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ABSTRACT

Deep Learning has recently led to major advances in natural language processing. Do these models
process sentences similarly to humans, and is this similarity driven by specific principles? Using a
variety of artificial neural networks, trained on image classification, word embedding, or language
modeling, we evaluate whether their architectural and functional properties lead them to generate
activations linearly comparable to those of 102 human brains measured with functional magnetic
resonance imaging (fMRI) and magnetoencephalography (MEG). We show that image, word and
contextualized word embeddings separate the hierarchical levels of language processing in the brain.
Critically, we compare 3,600 embeddings in their ability to linearly map onto these brain responses.
The results show that (1) the position of the layer in the network and (2) the ability of the network to
accurately predict words from context are the main factors responsible for the emergence of brain-like
11 representations in artificial neural networks. Together, these results show how perceptual, lexical
12 and compositional representations precisely unfold within each cortical region and contribute to
13 uncovering the governing principles of language processing in brains and algorithms.
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s 1 Introduction

17 Convergent evolution — when distantly related species (e.g. bats and birds) develop similar structures or functions (i.e.
18 wings) — is often critical to reveal the principles that guide the variety life forms (i.e. controlling aerodynamics with
19 minimal energy). Convergence can be investigated in artificial agents too: "deep" artificial neural networks have recently
20 made substantial progress in harnessing abilities considered uniquely human (4; 5; 16). In language, in particular, deep
21 nets demonstrate unprecedented completion, translation, and summarization abilities (7; 85195 [10). Do these algorithms
22 process language similarly to the human brain? Does this similarity directly depend on their training? In sum, is there,
23 in the domain of language processing, a computational convergence between brains and deep neural networks?

24 These questions are all-the-more challenging that the neurobiology of language remains in its infancy. Previous studies
25 showed that reading depends on a cortical hierarchy originating in the primary visual cortex (V1), propagating within
26 the visual word form area (in the fusiform gyrus, where letter strings are recognized) and reaching the angular gyrus,
27 the anterior temporal lobe and the middle temporal gyrus — associated with lexical understanding (115 125 [13§[14; [15).
28 This hierarchical pathway and a parallel motor route (13)) together connect to the inferior frontal gyrus, where Broca
29 area presumably performs key compositions, like syntax (125135165 [17; 18). However, the precise nature, format, and
30 dynamics of such lexical and compositional representations is still unclear (18195 13))

st This challenge has been partly addressed with Natural Language Processing (NLP) algorithms. For example, word
32 embeddings — high dimensional dense vectors shaped to predict the average lexical neighborhood (20; 215 22} 23)) — have
33 been shown to linearly correlate with the brain responses elicited by words presented either in isolation (245 255 26) or
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Figure 1: Testing the convergence hypothesis between artificial neural networks and the human brain A. Artifi-
cial neural networks would be considered to converge to brain-like computations if and only if training consistently
increases the similarity between their activations and those of the brain, when input with the same stimuli. Such
similarity may be observed, because high dimensional embeddings can contain relevant components by chance (I} 2).
Each dot, in the panels, represents one hypothetical embedding: i.e. the activations of a single neural network trained
with a fixed amount of data. B. The network depicts a 4-layer causal transformer trained to predict words from a
preceding context. The similarity between such transformer and the brain is assessed with a linear regression W (1)
predicting brain responses Y from the model’s activations(X in response to the same stimuli and (2) evaluated with
a correlation between the predictions and true brain responses to held-out sentences Yies; (3). C. Using 100 fMRI
recordings and 95 MEG recordings, we compare 32,400 embeddings, derived from 32 architectures trained on 3 distinct
tasks and evaluated on 100 training steps. D. Grand average MEG source estimates to word onset (t=0) for 7 regions
typically associated with reading (V1: purple, M1: green, fusiform gyrus: dark blue, supramarginal gyrus: light blue,
superior temporal gyrus: orange, infero-frontal gyrus: yellow and fronto-polar gyrus: red), normalized to their peak
response. Vertical bars indicate the peak time of each region. The full (not normalized) data is displayed in Video 1. E.
MEG noise ceilings, approximated by predicting brain responses of a given subject from those of all other subjects.
Colored lines depict the mean noise ceiling in each region of interest. The grey line depict the best noise ceiling across
sources. F. Same as (D) in sensor space. G. Noise ceiling estimates of fMRI recordings.

34 within narratives (27; 28; 29 30% 315 [32). More recently, contextualized word embeddings improved such correlations,
35 especially in the prefrontal, temporal and parietal cortices (33;[34; [35)).

36 However, these studies focused on a handful of heterogeneous pretrained models, typically varying in dimensionality,
a7 architecture, training objective and corpora. Yet, random embeddings can capture relevant dimensions (1} [2), and
38 consequently lead a network to significantly correlate with brain activity. Consequently, it is unclear whether deep
39 neural networks trained on language modeling systematically (1) converge to, (2) anecdotally correlate with, or (3) even
a0 diverge away from brain representations during their training (Figure[T] A).
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Figure 2: Encoding of hierarchical representations A. Visual, lexical, and compositional representations can
be isolated from a convolutional neural networks trained on character recognition (top, blue), a word embedding
(middle, green) and the middle layer of a transformer trained on language modeling (bottom red), because each of
these embeddings accesses word context variably during training and/or inference. B. Mean (across subjects) fMRI
encoding scores obtained with the convolutional neural network (top, blue), the word embedding (middle, green) and
the transformer (bottom, red). C. Mean MEG encoding scores averaged across all time samples. D. Mean MEG
encoding scores averaged across all sensors (left) and the corresponding gains (i.e. green: [word embedding] - [visual
embedding]; red: [compositional embedding] - [word embedding]). E. Mean gains in MEG encoding scores averaged
within four regions of interest. For a whole-brain depiction of the gains in encoding scores, see Video 2. Shaded regions
highlight significant scores across subjects (p < 10~2 after FDR correction).

41 Here, we evaluate whether the activations of 3,600 neural network embeddings linearly correlate with functional
42 magnetic resonance imaging (fMRI) and source-localized magneto-encephalography (MEG) of 102 subjects reading
43 400 distinct and isolated sentences (36). We then evaluate how each functional and architectural properties of the
44 networks predict their similarity with brain responses.

45 Our study provides three main contributions. First, we confirm that pretrained neural networks, and their middle layers
46 in particular, linearly correlate with a variety of brain responses to words, even when those are presented within isolated
47 sentences. Second, we show how these networks help track and isolate the sequential generation of perceptual, lexical
48 and compositional representations within each of these cortical regions. Finally, we show that the convergence of deep
49 language models towards brain-like responses is (1) limited to specific layers and (2) predominantly driven by their
50 ability to accurately predict words from context.

51 2 Results

52 2.1 Average and single-trial f/MRI and MEG responses to reading

53 We first aim to identify where and when cortical neurons are activated during a reading task. As expected (18;12;37;13),
s4 the rapid serial visual presentation of words elicited responses in a distributed bilateral network, including the primary
55 visual cortex, the left fusiform gyrus, the supra marginal and superior temporal cortices, as well as the motor, premotor
s6 and infero-frontal areas (Figure [T). MEG source reconstruction further clarifies the dynamics of this network: on
57 average, word onset elicited a sequence of brain responses originating in V1 around ~100 ms and continuing within
s8 the left posterior fusiform gyrus around 200 ms, the superior and middle temporal gyri, as well as the pre-motor and
59 infero-frontal cortices between 150 and 500 ms after word onset (Figurem Video 1).

60 What proportion of these brain responses can be accounted for by the specific content and form of each word in
61 each sentence? To address this issue, we trained, for each subject separately, a "noise-ceiling" model across subjects.
62 Specifically, for each recording of each subject and each sentence Y;,qin, we trained a linear model W from the
63 recordings of all other subjects who read the same sentence X;,.4,,. Using a cross-validation scheme across sentences,
64 we then evaluated the Pearson correlation 12 between (1) the true brain responses of subject Y;.s; and (2) the predicted
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Figure 3: Only middle layers of language models consistently converge to brain representations. A. Bar plots
display the MEG encoding score (averaged across time and channels) of 6 representative transformers varying in tasks
(CLM vs MLM) and depth (4-12 layers). The green and red bars correspond to the word-embedding and the best layers
respectively. B. MEG scores (mean across subjects, time and channels) of each of the 16,200 embeddings extracted
from 1,800 causal deep networks (dots), separately for the input layer (word embedding, I = 0, green) and the middle
layer (red). On the x-axis, the network’s language modeling performance (top-1 accuracy to predict the next word).
Each line corresponds to one architecture. Each dot correspond to their embedding extracted at a specific training step.
D. Same as (C), zooming on the best-performing neural networks (accuracy >35). E. Results of the feature importance
analysis. Each bar indicates how much each model variable contributes to making the activations of the artificial neural
network similar to the MEG responses (cf. Methods). F-J. Same as above, but the brain-score is evaluated on the fMRI
recordings of subjects (as opposed to the MEG recordings). Error bars are the 95% confidence intervals of the scores’
distribution across subjects.

65 brain responses }Aﬁest = W - Xiest. This procedure could be thought of as approximating an optimal black box: a
66 one-hot encoder of brain responses is fitted to each element of a unique sentence. The results are summarized in Figure
67 [T[|F-H. As expected, noise ceiling estimates peaked within the well-known language network (38) were substantially
68 lower in MEG (especially in source space) than in fMRI. For example, fMRI noise ceilings reached, on average,
69 R = 0.129 (£0.004 SEM across subjects) in the superior temporal gyrus whereas MEG noise ceilings peaked at
70 R =0.069 £ 0.001.

71 2.2 Image, word and compositional embeddings correlate with different parts of brain activity

72 Following previous studies (39} 40; 415 3 26} 27} 28} 29; 315 33 [34% 355 [18), we evaluated whether the activations of
73 (1) a visual neural network, (2) a word embedding and (3) a contextualized word embbeding can linearly predict MEG
74 and fMRI responses to words presented in isolated sentences.

75 For the image embedding, we input an image of each word to a deep convolutional neural network (CNN) trained on
76 character recognition (42) and extracted the activations of the last layer. Similarly, we input the sentences that the
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77 subjects read to a 13-layer transformer trained on language modeling and extracted the 128-dimensional activations of
78 the first and middle layers to retrieve word and compositional embeddings, respectively.

79 For each embedding X, we trained and evaluated with cross-validation, the ability of a linear mapping W to predict
go brain responses Y. Figure[2]and Video 2 summarize the corresponding MEG and fMRI correlation scores. For clarity,
g1 Figure[2|C and the video plot the gain in MEG scores obtained by word embeddings (compared to visual embeddings)
g2 and by compositional embeddings (compared to word embeddings).

83 The brain scores of image embedding peaked in the early visual cortex (V1), both for fMRI (R = 0.022 £ 0.003, p <
8« 107! across subjects) and MEG source estimates (R = 0.008 & 0.002,p < 1073, for t=100ms). These MEG
85 scores peaked around 100 ms in V1, and rapidly propagated to higher-level areas. Word embeddings peaked around
85 400 ms and were primarily distributed over the left temporal (R = 0.052 & 0.004, p < 10~!'3) and frontal cortices
87 (R = 0.053 4 0.003,p < 10~'%). Finally, compositional embeddings mainly improved brain scores in the superior
83 temporal gyrus (Ar = 0.012 4 0.001, p < 10716), the angular gyrus (Ag = 0.010 & 0.001, p < 107'9), the
8o infero-frontal cortex (A = 0.016 £ 0.001, p < 107'6) and the dorsolateral prefrontal cortex (Ar = 0.012 & 0.001,
90 p < 10713). These effects were mostly lateralized (between left and right, A = 0.010 & 0.001, p < 10~'%). The
91 gain in MEG-scores obtained with compositional embeddings appears to be mainly driven by brain responses after ~
92 Isec, and is observed in a large number of bilateral brain regions (Figure ??C-D).

93 Around this time window, brain areas outside the language network, such as area V1, appeared to be better predicted by
94 word and compositional embeddings than by visual ones (e.g between visual and word in V1: Ar = 0.016 £ 0.002,
95 p < 10719). These effects could thus reflect feedback activity (43)and explain why the corresponding fMRI responses
96 are better accounted for by word and compositional embeddings than by visual ones.

97 Overall, these results confirm that the activations of three typical deep neural networks trained on image, word or
98 sentence processing linearly mapped onto brain responses to the same input. In addition, these results allow us to
99 track, with an unprecedented spatio-temporal precision, the hierarchical generation of visual, lexical and compositional
100 representations in each cortical region (Video 2).

101 2.3 The middle layers of trained language models best predict brain responses independently of their tasks
102 and architectures

103 To what extent are the above correlations representative of the similarity between brains and deep neural networks
104 used in natural language processing ? To address this issue, we analysed a variety of Transformers — state-of-the-art
105 feedforward networks that rely on an attention mechanism to combine words into meaning (7 8). Specifically, we
106 implemented 32 architectures (from 4 to 12 layers, each varying from 128 to 512 dimensions, and each benefiting from
107 4 to 8 attention heads), trained each of them on two distinct tasks ("causal" language modeling or "masked" language
108 modeling), assessed the extent to which their activations linearly predicted fMRI and MEG responses, and evaluated
109 how their architectural and functional properties impacted the brain scores.

110 Brain scores mainly varied as a function of the relative position of each extracted layer (Figure. [3). Specifically, middle
111 layers systematically outperformed output (fMRI: Az = 0.011 £ 0.001, p < 10~ !¥, MEG: Ar = 0.003 = 0.000,
112 p < 10713) and input layers (fMRI: A = 0.031 £ 0.001, p < 107, MEG : Ar = 0.009 + 0.001, p < 10717).
113 This effect was consistent across 32 architectures and two training tasks, cf. Figure 3]

114 To assess how each model property explained brain scores, we implemented a permutation importance analysis across
115 models with a random forest ((44))), for each subject independently (cf. Methods for more details). Overall, the relative
116 position of the layers explained 81.5+1.2% of fMRI and 70.2+1.4% of MEG scores, whereas architecture and task
117 variables accounted for less than 17% of them. In sum, this analysis confirms that the results described in section@]
118 are representative of language models.

119 2.4 Only middle layers converge towards brain responses

120 The above similarities between brain responses and artificial neural networks result from the analysis of trained networks.
121 Yet, random neural networks can contain relevant features (1} 2), and can thus significantly predict brain responses.
122 To test whether training leads neural networks to (1) converge to, (2) fortunately correlate with or even (3) diverge
123 away from brain-like solution, we applied brain score analyses for each artificial neural network frozen at 100 different
124  training steps. We then tested whether the similarity between their activations and brain responses consistently increased
125 with their training and language performance (top-1 accuracy at predicting the masked/next word on a test set).

126 On average, the input layer activations (word embeddings) increased within the 100K first training iterations (== 200\
127 processed words, one iteration corresponds to one gradient update). However, training ultimately led to a steady decrease,
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128 even though the networks continued to improve on their training task (Figure [3)): the Pearson correlation between
129 training steps and brain scores after 100K iterations was negative both in MEG (R = —0.166 + 0.019,p < 10~!°) and
130 in fMRI (R = —0.106 £ 0.021,p < 10~%).

131 By contrast, the brain scores of the middle layer (Figure[3)) increased with the language modeling accuracy in MEG
132 (R =0.87 4 0.01,p < 1071%), Figure[3) and fMRI (R = 0.82 + 0.02,p < 10~'7). Note that the brain scores of the
133 middle layers stabilized in fMRI slightly before MEG.

134 Language modeling accuracy varies with other model properties, such as architecture and training parameters. To
135 disentangle how each property contributes to making the model activation more-or-less similar to the brain, we
13 implemented a feature importance analysis for each subject independently (Figure [3| D, H). The results confirmed
137 that language modeling accuracy was the most important factor that leads the network to brain-like solutions: fMRI:
138 AR =0.56 £ 0.02, MEG: AR = 0.51 + 0.02. This variable was followed in its brain-like contribution by the amount
139 of training the network underwent (fMRI: AR = 0.15 4+ 0.01, MEG: AR = 0.21 4+ 0.01) and the relative layer
140 position of the extracted representation (fMRI: AR = 0.47 + 0.02, MEG: AR = 0.19 + 0.01, Figure 3| D and H).
141 By contrast, the training task, the dimensionality of the layers, the number of heads, and the total number of layers
142 modestly influenced brain scores (AR < .08).

143 Overall, these results suggest that, beyond the marginal effects of the models’ architecture, the middle - but not the
144 input and output - layers of deep language models converge towards brain-like representations.

s 3  Discussion

146 Do modern algorithms learn to process information in a way that leads them to mimic the computations of the human
147 brain? Following recent achievements (45} 46; i47; [39; 1405 1415 [14 355 48 [3; 149), we address this challenge on the
148 restricted issue of sentence processing, by evaluating whether the activations of a large variety of neural networks
149 linearly map onto those of 102 human brains, each recorded with MEG and fMRI during an isolated sentence reading
150  task.

151 We found that the similarity between brains and artificial neural networks mainly depends on the language modeling
152 accuracy of the latter, and is predominantly driven by their middle layers. This result extends recent fMRI (33} 134; 35))
153 MEG (32; 50) and ECoG findings (51} 152), showing that pretrained language models linearly map onto the brain
154 responses to English narratives. Our analyses provide a precise description of the spatio-temporal dynamics underlying
155 linguistic processes. First, we confirm the sequential generation of visual and lexical representations in the fusiform
156 gyrus (Video 2) predicted by reading theories (12;53;54). Second, we confirm with isolated and written sentences
157 (and thus devoid of narrative or prosody contours) that word embeddings correlate with a large fronto-temporo-parietal
158 network, and reveal their remarkably sustained effects (24533 [35). Third, the compositional representations of deep
159 language models peaked precisely in the brain regions traditionally associated with high-level sentence processing
160 (55513 156). Finally, we subsume previous results based on average responses showing that language composition
161 significantly recruits both hemispheres even though these effects are left-lateralized (575 I58).

162 Most of the correlation scores reported in the present study are very low. This phenomenon likely results from our use
163 of single sample encoding analysis. These effects, however, appear to be within the range obtained with noise ceiling
164 estimates. While the unusually large number of words and subjects in the analysis allows for a high level of statistical
165 significance, our results emphasize the major limitations of neuroimaging imposed by signal-to-noise ratio.

166 The convergence observed between brains and deep language models follows a nontrivial pattern. The convergence
167 of middle layers to brain-like representations is partly expected: middle layers have been shown to linearly encode
168 syntactic trees (59) and co-references (605 61). However, input and output layers ultimately diverged away from brain
169 responses. This result surprised us, especially because word embeddings have been repeatedly used to model brain
170 activity (24;126;[14). This phenomenon begs the question whether language models learn to combine words - as opposed
171 to represent them - similarly to humans.

172 In any case, the convergence of deep language models to brain-like computations is undoubtedly partial. First, modern
173 language models are still far from human-level performance on a variety of tasks such as dialogue, summarization, and
174  systematic generalization (62;63). Second, the size of their training corpora can be incommensurately larger than what
175 a human may be to read in his or her lifetime (10). Third, the architecture of the popular transformer network (7)) is
176 in many ways not biologically plausible: while the brain has been repeatedly associated with a recurrent predictive
177 coding architecture, where prediction errors are computed at each level of an interconnected hierarchy of recurrent
178 networks (64), transformers are feedforward neural networks that access an unreasonably large buffer of words, and
179 only minimize prediction errors at their final "predicted word" layer. In light of these major differences, it is all-the-more
180 remarkable to see that brains and artificial neural networks find a partially common solution to language processing.
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181 Representations were here modeled for each contextualized word independently. However, the precise nature of
182 these representations, both in the brain and in artificial neural networks, is here only coarsely categorized into three
183 hierarchical levels. How the mind builds and organizes its lexicon, how it parses and manipulates sentences, how it
184 plans and memorizes narratives, and perhaps above all, how it learns to achieve all these skills remain open questions.
185 Nevertheless, the present study shows how the comparative study of brains and artificial neural networks may help
186 test the hypothesis, according to which a simple learning objective — predicting words from their context — suffices to
187 explain how the human brain came to form the peculiar structures of language.

e 4 Methods

189 We assessed the similarity between (i) the activations of deep neural networks and (ii) those of the brain of 100 subjects,
190 measured with magneto-encephalography (MEG) and functional magnetic resonance imaging (fMRI), when the two
191 were input with the same 400 isolated sentences.

192 4.1 Deep Neural Networks

193 4.1.1 Visual Convolutional Neural Network

194 To model visual representations, every word presented to the subjects was rendered on a gray 100 x 32 pixel background
195 with a centered black Arial font, and input to a VGG network pretrained to recognize words from images (42), resulting
196 in an 888-dimensional embedding. This embedding was used to replicate and extend previous work on the similarity
197 between visual neural networks activations and brain responses to the same images (e.g. (45;139; 40)).

198 4.1.2 Language Transformers

199 To model word and sentence representations, we trained a variety of transformers (7)), input them with the same
200 sentences that the subject read and extracted the corresponding activations from each layer. We always extract activation
201 in a "causal" way: for example, given the sentence "THE CAT IS ON THE MAT’, the brain response to ’'ON’ would
202 be solely compared to the activations of the transformer input with "THE CAT IS ON’, and extracted from the *'ON’
203 contextualized embeddings. Word embeddings and contextualized embeddings were generated for every word, by
204 generating word sequences from the three previous sentences. We did not observe qualitatively different results when
205 using longer contexts. Note that the sentences were isolated, and were not part of a narrative.

206 In total, we investigated 32 distinct architectures varying dimensionality (€ [128, 256, 512]), number of layers (€
207 [4,8,12]), attention heads (€ [4, 8]) and training task ("causal" language modeling and "masked" language modeling).
208 While "causal" language transformers are trained to predict a word from its previous context, "masked" language
209 transformers predict randomly masked words from a surrounding context. We froze the networks at ~ 100 training
210 stages (log distributed between 0 and 4,5M gradient updates, which corresponds to = 35 passes over the full corpus),
211 resulting in 3,600 networks in total, and 32,400 word representations (one per layer). Training was early-stopped when
212 the networks’ performance did not improve after 5 epochs on a validation set. Therefore, the number of frozen steps
213 varied between 96 and 103 depending on the training length.

214 The algorithms were trained using XLM implementation[ﬂ(9), on the same Wikipedia corpus of 278,386,651 words
215 extracted using WikiExtractor and pre-processed using Moses tokenizer (65), with punctuation. We restricted the
216 vocabulary to the 50,000 most frequent words, concatenated with all words used in the study (50,341 vocabulary words
217 in total). These design choices enforce that the difference in brain scores observed across models cannot be explained
218 by differences in corpora and text preprocessing.

219 To evaluate the language processing performance of the networks, we computed their performance (top-1 accuracy on
220 word prediction given the context) using a test dataset of 180,883 words from Wikipedia.

! Algorithms were trained each on 8 GPUs using early stopping with training perplexity criteria, 16 streams per batch, 128 words
per stream, epoch size of 200 000 streams, 0.1 dropout, 0.1 attention dropout, gelu activation, inverse (sqrt) adam optimizer with
learning rate 0.0001, 0.01 weight decay.

“https://github.com/attardi/wikiextractor
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221 4.2 Neuroimaging
222 4.2.1 Protocol

223 One-hundred and two native Dutch right-handed speakers performed a reading task while being recorded, by Schoffelen
224 and colleagues, with a CTF magneto-encephalography (MEG) and, in a separate session, with a SIEMENS Trio 3T
225 Magnetic Resonance scanner (36).

226  Words were flashed one at a time with a mean duration of 351 ms (ranging from 300 to 1400 ms), separated with a
227 300ms blank screen, and grouped into sequences of 9 - 15 words, for a total of approximately 2,700 words per subject.
228 Sequences were separated by a Ss-long blank screen. We restricted our study to meaningful sentences (400 distinct
229 sentences in total, 120 per subject). Twenty percent of the sentences were followed by a yes/no question (e.g. "Did
230 grandma give a cookie to the girl?) to ensure that subjects were paying attention. Sentences were grouped into blocks
231 of five sequences. This grouping was used for cross-validation to avoid information leakage between train and test sets.

232 4.2.2 Magnetic Resonance Imaging (MRI)

233 Structural images were acquired with a T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE) pulse
234 sequence. The full acquisition details, available in (36), are here summarized for simplicity: TR=2,300 ms, TE=3.03
235 ms, 8 degree flip-angle, 1 slab, slice-matrix size=256x256, slice thickness=1 mm, field of view=256 mm, isotropic
236 voxel-size=1.0x1.0x1.0 mm. Structural images were defaced by Schoffelen and colleagues. Preprocessing of the
237 structural MRI was performed with Freesurfer (66)), using the recon-all pipeline and a manual inspection of the
238 cortical segmentations. Region-of-interest analyses were selected from the PALS Brodmann’ area atlas (67) and the
239 Destrieux Atlas segmentation (68).

240 Functional images were acquired with a T2*-weighted functional echo planar blood oxygenation level dependent
241 (EPI-BOLD) sequence. The full acquisition details, available in (36), are here summarized for simplicity: TR=2.0
242 seconds, TE=35ms, flip angle=90 degrees, anisotropic voxel size=3.5x3.5x3.0 mm extracted from 29 oblique slices.
243 fMRI was preprocessed with fMRIPrep with default parameters (69). The resulting BOLD times series were detrended
244 and de-confounded from 18 variables (the 6 estimated head-motion parameters (trans, , ., rot, , .) as well as the first
245 6 noise components calculated using anatomical CompCorr (70) and 6 DCT-basis regressors using nilearn’s clean_img
246 pipeline and otherwise default parameters (71). The resulting volumetric data lying along a 3mm "line" orthogonal to
247 the mid-thickness surface were linearly projected to the corresponding vertices. The resulting surface projections were
248 spatially decimated by 10, and are hereafter referred to as voxels, for simplicity. Finally, each group of 5 sentences were
249 separately and linearly detrended. Note that our cross-validation never splits such groups of five consecutive sentences
250 between the train and test sets. Two subjects were excluded from the fMRI analyses because of difficulties processing
251 the metadata, resulting in 100 fMRI subjects.

252 4.2.3 Magneto-encephalography (MEG)

253 The MEG time series were pre-processed using MNE-Python and its default parameters except when specified (72).
254 Signals were band-passed filtered between 0.1 and 40 Hz filtered, spatially corrected with a Maxwell Filter, clipped
255 between the 0.015¢ and 99.99" percentiles, segmented between -500 ms to +2,000 ms relative to word onset and
256 baseline-corrected before t=0. Reference channels and non-MEG channels were excluded from subsequent analyses,
257 hence leading to 273 MEG channels per subject. We manually co-referenced (i) the skull segmentation of subjects’
258 anatomical MRI with (ii) the head markers digitized prior to MEG acquisition. A single-layer forward model was made.
259 Because of lack of empty-room recordings, the noise covariance matrix used for the inverse operator was estimated
260 from the zero-centered 200ms of baseline MEG activity preceding word onset. Subjects’ source space inverse operators
261 were computed using a dSPRM. The average brain responses displayed in Figure [ID were computed as the square
262 of the average evoked related field across all words for each subject separately, averaged across subjects and finally
263 divided by their respective maxima, to highlight temporal differences. Video 1 displays the average sources without
264 normalization. Seven subjects were excluded from the MEG analyses because of difficulties processing the metadata,
265 resulting in 92 MEG subjects.

266 4.3 Noise Ceiling: Brain — Brain mapping

267 To estimate the amount of explainable signals in each MEG and each fMRI recordings, we trained and evaluated,
268 through cross-validation, a linear mapping model W to predict the brain responses of a given subject to a each sentence
269 Y from the aggregated brain responses of all other subjects who read the same sentence X. Specifically, five cross-
270 validation splits were implemented across 5-sentence blocks with scikit-learn ’GroupKFold’ (73)). For each word of
271 each sentence 7, all but one subject who read the corresponding sentence were averaged with one another to form
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272 a template brain response: z; € R"™ with n the number of MEG channels or fMRI voxels, as well as a target brain
273 response y; € R™ corresponding to the remaining subject. X and Y were normalized (mean=0, std=1) across sentences
274 for each spatio-temporal dimension, using a robust scaler clipping below and above the 0.01°* and 99.99t" percentiles,
275 respectively. A linear mapping W € R™*™ was then fit with a ridge regression to best predict Y from X on the train
276 set:

W = (XT Xtrain +>\I)71XT Y;&rain (1)

train train

277 with A the [2 regularization parameter, chosen amongst 20 values log-spaced between 10~3 and 10® with nested

278 leave-one-out cross-validation for each dimension separately. Brain predictions Y = WX were evaluated with a
279 Pearson correlation on the test set: R
R= CO’I”I“(Y;ESD thest) (2)

280 For the MEG source noise estimate, the correlation was also performed after source projection:

R = corr(K Yo, K Yiest) )

281 with K € R™*™ the inverse operator projecting the n MEG sensors onto m sources. Correlation scores were finally
282 averaged across cross-validation splits for each subject.

283 4.4 Similarity: Network — Brain mapping

284 To estimate the functional similarity between artificial neural networks and each brain, we followed the same analytical
285 pipeline used for noise ceiling, but replace X with the activations of the deep learning models. Specifically, using the
286 same cross-validation, and for each subject separately, we trained a linear mapping W € R®"™ with o the number of
287  activations, to predict brain responses Y from the network activations X . X was normalized across words (mean=0,
288 std=1).

289 To account for the hemodynamic delay between word onset and the BOLD response recorded in fMRI, we used a finite
290 impulse response (FIR) model with five delays (from 2 to 10 seconds) to build X* from X. W was found using the
291 same ridge regression described above, and evaluated with the same correlation scoring procedure. The resulting brain
292 correlation scores measure the linear relationship between the brain signals of one subject (measured either by MEG or
293 fMRI) and the activations of one artificial neural network (e.g a word embedding). For MEG, we simply fit and evaluate
294 the model activations X at each time sample independently.

295 In principle, one may orthogonalize low-level representations (e.g. visual features) from high-level network models (e.g.
296 language model), to separate the specific contribution of each type of model. This is because middle layers have access
297 to the word-embedding layer, and can, in principle, simply copy some of its activations. Similarly, word embedding
298 can implicitly contain visual information: e.g. frequent words tend to be visually smaller than rare ones. In our case,
299 however, the middle layers of transformers were much better than word embeddings, and word embedding were much
so0 better than visual embeddings. To quantify the gain AR achieved by a higher-level model M7 (e.g. the middle layers of
301 a transformer) and a lower level model M, (e.g. a word embedding) we thus simply compare the difference of their
302 encoding scores:

ARy, = Ry, — R, 4

303 4.4.1 Convergence analysis

s04 All neural networks but the visual CNN were trained from scratch on the same corpus (cf. d.1.2). We systematically
305 computed the brain scores of their activations on each subject, sensor (and time sample in the case of MEG) inde-
sos pendently. For computational reasons, we restricted model comparison on MEG encoding scores to ten time samples
307 regularly distributed between [0, 2]s. Brain scores were then averaged across spatial dimensions (i.e. MEG channels or
s fMRI surface voxels), time samples and subjects to obtain the results in Figure [3] To evaluate the convergence of a
309 model, we computed, for each subject separately, the correlation between (1) the average brain score of each network
sto and (2) its performance or its training step. Positive and negative correlations indicate convergence and divergence
311 respectively. Brain scores above 0 before training indicate a fortuitous relationship between the activations of the brain
312 and those of the networks.

313 4.4.2 Feature importance

314 To systematically quantify how the architecture, the accuracy and the learning of the artificial neural networks impacted
315 their ability to linearly correlate with brain activity, we fitted, for each subject separately, a random forest across the
st models’ properties to predict their brain scores, using scikit-learn’s RandomForest (44} [73). Specifically, we input the
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317 following features to the random forest: the training task (causal language modeling vs. masked language modeling),
s1s the number of attention heads € [4, 8], total number of layers € [4,8, 12], dimensionality € [128, 256, 512], training
19 step (number of gradient updates, € [0, 4.5M], accuracy and the relative layer position of the representation (between 0
320 the first layer and 1 the last layer). The performance of the random forests was evaluated with a Pearson correlation R
321 using a five-split cross-validation across models, for each subject separately.

322 "Feature importance" summarizes how each of the covarying properties of the models (their task, their architecture,
323 etc) specifically impacts on brain scores. Feature importance is quantified with A R: the decrease in R when shuffling
324 one feature (using 50 repetitions). For each subject, we reported the average decrease across the cross-validation splits
a5 (Figure[3). The resulting scores (AR) are expected to be centered around 0 if the corresponding feature does not impact
326 brain score (even if it is indirectly correlated with it), and positive otherwise.

327 4.5 Population statistics

s2¢ To estimate the robustness of our results, we systematically performed second-level analyses across subjects. Specifically,
329 we applied Wilcoxon signed-rank tests across subjects’ estimates to evaluate whether the effect under consideration was
330 systematically different from the chance level. The p-values of individual voxel/source/time samples were corrected for
331 multiple comparison, using a False Discovery Rate (Benjamini/Hochberg) as implemented in MNE-Python. Error bars
332 and = refer to the standard error of the mean (SEM) interval across subjects.

333 4.6 Ethics

334 This study was conducted in compliance with the Helsinki Declaration. No experiments on living beings were performed
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