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Abstract

Data integration of single-cell measurements is critical for understanding cell development and
disease, but the lack of correspondence between different types of measurements makes such efforts
challenging. Several unsupervised algorithms can align heterogeneous single-cell measurements in a
shared space, enabling the creation of mappings between single cells in different data domains. How-
ever, these algorithms require hyperparameter tuning for high-quality alignments, which is difficult in
an unsupervised setting without correspondence information for validation. We present Single-Cell
alignment using Optimal Transport (SCOT), an unsupervised learning algorithm that uses Gromov
Wasserstein-based optimal transport to align single-cell multi-omics datasets. We compare the align-
ment performance of SCOT with state-of-the-art algorithms on four simulated and two real-world
datasets. SCOT performs on par with state-of-the-art methods but is faster and requires tuning fewer
hyperparameters. Furthermore, we provide an algorithm for SCOT to use Gromov Wasserstein dis-
tance to guide the parameter selection. Thus, unlike previous methods, SCOT aligns well without
using any orthogonal correspondence information to pick the hyperparameters. Our source code and
scripts for replicating the results are available at https://github.com/rsinghlab/SCOT.

1 Introduction

Single-cell measurements provide a fine-grained view of the heterogeneous landscape of cells in a sam-
ple, revealing distinct subpopulations and their developmental and regulatory trajectories across time.
The availability of single-cell measurements that capture various properties of the genome, such as gene
expression, chromatin accessibility, DNA methylation, histone modifications, and chromatin 3D confor-
mation, has increased the need for data integration methods capable of combining disparate data types.
Despite the importance of this task, the heterogeneity among single cells presents unique challenges.
For example, due to technical limitations, it is hard to obtain multiple types of measurements from the
same individual cell. Furthermore, when we measure different properties of a cell, we cannot a priori
identify correspondences between features in the two domains. Accordingly, integrating two or more
single-cell data modalities requires methods that do not rely on either common cells or features across
the data types. This aspect prevents the application of some existing single-cell alignment methods to
unsupervised settings because they require some correspondence information, either among the cells or
the features [[1-4]. For example, Seurat [4] requires correspondence information in the form of cells from
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Figure 1: Schematic of SCOT alignment of single-cell multi-omics data. A population of cells is
aliquoted for different single-cell sequencing assays to capture complementary aspects (e.g. gene ex-
pression and chromatin accessibility) of the molecular dynamics. SCOT constructs k-NN graphs based
on sample-wise correlations, where vertices represent cells and finds a probabilistic coupling between
the samples of each domain which minimizes the distance between the two intra-domain graph distance
matrices. Barycentric projection uses this coupling matrix to project one domain onto another.

similar biological state that are shared across the two datasets (known as anchor points). Cao et al. [5]]
have shown that such methods cannot perform good alignments under fully unsupervised settings.

Some approaches have tried to align datasets in an entirely unsupervised fashion. One of the earliest
attempts, the joint Laplacian manifold alignment (JLMA) algorithm, constructs eigenvector projections
based on local k-nearest neighbor graph Laplacians of the data [6]. The generalized unsupervised mani-
fold alignment (GUMA) [7]] algorithm seeks a 1-1 correspondence between two datasets based on a local
geometry matching term. Liu et al. [8] showed that these methods do not perform well on the single-cell
alignment task.

Liu et al. [8] proposed a manifold alignment algorithm based on the maximum mean discrep-
ancy (MMD) measure, called MMD-MA, which can integrate different types of single-cell measure-
ments. Another method, UnionCom [3]], extends GUMA to perform unsupervised topological align-
ment. MMD-MA aims to match the global distributions of the datasets in a shared latent space, whereas
UnionCom emphasizes learning both local and global alignments between the two distributions. Neither
method requires any correspondence information either among samples or the features. The respective
papers demonstrate state-of-the-art performance on simulated and real datasets. Although these results
are encouraging, MMD-MA and UnionCom require that the user specify three and four hyperparam-
eters, respectively. Selecting these hyperparameter values can be difficult and time-consuming in an
unsupervised setting.

An emerging number of applications, including several in biology, are using optimal transport to
learn a mapping between data distributions [9, [10]. Optimal transport finds the most cost-effective way
to move data points from one domain to another. One way to think about it is as the problem of moving a
pile of sand to fill in a hole through the least amount of work. Schiebinger et al. [11] use optimal transport
to study how gene expression changes over time; they use regularized unbalanced optimal transport to
compute differences in gene expression from one time point to the next. ImageAEOT [12] maps single-
cell images to a common latent space through an autoencoder and then uses optimal transport to track
cell trajectories. In related work, the same authors use autoencoders and optimal transport to learn
transport maps among multiple domains [13]]. However, the application of their method to single-cell
datasets requires some form of supervision, like class labels, to preserve the underlying structure during
transport.

The classic optimal transport problem requires datasets in the same metric space. Mémoli et al.
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[14] generalized optimal transport to the Gromov-Wasserstein distance, which compares metric spaces
directly instead of comparing samples across spaces. In the natural language processing community,
Alvarez et al. [[10] used this approach to measure similarities between pairs of words across languages
to compute the distances between languages. As far as we are aware, the only biological application of
Gromov-Wasserstein optimal transport comes from [[15]], which uses it to reconstruct the spatial organi-
zation of cells from transcriptional profiles.

In this paper, we present Single-Cell alignment using Optimal Transport (SCOT), an unsupervised
learning algorithm that uses Gromov-Wasserstein-based optimal transport to align single-cell multi-
omics datasets (presented schematically in Figure[I). Like UnionCom, SCOT aims to preserve local ge-
ometry when aligning single-cell data. SCOT achieves this by constructing a k-nearest neighbor (k—NN)
graph for each dataset. SCOT then finds a probabilistic coupling between the samples of each dataset
that minimizes the distance between the graph distance matrices produced by the £-NN graph. Finally,
it uses the coupling matrix to project one single-cell dataset onto another through barycentric projection,
thus aligning them. Unlike MMD-MA and UnionCom, SCOT requires tuning only two hyperparameters
and is robust to the choice of one. We compare the alignment performance of SCOT with MMD-MA
and UnionCom on four simulated and two real-world datasets. SCOT aligns all datasets as well as the
state-of-the-art methods and scales well with increasing numbers of samples. Moreover, we demonstrate
that the Gromov-Wasserstein distance can guide SCOT’s hyperparameter tuning in a fully unsupervised
setting, when no orthogonal alignment information is available.

2 Methods

SCOT uses Gromov-Wasserstein optimal transport, which preserves local geometry when moving data
points form one domain to another. The output of this transport problem is a matrix of probabilities that
represent how likely it is that data points from one space correspond to data points in the other space.
In this section, we introduce optimal transport followed by its extension to the Gromov-Wasserstein
distance. Finally, we present the details of our SCOT algorithm.

We present the case for two datasets: X = (71,22, ...,%,,) from X and Y = (y1,%2,...,Yy,) from
Y. The datasets have n, and n, points, respectively. We do not require any correspondence information
but assume there is some underlying shared structure so that the datasets can be meaningfully aligned.

Optimal transport The Kantorovich optimal transport problem seeks to find a minimal cost mapping
between two probability distributions [16]. Referring back to the problem of moving a sand pile to fill in
a hole, Kantorovich optimal transport allows us to split the mass of a grain of sand instead of moving the
whole grain; therefore, the mappings need not be 1—1. For probability measures p and v defined on X
and Y, respectively, this optimal transport problem finds a minimal coupling 7 that attains

min / c(x,y)dn(z,y), (D
XxY

mell(v,u)
where c(x, y) is a cost function and II(x, v) is the set of couplings of 1 and v given by
M(p,v) = {r € P(X x V) : m(Ax V) = u(A) for AC X, 7(X x B) =v(B) for BC Y}. (2)

Intuitively, the cost function says how many resources it will take to move x to y, and the coupling 7
assigns a probability m(x,y) that z should be moved to y. When the spaces of interest are the same
metric space with set M, distance d, and cost function ¢(x, y) = d(z, y)P, the optimal transport distance


https://doi.org/10.1101/2020.04.28.066787
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.28.066787; this version posted November 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(Equation (1)) is equivalent to the p—th Wasserstein distance:

1
p
W (1, 0) =( we [ d(x,y>pdw<x,y>) | @
WGH(/J,,I/) MxM
The Wasserstein distance measures the distances between probability distributions on a metric space and
is commonly used in machine learning applications.
Since we align observed data points, we define the marginals as discrete empirical distributions:

Ng Ny
p=) pids,andqg=> g,
i=1 Jj=1

where ¢,, is the Dirac measure. Then, the cost function is given as a matrix C' € R"*™ e.g. C;; =
|z; — y;]|, and the set of couplings are the matrices II(p, ¢) = {I' € R}"*™ : 'L, =p, ['T1,, =q}. A
discrete coupling I relates two measures p and ¢: each row I'; tells us how to split the mass of data point
x; onto the points y; for j = 1, ..., n,, and the condition I'l,,, = p requires that the sum of each row I';
is equal to p;, the probability of sample x;. The discrete optimal transport problem finds a coupling that
minimizes the cost of moving samples through the linear program:

min (I, C). 4

FEH(M)< ) ©

Although this problem can be solved with minimum cost flow solvers, it is usually regularized with

entropy for more efficient optimization and empirically better results [[17]. Entropy diffuses the optimal
coupling, meaning that more masses will be split. Thus, the numerical optimal transport problem is

min (I',C) — eH(T), Q)

rell(p,q)

where € > 0 and H (") is the Shannon entropy defined as H(I') = >, > 7%, I';;log T'y;.

Equation [3] is a strictly convex optimization problem, and for some unknown vectors u € R"* and
v € R™, the solution has the form I'* = diag(u)Kdiag(v), with K = exp (—<), element-wise. This
solution can be obtained efficiently via Sinkhorn’s algorithm, which iteratively computes

u—po Kvandv + ¢ K'u, (6)

where © denotes element-wise division. This derivation immediately follows from solving the corre-
sponding dual problem for Equation [5| [16].

Gromov-Wasserstein distance Classic optimal transport requires defining a cost function across do-
mains, which can be difficult to implement when the domains are in different metric spaces. Gromov-
Wasserstein distance extends optimal transport by comparing distances between samples rather than di-
rectly comparing the samples themselves [10]. We assume that we have metric measure spaces (X, d., )
and (Y, d,,v), where d, and d,, are distances on X’ and )/, respectively [14]. Instead of defining a cost
function between spaces, Gromov-Wasserstein uses the difference between pairwise distances. Given a
cost function L : R x R — R, the Gromov-Wasserstein distance between j and v is defined by

well(p,v

GW(u,v) := min / / de (21, 2), dy (Y1, y2))dm (21, Y1 )dm (22, Ya). )
XXY JAXXY
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The main change from basic optimal transport (Equation (1) to Gromov-Wasserstein (Equation [/)) is that
we consider the effect of transporting pairs of points rather than single points. Intuitively, L(d,(x1, x2),
dy(y1,y2)) captures how transporting x; to y; and x» to y» would distort the original distances between
x1 and x5 and between y; and y,. This change ensures that the optimal transport plan 7 will preserve
some local geometry. In the case of L(x,y) = Lo(x,y) = 1(x — y)?, Gromov-Wasserstein is a distance
on the space of metric measure spaces [14].

For the discrete case, we compute pairwise distance matrices D and Y and the fourth order tensor
L € Rrexn>mxy where Lij = L(Dj,, DY). The discrete Gromov-Wasserstein problem is

GW(p,q) = min Lijulsi T (8)
Tell(p.q) <
1,7,k,1

The summation can also be expressed as the inner product (L(D?* DY) @ T',T"). Equation [8| is now
both non-linear and non-convex and involves operations on a fourth-order tensor, including the O(n? ”12/)
operation tensor product L(D* DY) ® I for a naive implementation. Peyré et al. show that for some
choices of loss function this product can be computed in O(n2n,, + nmni) cost [18]]. In particular, for the
case L = Lo, the inner product can be computed by

L(D", DY) @T = (D*)*ply +1,,q"((D¥)*)" — D*T(D)". ©)

As in the classic optimal transport case, the coupling matrix can be efficiently computed for an entropi-
cally regularized optimization problem:

GW.(p,q) = min (L(D*,DY)®T,T') —eH(T). (10)
Lell(p,q)

Larger values of € lead to an easier optimization problem but also a denser coupling matrix, meaning
that solutions will indicate significant correspondences between more data points. Smaller values of ¢
lead to sparser solutions, meaning that the coupling matrix is more likely to find the correct one-to-one
correspondences for datasets where there are one-to-one correspondences. However, it also yields a

harder (more non-convex) optimization problem [10].
Peyré et al. [18] propose using a projected gradient descent approach for optimization, where both
the projection and the gradient are taken with respect to Kullback-Leibler divergence. These projections
are computed via Sinkhorn iterations. Algorithm 1 in the supplement presents the algorithm for L = L.

Single-Cell alignment using Optimal Transport (SCOT) Our method, SCOT, works as follows.
First, we compute the pairwise distances on our data by using a geodesic distance as in [15]. To do
this, we use the correlations between data points within each dataset to construct k-NN connectivity
graphs. Then we compute the shortest path distance on the graph between each pair of nodes. We set
the distance of any unconnected nodes to be the maximum (finite) distance in the graph and rescale the
resulting distance matrix by dividing by the maximum distance. If % is the number of samples, then the
k-NN graph is the complete graph, so the corresponding distance matrix is a matrix of all ones with zeros
on the diagonal. In this case, the distance matrix does not provide information about the local geometry,
so we recommend keeping k small relative to the number of samples to avoid this scenario. Our approach
is robust to the choice of k& (Supplementary Section 1.5)

Since we do not know the true distribution of the original datasets, we follow [[10] and set p and ¢ to be
the uniform distributions on the data points. Then, we solve for the optimal coupling I' which minimizes
Equation To implement this method, we use the Python Optimal Transport toolbox (https://
pot .readthedocs.io/en/stable/) [19].
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One of the advantages of using optimal transport is that we end up with a coupling matrix I' with a
probabilistic interpretation. The entries of the normalized row p%_FZ- are the probabilitie-s that the fixed
data point x; corresponds to each y,;. However, to use the correspondence metrics previously used in the
field to evaluate the alignment, we need to project the two datasets into the same space. The Procrustes
approach proposed in [10] does not generalize to datasets with different feature and sample dimensions,
SO we use a barycentric projection:

1
v — > Ty (11)
pi 4=

Alternative Unsupervised Alignment Procedure In the description of SCOT, the number £ for near-
est neighbors and the entropy weight € are hyperparameters. One way to set these hyperparameters for
optimal alignment is to use some orthogonal correspondence information to select the best alignment ei-
ther directly [, 8] or by performing cross-validation [20]. This selection strategy is problematic for truly
unsupervised setting, where no correspondence information is available a priori. As a solution, we pro-
vide an alternative procedure to learn reasonable alignments based on tracking the Gromov-Wasserstein
distance (Equation[§)). This procedure is based on our observation that the Gromov-Wasserstein distance
serves as a proxy for measuring alignment quality (see Supplementary Figure [S5). In this procedure,
we alternate between optimizing e and & to minimize the Gromov-Wasserstein distance between the do-
mains (detailed in Algorithm 2 in Supplementary Materials). Although the lowest Gromov-Wasserstein
distance is not always the best alignment, it consistently appears to be one of the better alignments.

3 Experimental Setup

Simulated datasets We follow Liu et al. [8]] and benchmark SCOT on three different simulation All
three simulations contain two domains with 300 samples that have been non-linearly projected to 1000-
and 2000-dimensional feature spaces, respectively. The three simulations are a bifurcation, a Swiss roll,
and a circular frustum (Supplementary Figure [ST) with points belonging to three different groups. In
addition to these three previously existing simulations, we use Splatter [21] to create simulated single-
cell RNA sequencing count data, which we call synthetic RNA-seq. We generate 5000 cells with 1000
genes from three cell groups and reduce the count matrix to the five genes with the highest variances.
This count matrix is randomly mapped into two new domains with dimensions p; = 50 and p, = 500 by
multiplying it with two randomly generated matrices, resulting in data with dimensions 5000 x 50 and
5000 x 500.

All four datasets were simulated with 1—1 sample-wise correspondences, which are solely used for
evaluating model performance. Each domain is projected to a different dimension, so there is no feature-
wise correspondence either. In all simulations, we Z-score normalize the features before running the
alignment algorithms as in [8]].

Single-cell multi-omics datasets We use two sets of single-cell multi-omics data to demonstrate the
applicability of our model to real datasets. Both datasets are generated by co-assays; thus, we have known
cell-level correspondence information for benchmarking. The first dataset is generated using the scGEM
assay [22], which simultaneously profiles gene expression and DNA methylation. The dataset (Sequence
Read Archive accession SRP077853) is derived from human somatic cell samples undergoing conversion
to induced pluripotent stem cells (iPSCs). This dataset was also used by Cao et al. [S] to demonstrate the

'https://noble.gs.washington.edu/proj/mmd-ma/
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performance of their UnionCom algorithm. The data dimensions are 177 x 34 for the gene expression
data and 177 x 27 for the chromatin accessibility data.

The second dataset is generated by the SNAREseq assay [23], which links chromatin accessibility
with gene expression. The data (Gene Expression Omnibus accession GSE126074) is derived from a
mixture of human cell lines: BJ, H1, K562, and GM12878. We pre-process the datasets following
Chen et al. [23], as follows. We reduce data sparsity and noise in the ATAC-seq data by performing
dimensionality reduction using the topic modeling framework cisTopic [24]. The dimensions of the
RNA-seq data were reduced using PCA. The resulting input matrices for the SNARE-seq data were of
size 1047 x 19 and 1047 x 10 for ATAC-seq and RNA-seq, respectively. We unit normalize all real
datasets as done in [20].

Evaluation metrics We compare SCOT with the two state-of-the-art unsupervised single-cell align-
ment methods MMD-MA [8]] and UnionCom [35]]. None of these methods use any correspondence infor-
mation for aligning the datasets. However, all datasets have 1-1 sample-level correspondence informa-
tion, which we use to quantify the alignment performance through the “fraction of samples closer than
the true match” (FOSCTTM) metric introduced by Liu ef al. [8]. For each domain, we compute the
Euclidean distances between a fixed sample point and all the data points in the other domain. Next, we
use these distances to compute the fraction of samples that are closer to the fixed sample than its true
match. Finally, we average these values for all the samples in both domains. For perfect alignment, all
samples would be closest to their true match, yielding an average FOSCTTM of zero. Therefore, a lower
average FOSCTTM corresponds to better alignment performance.

Since all the datasets have group-specific (simulations) or cell-type-specific (real experiments) labels,
we also adopt the metric used by Cao et al. [5] called “label transfer accuracy” to assess the quality of
the cell label assignment. It measures the ability to correctly transfer sample labels from one domain to
another based on their neighborhood in the aligned domain. As described in [5], we train a k-nearest
neighbor classifier on one of the domains and predict the sample labels in the other domain. The label
transfer accuracy is the proportion of correctly predicted labels, so it ranges from 0 to 1, and higher values
indicate good performance. We apply this metric to alignments selected by the FOSCTTM measure.

Hyperparameter tuning We run each method over a grid of hyperparameters and select the setting
that yields the lowest average FOSCTTM. For SCOT, the grid covers the regularization weight ¢ €
{0.0001, 0.0005, 0.001, 0.005, ..., 0.1} and number of neighbors k£ € {10, 20, 30,40, ... 100, %nx} We
observe empirically that going above %n for k does not yield any improvement in alignment.

We pick the hyperparameters for MMD-MA and UnionCom based on the default values and recom-
mended ranges. MMD-MA has three hyperparameters: weights A\, Ao € {1072,107%,107°,1075, 107"}
for the terms in the optimization problem and the dimensionality p € {4,5, 6, 16,32, 64} of the embed-
ding space. UnionCom requires the user to specify four hyperparameters: the number kmax € {40,100}
of maximum number of neighbors in the graph,the dimensionality p € {4, 5,6, 16, 32,64} of the embed-
ding space, the trade-off parameter J € {0.1, 1, 10, 15,20} for the embedding, and a regularization co-
efficient p € {0, 5,10, 15,20}. We select the embedding dimension p € {16, 32,64} around the default
value of 32 set by UnionCom but also add p € {4,5,6} to match the recommended values for MMD-
MA. We keep the hyperparameter search space size approximately consistent across the three methods.
For each dataset, we present alignment and runtime results for the best performing hyperparameters.

Furthermore, we consider the scenario where correspondence information is unavailable to pick the
optimal hyperparameters. For SCOT, we apply the alternative unsupervised alignment algorithm (Al-
gorithm 2 in Supplementary Materials) to align all the datasets. Since MMD-MA and UnionCom do
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Figure 2: Aligning simulated datasets. Each column presents a different simulation. Top: our align-
ment colored by domain (plotted in 2D using PCA). Middle: our alignment colored by group. Bottom:
sorted “fraction of samples closer than the true match” (FOSCTTM) for MMD-MA, UnionCom, and
SCOT to visualize the distribution across samples with the average FOSCTTM values in the legend.

not provide a hyperparameter selection strategy, we rely on the default hyperparameters; we use Union-
Com’s provided default parameters of kmax = 40,p = 32,p = 10, and § = 1, and the center values
of MMD-MA’s recommended range: p = 5, \; = 107°, and A\, = 10~°. We also present the alignment
results for all three methods in this fully unsupervised setting.

4 Results

SCOT successfully aligns the simulated datasets We first compare SCOT’s performance with MMD-
MA and UnionCom for the four simulation datasets. In this experiment, we select the best performing
hyperparameters for each method using the tuning process described in the previous section. In Figure 2]
we sort and plot the FOSCTTM score for each sample for the simulations from [8], as well as the
synthetic RNA-seq count data from Splatter [21]. Overall, we observe that SCOT consistently achieves
one of the lowest average FOSCTTM scores, thereby demonstrating its ability to recover the correct
correspondences. We also report the label transfer accuracy results (Table ) when the first domain is
used to train a classifier to predict the labels in the second domain. We observe that SCOT consistently
yields high label transfer accuracy scores, indicating that samples are correctly mapped to their assigned
groups.

SCOT gives state-of-the-art performance for single-cell multi-omics alignment Next, we apply our
method to real single-cell sequencing data. Overall, SCOT gives the lowest average FOSCTTM measure
in comparison to MMD-MA and UnionCom (Figure [3] last column) and recovers accurate 1-1 corre-
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Figure 3: Aligning real world single-cell sequencing dataset. Each row presents a different real-word
single-cell sequencing dataset. Left: our alignment colored based by domain (plotted in 2D using PCA).
Middle: our alignment colored by cell-type. Right: sorted “fraction of samples closer than the true
match” (FOSCTTM) for MMD-MA, UnionCom, and SCOT order to visualize the distribution across
samples with the average FOSCTTM values in the legend.

spondences in single-cell datasets. For the scGEM data, we report label transfer accuracy using the DNA
methylation domain for predicting the cell-type labels in the gene expression domain. For the SNARE-
seq dataset, we use the gene expression domain for predicting cell labels in the chromatin accessibility
domain. SCOT yields the best label transfer accuracy result on SNAREseq dataset and performs compa-
rably to the other methods for scGEM (Table E[)

While MMD-MA and UnionCom project both datasets to a shared low-dimensional space, SCOT
projects one dataset onto the other. We project SCOT in both directions for all datasets, but we do not

observe a significant difference in performance between the two directions (Supplementary Materials
Table 3).

SCOT’s alternative unsupervised hyperparameter tuning procedure achieves good alignments We
compare the alignment performances in Table 2] when given by SCOT’s alternative tuning procedure
guided by the Gromov-Wasserstein distance and MMA-MA’s and UnionCom’s default parameters. SCOT
returns nearly the same alignments for simulated data and only marginally worse alignments for real data.
In contrast, MMD-MA and UnionCom fail to align some of the simulated and all real datasets with the

Sim.1 Sim.2 Sim.3 Syn. RNA-Seq scGEM SNAREseq

SCOT 0937 0977 0.957 0.998 0.576 0.982
MMD-MA 0.89 0.783  0.947 0.706 0.588 0.942
UnionCom  0.96 0.62 0613 0.997 0.582 0.423

Table 1: Alignment performance by label transfer accuracy (k£ = 5).
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Sim.1 Sim.2 Sim.3 Syn. RNA-Seq scGEM SNAREseq

SCOT (GW) 0.088 0.025  0.009 0.001 0.209 0.218
MMD-MA 0.125  0.012 0.739 0.384 0.437 0.473
UnionCom 0.091 0.028 0.684 0.028 0.691 0.510

Table 2: Alignment performance by FOSCTTM scores for SCOT chosen by lowest Gromov-Wasserstein
distance, default MMD-MA, and default UnionCom for simulated and real datasets.

default parameter values. Therefore, the proposed procedure could guide a user to an alignment close to
the optimal result when no orthogonal information is available.

SCOT’s computation speed scales well with the 8000 -
number of samples We compare SCOT’s running 7000 A
times with the baseline methods for the best perform- ~ geooo |  *MMPNA (GPU)
ing hyperparameters on the synthetic RNA-seq dataset ~ § *°® | escoticryy
by varying the number of cells. We run CPU com- é‘moo' -

putations on an Intel Xeon e5-2670 with 16GB mem- & 20001

®UnionCom (GPU)

ory and GPU computations on a single NVIDIA GTX ~ jzzz | ’ "
1080ti with VRAM of 11GB. SCOT’s running time 0 Jopguaupuzii O |
scales similarly to that of MMD-MA, even though 0 100 2000 3000 - - 4000 3000

Number of Samples (Cells in each domain)

SCOT runs on a CPU and MMD-MA runs on a GPU
(Figure F). Both methods scale better than the GPU- ~ Figure 4: Runtime comparisons with grow-

based UnionCom implementation. ing sample size Dotted lines are polynomial
. . trend lines.
S Discussion

We have demonstrated that SCOT, which uses Gromov Wasserstein optimal transport for unsupervised
single-cell multi-omics data integration, performs on par with UnionCom and MMD-MA. Our formu-
lation of a coupling matrix based on matching graph distances is somewhat similar to UnionCom’s
initial step; however, UnionCom only matches sample-to-sample distances, while Gromov-Wasserstein
distance considers the cost of moving pairs of points, enabling our method to better preserve local ge-
ometry. Additionally, SCOT performs global alignment of the marginal distributions, which is similar
to how MMD-MA uses the MMD term to ensure that the two distributions agree globally in the latent
space. We hypothesize that these properties result in SCOT’s state-of-the-art performance. Furthermore,
SCOT’s optimization runs in less time and with fewer hyperparameters, and the Gromov-Wasserstein
distance can guide the user to choose an alignment when no validation information exists. Therefore,
unlike other methods, SCOT easily yields high quality alignments in the fully unsupervised setting.

To visualize and measure alignment, we project data into the same space through barycentric projec-
tion, but there are other ways to use the coupling matrix to infer alignment. For example, the coupling
matrix could also be used with other dimension reduction methods such as t-SNE (as in UnionCom) to
align the manifolds while embedding them both into a new space. Alternatively, depending on the appli-
cation, a projection may not be required; it may be sufficient to have probabilities relating the samples
to one another. Future work will develop effective ways to utilize the coupling matrix and extend our
framework to handle more than two alignments at a time.
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Supplementary Materials for ‘“Gromov-Wasserstein optimal trans-
port to align single-cell multi-omics data”

1 SCOT algorithm

As described in Section [2, SCOT takes in two datasets X and Y and constructs k—NN graphs on each dataset to
create the distance matrices D, and D,. Then, it finds the coupling I' that minimizes the Gromov-Wasserstein
distance. Finally, the coupling matrix is used to project one domain onto the other. In Algorithm 1, we present the
full SCOT algorithm, including the Gromov-Wasserstein calculation, which uses the projections proposed in [[18]].

Algorithm 1: Gromov-Wasserstein Alignment
Input: Datasets X, Y. Regularization e. Number of neighbors k.
// Compute graph distances D,, D,;

p = Uniform(X), q = Uniform(Y);
Dy Di]lzy + 1,,,q(D?)T;
while not converged do

// Compute cost matrix

Dr «+ D,, —2D,I'DT;

// Perform Sinkhorn iterations

w1, K < exp{—Dr/e};

while not converged do
| ue—po Kv, v+ ql 0 KTu;

end

[’ « diag(u)Kdiag(v);

end

Return: n,I'Y

1.1 Unsupervised Hyperparameter Selection Procedure for SCOT

As detailed in Section [2] one way to select SCOT hyperparameters in the absence of correspondence information
or validation dataset, is to use the Gromov-Wasserstein distance as a proxy for alignment quality. Here, we present
the procedure for carrying this out, where we alternate between the hyperparameters £ and ¢, and fix one to tune
the other:
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Algorithm 2: Unsupervised hyperparameter search algorithm for SCOT.
Input: Datasets X, Y.
n <= min(ng, ny), k1 < min(0.2n, 50)
/l Fix kq and vary €
€1 < argmin co-3 19-2) SCOT(X, Y, k1, €)
/I Fix €1 and vary k
if n > 250 then
| k2 < argminge (o0 100) SCOT(X, Y, k, €1)
end
else
‘ ko < argmingc( g5n,0.20) SCOT(X, Y, k, €1)
end
// Do a more refined search around k9 and €;
Koest, €best <= Arg MiNy ek, 5 kyt5], cc[10-025¢;,100-25¢, ] SCOT(X,Y, k,¢)
Return: Kpeg, €pest

1.2 Visualization of Original Data Sets

In the main text, we display the alignment results performed by SCOT. Here, we visualize the original datasets:
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Figure S1: Original simulation data visualized before alignment. Data was generated by Liu et al [§]
and retrieved from https://noble.gs.washington.edu/proj/mmd-ma/. Each simulation
set has two domains. Their MDS projections in two dimensional and three dimensional space are visu-
alized here. The first set of simulations form a branched tree in two dimensional space (first column);
the second set of simulations form Swiss roll in three dimensional space (second column); and lastly, the
third set of simulations form a circular frustum.
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Figure S2: Original synthetic RNA-seq and real world single-cell data visualized before alignment.
We use Splatter [21] to generate a count matrix with 5000 cells and 1000 genes from three cell groups.
We reduce the dataset to the 5 genes with the highest variances, and then use random matrices to project
the data to new dimensions p; = 50 and p, = 500. Here we visualize the two domains with PCA
projections for this dataset as well as the real world single-cell sequnecing datasets

1.3 Barycentric Projections in Both Directions

While MMD-MA and UnionCom project both datasets to a shared low-dimensional space, SCOT projects one
dataset onto the other. We project SCOT in both directions for all datasets, but we do not observe a significant
difference in performance between the two directions. In Table 3] we present the averaged FOSCTTM values for
barycentric projection in both directions (domain 1 projected onto domain 2, as well as domain 2 projected onto
domain 1).

Domain 1 onto Domain 2 Domain 2 onto Domain 1

Sim. 1 0.0872 0.0866
Sim. 2 0.0216 0.0230
Sim. 3 0.0088 0.0091
Syn. RNA-Seq 7.12 x 1075 7.68 x 1075
scGEM 0.2118 0.1978
SNARE-seq 0.1496 0.1514

Table 3: Best mean FOSCTTM for each direction of the barycentric projection for all datasets. The
method is robust to the direction of the projection.

1.4 Label Transfer Accuracy with the Second Domain used in Training

In Table[d] we present the label transfer accuracies when the first domain is used as the training set. Here we report
the opposite direction.
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Sim. 1 Sim.2 Sim.3 Syn. RNA-Seq

scGEM SNAREseq

SCOT

0.953
MMD-MA 0.893
UnionCom 0912

0.987 0.957
0.806  0.933
0.97 0.62

0.998
0.899
0.97

0.435
0.638
0.508

0.936
0.967

0.717

Table 4: Alignment performance by label transfer accuracy (k = 5) for SCOT, MMD-MA, and Union-

Com for simulated and real datasets when the second domain is used for training.

1.5 Hyperparameter Tuning for SCOT
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Figure S3: Hyperparameter optimization results for synthetic RNA-seq dataset. Mean FOSCTTM
metric was used to assess performance (indicated by color). (a) Results when first domain (X) is pro-
jected onto second domain (y). (b) Results when second domain (y) is projected onto first domain (X).
The algorithm is largely robust to the choice of k. For both projections, the best performing hyperpa-
rameter setting was € = 0.000215, k£ = 750. The hyperparameter combination that yielded the best
performance is highlighted with red square. For ease of visualization, a subset of the values are plotted.
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Figure S4: Hyperparameter optimization results for SNARE-seq dataset. Mean FOSCTTM metric
was used to assess performance (indicated by color). (a) Results when chromatin accessibility domain
(X) 1s projected onto gene expression domain (y). (b) Results when expression domain (y) is projected
onto chromatin accessibility domain (X). The algorithm is largely robust to the choice of k. For both
projections, the best performing hyperparameter setting was ¢ = 0.0038, £ = 30. The hyperparameter
combination that yielded the best performance is highlighted with red square. For ease of visualization,
a subset of the € values are plotted.

1.6 Visualizing the Empirical Relationship between Gromov-Wasserstein Dis-
tance and Correspondence in Alignment as Measured by Average FOSCTTM
We observe that lower values of the Gromov-Wasserstein distance tend to correspond to lower average FOSCTTM

values. Below, we have plotted the Gromov-Wasserstein values against average FOSCTTM for each dataset over
a range of parameter values.
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Figure S5: Gromov-Wasserstein distance vs average FOSCTTM values for all datasets with a range
of € parameter values (k fixed at min(50, 0.2n,,) ).
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1.7 Label Transfer Accuracy for Automatic Alignment

In Table [2, we report the average FOSCTTM values for SCOT when chosen by lowest Gromov-Wasserstein dis-
tance and default parameters for MMD-MA and UnionCom. In the tables below, we also report the label transfer
accuracy scores.

Sim.1 Sim.2 Sim.3 Syn. RNA-Seq scGEM SNAREseq

SCOT 0977 0977 095 0.996 0.582 0.701
MMD-MA 0.897 0.957 0.7 0.506 0.237 0.412
UnionCom 0947 0947 0.133 0.948 0.107 0.288

Table 5: Alignment performance by label transfer accuracy (k = 5) when the first domain is used for
training for SCOT, MMD-MA, and UnionCom for simulated and real datasets.

Sim.1 Sim.2 Sim.3 Syn. RNA-Seq scGEM SNAREseq

SCOT 0.93 098  0.957 0.998 0.571 0.736
MMD-MA  0.893 0.9 0.757 0.299 0.225 0.557
UnionCom 091 0943 0.143 0.971 0.113 0.292

Table 6: Alignment performance by label transfer accuracy (k = 5) when the second domain is used for
training for SCOT, MMD-MA, and UnionCom for simulated and real datasets.
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