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Abstract 15 

The ongoing SARS-CoV-2 outbreak marks the first time that large amounts of genome sequence data have 16 

been generated and made publicly available in near real-time. Early analyses of these data revealed low 17 

sequence variation, a finding that is consistent with a recently emerging outbreak, but which raises the 18 

question of whether such data are sufficiently informative for phylogenetic inferences of evolutionary rates 19 

and time scales. The phylodynamic threshold is a key concept that refers to the point in time at which 20 

sufficient molecular evolutionary change has accumulated in available genome samples to obtain robust 21 

phylodynamic estimates. For example, before the phylodynamic threshold is reached, genomic variation is so 22 

low that even large amounts of genome sequences may be insufficient to estimate the virus’s evolutionary 23 

rate and the time scale of an outbreak. We collected genome sequences of SARS-CoV-2 from public 24 

databases at 8 different points in time and conducted a range of tests of temporal signal to determine if and 25 

when the phylodynamic threshold was reached, and the range of inferences that could be reliably drawn from 26 

these data. Our results indicate that by February 2
nd

 2020, estimates of evolutionary rates and time scales had 27 

become possible. Analyses of subsequent data sets, that included between 47 to 122 genomes, converged at 28 

an evolutionary rate of about 1.1×10
-3

 subs/site/year and a time of origin of around late November 2019. Our 29 

study provides guidelines to assess the phylodynamic threshold and demonstrates that establishing this 30 

threshold constitutes a fundamental step for understanding the power and limitations of early data in 31 

outbreak genome surveillance. 32 
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 37 

Main text 38 

Pathogen genome sequence data are increasingly recognised as a key asset in outbreak investigations. 39 

Phylodynamic analyses of these data can be used to infer the time and location of origin of an outbreak, the 40 

viral evolutionary rate, epidemiological dynamics, and demographic patterns (du Plessis and Stadler 2015; 41 

Baele et al. 2017). These inferences, however, rely on the genome data being sufficiently informative. 42 

 43 

The ongoing novel coronavirus outbreak (SARS-CoV-2) marks the first time that genome sequence data have 44 

been generated and shared publicly as soon as the virus started spreading. The time of origin of SARS-CoV-2 45 

is a pressing question at early stages of the outbreak because it impacts our understanding of its spread and 46 

emergence. In practice, the sampling times of genomes can be used to calibrate the molecular clock and infer 47 

the viral evolutionary rate and the timescale of the outbreak (Korber et al. 2000). The underlying assumption 48 

is that molecular evolution occurs at a predictable rate over time and that the sampling window is sufficiently 49 

wide as to capture a measurable amount of evolutionary change in the sampled genomes. Under the 50 

condition that the sampling window is sufficiently wide and the evolutionary rate sufficiently high, and 51 

genome sequences long enough, the data can be treated as having been obtained from a measurably 52 

evolving population (Drummond et al. 2003; Biek et al. 2015). If this is not the case, the data are considered to 53 

have no temporal signal and any estimates from the molecular clock are therefore spurious (Duchêne et al. 54 

2015; Murray et al. 2015).  55 

 56 
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The term ‘phylodynamic threshold’ pertains to the question of whether a virus has had sufficient time to 57 

evolve since its origin so as to warrant tip-dating calibration, under the assumption that genome data from 58 

early stages of the outbreak are available (Hedge et al. 2013). Therefore, applying statistical tests of temporal 59 

signal to genome data as they are collected can reveal when the phylodynamic threshold is reached. Such 60 

analyses are essential to determine the limitations of genome data and the range of inferences that can be 61 

reliably drawn from them over time. 62 

 63 

Root-to-tip regression is typically used as an informal assessment of temporal signal (Rambaut et al. 2016). 64 

While not a statistical test, it is however a valuable visual tool of clocklike behaviour and of outlier detection 65 

(e.g. due to mislabelling, contamination or sequencing errors). Root-to-tip regression consists of estimating 66 

an unrooted phylogenetic tree with branch lengths in units of substitutions per site and conducting a 67 

regression of the distance from the root to each of the tips as a function of their sampling times (Gojobori et 68 

al. 1990; Drummond et al. 2003). Under clocklike evolution and with a wide sampling window, the slope 69 

corresponds to a crude estimate of the evolutionary rate, the intercept with the time axis represents the time 70 

of origin, and the coefficient of determination, R
2
, may reflect the degree of clocklike behaviour. 71 

 72 

Formal approaches to assess temporal signal include date-randomisation tests and Bayesian evaluation of 73 

temporal signal (BETS) (Duchêne et al. 2015; Murray et al. 2015; Duchene et al. 2019). Date randomisation 74 

tests consist of repeating the analysis several times with permuted sampling times to generate a ‘null’ 75 

distribution of evolutionary rate estimates. The data are considered to have temporal signal if the estimate 76 

obtained with the correct sampling times does not overlap with those of the randomisations. In contrast, 77 

BETS consists of comparing the statistical fit of models that include the correct sampling times, no sampling 78 

times, or permuted sampling times. The premise of BETS is that if the data have temporal signal, using the 79 

correct sampling times should have the highest statistical fit (Duchene et al. 2019). For example, if the 80 

sampling window over which the genome data have been collected is very short, such that the data have no 81 

temporal signal, then the sampling times are not meaningful and a model incorporating the correct sampling 82 

times may not have an improved statistical fit over a model that ignores differences in sampling times. In 83 

contrast, if the sampling window is wide enough as to capture many substitutions, using the correct sampling 84 

times is expected to result in higher model fit than using permuted sampling times or no sampling times. In a 85 

Bayesian context, model fit is determined through the marginal likelihood, and a model is preferred over 86 

another according to their ratio of marginal likelihoods, known as the Bayes factor (Kass and Raftery 1995). 87 

Marginal likelihoods are typically reported on a logarithmic scale, where a log Bayes factors of at least 1 is 88 

considered as positive evidence in favour of a model. 89 

 90 

Results 91 

We collected SARS-CoV-2 genome data from the Global Initiative on Sharing All Influenza Data (GISAID) and 92 

from GenBank at 8 time points from January 23
rd

 to February 24
th

 2020 (Table 1). Thus, each time point 93 

represents a ‘snapshot’ of the genome data available to that date. Our data only included genomic sequences 94 

from human samples, with sequence lengths of at least 28,000 nucleotides and, with high coverage as 95 

determined in GISAID (see supplementary material Table S1 for accession numbers). To minimise the impact 96 

of potential sequencing errors in our alignments, we deleted obvious errors upon visual inspection and 97 

compared our phylogenetic trees to those obtained by other groups (virological.org) and those from the 98 

Nextstrain workflow (Hadfield et al. 2018).  99 

 100 

We conducted Bayesian phylogenetic analyses using BEAST v1.10 using two molecular clock models; a strict 101 

clock (SC) and an uncorrelated relaxed clock with an underlying lognormal distribution (UCLN). We set an 102 

exponential growth coalescent tree prior, which is appropriate for the early stages of an outbreak and which 103 

has been recently used to infer the basic reproductive number and growth rate of SARS-CoV-2 (Volz et al. 104 

2020). For our model comparison in BETS we estimated (log) marginal likelihoods using generalised stepping-105 

stone sampling (Fan et al. 2011; Baele et al. 2016). 106 

 107 

Our BETS analyses provided evidence against significant temporal signal in the genome data available up to 108 

January 23
rd

 2020 (n=22 genomes). In this data set, the highest model fit to the data was found for analyses 109 

with permuted sampling times, followed by those with no sampling times (Figure 1). The evidence for models 110 

with no sampling times was very strong, with log Bayes factors of 7.5 for the best model with no sampling 111 

times relative to those without sampling times. All data sets obtained subsequently, from February 2
nd

 with at 112 

least 47 genomes supported the inclusion of the correct sampling times, with log Bayes factors of at least 20 113 
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for models with the correct sampling times over those without sampling times. The log Bayes factors for the 114 

models with correct sampling times over those with permuted sampling times were at least 5, which is 115 

considered as very strong evidence in favour of temporal signal (Kass and Raftery, 1995).  116 

 117 

For comparison, we also conducted root-to-tip regressions for the eight snapshot data sets (Figure 2). The R
2
 118 

values ranged between 0.11 and 0.2. We did not find an association between R
2
 and the number of genome 119 

samples included. This result may stand in contrast to the expectation that including more independent data 120 

should reduce the effect of stochasticity, but the data sets here have an inherently high degree of non-121 

independence. The slopes of the regressions ranged from 6.7×10
-4

 to 8.8×10
-4

 subs/site/year and the intercept 122 

with the X-axis (i.e. the time to the most recent common ancestor) from 2019.83 to 2019.86. 123 

 124 

Interestingly, all data sets with temporal signal favoured the SC over the UCLN model with the exception of 125 

that collected up to February 24
th

, with 122 genomes, where the log Bayes factor of the UCLN over the SC 126 

was 1.81 (Figure 1). The fact that the SC had high support in data sets collected prior to February 24
th

 probably 127 

indicates that they may not be sufficiently informative as to warrant modelling evolutionary rate variation 128 

across branches through the UCLN, rather than evidence of strict clocklike behaviour.  129 

 130 

A potential reason for why the SC is favoured over the UCLN in many cases is that the default prior on the 131 

standard deviation of the lognormal distribution of the UCLN is an exponential distribution with mean 0.33, 132 

that has a high density at 0, corresponding to a very low amount of among-lineage rate variation. Intuitively, 133 

if the data have low information content, the prior may have a strong influence on the posterior, relative to 134 

the data, such that the posterior for this parameter might also be concentrated on 0. In this case, the UCLN 135 

may appear overparameterised and the SC would be favoured. We investigated the robustness of model 136 

selection to the prior on this parameter repeating the UCLN analyses with an exponential distribution with 137 

mean 100 as the prior for this parameter. Using this less informative prior consistently resulted in a worse 138 

model fit across all data sets, and thus did not affect our assessment of temporal signal.  139 

 140 

If we restrict our attention to the UCLN with the less informative prior for the January 23
rd

 data set, the model 141 

that includes sampling times is favoured over that with no sampling times, with a log Bayes factor of 17. If one 142 

ignored all other models and priors, this result would indicate the presence of temporal signal. This finding 143 

stands in contrast to the SC and UCLN with the more informative prior, which have much higher model fit 144 

(Figure1; Supplementary material Table S2). Consequently, assessing temporal signal using BETS should 145 

involve comparing a range of clock models and careful consideration of the prior on their respective 146 

parameters (Duchene et al. 2019). 147 

 148 

We also considered comparisons of prior and posterior distributions to assess the extent to which the data 149 

were informative about particular parameters. Our expectation is that the posterior should have a lower 150 

variance relative to the prior as more data are included. We considered our estimates of the growth rate (r) 151 

and scaled population size (Φ) of the exponential coalescent tree prior, the virus’s evolutionary rate and the 152 

time of origin of the outbreak. An important consideration here is that our method of inspecting the prior 153 

consists in running the analyses with no sequence data. Thus, the resulting distributions represent the 154 

‘effective’, rather than the ‘marginal’ (i.e. user-specified) prior. The effective prior is the prior conditioned on 155 

the number of samples and their ages, the coalescent process and their interaction, whereas the marginal 156 

prior is the actual distribution that one sets in the program. In practice, the effective and marginal prior 157 

sometimes differ for parameters that pertain to the tree prior (Warnock et al. 2012; Boskova et al. 2018). 158 

 159 

Although our marginal priors are identical for all snapshot datasets, we noted that the effective prior differed 160 

between data sets for r, Φ, and the time of origin (Figure 3). The posterior from the January 23
rd

 snapshot, 161 

with 22 genomes, was very uncertain for all parameters. For example, the time of origin using the SC ranged 162 

from late 2018 to early December 2019. The posterior for Φ was also more uncertain than its effective prior, 163 

which coincides with high uncertainty in the rate and the time of origin. 164 

 165 

Our snapshot data sets collected from February 2
nd

, with at least 47 genome samples, yielded posterior 166 

distributions that were much narrower than their respective effective priors and those of the January 23
rd

 167 

snapshot. Our estimates of the evolutionary rate from February 2
nd

 converged at a mean of around 1.1×10
-3

 168 

substitutions per site per year. The uncertainty in this parameter for the largest data set (February 24
th

, with 169 

122 genomes) using the UCLN clock model is reflected by a 95% credible interval (CI) of between 7.03×10
-4

 170 
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and 1.5×10
-3

 substitutions per site per year. Similarly, the time of origin converged to a mean of late 171 

November 2019 and with a 95% CI for the February 24
th

 data set of between late October to mid-December 172 

2019. 173 

 174 

Posterior estimates for parameters r and Φ, differed substantially from their effective priors, although not to 175 

the extent that the evolutionary rate and the time of origin did. In particular, the posterior of the time of 176 

origin is several times narrower than the prior in all data sets from February 2
nd

, whereas the posterior for r in 177 

the largest data set (February 24
th

) is only about 2 times narrower than its respective effective prior (Figure 3). 178 

Our estimates of r and Φ did not converge between snapshot data sets, as was the case for the evolutionary 179 

rate and time of origin. However, we do not necessarily expect this to happen. For instance, Φ is proportional 180 

to the number of infected individuals at the time of collection of the latest sample (Wallinga and Lipsitch 181 

2007; Boskova et al. 2014), which is expected to increase as the outbreak progresses. Similarly, r is 182 

proportional to the reproductive number Re, (i.e. the average number of secondary infections), is expected to 183 

decline over time as the number of susceptible individuals decreases and is expected to be affected by 184 

growing spatial structure. 185 

 186 

Discussion 187 

The question of whether a viral outbreak has attained the phylodynamic threshold is a highly relevant concept 188 

for emerging outbreaks, because it is informative about the amount of sequence data, their temporal spread, 189 

and how much evolutionary change has accumulated in the viral genome. The phylodynamic threshold 190 

requires a strong assumption about the evolutionary rate based on closely related viruses, and it can be 191 

understood as the point in time when sequence data are sufficiently informative about the evolutionary 192 

dynamics that shape an outbreak, i.e. when the population is measurably evolving. The routine application of 193 

tests of temporal signal can effectively answer this question in nearly real-time. Our application of BETS 194 

(Duchene et al., 2019) to data snapshots from the early stages of the outbreak revealed that the 195 

phylodynamic threshold of SARS-CoV-2 was reached by about February 2
nd

, when 47 genomes were available 196 

sampled over 35 days. 197 

 198 

Our finding that the phylodynamic threshold was attained within about two months of the estimated start of 199 

the outbreak demonstrates that Bayesian phylodynamic approaches can capitalise on early collected genome 200 

data to make inferences about evolutionary processes, particularly the viral evolutionary rate and the 201 

outbreak’s time of origin. Our estimates of these two parameters were consistent after the phylodynamic 202 

threshold was reached, and also matched previous estimates posted on virological.org and elsewhere 203 

(Taiaroa et al. 2020; Volz et al. 2020). Increasing the number of sequences leads to more precise estimates of 204 

the evolutionary rate, but we found only marginal improvements in precision after 109 sequences (February 205 

21
st

). The SC was preferred over the UCLN in most data sets. The fact that the UCLN was only supported after 206 

122 sequences were included suggests that the statistical power necessary to support such a relaxed clock 207 

model may require more informative data than those available at the early stages in the outbreak. We 208 

anticipate that the UCLN will be favoured over the SC in analyses of larger data sets of SARS-CoV-2. 209 

 210 

A key consideration concerning the presence of temporal signal in the data is that this does not necessarily 211 

imply that demographic parameters can be reliably estimated using genome sequence data. Comparing the 212 

effective prior and posterior is important to assess the information content of the data, but it is not an 213 

assessment of the reliability of the estimates. For example, Φ is generally inversely correlated with the root 214 

height, such that if the data have temporal signal, the prior and posterior for this parameter will substantially 215 

differ. However, this parameter is proportional to the number of infected individuals at present under the 216 

assumption that the number of infections grows exponentially in a deterministic fashion and in the absence of 217 

population structure. Clearly, the extent to which the data meet these conditions can affect the interpretation 218 

and reliability of such epidemiological parameters. More realistic tree priors may be warranted here, such as 219 

those that account for population structure and the sampling process (Scire et al. 2020). In sum, whether the 220 

phylodynamic threshold coincides with reliability in estimates of epidemiological parameters depends on the 221 

information content in the data, but also on the tree prior and its underlying assumptions.  222 

 223 

Ongoing analyses of SARS-CoV-2 will reveal important aspects regarding its evolutionary origin and 224 

epidemiological dynamics. On a global scale, the virus is well beyond its phylodynamic threshold, but tests of 225 

temporal signal, as applied here, will still be key to understand the timescale of local transmission. 226 

 227 
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Methods 228 

We downloaded genome sequence data from GISAID or GenBank, and aligned them using MAFFT (Katoh et 229 

al. 2002). We curated the data through comparison with data sets available at virological.org and visual 230 

inspections of our alignments (Supplementary Materials, Table S1). We only included sequences from 231 

humans, that were at least 28,000 nucleotides long, and with high coverage. 232 

 233 

Bayesian phylogenetic analyses 234 

We analysed each data snapshot in BEAST (Suchard et al. 2018) using the HKY+Γ substitution model. We set 235 

a Markov chain Monte Carlo (MCMC) length of 10
7
 steps, sampling every 10

3
 steps. We determined sufficient 236 

sampling by verifying that the effective sample size of key parameters was at least 200 using Tracer v1.7 237 

(Rambaut et al. 2018). We assessed temporal signal using BETS (Duchene et al. 2019). We compared the 238 

statistical fit of two molecular clock models, SC and UCLN, and three configurations of sampling times; the 239 

correct sampling times, no sampling times, and permuted sampling times, with the latter two corresponding 240 

to a lack of temporal signal. For each combination of molecular clock model and sampling times we calculated 241 

the (log) marginal likelihood using generalised stepping-stone sampling (Baele et al. 2016), for which we 242 

employed 200 path steps with a chain length for each power posterior of 10
5
 iterations. We chose priors for all 243 

parameters that respected their respective domains, but that were not overly informative, and all of which are 244 

proper (i.e. the area under the curve is 1.0; (Baele et al. 2013)) (Table 2). According to BETS, a data set is 245 

considered to have temporal signal if (log) Bayes factors support a model with the correct sampling times 246 

(Duchene et al. 2019). 247 

 248 

Our comparison of the prior and posterior distributions of key parameters require obtaining the effective, 249 

rather than the marginal prior. The effective prior can be obtained by running the analysis in BEAST with no 250 

sequence data, which is equivalent to ignoring the sequence likelihood and is done by selecting the option 251 

‘sample from prior’ in BEAUti, the graphical interface accompanying the BEAST software package (Suchard et 252 

al. 2018). All Bayesian phylogenetic analyses were conducted on the SPARTAN high-performance computing 253 

service of the University of Melbourne (Meade et al. 2017). 254 

 255 

Root-to-tip regression 256 

We estimated phylogenetic trees using maximum likelihood inference as implemented in IQ-tree v1.6 (Minh 257 

et al. 2020), with the optimal substitution model determined by the program. We used these trees to obtain 258 

root-to-tip regressions in TempEst v1.5 (Rambaut et al. 2016) by selecting the root position that maximised 259 

R
2
.  260 

 261 
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 275 

Figure legends 276 

 277 

Figure 1. Bayesian evaluation of temporal signal (BETS) results. Each panel corresponds to a snapshot data 278 

set collected up to a given month and day in 2020 and with a certain number, n, of genomes. The y-axis 279 

represent the log Bayes factors, where the best-performing model has a value of 0. Each bar corresponds to 280 

an analysis configuration for BETS, with two possible molecular clock models: the strict (SC) and the 281 

uncorrelated relaxed clock with an underlying lognormal distribution (UCLN). For the UCLN, we considered 282 

two possible priors on the standard deviation of the lognormal distribution: an exponential distribution with 283 

mean 0.33 or with mean 100, labelled as Exp(0.33) and Exp(100), respectively. The sampling times could be 284 
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configured using the true values (dates), no sampling times (none), or permuted, with these latter two options 285 

indicating no temporal signal. Black and dark grey bars correspond to analyses with the correct sampling 286 

times with the SC or UCLN clock models, respectively. Dark and light red bars are for analyses with no 287 

sampling times with these two clock models, and all light grey bars are for analyses with permuted sampling 288 

times.  289 

 290 

Figure 2. Root-to-tip regressions for snapshot data sets. The y-axis corresponds to the root-to-tip distance of 291 

phylogenetic trees with branch lengths in units of substitutions per site. The x-axis represents calendar time. 292 

Each point corresponds to a tip in the tree. The regression line is the best fitting line using the root position 293 

that maximised R
2
. The R

2
, the intercept with the x-axis (x-intercept), and slope are shown for each data set, 294 

with the latter two representing crude estimates of the evolutionary rate and time of origin, respectively. 295 

 296 

Figure 3. Prior and posterior densities for parameters of interest using the molecular clock model with best fit 297 

for all snapshot data set (SC for all data sets, except for February 24
th

, where the UCLN was chosen). The y-298 

axis corresponds to parameter values, while the x-axis represents the relative density. Light blue densities 299 

correspond to the effective prior, while those in dark blue show the posterior.  300 

 301 

Tables 302 

 303 

Table 1. Description of data snapshots of SARS-CoV-2. 304 

 305 

Publication date range 
(from Jan 10 2020) 

Number of 
genomes 

Sampling window (from 
Dec 23 2019) 

Jan 23 22 Jan 17 2020 

Feb 2 47 Jan 27 2020 

Feb 6 55 Jan 28 2020 

Feb 10 66 Feb 3 2020 

Feb 15 90 Feb 7 2020 

Feb 18 95 Feb 9 2020 

Feb 21 109 Feb 9 2020 

Feb 24 122 Feb 10 2020 

 306 

 307 

 308 

 309 

Table 2. Prior distributions used for key parameters. 310 

Parameter Prior 

Evolutionary (clock) rate Continuous time Markov Chain (CTMC) 

Standard deviation of evolutionary rate (UCLN only) Exponential (mean=0.33 or mean=100) 

Exponential coalescent growth rate Laplace (μ=0, scale=100) 

Exponential coalescent population size Lognormal (μ=1.0, σ=5) 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

Supplementary material 320 

Table S1. Accession numbers and GISAID labels for sequences used here. Note that EPI_ISL_406592, 321 

EPI_ISL_406595, EPI_ISL_403931, and EPI_ISL_402120 were excluded from our phylogenetic analyses. 322 
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 323 

Table S2. Log marginal likelihoods estimated for all analyses. The labels match those in Figure 1. 324 

 325 
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