptors. a, Scheme of genomic receptor profiling. Plasmids encoding 5054 human
membrane proteins were individually co-transfected with a CFP reporter into 293e cells.
Cells were incubated with SARS-CoV-2 S-ECD-hFc protein, labelled using
anti-hFc-APC antibody, binding was measured by flow cytometry. b, SIP identified S
binding receptors. Relative binding of receptors with S-ECD-hFc compared to that with
hFc control in CFP" cells were shown. ¢, Representative flow dot plot showing the

binding of S-ECD with top-ranking receptors.
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331 Figure 2. KREMEN1 and ASGRI1 directly mediate SARS-CoV-2 entry. a,
332 SIP-identified S-binding receptors were ectopically expressed in ACE2-KO 293T cells
333 individually, followed by infection with pseudotyped SARS-CoV-2, SARS-CoV, and
334 MERS-CoV separately. Luciferase activities relative to that of empty vector transfected
335 cells were measured 60 hrs post infection. Data are presented as mean + s.d (n=3). b and
336 ¢, KREMENI1, ASGRI1, or ACE2 transfected ACE2-KO 293T cells were infected with
337 authentic SARS-CoV-2, and immune- fluorescence (B) or flow cytometry (C) were
338 performed with antibody against the N protein of SARS-CoV-2 72hr post infection. Bar =
339 50um. d, Co-immuno- precipitation was used to detect the interaction of S-ECD with full
340 length KREMENI1 or ASGR1. e, KREMENI1, ASGR1 or ACE2 expressing 293¢ cells
341 were incubated with different concentrations of S-ECD-hFc of SARS-CoV2 or
342 SARS-CoV, separately, and S-ECD binding was monitored by flow cytometry to

343 determine Kd.

344
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Figure 3. ASK entry receptors correlate significantly with SARS-CoV-2

susceptibility in the upper respiratory tract. a, Distribution of ACE2, ASGRI,

KREMENI and SARS-CoV-2 in different cell populations of the upper airway. b,
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Overlapping map of ASK expression levels and virus infection pattern in different cell
populations. ¢, ASK expression pattern in SARS-CoV-2 positive cells. d, Correlations of
virus susceptibility with ASK receptors individually or in combination based on receptor

positive cell percentage and receptor expression level.
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355 Figure 4. Systemic modeling of SARS-CoV-2 interactions within human tissues. The
356 mRNA expression levels of each receptor in human tissues were derived from the human
357 protein Atlas. Receptor-mediated SARS-CoV-2 binding potentials in each tissue were
358 calculated by dividing receptor expression level with its affinity for S protein (Kd). a,

359 Virus binding potentials of each tissue contributed by “entry group” ASK receptors. b,
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362 receptor-mediated virus binding potentials. ¢, Virus binding potentials of each tissue
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367 Table 1: Characteristics of the interaction between receptors and SARS-CoV-2 S

368 protein
Gene ACCN MP Kd Measurement | Relative Binding Folds
Symbol Type | Kd (nM) Std.Error | NTD RBD S2

ACE2 NM 021804 | 12.4 3.8 493
ASGR1 NM 001671 I 94.8 31.1| 389 410
CD207 NM 015717 I 13.2 2.8 8.9
CLEC4M NM 014257 II 16.0 3.3 63.6 7.9 4.9
ERGIC3 NM 198398 Multi 5254 40.5 16.4
FUT8 NM 004480 II 34.9 7.9 | 119 2.7
KREMENI | NM 001039571 I 19.3 7.7 4.2 37.5 5.5
KREMEN2 | NM 172229 I 60.0 14.2 14.0
LILRB2 NM 001080978 I 106.2 28.1 2.5 24.3 2.3
LMAN2 NM 006816 I 355.1 46.8
MGAT?2 NM 002408 II 36.3 4.3 8.4 4.1
SIGLEC9 NM 014441 I 116.5 30.9 3.0 5.0

369 ACCN, Accession Number; MP Type, Membrane Protein Type.

370
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371 METHODS

372 Ethics statement
373 All procedures in this study regarding authentic SARS-CoV-2 virus were performed in

374 biosafety level 3 (BSL-3) facility, Medical School of Fudan University.

375 Cell culture and transfection
376 Vero E6 cells and HEK293T cells were cultured in DMEM supplemented with 10% FBS
377 at 37°C in 5% CO2 and the normal level of O.. HEK293e cells were cultured in

378 serum-free FreeStyle 293 Medium (Invitrogen) with 120 rpm rotation at 37°C in 5% COz2

379 and the normal level of Oz. For transient overexpression in 293T and 293e, plasmids were
380 transfected using Lipofectamine 2000 (Invitrogen) according to the manufacture provided
381 protocol.

382 Genomic receptor profiling

383 To prepare SARS-CoV-2 S-ECD-hFc or control hFc containing condition medium,
384 pCMV-S-ECD-hFc or pCMV-secreted-hFc plasmid was transfected into 293e cells, and

385 condition medium was collected 4 days post transfection and filtered with 0.45um filter
386 for screening. To prepare receptor expressing cells, plasmids encoding 5054 human
387 membrane protein were individually co-transfected with CFP reporter vector (5:1) into
388 293e cells in 96 deep-well-plate. 2-5x10* membrane protein expressing cells per well
389 were collected 48hrs after transfection, washed once with PBS/2%FBS and incubated

390 with 1ml SARS-CoV-2 S-ECD or hFc control condition medium for lhr on ice.
391 Supernatant was discarded after centrifugation and washed once with PBS/2%FBS, the
392 cells were then labelled with Anti-hFc-APC (Jackson Lab) antibody for 20min, and
393 washed once with PBS/2%FBS. The binding of S-ECD to the cells were measured by
394 HTS flow cytometry (BD Cantoll). The flow data were analyzed with FlowJo software.
395 Relative binding of receptor (CFP" cells) to S-ECD-hFc compared with that to hFc

396 control were measured.
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397 Co-IP and Kd measurement
398 Receptor expressing cells were lysed with RIPA buffer (Sigma) and centrifuged for

399 15min at 15000rpm at 4°C, the cell lysate were collected. Purified hFc-tagged S-ECD

400 proteins (final concentration of 10ug/ml) were added into cell lysate together with
401 anti-FLAG beads, and incubated at 4°C for overnight. Beads were washed three times
402 with the RIPA buffer, and the samples were prepared for western blot with anti-hFc or
403 anti-FLAG antibodies. For Kd measurement, receptor coding plasmid was co-transfected
404 with CFP reporter vector (5:1) into 293¢ cells. Cells were collected 48hr after transfection.
405 ~10* cells per well were used for binding with series diluted purified S-ECD-hFc proteins
406 as described in the experiment of Secretome Interaction Profiling. The flow data were
407 analyzed with FlowJo software. Ligand binding value at each ligand concentration was

408 normalized by equation of [(APC-MFI of CFP")-(APC-MFI of CFP)] - [(APC-MFI of
409 CFP")-(APC-MFTI of CFP")] zero ligand concentration. Kd and Bmax (maximum binding value)

410 were calculated with Prism8 software.

411 Protein purification and western blot
412 For purification of SARS-CoV-2 S-ECD-hFc, RBD-hFc, NTD-hFc, S2-hFc and

413 SARS-CoV S-ECD, the plasmids were transfected into 293¢ cells, and condition medium

414 was collected 4 days post transfection and filtered with 0.45um filter. hFc tagged proteins
415 were purified using Protein A affinity column and then desalted to PBS solution with
416 AKTA purifier system. Proteins were concentrated by 10KDa cutoff spin column
417 (Amicon). For western blot, samples was separated by SDS-PAGE gel and transferred to
418 nitrocellulose membrane. The membrane was labeled with the primary antibody and then

419 HRP-conjugated secondary antibody at suggested concentration, and detected by ECL kit

420 (Beyotime).

421 ACE2 knockout 293T stable cell line
422 ACE2 small guide RNA was constructed into pSLQ1651 (Addgene #51024) (44) with a
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423 targeting sequence of CTTGGCCTGTTCCTCAATGGTGG. ACE2 sgRNA plasmid or
424 Cas9Bsd plasmid (Addgene #68343) (45) were co-transfected with psPAX2 and pMD2G
425 plasmids into 293T cells by Lipofectamine 2000 (Invitrogen) according to the
426 manufacture provided protocol. Lentivirus were collected 72hr post transfection to infect

427 293T cells. ACE2 KO 293T stable cell line were obtained by single cell dilution.

428 Pseudotyped coronavirus packaging and infection
429 For pesudotyped SARS-CoV-2, SARS-CoV and MERS-CoV, S protein encoding

430 pCDNA3.1 plasmids were mixed with pNL4-3.Luc.R vector separately with a ratio of 1:1,

431 and transfected into 293T cells using Lipofectamine 2000. Virus-containing supernatant
432 was collected 48-72 hours post-transfection and filtered through 0.45um PES membrane
433 filter (Millipore). For infection, cells were seeded into 96 well plate with ~2x104 cells per
434 well, 50ul virus-containing supernatant per well was added. Luciferase activities were
435 measured 48hr post infection with Bright-Lumi™ Firefly Luciferase Reporter Gene

436 Assay Kit (Beyotime, RG051M) and multifunctional microplate reader (TECAN 200pro).

437 Authentic SARS-CoV-2 generation and infection
438 SARS-CoV-2/MT020880.1 were expanded in Vero E6 cells. Cells were collected 50hr

439 post-infection and lysed by freeze-thaw method. Virus containing supernatants were
440 collected by centrifugation at ~2500xg for 10 minutes, and aliquot and stored at -80°C.
441 For infection, targeted cells were incubated with fresh medium diluted virus supernatant

442 at MOI of 0.1 for 48hrs. SARS-CoV-2 replication was examined by

443 immuno-fluorescence and flow cytometry with anti SARS-CoV-2 N protein antibody.

444 Data analysis and statistics

445 Gene Ontology Enrichment Analysis was performed by R bioconductor. For host-virus
446 interaction map, receptor expression in each tissues were obtained from human Protein
447 Atlas (https://www.proteinatlas.org/). mRNA expression level was normalized by
448 dividing the expression level with the Kd of each receptor. Virus infection rates of tissues
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449 were obtained from the study published by Puelles et al. Cluster was performed with R
450 package. For single cell sequencing (scRNA-seq) profile of the upper airway tract with

451 COVID-19, the count, viral load and metadata are obtained from Magellan COVID-19

452 data explorer at https://digital.bihealth.org. Chi-square test and student’s t-test were
453 performed to compare receptor percentage and receptor expression value in different cell
454 populations respectively. All tests were two sided. P value <0.05 was designated
455 significance.

456 Reporting Summary:

457 Further information on research design is available in the Nature Research Reporting
458 Summary linked to this paper.

459 Data availability:

460 Receptor expression levels in each tissues were obtained from human Protein Atlas
461 (https://www.proteinatlas.org/). Single cell sequencing (scCRNA-seq) profile of the upper

462 airway tract with COVID-19 and the metadata were obtained from Magellan COVID-19

463 data explorer at https://digital.bihealth.org. All data supporting the findings of this study

464 are available within the paper or in the extended data.
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EXTENDED DATA FIGURES
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Extended Data Fig. 1 | Binding of S-ECD with the profilling identified receptors. Plasmids
encoding the indicated receptors were individually co-transfected with CFP reporter into 293e cells.
The cells were incubated with SARS-CoV-2 S-ECD-hFc protein or hFc control protein, and then
labelled by Anti-hFc-APC antibody, binding were measured by flow cytometry. Binding of S-
ECD or hFc control to receptor were shown (Mean Fluorescent Intensity (MFI) of APC

fluorescence).
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Extended Data Fig. 2 | Kd measurement of the interaction of SARS-CoV-2 S-ECD with its

receptors. 293e cells expressing the indicated receptors were incubated with serially diluted

concentrations of SARS-CoV2 S-ECD-hFec, S-ECD binding were determined by flow cytometry

for Kd measurement.
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Extended Data Fig. 3 | Analysis of binding domain on SARS-CoV-2 S protein. a, 293¢ cells
expressing the indicated receptors were incubated with NTD-hFc, RBD-hFc, S2-hFc or hFc
control separately. Binding were measured by flow cytometry. b, Western blot with anti-hFc

antibody showing the ligand proteins used in this assay.
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Extended Data Fig. S | Genotyping of ACE2 KO 293T cell line. ACE2 exonl was PCR
amplified from ACE2-WT/KO 293T cells for sequencing. Gene editing at ACE2 locus on both

alleles were shown. Both editing result in frame-shift of ACE2.
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Extended Data Fig. 6 | Binding of KREMEN1, ASGR1 and ACE2 with the S-ECD of
SARS-CoV and SARS-CoV-2. KREMENI1, ASGR1 or ACE2 expressed 293¢ cells were
incubated with S-ECD-hFc (10pg/ml final concentration) of SARS-CoV2 or SARS-CoV

separately. S-ECD binding were measured by flow cytometry.
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Extended Data Fig. 7 | Distribution of ACE2, ASGR1 and KREMENT1 in ASK receptor

positive cells and receptors correlation with virus susceptibility in the upper respiratory tract

of patients with COVID-19. a, In ASK (ACE2/ASGR1/KREMENT1) receptor positive cells of

total population, or epithelial and immune subpopulations of the upper respiratory tract with

COVID-19, percentage of cells that expressing the indicated receptor(s) only were shown as venn

diagram. b, In the epithelial ciliated and secretory cells, and immune macrophages of the upper

respiratory tract with COVID-19, correlations of virus susceptibility with ASK receptors

individually or in combination based on receptor positive cell percentage were determined. Virus

positive and negative cell numbers were shown. p Values were calculated by Chi-square test.
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Extended Data Fig. 8 | Expression of the twelve S receptors in SARS-CoV-2 positive cells
from the upper respiratory tract with COVID-19.
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Extended Data Fig. 9 | Expression pattern of SARS-CoV-2 receptors across human tissues.

a, S receptors were classified according to their functions in virus entry, immune regulation, the

Wnt pathway, and protein trafficking. b, Expression pattern of SARS-CoV-2 receptors across

human tissues. mMRNA expression levels of each receptor in human tissues were obtained from

human protein Atlas. Tissues or organs that were identified as positive to SARS-CoV-2 are labeled

red.
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Extended Data Fig. 10 | Expression pattern of CD207, CLEC4M, LILRB2 and SIGLECY in
different cell populations of PBMCs. mRNA expression levels of indicated receptors in different
cell population of PBMCs were derived from human Protein Atlas (https://www.proteinatlas.org/)

and human Cell Atlas (http://immunecellatlas.net/) and shown as bar plot.
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