

1 **Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related**
2 **proteases and its metabolite GBPA exerts antiviral activity**

3

4 **Markus Hoffmann^{1,2}, Heike Hofmann-Winkler¹, Joan C. Smith^{3,4}, Nadine Krüger¹,**
5 **Lambert K. Sørensen⁵, Ole S. Søgaard^{6,7}, Jørgen Bo Hasselstrøm⁵, Michael Winkler¹,**
6 **Tim Hempel^{8,9}, Lluís Raich⁸, Simon Olsson⁸, Takashi Yamazoe¹⁰, Katsura Yamatsuta¹⁰,**
7 **Hirotaka Mizuno¹⁰, Stephan Ludwig^{11,12}, Frank Noé^{8,9,13}, Jason M. Sheltzer⁴,**
8 **Mads Kjolby^{14,15}, Stefan Pöhlmann^{1,2}**

9

10 ¹Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, 37077
11 Göttingen, Germany

12 ²Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany

13 ³Google, Inc., New York City, NY 10011, USA

14 ⁴Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA

15 ⁵Department of Forensic Medicine, Aarhus University, Denmark

16 ⁶Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark

17 ⁷Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark

18 ⁸Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany

19 ⁹Freie Universität Berlin, Department of Physics, Berlin, Germany

20 ¹⁰Discovery Technology Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka 618-8585,
21 Japan

22 ¹¹Institute of Virology (IVM), Westfälische Wilhelms-Universität, 48149 Münster, Germany

23 ¹²Cluster of Excellence “Cells in Motion”, Westfälische Wilhelms-Universität, 48149 Münster,
24 Germany

25 ¹³Rice University, Department of Chemistry, Houston, TX, USA
26 ¹⁴Danish Diabetes Academy and DANDRITE, Department of Biomedicine, Aarhus University,
27 8000 Aarhus, Denmark
28 ¹⁵Department of Clinical Pharmacology, Aarhus University Hospital, 8200 Aarhus, Denmark
29 *Corresponding author: spoehlmann@dpz.eu (S.P.), mhoffmann@dpz.eu (M.H.)

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 **Antiviral therapy is urgently needed to combat the coronavirus disease 2019 (COVID-19)**
48 **pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-**

49 **CoV-2). The protease inhibitor camostat mesylate inhibits SARS-CoV-2 infection of lung**
50 **cells by blocking the virus-activating host cell protease TMPRSS2. Camostat mesylate has**
51 **been approved for treatment of pancreatitis in Japan and is currently being repurposed for**
52 **COVID-19 treatment. However, potential mechanisms of viral resistance as well as**
53 **camostat mesylate metabolism and antiviral activity of metabolites are unclear. Here, we**
54 **show that SARS-CoV-2 can employ TMPRSS2-related host cell proteases for activation and**
55 **that several of them are expressed in viral target cells. However, entry mediated by these**
56 **proteases was blocked by camostat mesylate. The camostat metabolite GBPA inhibited the**
57 **activity of recombinant TMPRSS2 with reduced efficiency as compared to camostat**
58 **mesylate and was rapidly generated in the presence of serum. Importantly, the infection**
59 **experiments in which camostat mesylate was identified as a SARS-CoV-2 inhibitor involved**
60 **preincubation of target cells with camostat mesylate in the presence of serum for 2 h and**
61 **thus allowed conversion of camostat mesylate into GBPA. Indeed, when the antiviral**
62 **activities of GBPA and camostat mesylate were compared in this setting, no major**
63 **differences were identified. Our results indicate that use of TMPRSS2-related proteases for**
64 **entry into target cells will not render SARS-CoV-2 camostat mesylate resistant. Moreover,**
65 **the present and previous findings suggest that the peak concentrations of GBPA established**
66 **after the clinically approved camostat mesylate dose (600 mg/day) will result in antiviral**
67 **activity.**

68

69

70

71 **INTRODUCTION**

72 The outbreak of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-
73 CoV-2) in the city of Wuhan, China, in the winter of 2019 and its subsequent pandemic spread
74 has resulted in more than 14 million cases of coronavirus disease 2019 and more than 600.00
75 deaths (1). Antivirals designed to combat SARS-CoV-2 are not available and repurposing of
76 existing drugs developed against other diseases is considered the fastest option to close this gap
77 (2). Remdesivir, a drug generated to inhibit Ebola virus infection, has recently been shown to
78 reduce the duration of hospitalization for COVID-19 (3). However, the drug failed to reduce
79 fatality significantly (3) and beneficial effects were not observed in a previous clinical trial (4),
80 indicating that additional therapeutic options are needed.

81 We previously showed that the SARS-CoV-2 spike protein (S) uses the host cell factors
82 angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) for
83 entry into target cells (5). TMPRSS2 is a cellular type II transmembrane serine protease (TTSP)
84 expressed in human respiratory epithelium that cleaves and thereby activates the viral S protein.
85 Activation is essential for viral infectivity and we found that the protease inhibitor camostat
86 mesylate, which is known to block TMPRSS2 activity (6), inhibits SARS-CoV-2 infection of
87 lung cells (5). Camostat mesylate has been approved for treatment of pancreatitis in Japan (7-9)
88 and it is currently being investigated as a treatment of COVID-19 in several clinical trials in
89 Denmark, Israel and USA (NCT04321096, NCT04353284, NCT04355052, NCT04374019).

90 The activity of TMPRSS2 is essential for SARS-CoV and MERS-CoV lung infection and
91 disease development (10, 11). Whether TMPRSS2-independent pathways for S protein activation
92 exist and contribute to viral spread outside the lung is not fully understood. The S proteins of
93 SARS-CoV-2 and several other coronaviruses can be activated by the pH-dependent endosomal
94 cysteine protease cathepsin L in certain cell lines (5, 12-15). However, this auxiliary S protein
95 activation pathway is not operative in the lung, likely due to low cathepsin L expression (16).

96 Whether this pathway contributes to the recently reported extrapulmonary spread of SARS-CoV-
97 2 is unknown (17). Similarly, it is unclear whether TTSPs other than TMPRSS2 can promote
98 extrapulmonary SARS-CoV-2 spread. Finally, camostat mesylate is rapidly hydrolyzed into the
99 active metabolite 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA) in patients (18-20) but it
100 is unknown to what extend GBPA inhibits TMPRSS2 activity.

101 Here, we identify TTSPs other than TMPRSS2 that can be used by SARS-CoV-2 for S
102 protein activation and demonstrate that they are inhibited by camostat mesylate. Moreover, we
103 provide evidence that camostat mesylate is rapidly converted into GBPA in cell culture and that
104 GBPA inhibits SARS-CoV-2 entry with almost identical efficiency as compared to camostat
105 mesylate when cells are preincubated with these compounds.

106

107

108

109

110

111

112

113

114

115

116

117

118

119 **RESULTS**

120

121 **Identification of novel SARS-CoV-2 S protein activating proteases**

122 The TTSP family comprises several enzymes which have previously been shown to activate
123 surface glycoproteins of coronaviruses and other viruses, at least upon directed expression (21-
124 23). Therefore, we asked whether the S protein of SARS-CoV-2 (SARS-2-S) can employ TTSPs
125 other than TMPRSS2 for its activation. For this, we expressed different TTSPs along with the
126 SARS-CoV-2 receptor, ACE2, in the otherwise poorly susceptible BHK-21 cells, treated the cells
127 with ammonium chloride, which blocks the cathepsin L-dependent, auxiliary activation pathway,
128 and transduced the cells with previously described vesicular stomatitis virus (VSV)-based
129 pseudotypes bearing SARS-2-S (5). Ammonium chloride treatment strongly reduced SARS-2-S-
130 driven transduction and this effect was rescued upon expression of TMPRSS2 (Fig. 1), as
131 expected. Notably, this effect was also efficiently rescued by expression of TMPRSS13 and, to a
132 lesser degree, TMPRSS11D, TMPRSS11E and TMPRSS11F (Fig. 1). Thus, SARS-2-S can use
133 diverse TTSPs for S protein activation upon overexpression, with S protein activation by
134 TMPRSS13 being particularly robust.

135

136 **Several novel SARS-2-S activators are expressed in the airways and throat**

137 In order to obtain insights into whether SARS-2-S activating TTSPs could contribute to viral
138 spread in the infected host, we asked whether these enzymes are expressed in viral target cells.
139 For this, we analyzed single-cell RNA-Seq datasets collected from human lungs (24) and airways
140 (25). As previously reported (26-31), ACE2 was expressed in the lung epithelial compartment,
141 particularly including alveolar type 2 cells, secretory (goblet/club) cells, and ciliated cells (Fig.
142 2A and Fig. S1). TMPRSS2 and TMPRSS13 were similarly expressed across epithelial cells,
143 although TMPRSS13 expression was generally less robust. In contrast, expression of

144 TMPRSS11-family members was only rarely detected (Fig. 2A). We found that 53% of ACE2⁺
145 cells in the lung co-express TMPRSS2, while 21% of ACE2⁺ cells do not express TMPRSS2 but
146 do express another TTSP capable of activating SARS-CoV-2 (Fig. S1). Within the airways, we
147 observed ACE2 expression in secretory cells, ciliated cells, and suprabasal cells in both the nasal
148 turbinate and the trachea (Fig. 2B). Interestingly, the expression pattern of the TTSPs in the
149 airways was largely distinct: TMPRSS2 was primarily expressed in ciliated and secretory cells,
150 TMPRSS11D was primarily expressed in basal cells, TMPRSS11E was primarily expressed in
151 ionocytes, and TMPRSS13 was primarily expressed in nasal secretory cells (Fig. 2B). Within this
152 dataset, 21% of ACE2⁺ cells co-expressed TMPRSS2, while 24% of ACE2⁺ cells co-expressed a
153 different TTSP (Fig. S1). In total, these results suggest that TMPRSS2 is the dominant SARS-
154 CoV-2-activating protease in the lung, in keeping with findings made for SARS-CoV and MERS-
155 CoV, while the virus may use other activating proteases for spread in the airways.

156 A recent study provided evidence for extrapulmonary replication of SARS-CoV-2 in liver,
157 colon, heart, kidney and blood in some patients (17). Therefore, we asked whether ACE2,
158 TMPRSS2 and related SARS-2-S-activating proteases are expressed in these organs, using
159 published resources (32, 33). Liver, colon, heart and kidney expressed robust levels of ACE2
160 (Fig. 2C). Similarly, TMPRSS2 expression in colon, liver and kidney was readily detectable,
161 although expression levels were lower than those measured for lung (Fig. 2C). In contrast, little
162 to no expression of TMPRSS11D, TMPRSS11E, TMPRSS11F, TMPRSS13 was detected in
163 liver, colon, heart and kidney. Finally, TMPRSS13 was expressed in lung and blood cells and
164 expression of TMPRSS11-family members was readily detectable in esophagus and salivary
165 gland (Fig. 2C). Collectively, the TTSPs able to activate SARS-2-S were not expressed in
166 appreciable levels in potential extrapulmonary targets of SARS-CoV-2. The only exceptions were

167 TMPRS13 and TMPRSS11-family members that might contribute to SARS-CoV-2 infection of
168 blood cells and to viral spread in the throat, respectively.

169

170 **Newly identified SARS-2-S activators are camostat mesylate sensitive**

171 We next asked whether S protein activation by TTSP other than TMPRSS2 can be inhibited by
172 camostat mesylate. To address this question, we performed the rescue assay as described above
173 but investigated whether rescue can be blocked by camostat mesylate. In the absence of TTSP
174 expression in target cells, ammonium chloride but not camostat mesylate reduced SARS-2-S-
175 driven entry and the combination of both substances resulted in similar inhibition as observed
176 upon ammonium chloride treatment alone (Fig. 3). These results are in agreement with only the
177 cathepsin L-dependent auxiliary pathway being operative in control BHK-21 cells, in agreement
178 with our published results (5). In TMPRSS2 transfected cells ammonium chloride did not
179 efficiently block entry (Fig. 3), since under those conditions TMPRSS2 is available for S protein
180 activation. Similarly, no entry inhibition was observed upon blockade of TMPRSS2 activity by
181 camostat mesylate (Fig. 3), since the cathepsin L dependent activation pathway remained
182 operative. Finally, the combination of ammonium chloride and camostat mesylate blocked entry
183 into these cells (Fig. 3), in keeping with both activation pathways (cathepsin L and TMPRSS2)
184 not being available under these conditions. Importantly, a comparable inhibition pattern was
185 observed for all TTSPs able to activate SARS-2-S (Fig. 3), demonstrating that camostat mesylate
186 will likely suppress SARS-CoV-2 activation by TMPRSS2 and TMPRSS2-related S protein
187 activating serine proteases.

188

189 **The camostat mesylate metabolite GBPA shows reduced inhibition of recombinant**
190 **TMPRSS2**

191 Multiple studies show that camostat mesylate is rapidly converted into its active metabolite, 4-(4-
192 guanidinobenzoyloxy)phenylacetic acid (GBPA) in animals and humans, followed by further
193 conversion of GBPA into the inactive metabolite 4-guanidinobenzoic acid (GBA) (18-20, 34)
194 (Fig. 6A). However, the capacity of GBPA to inhibit the enzymatic activity of TMPRSS2 has not
195 been examined. To address this question, we compared inhibition of recombinant TMPRSS2 by
196 camostat mesylate, GBPA and GBA. For this, we used FOY-251, a methanesulfonate of GBPA.
197 We found that FOY-251 exerted a 10-fold reduced capacity to inhibit TMPRSS2 as compared to
198 camostat mesylate, although both compounds completely suppressed TMPRSS2 activity at 1 μ M
199 or higher (Fig. 4). In contrast, GBA was less active (Fig. 4). Thus, FOY-251 blocks TMPRSS2
200 activity but with reduced efficiency as compared to camostat mesylate.

201 In order to obtain insights into the reduced inhibitor activity of FOY-251, we investigated
202 TMPRSS2 inhibition by GBPA on the molecular level. For this, we used a combination of
203 extensive all-atom molecular dynamics (MD) simulations and Markov modeling of the
204 TMPRSS2-GBPA complex (35). Guanidinobenzoate-containing drugs such as camostat mesylate
205 and GBPA inhibit TMPRSS2 by first forming a noncovalent precomplex which is then catalyzed
206 to form a long-lived covalent complex that is the main source of inhibition (36). However, the
207 population of the short-lived precomplex directly relates to the inhibitory activity (35). By
208 computing the TMPRSS2-GBPA binding kinetics (35), we find that (i) the noncovalent
209 TMPRSS2-GBPA complex is metastable, rendering it suitable to form a covalent inhibitory
210 complex, and (ii) its population is 40% lower compared to camostat at equal drug concentrations,
211 consistent with the finding that FOY-251 is a viable but less potent inhibitor (Fig. 4).
212 Structurally, we find that GBPA binds in the same manner as camostat (Fig. 5, (35)). The main
213 stabilizing interaction is its Guanidinium group binding into TMPRSS2's S1 pocket which is
214 stabilized by a transient salt bridge with Asp 435. The GBPA ester group can interact with the

215 catalytic Ser 441, making it prone for catalysis and formation of the catalytic complex. The
216 slightly lower stability of the GBPA compared to the camostat mesylate-TMPRSS2 complex is
217 consistent with GBPA's shorter tail which has less possibilities to interact with the hydrophobic
218 patch on the TMPRSS2 binding site shown in Fig. 5, left panel.

219

220 **Rapid conversion of camostat mesylate to GBPA in cell culture**

221 Although camostat mesylate is rapidly metabolized in animals and humans, it is less clear
222 whether conversion of camostat mesylate into GBPA and GBA also occurs in cell culture. We
223 addressed this question by exposing camostat mesylate to culture medium containing fetal calf
224 serum (FCS), which is standardly used for cell culture, followed by mass spectrometric
225 quantification of camostat mesylate and GBPA levels. Camostat mesylate levels rapidly declined
226 with a half-life of approximately 2 h and the compound being barely detectable after 8 h (Fig.
227 6B). Conversely, the levels of the camostat mesylate metabolite GBPA increased rapidly, with
228 peak levels attained at 8 h, and then remained relatively stable (Fig. 6B). Finally, the rapid
229 metabolism of camostat mesylate into GBPA in the presence of serum was further confirmed
230 by incubation of camostat mesylate in either water or FCS-containing culture medium for 1 min
231 followed by quantification of camostat mesylate and GBPA levels. While GBPA levels were at
232 background level when camostat mesylate was incubated in water, ~5.4 % of camostat mesylate
233 was metabolized into GBPA when incubated in FCS-containing culture medium (Fig. 6C). Thus,
234 camostat mesylate is rapidly converted into GBPA under standard cell culture conditions, but the
235 conversion is slower than what is observed in humans (20).

236

237 **Camostat mesylate and FOY-251 inhibit SARS-CoV-2 infection with comparable efficiency**

238 We finally compared the antiviral activity of camostat mesylate and FOY-251, the

239 methanesulfonate of GBPA, in cell culture. The reduced ability of FOY-251 to block the
240 enzymatic activity of recombinant TMPRSS2 as compared to camostat mesylate would suggest
241 that the compound should also exert reduced antiviral activity. On the other hand, analysis of
242 antiviral activity encompasses preincubation of target cells with camostat mesylate for 2 h in the
243 presence of FCS, which allows conversion of camostat mesylate into GBPA, as demonstrated
244 above. Indeed, titration experiments with VSV pseudotypes and Calu-3 lung cells as targets
245 revealed that entry inhibition by FOY-251 was only slightly reduced as compared to camostat
246 mesylate, with EC50 values of 107 nM (camostat mesylate) and 178 nM (FOY-251) (Fig. 7).
247 Moreover, no marked differences in inhibition of infection of Calu-3 cells with authentic SARS-
248 CoV-2 were observed (Fig. 8). Thus, under the conditions chosen camostat mesylate and GBPA
249 exerted comparable antiviral activity, likely due to conversion of camostat mesylate into GBPA.
250

251

252

253

254

255

256

257

258

259

260

261

262

263 **DISCUSSION**

264 With the exception of remdesivir, which reduces disease duration (3), and dexamethasone, which
265 reduces mortality in ICU patients by targeting inflammation (37), there are currently no drugs
266 against COVID-19 with efficacy proven in clinical trials. We previously reported that the
267 protease inhibitor camostat mesylate inhibits SARS-CoV-2 infection of cultured lung cells by
268 blocking the virus-activating cellular protease TMPRSS2 (5). Camostat mesylate has been
269 approved for human use in Japan and may thus constitute a COVID-19 treatment option. Here,
270 we provide evidence that the virus can use TMPRSS2-related proteases for S protein activation
271 and that these enzymes are also blocked by camostat mesylate. Moreover, we demonstrate that
272 the camostat mesylate metabolite GBPA exhibits reduced ability to block enzymatic activity of
273 purified, recombinant TMPRSS2 and is rapidly produced under cell culture conditions. The rapid
274 conversion of camostat mesylate into GBPA likely accounts for our finding that both compounds
275 exerted similar antiviral activity.

276 Knock-out of TMPRSS2 in mice markedly reduces SARS-CoV and MERS-CoV infection
277 (10) and disease development, and similar findings have been reported for influenza A viruses
278 (IAV) (38-40), which also use TMPRSS2 for glycoprotein activation (41). Thus, TMPRSS2
279 activity is essential for CoV and IAV infection of the lung. In contrast, several members of the
280 TTSP family other than TMPRSS2 can activate CoV and IAV glycoproteins and support viral
281 spread in cell culture, at least upon directed expression (21, 23, 41). Whether these TTSPs play a
282 role in viral spread in the host is incompletely understood. For IAV, infection by H3N2 viruses
283 were found not to be fully TMPRSS2 dependent (38, 42) and an auxiliary role of TMPRSS4 in
284 spread and pathogenesis of H3N2 viruses has been reported (43, 44). Moreover, influenza B
285 viruses can use a broad range of TTSPs in cell culture (44, 45) and a prominent role of TMPRSS2

286 in viral spread in type II pneumocytes has been reported (46) but viral spread in mice is
287 TMPRSS2 independent (44, 47).

288 The present study shows that also SARS-CoV-2 can use TTSPs other than TMPRSS2 for
289 S protein activation. Whether the TTSPs found here to activate SARS-2-S upon directed
290 expression play a role in viral spread in the host remains to be investigated. Expression analyses
291 suggest that they may. TMPRSS13 activated SARS-2-S with similar efficiency as TMPRSS2 and
292 TMPRSS13 mRNA was found to be coexpressed with ACE2 in type II pneumocytes, goblet and
293 club cells and basal cells. Moreover, TMPRSS13 was expressed in blood cells, which may
294 constitute a target for SARS-CoV-2 infection in some patients. Finally, and most notably, SARS-
295 S-2 activating TTSPs showed distinct expression patterns in the upper respiratory tract and
296 several potential target cells coexpressed ACE2 jointly with a novel S protein activating TTSP
297 but not TMPRSS2. Although viral spread supported by TMPRSS13 and potentially other SARS-
298 2-S activating TTSPs could contribute to transmission and pathogenesis, it would still be
299 sensitive to blockade by camostat mesylate. Thus, usage of auxiliary TTSPs for S protein
300 activation would not confer camostat mesylate resistance to SARS-CoV-2.

301 In animal and humans camostat mesylate is rapidly hydrolyzed into the active metabolite
302 4-(4-guanidinobenzoyloxy) phenylacetic acid (GBPA), which is further hydrolyzed to 4-
303 guanidinobenzoic acid (GBA) (18-20). GBPA was known to retain protease inhibitor activity (34,
304 48) but it was unclear whether GBPA would block TMPRSS2 activity with the same efficiency
305 as camostat mesylate. Inhibition studies carried out with recombinant TMPRSS2 demonstrated
306 that although GBPA robustly blocked TMPRSS2 activity, the compound was about 10-fold less
307 active than camostat mesylate, which roughly matches results reported for other proteases (49).
308 This finding raised the question whether camostat mesylate conversion into GBPA also occurs in
309 cell culture systems used to assess antiviral activity of camostat mesylate. Indeed, camostat

310 mesylate was rapidly converted into GBPA in the presence of serum which may account for
311 camostat mesylate and FOY-251 exerting roughly comparable antiviral activity when cells were
312 preincubated with these compounds for 2 h in the presence of serum. This has important
313 implications for COVID-19 treatment, considering that continuous IV infusion of camostat
314 mesylate (40 mg) resulted in a maximal plasma GBPA concentration of 0.22 μ M and peak
315 plasma concentrations of GBPA in humans upon oral intake of 200 mg camostat mesylate can
316 reach 0.25 μ M (<http://www.shijiebiaopin.net/upload/product/201272318373223.PDF>). Provided
317 that concentrations in plasma and in respiratory epithelium are comparable, this would suggest
318 that GBPA peak levels attained with the dosage approved for pancreatitis treatment (200 mg
319 camostat mesylate three times a day) would be sufficient to exert antiviral activity.

320 Collectively, our results indicate that camostat mesylate constitutes a viable treatment
321 option for COVID-19. Independent of its antiviral activity, camostat mesylate might reduce the
322 uncontrolled cytokine release observed in severe COVID-19, since TMPRSS2 expression is
323 required for robust cytokine release upon exposure of mice to polyIC (10).

324

325

326

327

328

329

330

331

332

333

334 **MATERIALS AND METHODS**

335

336 **Cell culture**

337 BHK-21 (baby hamster kidney; ATCC no. CCL-10) and HEK-293T (human embryonic kidney;
338 DSMZ no. ACC 635) cells were cultivated in Dulbecco's modified Eagle medium supplemented
339 with 10 % fetal bovine serum (FCS, Biochrom), 100 U/mL of penicillin and 0.1 mg/mL of
340 streptomycin (PAN-Biotech). Calu-3 cells (human lung adenocarcinoma) were cultivated in
341 minimum essential medium (MEM) containing 10 % FCS (Biochrom), 100 U/mL of penicillin
342 and 0.1 mg/mL of streptomycin (PAN-Biotech), 1x non-essential amino acid solution (from 100x
343 stock, PAA) and 10mM sodium pyruvate (Thermo Fisher Scientific). Cell lines were incubated at
344 37 °C in a humidified atmosphere containing 5 % CO₂. Transfection of 293T cells was performed
345 by calcium-phosphate precipitation, while Lipofectamine LTX with Plus reagent (Thermo Fisher
346 Scientific) was used for transfection of BHK-21 cells.

347

348 **Plasmids**

349 We employed pCAGGS-based expression vectors for VSV-G, TMPRSS2, TMPRSS3,
350 TMPRSS4, TMPRSS10, TMPRSS11A, TMPRSS11B, TMPRSS11D, TMPRSS11E,
351 TMPRSS11F and TMPRSS13 that have either been previously described elsewhere or
352 constructed on existing expression vectors (21-23, 50-52). All proteases contained an N-terminal
353 cMYC-epitope tag. Further, we used pCG1-based expression vectors for human ACE2 (53) and a
354 SARS-2-S variant with a truncated cytoplasmic tail for improved pseudotype particle production
355 (deletion of last 18 amino acid residues,(54))

356

357 **Preparation of camostat mesylate and GBPA stocks**

358 Camostat mesylate and GBPA were obtained from Ono pharmaceuticals Co., LTD.
359 (Osaka/Japan) and reconstituted in DMSO to yield stock solutions of 100 mM. Stocks were
360 stored at -20 °C, thawed immediately before the experiment and residual compound was
361 discarded.

362

363 **Mass spectrometric quantification of camostat mesylate metabolism**

364 Camostat mesylate was diluted to a concentration of ~15 µM in either water or MEM containing
365 10 % FCS and incubated for 1 min (water and medium samples), 15 min, 30 min, 1 h, 2 h, 4 h, 8
366 h and 24 h (only medium samples) at 37 °C. Next, samples were snap-frozen and stored at -80 °C
367 until camostat mesylate, GBPA and GBA levels were quantified by mass spectrometry. An ultra-
368 high-performance liquid chromatography tandem mass spectrometry method using pneumatically
369 assisted electrospray ionisation (UHPLC-ESI-MS/MS) was used for quantification of camostat
370 and 4-(4-guanidinobenzoyloxy) phenylacetic acid (GBPA) in liquid samples. Calibrants based
371 on blank sample were used for the construction of 8-point calibration curves. Calibrants were
372 prepared with concentrations of 0.1, 1, 25, 50, 75, 100, 500 and 1000 µg/L of camostat and
373 GBPA. In addition, a blank sample (a processed matrix sample without any added analyte) and a
374 blank sample spiked with SIL-IS were included to verify the absence of detectable concentrations
375 of the analytes. The calibration curves were created by weighted (1/x) regression analysis of the
376 SIL-IS normalised peak areas (analyte area/IS area).

377

378 **Preparation of pseudotype particles**

379 We employed a previously published protocol to generate vesicular stomatitis virus (VSV)
380 pseudotype particles that is based on a replication-deficient VSV containing eGFP and firefly
381 luciferase (FLuc) reporter genes, VSV*ΔG-FLuc (kindly provided by Gert Zimmer, Institute of

382 Virology and Immunology IVI, Mittelhäusern/Switzerland) (5, 55). For this, HEK-293T cells
383 were first transfected with expression vector for either SARS-2-S or VSV-G (or empty
384 expression vector, control). At 24 h post transfection, cells were inoculated with VSV-G-
385 transcomplemented VSV*ΔG-FLuc at a multiplicity of infection (MOI) of 3 and incubated for 1
386 h at 37 °C and 5 % CO₂. Next, the inoculum was removed and cells were washed with PBS
387 before fresh culture medium was added. In case of cells transfected with SARS-2-S-encoding
388 vector or empty plasmid, the medium was spiked with anti-VSV-G antibody (supernatant of
389 CRL-2700 cells, 1:1,000) in order to inactivate residual input virus containing VSV-G. At 16-18
390 h post inoculation, the culture supernatant was harvested and centrifuged (2,000 x g, 10 min) to
391 remove cellular debris. Clarified supernatants containing pseudotype particles were aliquoted and
392 stored at -80 °C until further use.

393

394 **Preparation of TMPRSS2 recombinant protein and substrate**

395 Human TMPRSS2 (Recombinant N-terminus 6xHis, aa106-492) (Cat # LS-G57269-20) protein
396 was acquired from LifeSpan Biosciences. Peptide Boc-Gln-Ala-Arg-MCA for the enzyme
397 substrate was acquired from Peptide Institute, Inc.

398

399 **TMPRSS2 enzyme assay**

400 All of different concentrations of test compounds were dissolved in DMSO and diluted with
401 assay buffer (50 mM Tris-HCl pH 8.0, 154 mM NaCl) to the final DMSO concentration of 1%.
402 Compound solution and Boc-Gln-Ala-Arg-MCA (10 μM final concentration) were added into the
403 384-well black plate (Greiner 784076). Then, enzyme reaction was started after adding
404 TMPRSS2 recombinant protein to a final concentration of 2 μg/mL. Fluorescence intensity was
405 read using the Envision plate reader with excitation: 380 nm and emission: 460 nm in 2 min

406 intervals over 60 min at room temperature. The IC₅₀ value was calculated based on the increasing
407 rate of fluorescence intensity.

408

409 **Molecular dynamics simulations and Markov modeling**

410 We used extensive all-atom molecular dynamics (MD) simulations of TMPRSS2 in complex
411 with camostat as described in (35) starting from a homology model (56), in which drug binding
412 and dissociation are sampled multiple times. We have then replaced camostat with GBPA and
413 simulated a total of 50 μ s MD with the same simulation setup as in [1] and used Markov
414 modeling (57) to extract the dominant metastable binding modes of GBPA to the TMPRSS2
415 target on an atomistic scale. We estimate the binding kinetics of GBPA to the non-covalent
416 complex by re-estimating the camostat Markov model described in (35) with the TMPRSS2-
417 GBPA data. At the simulated drug concentration the association constant of GBPA is found to
418 have a maximum likelihood estimate of 60% compared to that of camostat, resulting in a
419 correspondingly lower inhibitory activity following the kinetic model of (35). Bootstrapping of
420 trajectories under the constraint of comparable implied timescales yields a confidence interval of
421 51-100 % (68 % percentile).

422

423 **Transduction experiments**

424 The day before transduction, BHK-21 cells were transfected with an expression vector for ACE2
425 and either empty expression plasmid (control) or expression vector encoding TMPRSS2,
426 TMPRSS3, TMPRSS4, TMPRSS10, TMPRSS11A, TMPRSS11B, TMPRSS11D, TMPRSS11E,
427 TMPRSS11F or TMPRSS13. For this, the old culture medium was removed and 50 μ l/well of
428 fresh culture medium were added. Next, transfection mixtures were prepared. For one well 0.1 μ g
429 of ACE2-encoding vector and 0.02 μ g of protease-encoding vector (or empty plasmid) were

430 mixed with 1 μ l of Plus reagent, 50 μ l of Opti-MEM medium (Thermo Fisher Scientific) and 1 μ l
431 of Lipofectamine LTX reagent. The transfection mix was vortexed and incubated for 30 min at
432 room temperature before it was added to the cells. At 6 h post transfection, the transfection
433 medium was replaced by fresh culture medium and the cells were further incubated for ~18 h.
434 Then, the cells were either pre-incubated for 2 h with inhibitor (50 mM ammonium chloride
435 [Sigma-Aldrich], 100 μ M camostat mesylate or a combination of both; cell treated with DMSO
436 served as controls) before transduction or directly inoculated with pseudotype particles bearing
437 SARS-2-S or cells. For transduction of Calu-3 cells, cells were pre-incubated for 2 h at 37 °C and
438 5 % CO₂ with different concentrations (0.01, 0.1, 1, 10, 100 μ M) of camostat mesylate, FOY-251
439 or DMSO (control), before they were inoculated with pseudotype particles bearing SARS-2-S or
440 VSV-G. At 16 h post inoculation, transduction efficiency was analyzed by measuring the activity
441 of virus-encoded FLuc in cell lysates. For this, the cell culture medium was removed and cells
442 were incubated for 30 min with 1x concentrated Cell Culture Lysis Reagent (Promega), before
443 cell lysates were transferred into white opaque-walled 96-well plates and luminescence was
444 recorded (1 sec/sample) using a Hidex Sense plate luminometer (Hidex) and a commercial
445 substrate (Beetle-Juice, PJK).

446

447 **Analysis of cell vitality**

448 For the analysis of cell vitality of Calu-3 cells treated with camostat mesylate or FOY-251 the
449 CellTiter-Glo Luminescent Cell Viability Assay kit (Promega) was used. For this, Calu-3 cells
450 were grown in 96-well plates to reach ~50% confluence, before they were incubated in the
451 presence of different concentrations of camostat mesylate or FOY-251 for 24 h. Cells treated with
452 DMSO (solvent control) served as controls. Following incubation, 100 μ l of CellTiter-Glo
453 substrate were added per well and the samples were incubated for 30 min on a rocking platform.

454 In addition, fresh culture medium (without cells) was also incubated with CellTiter-Glo substrate
455 in order to define the assay background. Following incubation, the samples were transferred into
456 white opaque-walled 96-well plates and luminescence was recorded (200 msec/sample) using a
457 Hidex Sense plate luminometer (Hidex).

458

459 **Infection of Calu-3 cells with authentic SARS-CoV-2**

460 The SARS-CoV-2 isolate hCoV-19/Germany/FI1103201/2020 (GISAID accession EPI-
461 ISL_463008) was isolated at the Institute of Virology, Muenster, Germany, from a patient
462 returning from the Southern Tyrolean ski areas and propagated in Vero-TMPRSS2 cells. Calu-3
463 cells were pre-incubated for 2 h with 2-fold concentrated camostat mesylate or FOY-251 (2, 20
464 or 200 μ M), or DMSO (control), before they were inoculated with SARS-CoV-2 at an MOI of
465 0.001 or 0.01. For this, the identical volume of virus-containing medium was added to the
466 inhibitor-containing medium on the cells (resulting in 1-fold concentrated camostat mesylate or
467 FOY-251; 1, 10 or 100 μ M). Following 1 h of incubation at 37 °C and 5 % CO₂, the culture
468 supernatant was removed and cells were washed two times with excess PBS before culture
469 medium containing 1-fold concentrated inhibitor was added. Supernatants were harvested at 24 h
470 post inoculation and subjected to plaque titration. For this, confluent Vero-TMPRSS2 cells were
471 inoculated with 10-fold serial dilutions of supernatant and incubated for 1 h 37 °C and 5 % CO₂.
472 Thereafter, the inoculum was removed and cells were incubated with culture medium containing
473 1 % (w/v) methyl cellulose. Plaques were counted at 48 h post infection and titers determined as
474 plaque forming units per ml (pfu/ml).

475

476 **TTSP expression analysis**

477 Bulk tissue expression data were obtained from the GTEx portal (33). Single-cell expression data
478 from human lungs were obtained from GSE1229603. Only IPF and cryobiopsy lung explants
479 were used in this analysis. Single-cell expression data from human airways was obtained from
480 <https://www.genomique.eu/cellbrowser/HCA/4>. The single-cell data was analyzed as described in
481 Smith et al (29). In short, dimensionality reduction and clustering were performed on normalized
482 expression data in python using Scanpy and the Multicore-TSNE package (58, 59). Low quality
483 cells were filtered out by removing cells with fewer than 500 detected genes. Highly variable
484 genes were computed using the Seurat approach in Scanpy, and then used to calculate the
485 principle component analysis. T-SNE and Leiden clustering were calculated using nearest
486 neighbors, with parameters as described in the associated code. Cell clusters were labeled
487 manually by comparing the expression patterns of established marker genes with the lists of
488 differentially-expressed genes produced by Scanpy (60-63). The code used for performing these
489 analyses is available at <https://github.com/joan-smith/covid19-proteases/>.

490

491 **Statistical analyses**

492 All statistical analyses were performed using GraphPad Prism (version 8.4.2, GraphPad Software,
493 Inc.). Statistical significance of differences between two datasets was analyzed by paired, two-
494 tailed student's t-test, while two-way analysis of variance (ANOVA) with Dunnett's posttest was
495 used for comparison of multiple datasets (the exact method used is stated in the figure legends).
496 For the calculation of the turnover time required for metabolism of 50 % of camostat mesylate
497 ($T_{1/2}$) as well as the effective concentration 50 (EC50) values, which indicate the inhibitor
498 concentration leading to 50 % reduction of transduction, non-linear fit regression models were
499 used.

500

501 **SUPPLEMENTARY MATERIALS**

502 Fig. S1, panel A. A track plot displaying the expression of ACE2, S-activating proteases, and
503 several lineage-enriched genes in different lung cell populations obtained from Leiden clustering.

504 Fig. S1, panel B. A track plot displaying the expression of ACE2, S-activating proteases, and
505 several lineage-enriched genes in different airway cell populations obtained from Leiden
506 clustering.

507 Fig. S1, panel C. The percent of cells in the lung that express the indicated single gene or pair of
508 genes are displayed.

509 Fig. S1, panel D. The percent of cells in the airway that express the indicated single gene or pair
510 of genes are displayed.

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525 **REFERENCES AND NOTES**

526 1. World Health Organization. Coronavirus disease (COVID-19) Situation Report – 184
527 (2020).

528 2. J. Santos *et al.*, Repurposing Therapeutics for Potential Treatment of SARS-CoV-2: A
529 Review. *Viruses* **12**, (2020).

530 3. J. H. Beigel *et al.*, Remdesivir for the Treatment of Covid-19 - Preliminary Report. *N
531 Engl J Med*, (2020).

532 4. Y. Wang *et al.*, Remdesivir in adults with severe COVID-19: a randomised, double-blind,
533 placebo-controlled, multicentre trial. *Lancet* **395**, 1569-1578 (2020).

534 5. M. Hoffmann *et al.*, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
535 Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280 e278 (2020).

536 6. M. Kawase, K. Shirato, L. van der Hoek, F. Taguchi, S. Matsuyama, Simultaneous
537 treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors
538 prevents severe acute respiratory syndrome coronavirus entry. *J Virol* **86**, 6537-6545
539 (2012).

540 7. M. Abe, Use of FOY-305 for the treatment of pain attacks associated with chronic
541 pancreatitis. *New Horiz Med*. **12**, 233 (1980).

542 8. K. Ishii, Evaluation of the efficacy of FOY-305 in pancreatitis: multicenter, double-blind
543 study. *New Horiz Med* **12**, 261 (1980).

544 9. G. Ohshio, A. K. Saluja, U. Leli, A. Sengupta, M. L. Steer, Esterase inhibitors prevent
545 lysosomal enzyme redistribution in two noninvasive models of experimental pancreatitis.
546 *Gastroenterology* **96**, 853-859 (1989).

547 10. N. Iwata-Yoshikawa *et al.*, TMPRSS2 Contributes to Virus Spread and Immunopathology
548 in the Airways of Murine Models after Coronavirus Infection. *J Virol* **93**, (2019).

549 11. Y. Zhou *et al.*, Protease inhibitors targeting coronavirus and filovirus entry. *Antiviral Res*
550 **116**, 76-84 (2015).

551 12. S. Gierer *et al.*, The spike protein of the emerging betacoronavirus EMC uses a novel
552 coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by
553 neutralizing antibodies. *J Virol* **87**, 5502-5511 (2013).

554 13. Z. Qian, S. R. Dominguez, K. V. Holmes, Role of the spike glycoprotein of human
555 Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia
556 formation. *PLoS One* **8**, e76469 (2013).

557 14. K. Shirato, M. Kawase, S. Matsuyama, Middle East respiratory syndrome coronavirus
558 infection mediated by the transmembrane serine protease TMPRSS2. *J Virol* **87**, 12552-
559 12561 (2013).

560 15. G. Simmons *et al.*, Inhibitors of cathepsin L prevent severe acute respiratory syndrome
561 coronavirus entry. *Proc Natl Acad Sci U S A* **102**, 11876-11881 (2005).

562 16. J. E. Park *et al.*, Proteolytic processing of Middle East respiratory syndrome coronavirus
563 spikes expands virus tropism. *Proc Natl Acad Sci U S A* **113**, 12262-12267 (2016).

564 17. V. G. Puelles *et al.*, Multiorgan and Renal Tropism of SARS-CoV-2. *N Engl J Med*,
565 (2020).

566 18. K. Beckh, B. Goke, R. Muller, R. Arnold, Elimination of the low-molecular weight
567 proteinase inhibitor camostate (FOY 305) and its degradation products by the rat liver.
568 *Res Exp Med (Berl)* **187**, 401-406 (1987).

569 19. K. Beckh, H. Weidenbach, F. Weidenbach, R. Muller, G. Adler, Hepatic and pancreatic
570 metabolism and biliary excretion of the protease inhibitor camostat mesilate. *Int J
571 Pancreatol* **10**, 197-205 (1991).

572 20. I. Midgley *et al.*, Metabolic fate of 14C-camostat mesylate in man, rat and dog after
573 intravenous administration. *Xenobiotica* **24**, 79-92 (1994).

574 21. S. Bertram *et al.*, Cleavage and activation of the severe acute respiratory syndrome
575 coronavirus spike protein by human airway trypsin-like protease. *J Virol* **85**, 13363-13372
576 (2011).

577 22. C. Chaipan *et al.*, Proteolytic activation of the 1918 influenza virus hemagglutinin. *J Virol*
578 **83**, 3200-3211 (2009).

579 23. P. Zmora *et al.*, DESC1 and MSPL activate influenza A viruses and emerging
580 coronaviruses for host cell entry. *J Virol* **88**, 12087-12097 (2014).

581 24. P. A. Reyfman *et al.*, Single-Cell Transcriptomic Analysis of Human Lung Provides
582 Insights into the Pathobiology of Pulmonary Fibrosis. *Am J Respir Crit Care Med* **199**,
583 1517-1536 (2019).

584 25. J. Deprez *et al.* (bioRxiv, 2019).

585 26. Y. Ding *et al.*, Organ distribution of severe acute respiratory syndrome (SARS) associated
586 coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus
587 transmission pathways. *J Pathol* **203**, 622-630 (2004).

588 27. I. Hamming *et al.*, Tissue distribution of ACE2 protein, the functional receptor for SARS
589 coronavirus. A first step in understanding SARS pathogenesis. *J Pathol* **203**, 631-637
590 (2004).

591 28. S. Lukassen *et al.*, SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed
592 in bronchial transient secretory cells. *EMBO J* **39**, e105114 (2020).

593 29. J. C. Smith *et al.*, Cigarette Smoke Exposure and Inflammatory Signaling Increase the
594 Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. *Dev Cell* **53**,
595 514-529 e513 (2020).

596 30. W. Sungnak *et al.*, SARS-CoV-2 entry factors are highly expressed in nasal epithelial
597 cells together with innate immune genes. *Nat Med* **26**, 681-687 (2020).

598 31. C. G. K. Ziegler *et al.*, SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in
599 Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues.
600 *Cell* **181**, 1016-1035 e1019 (2020).

601 32. L. J. Carithers, H. M. Moore, The Genotype-Tissue Expression (GTEx) Project.
602 *Biopreserv Biobank* **13**, 307-308 (2015).

603 33. G. T. Consortium, The Genotype-Tissue Expression (GTEx) project. *Nat Genet* **45**, 580-
604 585 (2013).

605 34. S. Ohki, H. Nishiyama, K. Ozeki, H. Ito, F. Hirata, Studies on absorption, distribution,
606 metabolism and excretion of [14C] FOY-305. *Gendai-Iryo* **12**, 71-82 (1980).

607 35. T. Hempel *et al.*, Molecular mechanism of SARS-CoV-2 cell entry inhibition via
608 TMPRSS2 by Camostat and Nafamostat mesylate. *bioRxiv*, 2020.2007.2021.214098
609 (2020).

610 36. M. K. Ramjee, I. M. Henderson, S. B. McLoughlin, A. Padova, The kinetic and structural
611 characterization of the reaction of nafamostat with bovine pancreatic trypsin. *Thromb Res*
612 **98**, 559-569 (2000).

613 37. P. Horby *et al.*, Effect of Dexamethasone in Hospitalized Patients with COVID-19:
614 Preliminary Report. *medRxiv*, 2020.2006.2022.20137273 (2020).

615 38. B. Hatesuer *et al.*, Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice.
616 *PLoS Pathog* **9**, e1003774 (2013).

617 39. K. Sakai *et al.*, The host protease TMPRSS2 plays a major role in in vivo replication of
618 emerging H7N9 and seasonal influenza viruses. *J Virol* **88**, 5608-5616 (2014).

619 40. C. Tarnow *et al.*, TMPRSS2 is a host factor that is essential for pneumotropism and
620 pathogenicity of H7N9 influenza A virus in mice. *J Virol* **88**, 4744-4751 (2014).

621 41. E. Bottcher *et al.*, Proteolytic activation of influenza viruses by serine proteases
622 TMPRSS2 and HAT from human airway epithelium. *J Virol* **80**, 9896-9898 (2006).

623 42. K. Sakai *et al.*, A mutant H3N2 influenza virus uses an alternative activation mechanism
624 in TMPRSS2 knockout mice by loss of an oligosaccharide in the hemagglutinin stalk
625 region. *J Virol* **89**, 5154-5158 (2015).

626 43. N. Kuhn *et al.*, The Proteolytic Activation of (H3N2) Influenza A Virus Hemagglutinin Is
627 Facilitated by Different Type II Transmembrane Serine Proteases. *J Virol* **90**, 4298-4307
628 (2016).

629 44. A. Harbig *et al.*, Transcriptome profiling and protease inhibition experiments identify
630 proteases that activate H3N2 influenza A and influenza B viruses in murine airway. *J Biol
631 Chem*, (2020).

632 45. M. Laporte *et al.*, Hemagglutinin Cleavability, Acid Stability, and Temperature
633 Dependence Optimize Influenza B Virus for Replication in Human Airways. *J Virol* **94**,
634 (2019).

635 46. H. Limburg *et al.*, TMPRSS2 Is the Major Activating Protease of Influenza A Virus in
636 Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes. *J
637 Virol* **93**, (2019).

638 47. K. Sakai *et al.*, TMPRSS2 Independency for Haemagglutinin Cleavage In Vivo
639 Differentiates Influenza B Virus from Influenza A Virus. *Sci Rep* **6**, 29430 (2016).

640 48. H. Yonezawa, Discrepancy between the potency of various trypsin inhibitors to inhibit
641 trypsin activity and the potency to release biologically active cholecystokinin-
642 pancreozymin. *Jpn J Physiol* **34**, 849-856 (1984).

643 49. K. Senokuchi *et al.*, New orally active serine protease inhibitors. *J Med Chem* **38**, 2521-
644 2523 (1995).

645 50. C. Brinkmann *et al.*, The glycoprotein of vesicular stomatitis virus promotes release of
646 virus-like particles from tetherin-positive cells. *PLoS One* **12**, e0189073 (2017).

647 51. H. Jung *et al.*, TMPRSS4 promotes invasion, migration and metastasis of human tumor
648 cells by facilitating an epithelial-mesenchymal transition. *Oncogene* **27**, 2635-2647
649 (2008).

650 52. P. Zmora *et al.*, TMPRSS11A activates the influenza A virus hemagglutinin and the
651 MERS coronavirus spike protein and is insensitive against blockade by HAI-1. *J Biol
652 Chem* **293**, 13863-13873 (2018).

653 53. M. Hoffmann *et al.*, Differential sensitivity of bat cells to infection by enveloped RNA
654 viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. *PLoS One* **8**,
655 e72942 (2013).

656 54. M. Hoffmann, H. Kleine-Weber, S. Pohlmann, A Multibasic Cleavage Site in the Spike
657 Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. *Mol Cell* **78**,
658 779-784 e775 (2020).

659 55. M. Berger Rentsch, G. Zimmer, A vesicular stomatitis virus replicon-based bioassay for
660 the rapid and sensitive determination of multi-species type I interferon. *PLoS One* **6**,
661 e25858 (2011).

662 56. R. Stefano *et al.*, Homology Modeling of TMPRSS2 Yields Candidate Drugs That May
663 Inhibit Entry of SARS-CoV-2 into Human Cells. (2020).

664 57. J. H. Prinz *et al.*, Markov models of molecular kinetics: generation and validation. *J Chem
665 Phys* **134**, 174105 (2011).

666 58. D. Ulyanov. (2020).

667 59. F. A. Wolf, P. Angerer, F. J. Theis, SCANPY: large-scale single-cell gene expression data
668 analysis. *Genome Biol* **19**, 15 (2018).

669 60. M. E. Ardini-Poleske *et al.*, LungMAP: The Molecular Atlas of Lung Development
670 Program. *Am J Physiol Lung Cell Mol Physiol* **313**, L733-L740 (2017).

671 61. C. Muus *et al.*, Integrated analyses of single-cell atlases reveal age, gender, and smoking
672 status associations with cell type-specific expression of mediators of SARS-CoV-2 viral
673 entry and highlights inflammatory programs in putative target cells. *bioRxiv*,
674 2020.2004.2019.049254 (2020).

675 62. J. Cuzick, P. Boyle, Trends in cervix cancer mortality. *Cancer Surv* **7**, 417-439 (1988).

676 63. K. J. Travaglini *et al.*, A molecular cell atlas of the human lung from single cell RNA
677 sequencing. *bioRxiv*, 742320 (2019).

678
679 **Acknowledgments:** We are grateful for in-depth discussions with Katarina Elez, Robin Winter,
680 Tuan Le, Moritz Hoffmann (FU Berlin) and the members of the JEDI COVID-19 grand
681 challenge. **Funding:** Research in the Sheltzer Lab was supported by NIH grants 1DP5OD021385
682 and R01CA237652-01, a Damon Runyon-Rachleff Innovation award, an American Cancer
683 Society Research Scholar Grant, and a grant from the New York Community Trust. The Noé lab
684 was supported by Deutsche Forschungsgemeinschaft DFG (SFB/TRR 186, Project A12), the
685 European Commission (ERC CoG 772230 "ScaleCell"), the Berlin Mathematics center MATH+
686 (AA1-6) and the federal ministry of education and research BMBF (BIFOLD). The Pöhlmann lab
687 was supported by BMBF (RAPID Consortium, 01KI1723D). The Kjolby lab was supported by
688 the Lundbeck Foundation (M.K., O.S.) and the Novo Nordisk Foundation (M.K.). **Author**
689 **contributions:** M.H., H.M., F.N., J.M.S., M.K. and S.P. designed the study. M.H., H.H.-W.,
690 J.C.S., N.K., LK.S., O.S.S., J.B.H., T.H., L.R., S.O., T.Y., K.Y., and J.M.S., performed research.
691 M.H., J.C.S., H.M., T.H., F.N. J.S.M., M.K. and S.P. analyzed the data. M.W. and S.L. provided
692 essential reagents. M.H. and S.P. wrote the manuscript. All authors revised the manuscript.
693 **Competing interests:** J.C.S. is a co-founder of Meliora Therapeutics and is an employee of
694 Google, Inc. This work was performed outside of her affiliation with Google and used no
695 proprietary knowledge or materials from Google. J.M.S. has received consulting fees from Ono
696 Pharmaceuticals, is a member of the Advisory Board of Tyra Biosciences, and is a co-founder of
697 Meliora Therapeutics. As part of its mission the Deutsches Primatenzentrum (German Primate
698 Center) performs services for the scientific community including services for pharmaceutical
699 companies resulting in fees being paid to the German Primate Center. **Data availability**
700 **statement:** All data associated with this

701 study are shown in the paper or the Supplementary Materials. All of the data used in this
702 manuscript to determine protease expression are described in Table S1 of (29) and the code used
703 for performing these analyses is available at github.com/joan-smith/covid19.

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725 **FIGURE LEGENDS**

726

727 **Fig. 1. Different TTSPs can activate SARS-2-S in transfected cells.** BHK-21 cells transiently
728 expressing ACE2 and one of the indicated type-II transmembrane serine protease (or empty
729 vector) were pre-incubated with either 50 mM ammonium chloride or DMSO (control, indicated
730 by dashed line) for 2 h, before they were inoculated with pseudotype particles bearing SARS-2-S.
731 At 16 h post inoculation, SARS-2-S-driven cell entry of viral pseudotypes was analyzed by
732 measuring the activity of virus-encoded luciferase activity in cell lysates. Data were further
733 normalized and entry efficiency in the absence of ammonium chloride was set as 100 %. Shown
734 are the average (mean) data obtained from three biological replicates, each performed in
735 quadruplicates. Error bars indicate the standard error of the mean (SEM). Statistical significance
736 of differences in entry efficiency in the presence of ammonium chloride was analyzed by two-
737 way analysis of variance (ANOVA) with Dunnett's posttest.

738

739 **Fig. 2. SARS-2-S activating proteases are expressed in lung and blood.** (A) T-SNE clustering
740 of cells from the human lung (24). Cells expressing the coronavirus receptor ACE2 are
741 highlighted in the right panel. These panels are reproduced with permission from Smith et al.
742 (29). Cells expressing various S-activating proteases in the human lung are highlighted. (B) T-
743 SNE clustering of cells from the human airway (25). Cells expressing the coronavirus receptor
744 ACE2 are highlighted in the right panel. Cells expressing various S-activating proteases in the
745 human airway are highlighted. (C) Log2-normalized expression data of the indicated gene across
746 different human tissues from the GTEx consortium (33).

747

748 **Fig. 3. Activation of SARS-2-S by TMPRSS2-related proteases can be suppressed by**
749 **camostat mesylate.** The experiment was performed as described for figure 1 with the
750 modifications that only TMPRSS2, TMPRSS11D, TMPRSS11E, TMPRSS11F and TMPRSS13
751 were investigated and target cells were pre-treated with either 50 mM ammonium chloride (red),
752 100 μ M camostat mesylate (blue) or a combination of both (green). DMSO-treated cells served
753 as controls. At 16 h post inoculation with viral particles bearing SARS-2-S, pseudotype entry was
754 analyzed by measuring the activity of virus-encoded luciferase activity in cell lysates. Data were
755 further normalized and entry efficiency into control-treated cells was set as 100 %. Shown are the
756 average (mean) data obtained from three biological replicates, each performed in quadruplicates.
757 Error bars indicate the SEM. Statistical significance of differences in entry efficiency in
758 ammonium chloride-, camostat mesylate- or ammonium chloride + camostat mesylate-treated
759 cells versus control-treated cells was analyzed by two-way ANOVA with Dunnett's posttest ($p >$
760 0.5, not significant [ns], $p \leq 0.5$, *; $p \leq 0.1$, **; $p \leq 0.01$, ***).

761
762 **Fig. 4. Camostat mesylate and FOY-251 inhibit the activity of recombinant TMPRSS2.**
763 TMPRSS2 cleaved Boc-Gln-Ala-Arg-MCA as substrate and produced the potent fluorophore,
764 AMC(7-Amino-4-methylcoumarin). TMPRSS2 enzyme activity was evaluated by measuring the
765 fluorescence intensity using Envision plate reader and all of the data were normalized against the
766 intensity of the absence of test compounds. The concentration-response data for each test
767 compound was plotted and modeled by a four-parameter logistic fit to determine the 50%
768 inhibitory concentration (IC_{50}) value. Inhibitory activity of camostat mesylate (blue), FOY-
769 251(light blue) and GBA (red) against TMPRSS2 recombinant protein were visualized and curve
770 fitting were performed using GraphPad Prism. The average of two independent experiments, each

771 performed with quadruplicate (camostat mesylate and FOY-251) or duplicate samples (GBA) is
772 shown. IC₅₀ values were 4.2 nM (camostat mesylate), 70.3 nM (FOY-251), >10 μM (GBA).

773

774 **Fig. 5. TMPRSS2 protease domain and GBPA interaction.** A TMPRSS2 structure model is
775 shown in the left panel, the active site is highlighted in cyan and catalytic triad residues are
776 shown in black. The representative structure of GBPA bound to TMPRSS2 in a reactive complex
777 is shown in the right panel. The GBPA guanidinium head forms a salt bridge with D435 inside
778 the S1 pocket. This transient complex, which is similar for Camostat, is prone to be catalyzed at
779 the ester bond interacting with Ser441, leading to a covalent complex with TMPRSS2 inhibited.

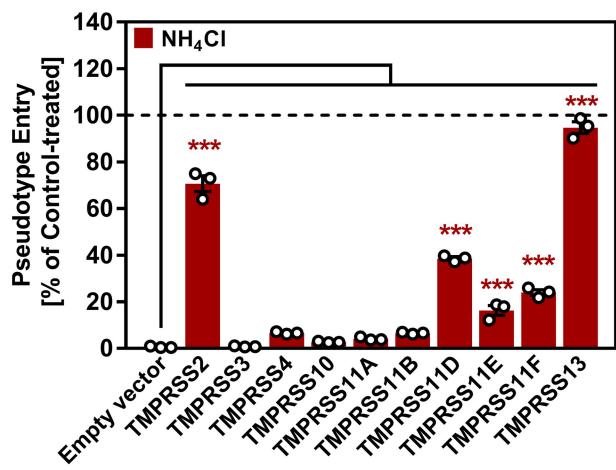
780

781 **Fig. 6. Camostat mesylate is rapidly converted into GBPA in the presence of cell culture**
782 **medium. (A)** Metabolization of camostat mesylate. **(B)** LC-MS/MS determination of camostat,
783 GBPA and GBA in culture medium containing FCS. Camostat mesylate was added to FCS-
784 containing culture medium at a concentration of 15 μM. Samples were taken after incubation for
785 1, 15, 30, 60, 120, 240, 480, and 1,440 min at 37 °C, snap-frozen and stored at -80 °C. Samples
786 were analyzed by LC-MS/MS and quantified regarding their content of intact camostat mesylate
787 and its metabolites GBPA (active) and GBA (inactive). Presented are the mean (average) data
788 from three biological replicates (single samples). Error bars indicate the SEM. The turnover time
789 that is required to cause metabolization of 50 % of camostat mesylate (T_{1/2}) was further
790 calculated by a non-linear regression model and was determined to be 141.3 min (95 %
791 confidence interval = 116.5 to 171.7 min). **(C)** Relative levels of camostat mesylate and GBPA
792 after incubation of 15 μM camostat mesylate in either water or FCS-containing culture medium.
793 For normalization, the combined values of camostat mesylate and GBPA were set as 100 % and
794 the relative fractions of the compounds were calculated. Presented are the mean (average) data

795 from three biological replicates (single samples). Error bars indicate SEM. Statistical significance
796 of differences in GBPA levels following incubation of camostat mesylate in either water or FCS-
797 containing culture medium was analyzed by paired, two-tailed student's t-test ($p \leq 0.01$, **).
798 Abbreviations: FOY-51/GBPA = 4-(4-guanidinobenzoyloxy)phenylacetic acid; GBA = 4-
799 guanidinobenzoic acid.

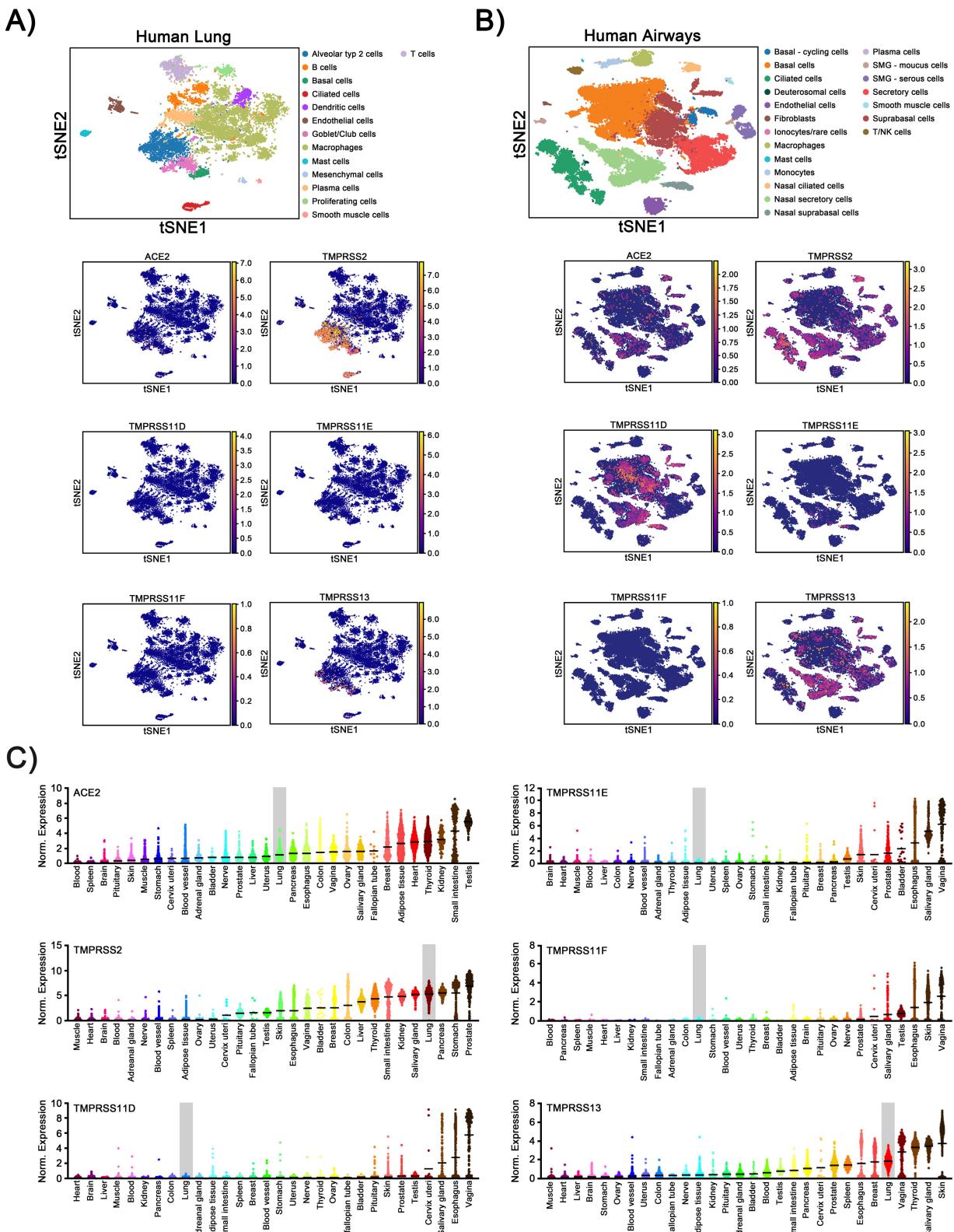
800

801 **Fig. 7. Camostat mesylate and FOY-251 inhibit SARS-2-S-driven cell entry with**
802 **comparable efficiency.** Calu-3 cells were pre-incubated with different concentrations of
803 camostat mesylate (left panel), FOY-251 (right panel) or DMSO (control, indicated by dashed
804 lines) for 2 h, before they were inoculated with pseudotype particles bearing VSV-G (red) or
805 SARS-2-S (blue). Alternatively, in order to analyze potential negative effects of camostat
806 mesylate and FOY-251 on cell vitality (grey bars), cells received medium instead of pseudotype
807 particles and were further incubated. At 16 h post inoculation, pseudotype entry and cell vitality
808 were analyzed by measuring the activity of virus-encoded luciferase activity in cell lysates or
809 intracellular adenosine triphosphate levels (CellTiter-Glo assay), respectively. Data were further
810 normalized against and entry efficiency/cell vitality in the absence of camostat mesylate and
811 FOY-251 was set as 100 %. Shown are the average (mean) data obtained from three biological
812 replicates, each performed in quadruplicates. Error bars indicate SEM. Statistical significance of
813 differences in entry efficiency/cell vitality in camostat mesylate - or FOY-251-treated cells versus
814 control-treated cells was analyzed by two-way ANOVA with Dunnett's posttest ($p > 0.5$, not
815 significant [ns], $p \leq 0.5$, *; $p \leq 0.1$, **; $p \leq 0.01$, ***).


816

817 **Fig. 8. Camostat mesylate and FOY-251 inhibit SARS-CoV-2 infection with comparable**
818 **efficiency.** Calu-3 cells were pre-incubated for 2h with double concentration of camostat

819 mesylate or FOY-251 as indicated. DMSO-treated cells served as control. Thereafter, cells were
820 infected with SARS-CoV-2 at an MOI 0.001 or MOI 0.01 by adding the same volume of virus-
821 containing culture medium to the inhibitor-treated cells. After 1 h of incubation, the inoculum
822 was removed and cells were washed two times with PBS, before culture medium containing 1-
823 fold inhibitor concentration was added. Culture supernatants were harvested at 24 h post
824 infection, stored at -80°C and thereafter subjected to standard plaque formation assays using
825 Vero-TMPRSS2 target cells and culture medium containing 1 % methyl cellulose. Plaques were
826 counted at 48 h post infection and titers determined as plaque forming units per ml (pfu/ml).
827 Presented are the data from a single experiment performed with technical triplicates and the
828 results were confirmed in a separate experiment with another SARS-CoV-2 isolate. Error bars
829 indicate the standard deviation.
830


Figure 1

Hoffmann *et al.*, 2020

Figure 2

Hoffmann *et al.*, 2020

Figure 3

Hoffmann *et al.*, 2020

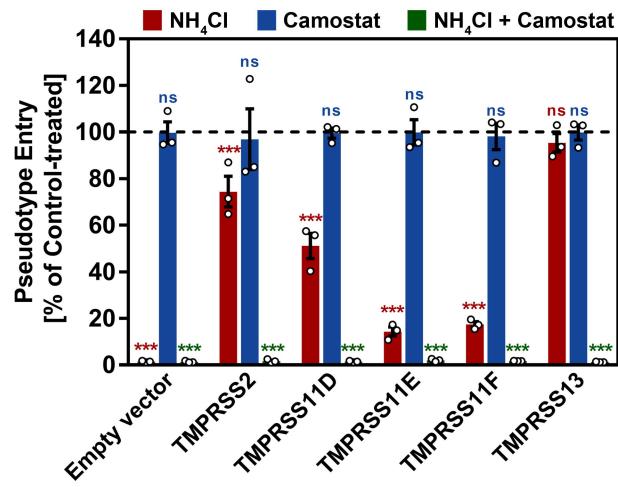


Figure 4

Hoffmann *et al.*, 2020

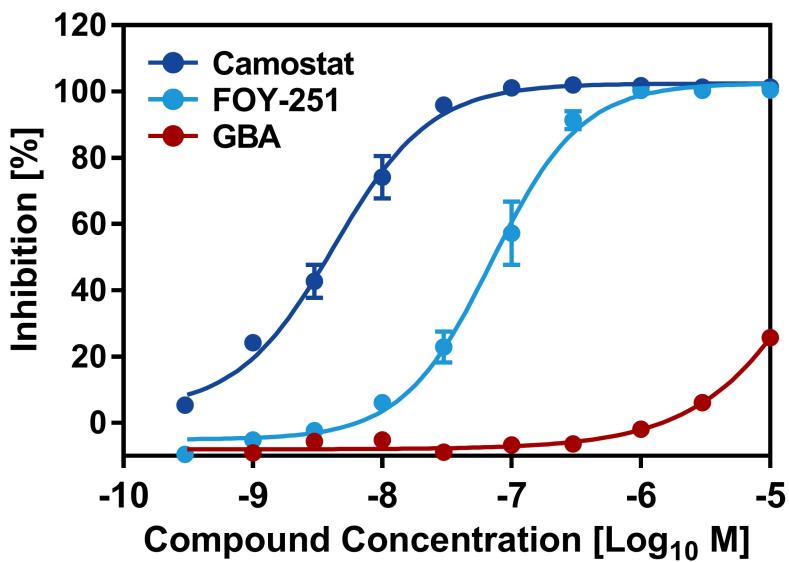
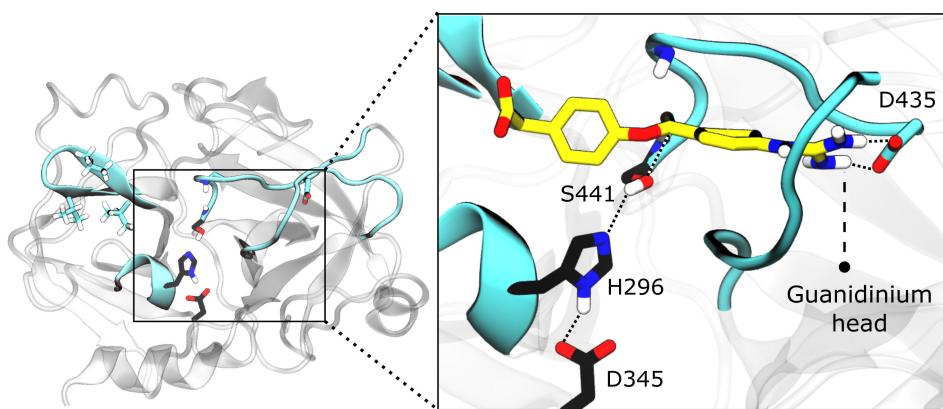



Figure 5

Hoffmann *et al.*, 2020

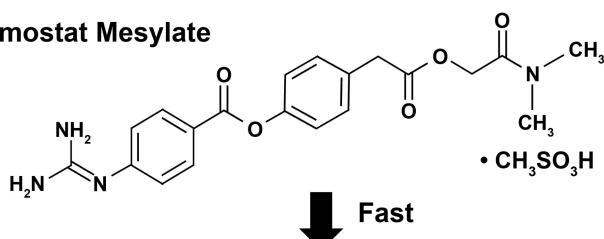
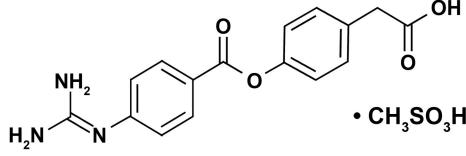
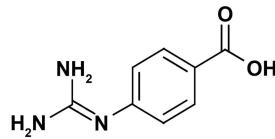
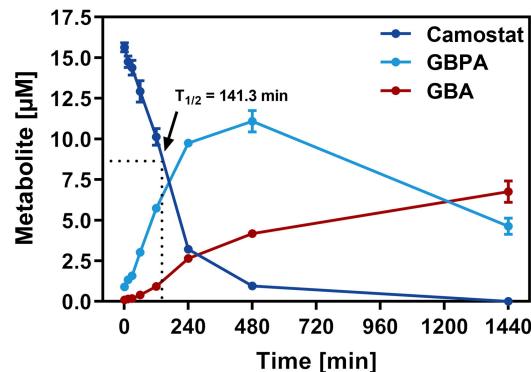


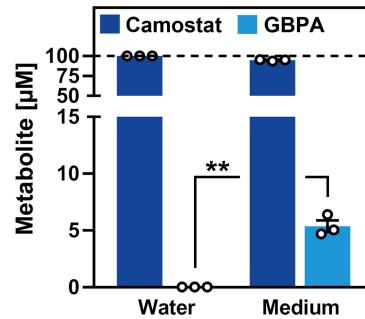
Figure 6


Hoffmann *et al.*, 2020

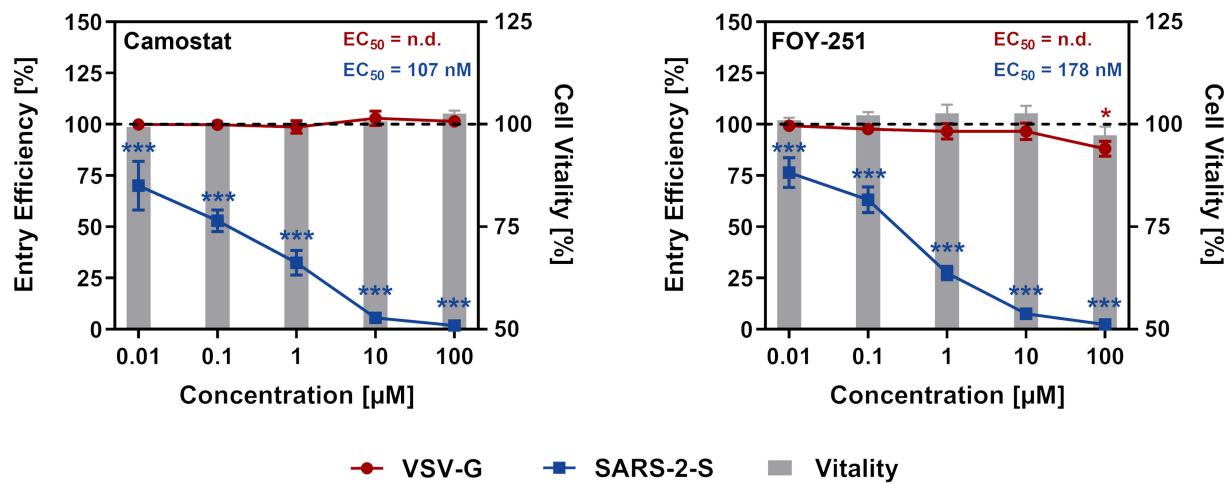
A)


Camostat Mesylate

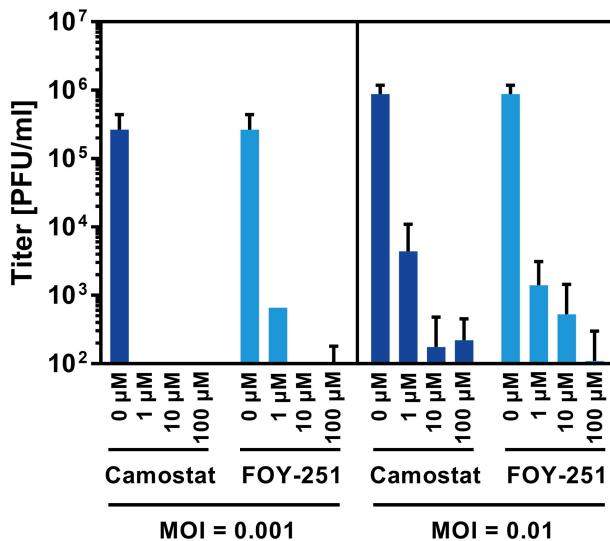

GBPA


GBA

B)



C)


Figure 7

Hoffmann *et al.*, 2020

Figure 8

Hoffmann *et al.*, 2020

