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Abstract

The desire to understand how the brain generates and

patterns behavior has driven rapid methodological innova-

tion to quantify and model natural animal behavior. This

has led to important advances in deep learning-based mark-

erless pose estimation that have been enabled in part by

the success of deep learning for computer vision applica-

tions. Here we present SLEAP (Social LEAP Estimates

Animal Poses), a framework for multi-animal pose track-

ing via deep learning. This system is capable of simulta-

neously tracking any number of animals during social in-

teractions and across a variety of experimental conditions.

SLEAP implements several complementary approaches for

dealing with the problems inherent in moving from single-

to multi-animal pose tracking, including configurable neu-

ral network architectures, inference techniques, and track-

ing algorithms, enabling easy specialization and tuning for

particular experimental conditions or performance require-

ments. We report results on multiple datasets of socially in-

teracting animals (flies, bees, and mice) and describe how

dataset-specific properties can be leveraged to determine

the best configuration of SLEAP models. Using a high accu-

racy model (<2.8 px error on 95% of points), we were able

to track two animals from full size 1024 x 1024 pixel frames

at up to 320 FPS. The SLEAP framework comes with a

sophisticated graphical user interface, multi-platform sup-

port, Colab-based GPU-free training and inference, and

complete tutorials available, in addition to the datasets, at

sleap.ai.

1. Introduction

Quantitative measurements of animal motion are foun-

dational to the study of animal behavior [1, 6, 11]. Meth-

ods for pose estimation, the task of predicting the lo-

cation of anatomical landmarks in images, have rapidly

grown in popularity as a state-of-the-art technique for be-

havioral quantification across disciplines including neuro-

science [24] and ecology [10]. Although adaptations of

deep learning-based approaches originally developed for

human pose estimation have made animal pose estimation

possible [22, 26, 17], reliably tracking multiple, interacting

animals and their pose remains a challenging problem, pre-

senting an impediment to studies of social behaviors.

The generalization of the pose estimation task to the do-

main of multiple individuals (i.e., instances) can be broken

down into three distinct sub-tasks:

(i) Landmark localization: The retrieval of coordinates

of each landmark from the image. In the multi-instance set-

ting, there may be more than one detection of each land-

mark type (e.g., multiple necks). Localization is more chal-

lenging in the context of socially behaving animals due to

increased occlusions from close interactions, along with

imaging constraints such as low resolution and contrast

(Figure 1a-b).

(ii) Part grouping: The grouping of detected landmarks

into distinct sets associated to each individual. This requires

more information than simply the location of the landmarks,

resulting in the part grouping problem (Figure 1c). In the

context of socially behaving animals, intersecting or over-

lapping parts increase the difficulty of the grouping problem

(Figure 1a-b).

(iii) Temporal association: The association of grouped

landmark sets across video frames such that landmarks be-

longing to each individual are consistently assigned the

same identity. The temporal association problem requires

defining a metric of affinity between instances across frames

and matching them over time (Figure 1d). This is also

known as pose tracking and is similar to multi-object track-

ing with the additional constraint of having multiple point

types (landmarks) that form distinct sets.

In this work we present a method to address the prob-

lems of multi-animal pose tracking and describe an imple-

mentation of our approach within a general-purpose soft-

ware framework we term SLEAP (Social LEAP Estimates

Animal Poses).

The main contributions of our work are as follows:

1. We develop a software framework with a sophisticated

GUI-driven workflow for labeling, training, tracking

and proofreading social behavioral datasets.
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Figure 1: Unique challenges in pose tracking of socially behaving animals.

(a) Fruit flies (D. melanogaster) engaged in a courtship interaction. Part detection during social behaviors such as tapping is difficult due to frequent

occlusion, including through partially translucent body parts such as wings (inset, top). Even at high spatial resolution (~30px/mm), anatomical features

such as the leg tips occupy ~3px, requiring the use of image features at the finest resolution, while their fast movements introduce motion blur even at high

temporal resolution (150 FPS), making it difficult to precisely localize body parts (inset, bottom).

(b) Mice (M. musculus) engaged in anogenital sniffing, a common social recognition behavior. The flexible morphology of these animals leads to frequent

intersections of body segments, particularly the tail, making part association considerably more challenging. Naturalistic behavior is typically recorded in

infrared and in a home cage environment which results in a low contrast, heterogeneous and dynamic background due to the bedding material. During

social behavior, mice interact at close ranges which results in frequent occlusions; additionally, they spend most of their time near the walls which results in

reflections that must be distinguished from real part detections (inset, right).

(c) The part grouping problem emerges out of the generalization of pose estimation to multiple instances. When there are multiple detections of the same

body part, such as the thorax (purple) or leg (orange), grouping these such that each distinct subset of body parts belongs to the same animal requires

resolving competing hypotheses of how body parts may be connected (right).

(d) The temporal association problem is the time-dimension analogue of the part grouping problem. Given frame-wise instance groupings of pose detections,

consistent identities must be assigned to detections of the same animals across frames. Matching instances across frames requires solving an assignment

problem that is robust to frequent crossings of both individual landmarks as well as the bounding box (top, candidate assignments in gray, correct assignments

in colors). Animals may adopt very similar poses only a few frames apart (bottom), making it difficult to find globally optimal associations.

2. We describe the two major classes of multi-instance

pose estimation approaches (top-down and bottom-up)

and their generalization to the unconstrained animal

domain.

3. We describe an algorithm for pose tracking that can be

configured to solve the temporal association problem

with both image- and motion-based cues.

4. We provide a principled adaptation of the most com-

monly employed human pose estimation and tracking

accuracy metrics to the animal domain.

5. We describe a set of high level hyperparameters that

can induce specialized neural network architectures to

meet the requirements of a given dataset.

6. We demonstrate the performance of neural network

architectural hyperparameters and multi-instance ap-

proaches through extensive experiments across mul-
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tiple datasets representing diverse social animals, to

guide practitioners in training models on their own

data.

7. We explore the impact of transfer learning on multi-

animal pose estimation performance.

8. We explore the speed-accuracy trade-off of different

models and approaches, attaining maximum end-to-

end multi-animal inference speeds of 430 FPS on a

single GPU.

The open-source software framework implementing

these methodological advances, as well as labeled datasets

and trained models, are freely available at sleap.ai.

2. Related work

2.1. Human pose estimation and tracking

Previous work in multi-human pose estimation has in-

spired some of the approaches we employ here. The

bottom-up multi-instance pose estimation technique we em-

ploy is based off of the part affinity fields representation and

matching algorithm employed in the widely used human

pose estimation framework OpenPose[7]. Our top-down ap-

proach and part of our tracking algorithm are inspired by the

idea of flow shifting described in Xiao et al. [33]. Many of

the metrics we use to evaluate both our multi-instance pose

estimation accuracy as well as tracking come from the stan-

dards put forth in the PoseTrack benchmark [2].

2.2. Animal pose estimation

Early work on animal pose estimation extended deep

learning algorithms designed for human subjects for use

on animals with different body plans and morpholo-

gies. These include DeepLabCut[22], LEAP[26], and

DeepPoseKit[17], but none were explicitly designed for use

with multiple animals.

Methods for multi-animal pose estimation can be split

into two categories: top-down, where animal instances

are first detected and isolated before finding their individ-

ual body parts; and bottom-up, where body parts are first

detected and then grouped into instances. DeepLabCut,

LEAP, and DeepPoseKit, have all been adapted to perform

multi-animal pose estimation in a top-down framework, but

the process of identifying animal instances must be per-

formed separately. More recent work using 3D data also

employed top-down approaches for multi-animal pose but

only in single species or specialized experimental condi-

tions [5, 15, 12]. Other work has focused on bottom-up

approaches using rodents, but these methods have not been

shown to generalize to other types of animals [3, 19].

SLEAP is a framework that is designed for general-

purpose 2D multi-animal pose estimation and tracking.

We employ both top-down and bottom-up frameworks

and conduct systematic experiments to compare these ap-

proaches and their effectiveness with a diversity of behav-

ioral datasets from multiple species. Importantly, we find

that depending on the dataset, either top-down or bottom-

up methods give superior performance.

3. Method

3.1. Framework

The SLEAP multi-animal pose tracking framework is

composed of a series of steps that form a standard work-

flow starting from data input and resulting in trained pose

estimation models and pose tracked videos. The typical use

workflow will sequentially step through each of the mod-

ules in the framework (Figure 2a, from left to right):

(i) Data input. Unlabeled and unprocessed videos, e.g.,

multiple sessions from a experimental setup. Videos

can be loaded from most video formats including MP4,

AVI, image folders, HDF5, or imported from com-

mon project formats such as DeepLabCut [22], Deep-

PoseKit [17] or standardized pose estimation dataset

formats like MS-COCO [21].

(ii) Interactive labeling. The user creates a new project

in the cross-platform desktop labeling GUI, contain-

ing the videos, labels, and the specification of which

landmarks to track. Labeling is performed by drag-

ging landmark markers onto their corresponding posi-

tions for each animal in the image and does not require

a GPU or a high performance machine. Each animal

in an image is labeled with a distinct set of landmarks

— the user does not need to keep track of animal iden-

tities at this stage. SLEAP can intelligently “suggest””

frames to label by analyzing their image content to

maximize sample diversity [26].

(iii) Neural network model training. Once as few as ~10

frames have been labeled, predefined or user-specified

neural network configurations can be used to train the

initial neural network for multi-animal pose estima-

tion. Users can either select from a list of pre-made

default configurations that are designed for the most

common use case, or can be guided through the config-

uration process, with documented descriptions of the

hyperparameters accessible within the GUI, along with

visualizations and previews of the outputs that will be

produced by a given configuration.

If the user is not labeling on a machine equipped with

a GPU, SLEAP can export the project file packaged

with the image data corresponding to the labels into a

single file that can be uploaded to an institutional com-

pute cluster, remote cloud instance, or even Google
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Figure 2: Overview of the SLEAP framework.

(a) The standard workflow receives raw videos as inputs and produces multi-animal pose tracks as outputs.

(b) The top-down approach to multi-instance pose estimation first finds instances and crops them from the full frame, then detects the individual’s body

parts within each crop. In the first stage, a network (NNanchor) finds the instances by predicting multi-peak confidence maps of anchor points. The second

stage network (NNinst) predicts single-peak confidence maps for the center instance of each crop.

(c) The bottom-up approach finds all parts within the full image, then uses a connectivity metric to group them into instances. Both multi-peak confidence

maps and part affinity fields (PAFs) are predicted by a single network (NN ).

Colab which provides free GPU access. The user can

install SLEAP remotely with a simple pip install

sleap command, train the neural network by upload-

ing the desired configuration, monitor the training via

TensorBoard, and then download the resulting trained

model. These steps can be done via an interactive

Python notebook or via commandline interface (CLI)

for batch scheduling. On machines with local GPU

access, training can be done interactively and training

progress monitored directly within the SLEAP GUI,

including visualizations of predictions during model

training. Training speed depends on the dataset and

network configuration, but predefined templates will

typically converge between 10 and 30 minutes for ini-

tial training.

After training, the resulting model folder will contain

the neural network weights, training logs, visualiza-

tions, and accuracy metrics, as well as a cached copy

of the labels used to train the network and the training

configuration, so that the training procedure that gen-

erated a saved SLEAP model is fully reproducible.

(iv) Pose estimation. Once the network is trained, new

poses can be predicted for all animals on a per-frame

basis. Predictions can optionally be automatically gen-

erated on suggested frames or on user-selected frames.

Prediction results after the initial round of training
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will likely be misplaced, swapped, or missed entirely,

however correcting these inaccurate predictions will

take considerably less time than labeling images from

scratch. New predictions can be generated on sin-

gle frames or entire videos or datasets, depending on

user specification. Pose predictions are saved in the

project file for future labeling sessions. Continued la-

beling can further take advantage of the outputs pro-

duced by trained models by sorting predictions by their

confidence scores, where low confidence predictions

may indicate deficiencies in the labels, for example,

frames where the animals adopt poses not included

in the training data. After adding more prediction-

assisted labels to the dataset, the user can repeat the

training procedure to train a more refined model with

the added labels. The new model will then be able to

generate predictions that are more accurate and require

less time to correct, rapidly speeding up the process of

labeling a new dataset. This is called human-in-the-

loop training and forms the basis of expedient SLEAP

workflows.

(v) Tracking. Once the user is satisfied with the accu-

racy of the pose estimation model, SLEAP can run

a separate tracking algorithm designed to operate on

frame-wise predictions to associate predictions across

frames. This tracker does not require training and can

take advantage of both image data and motion cues to

minimize tracking errors. Further post-processing util-

ities can improve the rate of tracking errors if the user

is able to provide additional constraints such as the

maximum number of animals or frame regions to ig-

nore. This tracker can be run interactively on-demand

as a subsequent step to the pose estimation pipeline, or

as part of a batch processing workflow via the CLI or

the Python API.

(vi) Proofreading. After tracking is performed, predic-

tions for new videos not in the labeling project are

saved to their own SLEAP labels file. This file can

be opened by the SLEAP GUI to inspect the predicted

tracks and correct tracking or pose estimation mis-

takes if there are any. Tracking errors that may re-

quire proofreading typically track swaps due to pro-

longed close interactions between animals with occlu-

sion or splits in tracks due to the animal being out of

the frame or occluded for an extended period of time.

SLEAP can compute a variety of different metrics that

can help to spot tracking problems in longer videos,

such as body part velocities (peaks may indicate track

swaps) or low prediction confidence (indicating persis-

tent animal occlusions).

3.2. Landmark localization

The position of each landmark from the labeled data is

encoded for network training by a 2D array that we refer to

as a part confidence map (CM). For each body part coor-

dinate xi ∈ R
2, the value of the confidence map at pixel

xp ∈ R
2 is given by an unnormalized 2D Gaussian distri-

bution,

Ci(xp) = exp

(

−
‖xi − xp‖

2

2

2σ2

)

δi, (1)

where σ is a fixed scalar controlling the symmetric spread

of the distribution, and δi is equal to 0 when the body part

is labeled as “not visible” and 1 otherwise.

The confidence maps are evaluated at each image grid

pixel coordinate xp ∈ {((x, y) : x ∈ {0, ...,W}, y ∈
{0, ..., H}} where W and H are the image width and

height, respectively. The grid can be subsampled to gen-

erate lower resolution confidence maps as targets for neu-

ral networks, trading off spatial resolution for decreased

memory usage and compute cost. For an animal with J
body part types (e.g., head, thorax, etc.), we generate N
confidence maps which are stacked along the channels axis

such that the full confidence map’s tensor C is of shape

(H/so,W/so, N), where so is the output stride of the net-

work. Body parts that are marked as “not visible” during

labeling are represented by a confidence map filled with

zeros. We set σ = 1.0 and scale by the output stride to

maintain a fixed scale with respect to the image resolution.

For images with multiple instances of each body part type,

the part confidence maps for each instance are combined by

taking their maximum value at each pixel which helps to

separate closely-spaced peaks [7].

The set of confidence maps from the labeled data is used

to train the neural network which then predicts confidence

maps for novel data. The confidence map representation has

the benefit of enabling fully convolutional neural network

architectures which are both efficient and easier to train

than networks that directly regress the coordinates of each

body part [32]. The trade-off is that the coordinates must be

computed from the confidence maps at inference time (i.e.,

when the model is predicting new confidence maps).

For single-instance confidence maps, we decode the co-

ordinates by finding the global peak, i.e., the coordinates of

the confidence map pixel with the highest value. For multi-

instance confidence maps, we employ local peak finding,

where we define a pixel as being a local peak if it is greater

than its 8 neighbors. In practice, we employ non-maximum

suppression computed using a 2D grayscale dilation (maxi-

mum) filter with kernel

K =





0 0 0
0 −1 0
0 0 0



 .
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K is convolved with the confidence map, producing a tensor

whose elements contain the maximum of each 3 × 3 patch

excluding the central pixel. The pixels in the confidence

map with higher values than those in the dilated maps are

considered local peaks. In both global and local peak find-

ing, we exclude peaks whose confidence map values fall be-

low a fixed threshold which we set to 0.2 in order to retain

somewhat low confidence predictions, but exclude points

that are reliably predicted as “not visible”.

Since both of these peak finding methods can only yield

peak coordinates at the resolution of the confidence map

grid, localization accuracy is limited by the grid sampling

interval. This quantization error is particularly problematic

for models with larger output strides (i.e., lower resolution

confidence maps), so we employ subpixel refinement to im-

prove the peak coordinate localization. We leverage integral

regression [25] to compute real-valued offsets by taking the

weighted average of the local patch of the confidence maps

around each grid-aligned peak.

3.3. Multi­instance approaches

To deal with the part grouping problem inherent in

multi-animal pose estimation, we explore two types of ap-

proaches: top-down and bottom-up (Figure 2b-c). Both of

these methods are widely employed in the human pose es-

timation literature and provide distinct trade-offs in terms

of accuracy and performance. It has not been previously

reported which may be better suited to the domain of multi-

animal pose estimation, so we explored both.

3.3.1 Top-down

In the top-down approach, the instances are first detected

within the full resolution image and each instance is

cropped. Each of the resulting crops will be centered on

an instance, but may contain pixels that belong to other in-

stances. This centering is crucial as it provides spatial con-

text to the second stage of the top-down approach, serv-

ing as an indicator of which instance’s body parts to predict

within the cropped image. In our framework, we select a la-

beled body part type to use as an anchor, ideally one close

to the center of the animal’s bounding box and infrequently

occluded (if occluded, the centroid of the bounding box of

the remaining parts is used as the anchor). The anchored

part serves as the target for the first stage neural network

(NNanchor) which is trained to predict multi-peak confi-

dence maps corresponding to the anchor part of all animals

in the frame (Figure 2b, left). Typically, this network is

trained on downsampled (0.25× or 0.5×) full frame im-

ages since coarsely locating the animals does not require

high spatial resolution and saves on compute cost. Anchor

part confidence maps are converted to coordinates using lo-

cal peak finding and cropped from the full resolution im-

ages with a fixed bounding box size computed automati-

cally from the labels.

Once the instance-anchored crops are produced by the

first stage, the second stage essentially treats them as single-

instance images. In this stage, we train a separate neural

network (NNinst) that takes an instance-anchored image

and predicts single-peak confidence maps only for the an-

chored instance. The confidence maps are converted into

coordinates using global peak finding as only a single set

of body parts are expected (Figure 2b, right). This network

implicitly addresses the part grouping problem by leverag-

ing the location of the body parts relative to the anchor part

(i.e., the image center) as a cue for which body part to pre-

dict confidence maps for when multiple of the same body

part type may be present within the crop.

This form of implicit modeling of the geometry between

body parts is simple and has been employed in the animal

pose literature previously [26, 17]. The disadvantages of

the top-down approach are that it fails to capture global

contextual information present in the relationship between

instances, is limited by the accuracy of the first stage de-

tector, and requires a full forward pass through the second

stage network (NNinst) for each animal detected (though

this may actually require less computation for images with

few animals that occupy a small fraction of the image).

3.3.2 Bottom-up

For the bottom-up approach, we employ an image-based

representation of the connectivity between body parts that

has been previously described for human pose estimation

called part affinity fields (PAFs) [7]. This representation

captures the relationship between body parts explicitly by

encoding a vector field which locally points from each

source body part to each destination body part. This vector

field is stored as two 2D images, one for each component in

the x, y-plane. In order to generate the PAFs from labeled

data, the user must define a directed graph that connects all

body parts to be tracked which we refer to as the skeleton.

This skeleton graph must form a spanning arborescence,

i.e., each node (body part) must have exactly one parent

(except for a single root node), but may have multiple chil-

dren. This is required for tractably solving the partitioning

problem, which simplifies to a series of bipartite matching

problems for arborescences. This is an important consid-

eration when defining skeletons for new morphologies or

datasets as body parts that are descendants of a missed body

part will fail to be grouped correctly with the remaining in-

stance parts. In practice, we attempt to create skeletons with

the smallest depth to reduce dependency across sets of body

parts.

A skeleton is defined as S = (N,E), where N is the

set of n nodes (body parts) and E is the set of (s, d) tuples
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denoting the directed edge (connection) from a source node

s ∈ {1, ..., n} to a destination node d ∈ {1, ..., n} \ {s}.
The direction at each point in the PAF derived from labeled

data is generated from the coordinates of the body parts in

labeled images by computing the distance-weighted edge

unit vector for each edge e at each image grid coordinate

xp,

Pe = exp

(

−
M(xp)

2σ2

)

ueδsδd, (2)

where xs and xd are the coordinates of the source and des-

tination nodes, respectively. Similarly to confidence maps,

xp may come from a subsampled image grid, σ controls the

spatial spread of the PAF, and δs and δd are the visibility

flags for the source and destination nodes, respectively. The

edge unit vector ue is defined as the source-centered direc-

tion vector

ue = (xd − xs)/‖xd − xs‖. (3)

The magnitude, M , at each point in the PAF is defined

as the Euclidean distance between the grid point xp and its

projection x̂p onto the line segment formed between xs and

xd, M(xp) = ‖xp − x̂p‖2, where x̂p = r(xd − xs) + xs

and

r = min

(

max

(

(xp − xs) · (xd − xs)

‖xd − xs‖22
, 0

)

, 1

)

.

We note that the original description of PAFs [7] uses a hard

threshold to compute the distance weighting, but we adopt

a Gaussian instead as a means of scaling the relative con-

tribution of pixels as a function of distance from the edge,

resulting in smoother PAFs when animals are closely inter-

acting.

PAFs computed for a given edge are combined for mul-

tiple instances by summation. After PAFs are generated for

all edges in the skeleton, the full set of PAFs for the image

P are of shape (H/so,W/so, 2|E|), formed by concatenat-

ing all of the individual edge PAFs, which contain the x-

and y- components of the vectors along the third axis.

In the bottom-up approach, a single neural network takes

the full image as input and outputs both the PAFs and the

multi-peak part confidence maps encoding the location of

all body parts across all instances (Figure 2c, left). By pre-

dicting both of these representations, the network explicitly

separates the task of localization and grouping, where for

one representation it must only learn to predict “what” a

body part is (CMs), whereas for the other it must learn the

relationship between them (PAFs). This is in contrast to the

top-down approach, where the relationship between body

parts is implicitly encoded in the cropping.

After CMs are converted to peaks via local peak de-

tection, sets of candidate source and destination peaks are

grouped via greedy bipartite matching using the PAFs to

compute the score of each putative connection (Figure 2c,

right). For each pair of source and destination nodes, a line

integral is computed by sampling 10 evenly spaced points

between source and destination coordinates in the predicted

PAFs. The score for the connection is calculated as the av-

erage dot product between the sampled vectors (p̂s) and the

unit normalized vector formed between the predicted source

(x̂s) and destination points (x̂d) in the candidate connection,

10
∑

s=1

x̂d − x̂s

‖x̂d − x̂s‖2
· p̂s. (4)

Once all pairs of connections are scored, instances are

assembled by growing its skeleton edge by edge, assign-

ing source candidates to destination candidates via Hungar-

ian matching. The globally optimal matching is guaran-

teed through this local greedy procedure for arborescences,

which is the reason why skeletons must obey this restric-

tion.

There are many possible skeletons that can be defined

for a set of body parts, but in practice we find that op-

timal results are obtained when the depth of the skeleton

graph is kept low (to reduce inter-node dependencies during

matching) and the lines formed between the nodes actually

overlap with the animal’s morphology in the image (making

curved body parts like rodent tails particularly challenging

without intermediate keypoints).

3.4. Tracking

To address the temporal association problem, we de-

vised a tracking algorithm that operates on grouped in-

stances generated from the multi-animal pose estimation.

The general algorithm is described in algorithm 1 which

describes a standard multi-object tracking procedure. In

brief, for each frame, we first generate a set of candidate

instances from a window of recent frames that have been

tracked, compute the matching cost between each candidate

and each untracked instance in the current frame, perform

the optimal matching and assign them to tracks.

To adapt this to the task of pose tracking specifically, we

first employ one of two candidate generation functions: flow

shift or Kalman filter. Inspired by Xiao et al. [33], the flow

shift generator takes instances from previous frames and ap-

plies Farneback optical flow [14] to predict the displace-

ment of the image between their respective frames and the

current frame at the coordinates of the instance parts, thus

generating a set of “shifted” instances with locations pre-

dicted by the image motion. This considerably improves the

similarity between instances in the past and present ones,

especially during bouts of fast social behaviors (e.g., chas-

ing) during which the past location of one instance may

more closely overlap with the current location of another.

The Kalman filter generator uses instances tracked using
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Algorithm 1: Tracking Algorithm

Result: Tracked instances

D ← {} // Tracked instance deque

for t ∈ {1, ..., T} do
Ic ← Generate candidate instances from D
It ← Grouped instances in frame t
C ← Cost(Ic, It) // Pairwise costs

M ← Find optimal matching

for (i, j) ∈M do
AppendToTrack(Track(Ic[i]), It[j])

end

for k /∈M do
SpawnNewTrack(It[k])

end

AppendToDeque(It)
end

the flow shift generator to initialize a filter model at the

beginning of a track for each body part of each instance.

At each subsequent frame, the Kalman filters are updated

and candidate instances are generated by predicting the lo-

cation of each past instance in the current frame. This mo-

tion model does not use image data, but can more accu-

rately generate candidate instances when the appearance of

animals change drastically. To compute the matching cost

between instances, we use the instance similarity defined as

exp
(

−‖Ic − Ij‖
2

2

)

/vc, (5)

where vc is the number of visible landmarks in the candidate

instance.

3.5. Neural network architectures

The neural network architectures we have implemented

in our framework are agnostic to the approach employed.

These backbones serve as generic feature extractors that can

output feature maps, both CMs and PAFs, at any given res-

olution.

We employ the encoder-decoder meta-architecture (Fig-

ure 3a), a class of fully-convolutional network architectures

that can describe most of the commonly used neural net-

works, such as those used in DeepLabCut [22] (Figure 3b)

or UNet [29] (Figure 3c). We use this class of models as a

means of defining a set of high-level hyperparameters that

describe the behavior of the network rather than its explicit

structure:

1. Maximum receptive field size: This is the largest spa-

tial extent over which the network is theoretically ca-

pable of integrating features. This can be used to ad-

just the length scale over which the network should

have the capacity to reason. The theoretical receptive

field (RF) is increased by adding downsampling blocks

in the encoder branch and can be calculated in closed

form [4].

2. Output resolution: This determines the resolution of

the output targets (such as confidence maps) which can

determine the accuracy at inference time, particularly

due to the quantization error inherent in subsampled

outputs. This trades off with increased memory re-

quirement, sometimes resulting in intractable training,

particularly for bottom-up models. The output reso-

lution is determined by the ratio of downsampling to

upsampling blocks, where an equal number results in

outputs at the same resolution as the input image.

3. Representational capacity: This determines the

amount of parameters and compute that the network is

able to use to capture image features across scales. It

can be controlled by the base number of filters and by

the filter rate, where a lower filter rate biases the dis-

tribution of representational capacity towards smaller

features.

These hyperparameters make it simpler to select an appro-

priate architecture based on the properties of the data, rather

than through careful engineering or black-box network ar-

chitecture search methods.

We primarily use the generalized UNet as a base net-

work [29] as it provides the flexibility to control these high

level hyperparameters while implementing them with sim-

ple architecture design specifics, namely: simple convolu-

tional blocks consisting of a stack of Conv-ReLU-Conv-

ReLU-MaxPool layers, and skip connections to fuse fea-

tures across scales in the decoder. We use bilinear upsam-

pling, rather than transposed convolutions, as it has been

previously shown to be effective and compute efficient [17].

For the ResNet implementation, we precisely replicate

the architecture specifics employed in DeepLabCut [22]

to ensure fair comparisons. Unlike previous attempts to

replicate their architecture [17], we implement ResNet50,

101 and 152 with the exact layers necessary to make use

of the standard ImageNet pre-trained weights, but retain

DeepLabCut’s ability to control the encoder feature reso-

lution through the use of dilated convolutions. This has

been previously shown to be important for fully convolu-

tional tasks that re-use the standard ResNet backbone[8]

which in its standard configuration reduces feature spatial

resolution by 32×. This makes it difficult to upsample

the features in the decoder, especially without the use of

skip connections. We also implement the decoder used by

DeepLabCut, which is composed of 1 or 2 transposed con-

volutions with large kernel size that directly upsamples the

encoder’s feature maps to the output target resolution, rather

than through repeated upsampling blocks. In practice, we

find that smaller upsampling blocks using bilinear interpo-

lation yield better performance and training stability.
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Figure 3: Neural network architectures generated by the encoder-

decoder motif.

(a) Encoder-decoder models are formed by a set of blocks that control

specific properties of the architecture. These can be combined to achieve

desired feature extraction properties, such as receptive field size or output

resolution.

(b) The standard DeepLabCut architecture.

(c) The standard UNet architecture.

4. Results

4.1. Datasets

In order to evaluate our framework across a diversity of

experimental conditions and animal morphologies, we gen-

erated three different datasets of multi-animal social behav-

ior: flies, mice, and bees. These datasets were labeled using

the SLEAP GUI and aided by the human-in-the-loop work-

flow (Figure 2).

The flies dataset consisted of 30 videos of pairs of

male and female fruit flies (D. melanogaster) freely moving

within a domed chamber and engaged in natural courtship

behavior for up to 30 minutes, or until copulation. The

videos were recorded from above at 150 FPS with a frame

size of 1024×1024×1 in grayscale using infrared illumina-

tion, at a resolution of 30.3 pixels per mm. This resolution

is close to the minimum required to be able to reliably cap-

ture individual leg tarsi as they span roughly ~25 microns

in diameter [30], equivalent to about 0.75 pixels at this res-

olution. We emphasize these limits to highlight that the

findings described here regarding feature scales should be

interpreted not just at the imaging parameters we selected,

but are tied to the underlying scale of the biological features

that these pose models are trained to detect.

We labeled 2000 frames with 2 flies visible in every

image. The dataset was randomly split into 1600/200/200
frames for training/validation/testing respectively. The

skeleton we selected consisted of 13 nodes spanning

the anatomy of the fly: [head, thorax, abdomen,
wingL,wingR, forelegL4, forelegR4,midlegL4,
midlegR4, hindlegL4, hindlegR4, eyeL, eyeR]; and 12
edges: [(thorax → head), (thorax → abdomen),
(thorax → wingL), (thorax → wingR),
(thorax → forelegL4), (thorax → forelegR4),
(thorax → midlegL4), (thorax → midlegR4),
(thorax → hindlegL4), (thorax → hindlegR4),
(head→ eyeL), (head→ eyeR)].

The mice dataset consisted of 30 videos of pairs of male

and female white mice (M. musculus) freely interacting in

a homecage environment with bedding to encourage nat-

uralistic courtship behavior for ˜5 minutes. The videos

were recorded from above at 40 FPS with a frame size of

1280 × 1024 × 1 in grayscale using infrared illumination,

at a resolution of ˜1.9 pixels per mm. Although this reso-

lution could be reduced, as the finest feature captured (the

tail) occupies several pixels in these images, this resolution

addresses other challenges inherent in this dataset, namely

the low contrast due to low power IR illumination and white

fur color of the animals against the bedding material.

For this dataset, we labeled 1474 frames with either

1 to 2 mice visible. The dataset was randomly split

into 1178/148/148 frames for training/validation/testing

respectively. The skeleton we selected consisted of 5 nodes

spanning clearly visible anatomical landmarks: [snout,
earL, earR, tb(tailBase), tt(tailT ip)]; and 4 edges:

[(snout → earL), (snout → earR), (snout → tb),
(tb → tt)]. We chose not to label the legs or paws since

they were very intermittently visible from a single camera

above.

The bees dataset consisted of 18 videos of pairs of fe-

male worker bumblebees (Bombus impatiens) freely inter-

acting in a petri dish with hexagonal beeswax flooring for
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up to 30 minutes. The videos were recorded from above at

100 FPS with a frame size of 2048×1536×1 in grayscale, at

a resolution of ˜14 pixels per mm. Similar to the fly dataset,

this resolution is close to the minimum required in order to

reliably capture the finer features of the bees such as their

tarsi tips and antennae, both of which are frequently em-

ployed in social interactions [16]. This presented a distinct

challenge as the large body size of the bees (˜200 − 400
pixels) together with the finest feature sizes (˜2− 4 pixels)

requires models to simultaneously capture features across a

wide range of length scales.

For this dataset, we labeled 804 frames with 2 bees al-

ways visible (though often overlapping during interactions).

The dataset was randomly split into 642/81/81 frames

for training/validation/testing respectively. The skeleton

we selected consisted of 21 nodes spanning the anatomy

of the bees: [thor, head, abdo, Lant1, Lant2, Rant1,
Rant2, fLleg1, fLleg2, fRleg1, fRleg2,mLleg1,
mLleg2,mRleg1,mRleg2, hLleg1, hLleg2, hRleg1,
hRleg2, Lwing,Rwing]; and 20 edges: [(thor → head),
(thor → abdo), (head → Lant1), (head → Rant1),
(Lant1 → Lant2), (Rant1 → Rant2), (thor →
fLleg1), (fLleg1 → fLleg2), (thor → fRleg1),
(fRleg1 → fRleg2), (thor → mLleg1), (mLleg1 →
mLleg2), (thor → mRleg1), (mRleg1 → mRleg2),
(thor → hLleg1), (thor → hRleg1), (hLleg1 →
hLleg2), (hRleg1 → hRleg2), (thor → Lwing),
(thor → Rwing)].

Together, these datasets comprise a range of imaging

conditions and species morphologies which span a variety

of image recognition dimensions. The flies dataset consists

of small features (the inputs cannot be downsampled with-

out considerable information loss), which occupy a small

fraction of the field of view (160× 160 bounding boxes out

of 1024×1024 frames) resulting in a large number of irrele-

vant background pixels. The mice dataset, given our imag-

ing conditions, consists of mostly coarse features that are

difficult to precisely localize and occupy a relatively large

proportion of the field of view with long-range dependen-

cies between features (e.g., tail tip and rest of the body).

The bees dataset is particularly challenging due to both fine

and large scale image features, while occupying a relatively

small portion of a very large field of view. Together, these

conditions represent many of the common image recogni-

tion challenges inherent to social behavioral data collected

in the lab.

These datasets and selected models optimal for each are

available at sleap.ai.

4.2. Training procedure

All models were trained within the SLEAP framework at

version 1.0.x (https://github.com/murthylab/

sleap/releases/tag/v1.0.8) which uses Tensor-

Flow 2 and Python 3.6. At the time of training we used

TensorFlow 2.1, but all models are forward compatible with

the current TensorFlow 2.3. We use the same base set of hy-

perparameters for all training runs. For optimization, we set

the batch size to 4, define an epoch as a full iteration over

the training dataset (with epoch boundary-respecting shuf-

fling), and train for a maximum of 200 epochs with early

stopping if the validation loss does not improve by at least

1 × 10−6 for 10 epochs. We use the Adam optimizer with

AMSgrad enabled and an initial learning rate of 1 × 10−3

which we reduce by a factor of 0.5 after 5 epochs without a

minimum validation loss decrease of 1×10−6 followed by a

3 epoch cooldown period during which the loss is not mon-

itored. For consistency across all experiments, we apply

only rotational augmentation (−180◦ − 180◦) to the data,

though in practice we did observe that applying contrast-

based augmentation improved the models’ ability to gen-

eralize to new data with slight lighting variations. Model

checkpointing was triggered at the end of every epoch in

which the validation loss improved by any amount and the

final checkpoint was used for all experiments.

All training was performed on a single GPU, either lo-

cally with NVIDIA Titan RTX or on the cloud and our on-

campus cluster with NVIDIA Tesla P100s. In both cases,

GPU memory was typically not a limitation with our batch

size, but we chose to keep it relatively small to ensure

that training results could be reproduced on lower mem-

ory GPUs. The best performing models for each dataset

were all able to be trained on Google Colab (which provides

P100s) as well as locally on NVIDIA GeForce 1080 GTX

Ti and 2080 RTX Ti cards with 8 GB of memory. System

memory was not found to be a constraint and most of our

training environments had 16 GB or less of available RAM.

4.3. Evaluation

In order to evaluate accuracy, we adapted several metrics

that are standard in the human pose estimation literature. In

particular, we adapt the Object Keypoint Similarity (OKS)

metric [28] which is used nearly ubiquitously in human pose

estimation benchmarks[21], but has not to our knowledge

been previously adapted to animals. We compute the OKS

in its standard form as described in Ronchi et al. [28]:

OKS(X, X̂) =
N
∑

i=1

exp

(

−
‖Xi − X̂i‖

2

2

2ασ2

i

)

δi

/ N
∑

i=1

δi

(6)

where X and X̂ are the ground truth and predicted instance

coordinates, respectively, for an instance with N nodes. The

δi denotes the visibility, which is 0 if the node is missing

from the ground truth instance. The inner term essentially

expresses the distance from the ground truth coordinate as

the posterior of a Gaussian with two scaling terms: α, the
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bounding box area occupied by the GT instance, and σi, an

empirically derived estimate of the labeling uncertainty for

a landmark type i.

This last parameter, σi, is intended to normalize the dis-

tance between prediction and ground truth with respect to

the variance in localization consistency across human an-

notators, thus affording hard-to-label body parts such as the

”left hip” in humans (which is subcutaneous and typically

covered by clothing) greater leniency in the error calcula-

tion. The values of σi were originally derived from thou-

sands of crowdsourced annotations for the standard 17 hu-

man keypoints in the MS-COCO dataset [28], however ob-

taining estimates for the human labeling variability for each

new animal body part would be prohibitively laborious. In-

stead, we opt to set σ = 0.025 for all keypoint types, the

standard deviation of human annotator uncertainty for the

easiest keypoint: the left eye. We reasoned that this is a

conservative value to use, where we essentially assume that

all labeled animal body parts are as easy and consistently lo-

calizable to human annotators as the human left eye. This is

certainly not the case for multiple body parts in our datasets

(particularly in the mice dataset which has blobby features),

so we consider this OKS as the lower bound of the true ac-

curacy we obtain. The advantage is that this formulation

of OKS can be interpreted to have comparable units (rang-

ing from 0 to 1, where 1 is perfect accuracy) and variance

scaling to those reported in the human literature, bridging

the gap in evaluation metrics for the domain of animal pose

estimation.

For evaluation of multi-instance pose estimation and

tracking accuracy, we adopt the same procedures as

employed in the widely used PoseTrack benchmark for

human pose tracking [2]. Specifically, we compute the

overall mean Average Precision (mAP) using the same

procedure employed for the PoseTrack benchmark and

widely reported in the human pose literature, a met-

ric originally described in the Pascal VOC challenge

[13]. Briefly, mAP computation involves classifying

each pairing of (greedily matched) GT and predicted

instance as a True Positive or False Positive by using

the OKS as a cutoff at each of the following thresholds:

{0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}.
Precision at a single threshold is calculated as

TP/(TP + FP ), and recall as TP/(TP + FN).
All predictions are sorted by their OKS and the cumulative

TPs and FPs are computed for each predictions and recall

and precision values from these partial TPs and FPs, i.e.,

for each pair of GT and predicted instance. Then, a set of

101 recall thresholds are defined with even spacing from 0
to 1, and the best precision value for samples that fall below

each recall threshold is retrieved from the data, yielding 101
precision values. The Average Precision (AP) is computed

by taking the mean over all 101 precision values, whereas

the Average Recall (AR) is simply defined as the best recall

at the current OKS threshold. This procedure is repeated

for all 10 OKS thresholds and the final mean Average

Precision (mAP) and mean Average Recall (mAR) are

simply the average of the AP and AR over all thresholds.

Although their calculation is non-trivial, the mAP and

mAR provide balanced estimates of consistently reliable

precision and recall performance across many certainty

thresholds.

An alternative metric of localization accuracy that is of-

ten reported is the Percent Correct Keypoints (PCK) met-

ric, which is simply the fraction of predicted keypoints

that are closer than some threshold of Euclidean pixel dis-

tance. This is typically reported as “PCKh”” in which dis-

tances are normalized by the size of the person’s head to

account for instance scale. As a more general metric, we

instead report the mean PCK (mPCK) which is calculated

by taking the average of the PCKs at a range of thresholds:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. This provides a more generaliz-

able metric that can be calculated in the same way for all

datasets.

Finally, we report the 95th percentile of the Euclidean

distance errors as a convenient metric of the expected pixel

distance from GT for extreme outliers, i.e., the ”worst case”.

All accuracy metrics reported here are computed on the

held out test set of each dataset.

For the tracking accuracy evaluation, we employ the

same MOT metrics as in PoseTrack [2] and compute them

using the py-motmetrics framework [18]. In particular, the

MOTA metric is computed as:

MOTA = 100

(

1−
misses+ switches+ FP

NGT

)

(7)

4.4. Multi­instance pose estimation approach

Dataset Approach mAP mAR mPCK Error

(95%)

Flies TD 0.832 0.881 0.878 2.78

Flies BU 0.792 0.823 0.844 4.83

Mice TD 0.401 0.527 0.571 27.0

Mice BU 0.535 0.617 0.597 17.7

Bees TD 0.658 0.759 0.589 14.6

Bees BU 0.736 0.765 0.559 18.5

Table 1: Best accuracy for each dataset and multi-instance approach. TD:

Top-down, BU: Bottom-up.

We conducted a series of experiments to explore the op-

timal approach for multi-instance pose estimation in each

dataset and trained a total of 669 neural networks with vary-

ing approaches, network architecture hyperparameters, and

training replicates. These results are summarized in Table 1

which lists the accuracy metrics for the best performing

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.08.31.276246doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.276246
http://creativecommons.org/licenses/by-nc/4.0/


model for each dataset and approach. For the flies dataset,

we find that the top-down approach works best, which we

hypothesize is due to the requirement of fine feature de-

scriptions in order to reliably capture the legs, benefiting

little from the global context afforded by the bottom-up

approach. For the mice dataset, the bottom-up approach

considerably outperforms even the best top-down model.

We hypothesize that this is due to the coarseness of the

mouse features and long-range dependencies between body

parts, in particular the tail, which strongly benefits from the

global context encoded in the bottom-up approach. For the

bees dataset, we see mixed results as expected due to the

presence of both small and large scale features present in

the dataset. While the overall accuracy as captured by the

mAP and mAR metrics are much better for the bottom-up

model which can provide increased context between body

parts and across animals, the localization accuracy metrics

mPCK and the 95th percentile of error distances reflect the

benefit of the top-down model in emphasizing finer scale

features over global structure.

Overall, these results reinforce the premise that model

accuracy is determined by dataset-specific characteristics

and these should be considered when choosing a multi-

instance approach.

4.5. Localization accuracy

Next, we sought to examine the performance of the best

model for each dataset, to better understand how these

dataset-wide summary metrics translate to the individual in-

stance case. First, we visualized on example images from

each dataset the distribution of errors in terms of Euclidean

distance, by plotting circles with radii determined by the

percentile of the error distribution in pixels (Figure 4a-c).

We see that for the fly dataset, the vast majority of predic-

tions fall within tight clusters around the ground truth lo-

cation, suggesting that our error rates are likely to produce

highly reliable estimates of the fly’s anatomy (Figure 4a).

For the mouse dataset, we find highly accurate predictions

for all body parts except the tail tip, whose extreme values

fall within a much larger uncertainty radius, reflecting the

difficulty in correctly predicting this body part (Figure 4b).

For the bee, we see that some body parts are reasonably

well-predicted, whereas others are not, particularly those

centered on very fine scale features such as the mid-leg tips

(Figure 4c) (note that the largest error circle reflects the

92.5th percentile rather than 95th for visualization clarity.

We expect that these larger extremes may in part be due to

the small size of the test set for this dataset).

Plotting the distribution of the part-wise errors, we ob-

serve a more complete description of the first set of panels

(Figure 4d-f). Note that the vast majority of points have

error distances well below the anatomical scale of each an-

imal, with nearly all of the points falling below 100 um for

the flies (Figure 4d), 5 mm for the mice (Figure 4e) and 1

mm for the bees (Figure 4f).

Finally, the OKS score distributions for each dataset cap-

ture the variability in localization accuracy while account-

ing for the scale of the animals (Figure 4g-i). In partic-

ular, while more predictions fall into accuracy bins very

close to 1.0 (the best possible score) than any other bin,

the main determinant of the discrepancy in the mAP and

mAR metrics appear to derive from the amount and spread

of outliers—the long tail of the mice dataset (Figure 4h)

accounts for the especially low mAP score. These distri-

butions provide key insights into the source of errors for

a given model, for example, by suggesting which kinds of

instances or poses may benefit the most from additional la-

beled examples. For example, the bimodality of the fly OKS

distribution (Figure 4g) points to two classes of errors —

inspection of examples reveals that the lower distribution

reflects cases in which the posterior landmarks are missing,

a systematic source of error that arises from times when the

male is closely interacting with the female such as during

attempted copulation.

4.6. Receptive field size

Guided by the observation that the distribution of in-

stance sizes varied by dataset (Figure 5a), we sought to

explore how one of our encoder-decoder model hyperpa-

rameters, the maximum receptive field size (RF), would im-

pact the performance of neural network architectures on dif-

ferent datasets. The RF determines the length scale over

which the network is able to learn features; small RFs can-

not incorporate global context, whereas large RFs may de-

emphasize smaller features (Figure 3). As described pre-

viously, we designed neural network architectures with a

target RF by varying the number of downsampling blocks

in the network and offset the loss in spatial resolution in

the outputs with additional upsampling blocks (Figure 5b).

Overlaying the RFs that we tested on examplars from each

dataset illustrates the spatial extent of each animal or inter-

acting animals that may be captured by features at different

RFs (Figure 5c).

To test the effect of an architecture’s RF on each dataset,

we trained models with varying maximum RF sizes and

approaches for each dataset and report their accuracy as

a function RF size (Figure 5d). We find that the optimal

dataset-specific approach outperforms the alternative across

all RF sizes, consistent with our hypothesis that the intrinsic

properties of the representations induced by each approach

are specifically suited to the characteristics of each dataset.

As expected, all curves trend upwards as a function of in-

crease maximum RF size. However, the diminishing gains

in accuracy as RF increases suggests that there is an opti-

mal RF size for integrating features in each dataset. Mod-

els with max RF size of 156 pixels appear to perform well
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Figure 4: Multi-instance pose estimation accuracy.

(a-c) Localization accuracy of best performing model on each dataset. Circle radii denote the percentiles of the Euclidean distance error distribution.

(d-f) Distribution of part-wise localization error of best performing model on each dataset in both pixel and physical units.

(g-i) Distribution of instance-wise accuracy as measured by the Object Keypoint Similarity (OKS) metric.

across all datasets, suggesting that this may be a suitable

common baseline architecture for general use. While the

trend for top-down models for the flies dataset suggests that

there is likely little to be gained by increasing the RF size

– likely due to the small scale of the animals in that dataset

(Figure 5a) – the trends for the other datasets indicate that

increasing the RF may close the gap to the bottom-up model

performances. This seems to be particularly salient for the

bees dataset, which is expected due to its mixture of fine-

scale and coarse features, the latter of which is perhaps not

as easily captured in top-down models as it is in bottom-up

models which explicitly encode global context.

4.7. Transfer learning

Previous work in single-animal pose estimation has pro-

posed that transfer learning is critical for training large

backbone networks, such as ResNet50, on few labeled ex-

amples, owing to the reuse of general purpose low level fea-

tures (e.g., edges or image textures) [22, 23]. On the other

hand, transfer learning may be dispensable for smaller,

custom-designed networks [26]. To test how this applies

to multi-animal pose detection, we also trained models with

a ResNet50 backbone as the encoder, as well as employ-

ing strided convolutions to maintain feature map resolution,

using randomly initialized weights or pretrained weights

(i.e., transfer learning), and different approaches (in partic-

ular the bottom-up approach which has recently been im-
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Figure 5: Optimal receptive field size and multi-instance approaches are dataset-specific.

(a) Distributions of animal image area occupancy varies widely by dataset.

(b) The maximum receptive field (RF) of a network sets a bound on the length scale of features that it can extract from images. Stacking simple blocks (left)

enables the construction of network architectures with a desired receptive field size (right).

(c) RFs visualized on an example from each dataset. While some animals have a small spatial extent (flies, left), others may require larger RFs to capture

structure across animals (mice, middle) or even within the same animal (bees, right).

(d) Accuracy of neural network architectures with different RF sizes vary by dataset and approach. Whereas flies benefit from top-down at small RFs,

bottom-up networks with larger RFs perform better in mice and bees.

plemented in DeepLabCut [22]).

We summarize our results by reporting the metrics for

the best ResNet model in the pretrained or not-pretrained

condition for each approach, as well as the best UNet-based

model for reference (Table 2). These data indicate that pre-

training can indeed improve final model performance, but

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.08.31.276246doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.276246
http://creativecommons.org/licenses/by-nc/4.0/


Dataset Approach Backbone Pretrained mAP mAR mPCK Error (95%)

Flies TD ResNet50 7 0.834 0.901 0.893 3.39

Flies TD ResNet50 3 0.843 0.912 0.900 3.07

Flies TD UNet 7 0.832 0.881 0.878 2.78

Mice TD ResNet50 7 0.406 0.501 0.567 27.2

Mice TD ResNet50 3 0.528 0.621 0.611 22.7

Mice BU ResNet50 7 0.253 0.324 0.388 59.0

Mice BU ResNet50 3 0.491 0.578 0.558 18.9

Mice BU UNet 7 0.535 0.617 0.597 17.7

Bees TD ResNet50 7 0.650 0.744 0.518 17.3

Bees TD ResNet50 3 0.714 0.804 0.576 15.0

Bees BU ResNet50 3 0.651 0.682 0.417 18.6

Bees BU UNet 7 0.736 0.765 0.559 18.5

Table 2: Performance of transfer learning for training multi-instance pose estimation models.

these gains may be relatively small. For the flies dataset,

the pretrained ResNet50 outperformed the randomly initial-

ized version by 0.009 mAP and the optimal UNet by 0.011,

but exhibited a higher 95th error distance percentile, sug-

gesting that it fails to improve performance on the most dif-

ficult instances. For the mice dataset, sizable gains (+0.122
mAP) were observed in the top-down model when trans-

fer learning was employed, but neither this model, nor the

pretrained bottom-up ResNet model were able to match the

optimal UNet (not-pretrained) model. For the bees dataset,

gains were again observed with the use of transfer learning

versus random initialization for ResNet50, particularly for

the top-down model which seems to have greatly improved

the localization accuracy — perhaps due to the ability of

ResNets to efficiently preserve multi-scale features through

their residual skip connections — but they still failed to out-

perform the optimal UNet model in terms of mAP, despite

the overall improvement in localization accuracy.

Altogether, these results indicate that while transfer

learning may indeed provide improvements over random

initialization for large network architectures (ResNet50),

these networks still do not outperform smaller neural net-

work architectures tuned to the properties of the dataset

(Figure 5). Future improvements may involve the use of

transfer learning together with optimal neural network ar-

chitecture design.

4.8. Inference speed

Social behavioral monitoring data tend to suffer from

two common performance bottlenecks: a large field of view

(FOV) and high frame rates. Large FOVs are often required

in order to permit animals to behave naturally, but this re-

sults in large image sizes (1024× 1024 or larger) which are

irreducible if the resolution is necessary in order to capture

fine features of the animals, such as in the flies and bees

datasets. High camera frame rates, in turn, are necessary

since social behaviors can often occur on the order of mil-

liseconds, resulting in huge videos, often on the order of

> 100, 000 frames. This is different from human pose esti-

mation, which uses small (< 512× 512) images, often fur-

ther sized down since most human body keypoints are still

detectable at fairly low resolutions. On the temporal axis,

”real-time” is often used to describe models that operate at

> 30 FPS, the standard webcam frame rate, but models that

operate at these rates would result in prohibitively slow in-

ference times for animal behavior data. Both of these issues

(large FOV and high frame rates) may lead to multiple-fold

longer inference times than the experimental session itself,

typically resulting in the need for additional compute in-

frastructure to deal with batch processing of experimental

data.

Given these constraints, we sought to explore the range

of possible inference speeds we could achieve with SLEAP.

For these experiments, we benchmark inference times on

top-down models trained on the flies dataset on a single

desktop computer equipped with a NVIDIA Titan RTX (24

GB), 64 GB DDR4 RAM, Intel i7-6700K (4 cores), and

Samsung SSD 950 PRO 512GB NVMe. To benchmark in-

ference times, for each batch size and condition, we restart

the benchmarking script which loads the models and per-

forms an initial inference pass through a sample clip of 3200

frames to discount initialization time from TensorFlow’s au-

tograph (this startup time is quickly amortized when per-

forming inference on longer or multiple videos). Then, we

perform 3 full inference passes through the data and store

the mean runtime. We repeat this benchmarking procedure

3 times per batch size and condition to estimate the vari-

ability of multiple independent inference runs with separate

initializations. The inference time includes the entire top-

down inference pipeline, taking as input full resolution, raw

video frames of size 1024× 1024× 1 and produces as out-

put the coordinates of each body part for each instance in
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Figure 6: Multi-instance pose estimation speed.

(a) Inference speed increases as a function of batch size and model con-

figuration. The “fast”” models achieve 430 FPS at large batch sizes, at

the cost of lower accuracy, whereas the “accurate”” models sacrifice speed

(~300 FPS) for greater accuracy.

(b) Inference speed is bottlenecked by the source of the input data. When

reading a high resolution MP4 video rather than performing inference on

frames in memory, performance is limited by the video decoding speed to

~150 FPS (green). At higher batch sizes, disk I/O becomes the bottleneck,

resulting in the plateau of read speeds for uncompressed HDF5 frames. In-

ference speeds are measured with the “fast”” models from (a) at batch size

32.

(c) Top-down performance scales with the number of animals in the frame.

At batch size of 32 using the fast model, inference scales from 420 FPS

with a single instance to 215 FPS with 8 instances.

every frame of the video. We emphasize that the reported

speeds constitute the complete end-to-end pipeline, which

includes all preprocessing, forward pass of the anchor part

detection model, instance anchored cropping, forward pass

of the anchored-instance part confidence model, global peak

finding, and refinement.

For the first experiment, we trained two sets of models:

“accurate”” and “fast””. The former were trained with the

highest accuracy (mAP = 0.832) UNet hyperparameters that

we found during our previous experiments, whereas the lat-

ter had reduced filter sizes and output resolution resulting

in reduced accuracy (mAP = 0.808), but require consider-

ably fewer compute operations. We additionally benchmark

the best ResNet50 top-down model which had compara-

ble accuracy to the accurate UNet model (mAP = 0.835)

(Figure 6a). We observe end-to-end inference speeds of

39/86/89 FPS for the ResNet/Accurate/Fast models, re-

spectively, at batch size of 1. Inference greatly benefits from

increased batch sizes as tensor operations can be optimally

parallelized on the GPU at the cost of increased memory

requirements. By increasing the batch size up to 128 im-

ages per batch, we observed speeds of 150/328/430 for the

ResNet/Accurate/Fast models respectively.

Since these experiments were performed with the full

video preloaded in memory, we next benchmarked the more

realistic setting where I/O time is included. We bench-

marked the fast model with three different data sources:

memory, an uncompressed HDF5 dataset chunked by

frame, and an MP4 file encoded with the "superfast"

libx264 preset (Figure 6b). The top speeds achieved

when reading from the HDF5 dataset, which is read-pattern

optimized due to the chunking, occurs at a batch size of

32 which resulted in 314 FPS as compared to the in mem-

ory speed of 385 FPS, reflecting the minimal overhead in

reading from disk. Interestingly, decreased and more vari-

able performance was observed at higher batch sizes, per-

haps due to suboptimal disk access pattern for high band-

width/frequency reads. Loading the image frames from the

MP4 file reduced disk read overhead but was capped by the

CPU decoding of the x264 compressed frames to a peak

speed of 170 FPS at batch size 128. Perhaps further im-

provements could be obtained by moving the decoding to

the GPU to minimize the CPU bottleneck.

Finally, since all our experiments used videos with two

animals, we sought to characterize how the performance

scaled with the number of instances in the frame (Fig-

ure 6c). We collected a new dataset of different numbers

of flies interacting in the behavioral chamber. Previous top-

down multi-instance pose estimation performance results

did not include the instance cropping time and instead re-

ported the performance in terms of crops per second [17].

Although it is theoretically expected that top-down infer-

ence speed will scale linearly with the number of animals,
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this has not been previously reported for a full end-to-end

pipeline. We benchmarked the fast model at a batch size of

32 with videos of 1, 2, 3, 4 and 8 instances per frame and

found that inference speed does indeed scale linearly with

number of animals with a slope of −27.8 FPS per animal.

We note that although the machine used for these anal-

yses is a high-end workstation, we have achieved compara-

ble results with consumer-grade GPUs such as the NVIDIA

GeForce 2080 RTX Ti. In addition, the upcoming gener-

ation of NVIDIA graphics cards that now come equipped

with tensor cores provide huge boosts to neural network in-

ference performance.

4.9. Tracking

Dataset Tracker Videos Switches
per min
(mean ±

sd)

MOTA

Flies Flow

shift

95 0.07 ±

0.69

99.83

Mice Kalman

filter

30 1.26 ±

1.66

99.98

Table 3: Tracking accuracy metrics.

The SLEAP tracking module employs two separate can-

didate instance generation approaches: flow shifting, which

uses image information to predict the displacement of past

instances, and Kalman filtering, which models the motions

of the individual body parts in each instance to predict their

location in the next timestep.

Here we report the tracking accuracy with the best ap-

proach (flow shifting or Kalman filtering) when applied to

the flies and mice dataset (Table 3). For the flies, flow shift-

ing is able to reliably predict the displacement of past in-

stances, likely benefiting from the larger number of tracked

body parts that are well defined (e.g., legs) as well as a much

higher frame rate (150 vs 40). Since fly instances are eas-

ily trackable in the beginning of the session when they are

less likely to interact (courtship interactions slowly ramp up

over time), we evaluated the tracking accuracy only for the

last 5000 frames (33 seconds) of the session, which ends

at copulation and is typically the time when instances are

most likely to be close. During this period, we find that the

tracker commits 0.07± 0.69 identity switches per minute, a

high variance likely resulting from a few particularly diffi-

cult to track examples. For the mice, we employ the Kalman

filter and report the tracking accuracy on the full videos. We

observe more switches per minute (1.26 ± 1.66), which is

not intractable to proofread but leaves plenty of room for

improvement.

5. Discussion

Here we have described SLEAP, a full-featured general-

purpose multi-animal pose tracking framework designed for

flexibility and tested on a diverse array of datasets represen-

tative of common social behavioral monitoring setups and

on a wide range of organisms, from insects to vertebrates.

In future work, we intend to explore a broader class

of backbone architectures, such as encoder-decoders with

more sophisticated block types (e.g., residual or dense), as

well as existing architectures shown to be effective at the

task of human pose estimation such as HRNet [9] which

may be well suited to address the challenges in multi-scale

feature integration.

Although we demonstrated the capability of SLEAP to

achieve end-to-end inference speeds compatible with real-

time/closed-loop applications, we have not yet tested our

models in such applications.

Extending SLEAP to tracking in 3D from multiple views

may be another the direction of future work, though existing

3D pose tracking methods that build off of 2D predictions

can already be configured take advantage of SLEAP [20].

Finally, a particularly important component to develop

in future work with SLEAP will be to incorporate learnable

tracking to enable the pose estimation models to better take

advantage of temporal context. For example, the PAF rep-

resentation could be extended to the time domain [27]. The

top-down approach can also combine detection and tracking

[31], although this requires sets of contiguous ground-truth

frames which greatly increases the time and effort required

for labeling.
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