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Abstract

The ongoing SARS-CoV-2 outbreak marks the first time that large amounts of genome sequence data have
been generated and made publicly available in near real-time. Early analyses of these data revealed low
sequence variation, a finding that is consistent with a recently emerging outbreak, but which raises the
question of whether such data are sufficiently informative for phylogenetic inferences of evolutionary rates
and time scales. The phylodynamic threshold is a key concept that refers to the point in time at which

21  sufficient molecular evolutionary change has accumulated in available genome samples to obtain robust

22 phylodynamic estimates. For example, before the phylodynamic threshold is reached, genomic variation is so
23 low that even large amounts of genome sequences may be insufficient to estimate the virus's evolutionary
24 rate and the time scale of an outbreak. We collected genome sequences of SARS-CoV-2 from public

25  databases at 8 different points in time and conducted a range of tests of temporal signal to determine if and
26 when the phylodynamic threshold was reached, and the range of inferences that could be reliably drawn from
27  these data. Our results indicate that by February 2™ 2020, estimates of evolutionary rates and time scales had
28  become possible. Analyses of subsequent data sets, that included between 47 to 122 genomes, converged at
29  anevolutionary rate of about 1.1x107 subs/sitefyear and a time of origin of around late November 2019. Our
30  study provides guidelines to assess the phylodynamic threshold and demonstrates that establishing this

31  threshold constitutes a fundamental step for understanding the power and limitations of early data in

32 outbreak genome surveillance.
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38  Maintext

39  Pathogen genome sequence data are increasingly recognised as a key asset in outbreak investigations.

40  Phylodynamic analyses of these data can be used to infer the time and location of origin of an outbreak, the
41  viral evolutionary rate, epidemiological dynamics, and demographic patterns (du Plessis and Stadler 2015;
42  Baele etal. 2017). These inferences, however, rely on the genome data being sufficiently informative.

44 The ongoing novel coronavirus outbreak (SARS-CoV-2) marks the first time that genome sequence data have
45 been generated and shared publicly as soon as the virus started spreading. The time of origin of SARS-CoV-2
46  isapressing question at early stages of the outbreak because it impacts our understanding of its spread and
47  emergence. In practice, the sampling times of genomes can be used to calibrate the molecular clock and infer
48 the viral evolutionary rate and the timescale of the outbreak (Korber et al. 2000). The underlying assumption
49 is that molecular evolution occurs at a predictable rate over time and that the sampling window is sufficiently
50  wide as to capture a measurable amount of evolutionary change in the sampled genomes. Under the

51  condition that the sampling window is sufficiently wide and the evolutionary rate sufficiently high, and

52 genome sequences long enough, the data can be treated as having been obtained from a measurably

53 evolving population (Drummond et al. 2003; Biek et al. 2015). If this is not the case, the data are considered to
54 have no temporal signal and any estimates from the molecular clock are therefore spurious (Duchéne et al.
55 2015; Murray et al. 2015).
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57  The term‘phylodynamic threshold’ pertains to the question of whether a virus has had sufficient time to

58  evolve since its origin so as to warrant tip-dating calibration, under the assumption that genome data from
59  early stages of the outbreak are available (Hedge et al. 2013). Therefore, applying statistical tests of temporal
60  signal to genome data as they are collected can reveal when the phylodynamic threshold is reached. Such

61  analysesare essential to determine the limitations of genome data and the range of inferences that can be
62  reliably drawn from them over time.

64  Root-to-tip regression is typically used as an informal assessment of temporal signal (Rambaut et al. 2016).
65 While not a statistical test, it is however a valuable visual tool of clocklike behaviour and of outlier detection
66 (e.g. due to mislabelling, contamination or sequencing errors). Root-to-tip regression consists of estimating
67  anunrooted phylogenetic tree with branch lengths in units of substitutions per site and conducting a

68  regression of the distance from the root to each of the tips as a function of their sampling times (Gojobori et
69 al. 1990; Drummond et al. 2003). Under clocklike evolution and with a wide sampling window, the slope

70  corresponds to a crude estimate of the evolutionary rate, the intercept with the time axis represents the time
71  oforigin, and the coefficient of determination, R*, may reflect the degree of clocklike behaviour.

73 Formal approaches to assess temporal signal include date-randomisation tests and Bayesian evaluation of
74 temporal signal (BETS) (Duchéne et al. 2015; Murray et al. 2015; Duchene et al. 2019). Date randomisation
75 tests consist of repeating the analysis several times with permuted sampling times to generate a ‘null’

76 distribution of evolutionary rate estimates. The data are considered to have temporal signal if the estimate
77 obtained with the correct sampling times does not overlap with those of the randomisations. In contrast,

78  BETS consists of comparing the statistical fit of models that include the correct sampling times, no sampling
79  times, or permuted sampling times. The premise of BETS is that if the data have temporal signal, using the
80  correct sampling times should have the highest statistical fit (Duchene et al. 201g). For example, if the

81  sampling window over which the genome data have been collected is very short, such that the data have no
82  temporal signal, then the sampling times are not meaningful and a model incorporating the correct sampling
83 timesmay not have an improved statistical fit over a model that ignores differences in sampling times. In

84  contrast, if the sampling window is wide enough as to capture many substitutions, using the correct sampling
85  timesis expected to result in higher model fit than using permuted sampling times or no sampling times. In a
86  Bayesian context, model fit is determined through the marginal likelihood, and a model is preferred over

87  another according to their ratio of marginal likelihoods, known as the Bayes factor (Kass and Raftery 1995).
88  Marginal likelihoods are typically reported on a logarithmic scale, where a log Bayes factors of at least 1 is

89  considered as positive evidence in favour of a model.

91  Results

92  We collected SARS-CoV-2 genome data from the Global Initiative on Sharing All Influenza Data (GISAID) and
93  from GenBank at 8 time points from January 23" to February 24" 2020 (Table 1). Thus, each time point

94  represents a‘snapshot’ of the genome data available to that date. Our data only included genomic sequences
95  from human samples, with sequence lengths of at least 28,000 nucleotides and, with high coverage as

96  determined in GISAID (see supplementary material Table S1 for accession numbers). To minimise the impact
97  of potential sequencing errors in our alignments, we deleted obvious errors upon visual inspection and

98  compared our phylogenetic trees to those obtained by other groups (virological.org) and those from the

99 Nextstrain workflow (Hadfield et al. 2018).

101  We conducted Bayesian phylogenetic analyses using BEAST v1.10 using two molecular clock models; a strict
102 clock (SC) and an uncorrelated relaxed clock with an underlying lognormal distribution (UCLN). We set an
103 exponential growth coalescent tree prior, which is appropriate for the early stages of an outbreak and which
104  hasbeen recently used to infer the basic reproductive number and growth rate of SARS-CoV-2 (Volz et al.
105  2020). For our model comparison in BETS we estimated (log) marginal likelihoods using generalised stepping-
106  stone sampling (Fan et al. 2011; Baele et al. 2016).

108  OurBETS analyses provided evidence against significant temporal signal in the genome data available up to
109  January 23" 2020 (n=22 genomes). In this data set, the highest mode! it to the data was found for analyses
110  with permuted sampling times, followed by those with no sampling times (Figure 1). The evidence for models
111  with no sampling times was very strong, with log Bayes factors of 7.5 for the best model with no sampling
112 times relative to those without sampling times. All data sets obtained subsequently, from February 2™ with at
113 least 47 genomes supported the inclusion of the correct sampling times, with log Bayes factors of at least 20
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for models with the correct sampling times over those without sampling times. The log Bayes factors for the
models with correct sampling times over those with permuted sampling times were at least 5, which is
considered as very strong evidence in favour of temporal signal (Kass and Raftery, 1995).

For comparison, we also conducted root-to-tip regressions for the eight snapshot data sets (Figure 2). The R
values ranged between 0.11 and 0.2. We did not find an association between R* and the number of genome
samples included. This result may stand in contrast to the expectation that including more independent data
should reduce the effect of stochasticity, but the data sets here have an inherently high degree of non-
independence. The slopes of the regressions ranged from 6.7x10™ to 8.8x10™ subs/site/year and the intercept
with the X-axis (i.e. the time to the most recent common ancestor) from 2019.83 t0 2019.86.

Interestingly, all data sets with temporal signal favoured the SC over the UCLN model with the exception of
that collected up to February 24", with 122 genomes, where the log Bayes factor of the UCLN over the SC
was 1.81 (Figure 1). The fact that the SC had high support in data sets collected prior to February 24" probably
indicates that they may not be sufficiently informative as to warrant modelling evolutionary rate variation
across branches through the UCLN, rather than evidence of strict clocklike behaviour.

A potential reason for why the SCis favoured over the UCLN in many cases is that the default prior on the
standard deviation of the lognormal distribution of the UCLN is an exponential distribution with mean 0.33,
that has a high density at o, corresponding to a very low amount of among-lineage rate variation. Intuitively,
if the data have low information content, the prior may have a strong influence on the posterior, relative to
the data, such that the posterior for this parameter might also be concentrated ono. In this case, the UCLN
may appear overparameterised and the SC would be favoured. We investigated the robustness of model
selection to the prior on this parameter repeating the UCLN analyses with an exponential distribution with
mean 100 as the prior for this parameter. Using this less informative prior consistently resulted in a worse
model fit across all data sets, and thus did not affect our assessment of temporal signal.

If we restrict our attention to the UCLN with the less informative prior for the January 23" data set, the model
that includes sampling times is favoured over that with no sampling times, with a log Bayes factor of 17. If one
ignored all other models and priors, this result would indicate the presence of temporal signal. This finding
stands in contrast to the SC and UCLN with the more informative prior, which have much higher model fit
(Figure1; Supplementary material Table S2). Consequently, assessing temporal signal using BETS should
involve comparing a range of clock models and careful consideration of the prior on their respective
parameters (Duchene et al. 2019).

We also considered comparisons of prior and posterior distributions to assess the extent to which the data
were informative about particular parameters. Our expectation is that the posterior should have a lower
variance relative to the prior as more data are included. We considered our estimates of the growth rate (r)
and scaled population size (@) of the exponential coalescent tree prior, the virus’s evolutionary rate and the
time of origin of the outbreak. An important consideration here is that our method of inspecting the prior
consists in running the analyses with no sequence data. Thus, the resulting distributions represent the
‘effective’, rather than the ‘marginal’ (i.e. user-specified) prior. The effective prior is the prior conditioned on
the number of samples and their ages, the coalescent process and their interaction, whereas the marginal
prior is the actual distribution that one sets in the program. In practice, the effective and marginal prior
sometimes differ for parameters that pertain to the tree prior (Warnock et al. 2012; Boskova et al. 2018).

Although our marginal priors are identical for all snapshot datasets, we noted that the effective prior differed
between data sets for r, @, and the time of origin (Figure 3). The posterior from the January 23'd snapshot,
with 22 genomes, was very uncertain for all parameters. For example, the time of origin using the SC ranged
from late 2018 to early December 2019. The posterior for @ was also more uncertain than its effective prior,
which coincides with high uncertainty in the rate and the time of origin.

Our snapshot data sets collected from February 2", with at least 47 genome samples, yielded posterior
distributions that were much narrower than their respective effective priors and those of the January 23"
snapshot. Our estimates of the evolutionary rate from February 2™ converged at a mean of around 1.1x107
substitutions per site per year. The uncertainty in this parameter for the largest data set (February 24", with
122 genomes) using the UCLN clock model is reflected by a 95% credible interval (Cl) of between 7.03x10*
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and 1.5x10 > substitutions per site per year. Similarly, the time of origin converged to a mean of late
November 2019 and with a 95% Cl for the February 24™ data set of between late October to mid-December
2019.

Posterior estimates for parameters r and @, differed substantially from their effective priors, although not to
the extent that the evolutionary rate and the time of origin did. In particular, the posterior of the time of
origin is several times narrower than the prior in all data sets from February 2", whereas the posterior for rin
the largest data set (February 24™) is only about 2 times narrower than its respective effective prior (Figure 3).
Our estimates of rand @ did not converge between snapshot data sets, as was the case for the evolutionary
rate and time of origin. However, we do not necessarily expect this to happen. For instance, @ is proportional
to the number of infected individuals at the time of collection of the latest sample (Wallinga and Lipsitch
2007; Boskova et al. 2014), which is expected to increase as the outbreak progresses. Similarly, ris
proportional to the reproductive number R,, (i.e. the average number of secondary infections), is expected to
decline over time as the number of susceptible individuals decreases and is expected to be affected by
growing spatial structure.

Discussion

The question of whether a viral outbreak has attained the phylodynamic threshold is a highly relevant concept
for emerging outbreaks, because it is informative about the amount of sequence data, their temporal spread,
and how much evolutionary change has accumulated in the viral genome. The phylodynamic threshold
requires a strong assumption about the evolutionary rate based on closely related viruses, and it can be
understood as the point in time when sequence data are sufficiently informative about the evolutionary
dynamics that shape an outbreak, i.e. when the population is measurably evolving. The routine application of
tests of temporal signal can effectively answer this question in nearly real-time. Our application of BETS
(Duchene et al., 2019) to data snapshots from the early stages of the outbreak revealed that the
phylodynamic threshold of SARS-CoV-2 was reached by about February 2™, when 47 genomes were available
sampled over 35 days.

Our finding that the phylodynamic threshold was attained within about two months of the estimated start of
the outbreak demonstrates that Bayesian phylodynamic approaches can capitalise on early collected genome
data to make inferences about evolutionary processes, particularly the viral evolutionary rate and the
outbreak’s time of origin. Our estimates of these two parameters were consistent after the phylodynamic
threshold was reached, and also matched previous estimates posted on virological.org and elsewhere
(Taiaroa et al. 2020; Volz et al. 2020). Increasing the number of sequences leads to more precise estimates of
the evolutionary rate, but we found only marginal improvements in precision after 109 sequences (February
21™"). The SC was preferred over the UCLN in most data sets. The fact that the UCLN was only supported after
122 sequences were included suggests that the statistical power necessary to support such a relaxed clock
model may require more informative data than those available at the early stages in the outbreak. We
anticipate that the UCLN will be favoured over the SC in analyses of larger data sets of SARS-CoV-2.

A key consideration concerning the presence of temporal signal in the data is that this does not necessarily
imply that demographic parameters can be reliably estimated using genome sequence data. Comparing the
effective prior and posterior is important to assess the information content of the data, butitis notan
assessment of the reliability of the estimates. For example, @ is generally inversely correlated with the root
height, such that if the data have temporal signal, the prior and posterior for this parameter will substantially
differ. However, this parameter is proportional to the number of infected individuals at present under the
assumption that the number of infections grows exponentially in a deterministic fashion and in the absence of
population structure. Clearly, the extent to which the data meet these conditions can affect the interpretation
and reliability of such epidemiological parameters. More realistic tree priors may be warranted here, such as
those that account for population structure and the sampling process (Scire et al. 2020). In sum, whether the
phylodynamic threshold coincides with reliability in estimates of epidemiological parameters depends on the
information content in the data, but also on the tree prior and its underlying assumptions.

Ongoing analyses of SARS-CoV-2 will reveal important aspects regarding its evolutionary origin and
epidemiological dynamics. On a global scale, the virus is well beyond its phylodynamic threshold, but tests of
temporal signal, as applied here, will still be key to understand the timescale of local transmission.
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228  Methods

229  We downloaded genome sequence data from GISAID or GenBank, and aligned them using MAFFT (Katoh et
230  al.2002). We curated the data through comparison with data sets available at virological.org and visual

231 inspections of our alignments (Supplementary Materials, Table S1). We only included sequences from

232 humans, that were at least 28,000 nucleotides long, and with high coverage.

233

234 Bayesian phylogenetic analyses

235  Weanalysed each data snapshot in BEAST (Suchard et al. 2018) using the HKY+I" substitution model. We set
236  aMarkov chain Monte Carlo (MCMC) length of 107 steps, sampling every 10® steps. We determined sufficient
237  sampling by verifying that the effective sample size of key parameters was at least 200 using Tracer v1.7

238 (Rambaut et al. 2018). We assessed temporal signal using BETS (Duchene et al. 2019). We compared the

239 statistical fit of two molecular clock models, SC and UCLN, and three configurations of sampling times; the
240  correct sampling times, no sampling times, and permuted sampling times, with the latter two corresponding
241  toalack of temporal signal. For each combination of molecular clock model and sampling times we calculated
242 the (log) marginal likelihood using generalised stepping-stone sampling (Baele et al. 2016), for which we

243 employed 200 path steps with a chain length for each power posterior of 10° iterations. We chose priors for all
244 parameters that respected their respective domains, but that were not overly informative, and all of which are
245 proper (i.e. the area under the curve is 1.0; (Baele et al. 2013)) (Table 2). According to BETS, a data set is

246 considered to have temporal signal if (log) Bayes factors support a model with the correct sampling times
247 (Duchene et al. 2019).

248

249  Our comparison of the prior and posterior distributions of key parameters require obtaining the effective,
250  ratherthan the marginal prior. The effective prior can be obtained by running the analysis in BEAST with no
251  sequence data, which is equivalent to ignoring the sequence likelihood and is done by selecting the option
252 ‘sample from prior in BEAUti, the graphical interface accompanying the BEAST software package (Suchard et
253  al.2018). All Bayesian phylogenetic analyses were conducted on the SPARTAN high-performance computing
254 service of the University of Melbourne (Meade et al. 2017).

255

256  Root-to-tip regression

257  Weestimated phylogenetic trees using maximum likelihood inference as implemented in |Q-tree v1.6 (Minh
258  etal. 2020), with the optimal substitution model determined by the program. We used these trees to obtain
259 root-to-tip regressions in TempEst vi.5 (Rambaut et al. 2016) by selecting the root position that maximised
260 R

261
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274

275

276  Figure legends

277

278 Figure 1. Bayesian evaluation of temporal signal (BETS) results. Each panel corresponds to a snapshot data
279  setcollected up to a given month and day in 2020 and with a certain number, n, of genomes. The y-axis

280  represent the log Bayes factors, where the best-performing model has a value of 0. Each bar corresponds to
281  ananalysis configuration for BETS, with two possible molecular clock models: the strict (SC) and the

282  uncorrelated relaxed clock with an underlying lognormal distribution (UCLN). For the UCLN, we considered
283  two possible priors on the standard deviation of the lognormal distribution: an exponential distribution with
284  mean 0.33 or with mean 100, labelled as Exp(0.33) and Exp(100), respectively. The sampling times could be
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configured using the true values (dates), no sampling times (none), or permuted, with these latter two options
indicating no temporal signal. Black and dark grey bars correspond to analyses with the correct sampling
times with the SC or UCLN clock models, respectively. Dark and light red bars are for analyses with no
sampling times with these two clock models, and all light grey bars are for analyses with permuted sampling
times.

Figure 2. Root-to-tip regressions for snapshot data sets. The y-axis corresponds to the root-to-tip distance of
phylogenetic trees with branch lengths in units of substitutions per site. The x-axis represents calendar time.
Each point corresponds to a tip in the tree. The regression line is the best fitting line using the root position
that maximised R*. The R?, the intercept with the x-axis (x-intercept), and slope are shown for each data set,
with the latter two representing crude estimates of the evolutionary rate and time of origin, respectively.

Figure 3. Prior and posterior densities for parameters of interest using the molecular clock model with best fit
for all snapshot data set (SC for all data sets, except for February 24", where the UCLN was chosen). The y-
axis corresponds to parameter values, while the x-axis represents the relative density. Light blue densities
correspond to the effective prior, while those in dark blue show the posterior.

Tables

Table 1. Description of data snapshots of SARS-CoV-2.

Publication date range Number of Sampling window (from
(from Jan 10 2020) genomes Dec 23 2019)
Jan 23 22 Jan 17 2020
Feb 2 47 Jan 272020
Feb6 55 Jan 28 2020
Feb 10 66 Feb 32020
Feb 15 90 Feb 72020
Feb 18 95 Feb 9 2020
Feb 21 109 Feb g9 2020
Feb 24 122 Feb 10 2020

Table 2. Prior distributions used for key parameters.

Parameter Prior
Evolutionary (clock) rate Continuous time Markov Chain (CTMC)
Standard deviation of evolutionary rate (UCLN only) Exponential (mean=0.33 or mean=100)
Exponential coalescent growth rate Laplace (u=0, scale=100)
Exponential coalescent population size Lognormal (u=1.0, o=5)

Supplementary material
Table S1. Accession numbers and GISAID labels for sequences used here. Note that EPI_ISL_406592,
EPI_ISL_406595, EPI_ISL_403931, and EPI_ISL_402120 were excluded from our phylogenetic analyses.
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Table S2. Log marginal likelihoods estimated for all analyses. The labels match those in Figure 1.
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