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Abstract – Tissue growth in bioscaffolds is influenced significantly by pore geometry, but how this geometric
dependence emerges from dynamic cellular processes such as cell proliferation and cell migration remains poorly
understood. Here we investigate the influence of pore size on the time required to bridge pores in thin 3D-printed
scaffolds. Experimentally, new tissue infills the pores continually from their perimeter under strong curvature control,
which leads the tissue front to round off with time. Despite the varied shapes assumed by the tissue during this
evolution, we find that time to bridge a pore simply increases linearly with the overall pore size. To disentangle the
biological influence of cell behaviour and the mechanistic influence of geometry in this experimental observation, we
propose a simple reaction–diffusion model of tissue growth based on Porous-Fisher invasion of cells into the pores.
First, this model provides a good qualitative representation of the evolution of the tissue; new tissue in the model grows
at an effective rate that depends on the local curvature of the tissue substrate. Second, the model suggests that a linear
dependence of bridging time with pore size arises due to geometric reasons alone, not to differences in cell behaviours
across pores of different sizes. Our analysis suggests that tissue growth dynamics in these experimental constructs is
dominated by mechanistic crowding effects that influence collective cell proliferation and migration processes, and
that can be predicted by simple reaction–diffusion models of cells that have robust, consistent behaviours.

Key words: Cell migration, cell proliferation, 3D printing, biofabrication, parameter estimation, mathematical
modelling.

1 Introduction

The traditional cell culture on flat surfaces or in liquids is
transitioning in favour of bio-mimicking porous 3D scaffolds to
provide realistic substrates for cell therapies and disease mod-
els [1–5] Although 3D scaffolds can approximate the form and
function of natural extracellular matrices, many remain limited
due to inconsistent scaffold architecture. Recent 3D printing
(3DP) technologies include melt electrowriting that enable
precise microscale manufacture of cell culture scaffolds [6–
9]. This consistency could allow a more complete control
over cell behaviours, such as controlling cell proliferation and
cell migration. However, explicit quantitative correlations
between cell behaviour and scaffold architecture have yet to
be identified. Mathematical relationships could define robust
design protocols for the emerging tissue biomanufacturing
industry [10, 11].

There are many design questions that need to be addressed
in the production of these scaffolds, such as determining
their optimal size, shape and material properties [2–4].
These properties have been shown to impact cell attachment,
viability, proliferation, migration, and differentiation, among
other functions [12–18], and they could be tuned to control
the manufacture of complex multicellular tissues or organs.
Recent additive manufacturing techniques have leveraged these
biophysical relationships in an ad hoc manner: by 3D printing
bilayer cylindrical scaffolds as vascular grafts with endothelial
and muscle cells [19] or by patterning scaffold pores or fibres
to spatially control cell morphology and differentiation [20].
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Therefore, a predictive mathematical model of cell behaviour
across 3D printing parameters could provide control or
optimisation strategies to develop complex yet robust tissue
biomanufacturing [11].

In this work, we focus on pore bridging experiments where
quasi-two-dimensional tissue sheets are grow are grown in
3D-printed scaffolds by osteoblastic cells seeded onto the
perimeter of square-shaped pores of different sizes. As
the experiment proceeds, cells migrate and proliferate to
form new tissue that extends inwards to eventually close or
bridge the pores to form a sheet-like tissue structure. We
use this experimental design to investigate two questions of
central interest: (i) whether there is an optimal scaffold pore
size L for the production of such tissues; and (ii) whether
different choices of L lead to different cell-level mechanisms,
e.g. different rates of cell migration and different rates cell
proliferation. Our experimental design involves working with
3D pores with a simplified geometry. The vertical length scale
of the pores (100 µm) is small compared to the horizontal
length scale (200–600 µm). This simplified geometry allows
us to describe the experimental data using appropriate 2D
quantities, such as the pore area as a function of time. This
design also alleviates the influence of 3D effects of tissue
growth on the apparent, within-plane rate of growth of the
tissue sheets, an influence that has been observed in scaffolds
of large thickness (2000–6000 µm) [21–23]. Further, this
simplified geometry allows us to work with a 2D mathematical
modelling framework that describes cell density as a function
of 2D position, (x , y ), rather than a full 3D coordinate system,
(x , y , z ).
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Previous work suggests that pore size could lead to differ-
ences in cellular behaviour, such as differences in the rate
of cell migration and the rate cell proliferation. Cellular
tensile stress correlates with cell proliferation in a number
of experimental situations, including in tissue engineering and
wound healing [12, 24, 25]. At the tissue interface, contractile
actomyosin rings induce a tissue surface tension [26] subject
to a curvature dependence similar to that of surface tension
in fluids [13, 14, 17]. It is therefore reasonable to expect that
tissue curvature influences cell proliferation and thus tissue
growth. The crowding and spreading of tissue material near
concavities and convexities of bone tissue was also found to
involve curvature-dependent cell behaviours [27]. Curvature,
in turn, is affected by the overall size of a pore: the larger a
pore is, the smaller the average curvature. Mathematically, the
average curvature of a two-dimensional pore cross section is
always 2π/P , where P is the perimeter of the pore.1 For square
pores of side length L , we have P = 4L , so we may expect the
rate of cell proliferation could depend on pore size L due
to curvature. While previous studies have considered tissue
growth in pores of different shapes [13, 21, 23], they did not
systematically examine a broad range of pore sizes.

Experimental images of the cell bridging experiments
indicate that varying the initial pore size L leads to visually
distinct curvatures along the leading edge of the population of
cells. Small pores lead to more rapid bridging than large pores,
and those pores with smaller size tend to involve more rapid
development of high curvature. However, it is unclear from the
experimental data how much of the difference in bridging time
is due to geometric reasons, and how much is due to differences
in the proliferative and migratory behaviours of the cells. To
gain insights into these questions, we propose a mathematical
model that captures the mechanistic, geometric processes of
tissue growth, and that leaves open for determination cell
behavioural aspects. Comparing the experimental data and
the model then allows us to determine important properties of
these cell behavioural aspects.

Several mathematical modelling strategies have been devel-
oped to explore the interplay between tissue growth and curva-
ture effects, which is an important area of research toward the
industrial implementation of scaffold design optimisation [11],
see Callens et al. [18] for a recent review. Mathematical
models range from continuum mechanics growth laws [29–
31, 5], computational models based on the idea of mean
curvature flow, that borrow ideas from fluid mechanics and
the role of surface tension but that do not consider cells
explicitly [13, 14, 21–23, 15, 16, 32, 17, 33, 34], to other
modelling approaches that consider the effects of cell-level
behaviour, such as particle-based models with mechanical
interaction and contractile forces at tissue interfaces [35],
and models including tissue crowding and spreading during
surface growth, which lead to hyperbolic curvature flow
models [36, 27, 37].

In this work we propose a simple reaction–diffusion model,
called the Porous-Fisher model [38], to describe the combined
cell proliferation and cell migration that leads to new tissue
formation in the scaffold pores. The Porous-Fisher model

1The average curvature is independent of any other pore shape character-
istics. This is a consequence of the total curvature theorem which states that
the total curvature of a closed curve in two-dimensional space is a topological
invariant given by 2π times the turning number [28].

is an extension of the classical Fisher–Kolmogorov model
which describes how a population of cells spreads spatially
through the combined effects of cell migration and cell
proliferation [39–41]. In the Fisher–Kolmogorov model,
cell proliferation is assumed to follow a classical logistic
growth model where the per capita growth rate of cells is a
linearly decreasing function of density to simulate contact
inhibition of proliferation [38, 42, 43]. Cell migration in
the Fisher–Kolmogorov model is modelled by making the
simplest assumption that cells migrate randomly. Therefore,
the migration of cells is represented by a linear diffusion
process where cell-to-cell interactions have no impact upon
cell migration [38, 42, 43]. The Porous-Fisher model
generalises linear diffusion to density-dependent diffusion,
which accounts for cell-to-cell interactions. The density
dependence of proliferation and migration in the Porous-Fisher
model we consider represents a mechanistic influence of space
constraints, i.e., the availability of space for cell motion and
cell division, while per-capita parameters associated with these
processes represent the cell behavioural aspects. This model
has been widely used to model wound healing processes in
two-dimensional scratch assays [42–48], as well as the outward
growth of initially-confined populations of cells [49–51].

Unlike other studies that connect experimental observations
with the Porous-Fisher model through counting cells and
constructing cell density profiles [52], here we aim to use
the model in a more practical way by connecting its outputs
with very simple experimental observations, such as the time
to bridge. We find that even this simple measurement provides
very insightful mechanistic insight as to the proliferative and
diffusive behaviour of the cells in pores of different sizes.

2 Materials and Methods

2.1 Tissue growth experiments

The full experimental protocol is described in [53]. In
brief, polycaprolactone scaffolds were fabricated by melt
electrospinning depositing fibres 50 µm in diameter [54], to
manufacture scaffolds of size 7 mm×7 mm×100 µm (2 fibre
layers thick) with square-shaped pores of lengths ranging from
L = 200 µm to L = 600 µm (Figure 1). A minimum of
5× 5 square shaped pores were produced to omit any culture
handling effects on the scaffold edges. The scaffolds were
sterilised and incubated at 37 oC in 5% CO2 and 95% air, in
media overnight, prior to seeding.

Prior to seeding, murine calvarial osteoblastic cells
(MC3T3-E1) cells [55] were cultured in α-MEM, 10%
fetal bovine serum, and 1% penicillin-streptomycin (Thermo
Fisher). Cells were detached using 0.05% trypsin, manually
counted and seeded at 7500 cells in 250µL media onto each
scaffold within a 48-well plate (Nunc, Thermo Fisher) on top
of nonadherent 2% agarose to prevent cell-to-plate attachment.
Cells were allowed to attach to the 3D printed scaffold for 4 h
before adding the remaining 250µL of media. Cell-seeded
scaffolds were cultured in a humidified environment at 37 ◦C
in 5% CO2 for 28 days. Media was changed every 2–3 days
from day 1 to 14, every 1–2 days from day 15 to 21, then every
24 h from day 22 to 28. Cell viability was assessed at day 10,
14 and 28 using calcein AM and ethidium homodimer which
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Figure 1 – (Color online.) Experimental pore bridging in 3D printed scaffolds of different initial sizes (rows). Each time snapshot comes from a different
experiment. The snapshots are rescaled to fit the central 3× 3 pores of a larger scaffold into a fixed size. The first column shows initial scaffolds imaged by
Scanning Electron Microscopy. The other images depict cell nuclei (red), cytoskeleton (green), and the remaining pore to bridge (black).

stained live and dead cells, respectively [53]. Cell-seeded
scaffolds were fixed in 4% paraformaldehyde at Day 1, 4, 7,
10, 14, 18, and 28 and tissue growth was assessed by staining
cell nuclei with DAPI and actin filament with Alexa Fluor
488 phalloidin (Thermo Fisher). Cell and tissue morphology
was visualised using fluorescent microscopy (Leica AF6000
LX) [53]. Each imaging measurement was repeated across
N = 3 replicate scaffolds for each value of L = 200; 300; 400;
500 and 600µm, except Day 18 for L = 200; 400; and 500µm

(N = 2), and measured on the central n = 9 pores per replicate
scaffold.

From the microscope images (Figure 1) we estimated the
time to bridge Tb for a given mesh size L by fitting the
experimental time course of pore area normalised by initial
pore area [53], denoted by A(t )/A(0), with a curve

A(t )

A(0)
= 1−

�
t

Tb

�ν

(1)

(see Figure 2 and supplementary Figure S1). Only data points
before bridging occurs were considered for the fit, since A(t )≡

0 after bridging. Parameters of best fit Tb and ν were found
by minimising reduced χ2 (chi-squared) statistics using the
nonlinear least-square Marquardt–Levenberg algorithm [56].
An estimate of the standard error on these fitted parameters is
provided by the so-called asymptotic standard error during the
fitting procedure [57, 56].
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Figure 2 – Experimental time course of pore area normalised by initial pore
area (circles) and curve of best fit for Eq. (1) (solid line) for the mesh size L =

200µm. The estimated time to bridge Tb ≈ 11.13days is the time at which the
fitted line intersects the horizontal axis (zero pore area). The parameters of best
fit Tb and ν are mentioned in the figure (± asymptotic standard error [57, 56]).
See supplementary figure S1 for the other mesh sizes.

2.2 Cellular reaction-diffusion model of tissue

growth

Experimental images in Figure 2 suggest cell migration and
cell proliferation are important mechanisms because we see
clear evidence of the tissue forming by expanding into free
space, and the density of cells behind the moving front
increases with time. The experimental images show no
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Table 1 – Variables, parameters and interpretation in the Porous-Fisher model.

Symbol Description
t time [days]
(x , y ) position in 2D Cartesian coordinate system

u (x , y , t ) cell density [cell number per µm2]
Tb time to bridge the pore [days]
D cell diffusivity [µm2/day]
λ cell proliferation rate [/day]
K carrying capacity [cell number per unit area]
L initial pore size [µm]
u0 initial cell density at the pore boundary
uc threshold density for tissue/pore boundary

Lc characteristic length scale
p

D /λ

α2 dimensionless parameter D /(λL 2) = (Lc/L )
2

obvious indication of cells changing shape or size during the
experiments, and no indication of the presence of stressed or
dead cells. Live/dead assays indicate that cell death is almost
completely absent in these experiments (data not shown).
Osteo-inducing factors in the cell culture media are excluded,
so that cell differentiation is negated in the experiments. Since
we are dealing with experiments involving large numbers of
cells we work with a continuum reaction–diffusion model
that describes cell density information rather than information
about particular individual cells. Such reaction–diffusion
models provide very good approximations of average be-
haviours even for low cell numbers [58]. Assuming that the
tissue is composed of a uniform layer of cells in the out-
of-plane (z ) direction, and noting that the movement of the
leading edge of the cell population during the bridging process
maintains a well-defined sharp front (see Figure 1), we model
the experiments using the Porous-Fisher equation,

∂u

∂ t
= D∇·

h� u

K

�

∇u

i

︸ ︷︷ ︸

Contact stimulated migration

+ λu

h

1−
u

K

i

︸ ︷︷ ︸

Contact inhibited proliferation

, (2)

where u (x , y , t ) ¾ 0 is the cell density (number of cells per
unit area) that depends on time t and position (x , y )within the
initial square pore; D > 0 is a cell diffusivity parameter; λ> 0

is a proliferation rate parameter; and K > 0 is the carrying
capacity density. Both D and λ are intrinsic properties of
the cells that represent the cells’ individual migratory and
proliferative behaviour, respectively. Table 1 summarises the
variables, parameters and their biological interpretation.

Equation (2) is the Porous-Fisher model that combines
density-dependent diffusion to model contact-stimulated mi-
gration of cells, and logistic growth to model contact-inhibited
proliferation of cells up to a carrying capacity density. These
density dependences represent mechanistic crowding effects
on collective cell proliferation and cell migration processes.
The overall rates of these processes do not depend explicitly
on pore size or pore shape, as cells are unlikely to sense
geometrical features much larger than their individual size.
However, pore size and pore shape constrain the availability of
free space for cell motion and cell division, and these processes
in turn influence cell density. We also note that the nonlinear
diffusion term in Eq. (2) can be written as D (u ) = D u/K ,
and since D (0) = 0, this leads to the formation of sharp

fronts [59], as we see in the experimental images in Figure 1.
Previous studies that have compared the performance of the
Porous-Fisher model to the Fisher–Kolmogorov model have
often observed that the Porous-Fisher model provides a better
description of various types of in vitro experiments [46, 52, 48].

In the Porous-Fisher model the diffusivity D provides a
measure of the motility of a cell within the experiment and
the proliferation rate λ provides a measure of the rate at
which a cell divides. Net cell proliferation is a decreasing
function of density to reflect contact inhibition of proliferation.
Where cell density is low, the per-capita proliferation rate
is λ, and this per-capita proliferation rate decreases linearly
to zero as the density approaches the carrying capacity K .
The average effect of cell diffusion is to even out spatial
heterogeneities of cell density. This model can be thought of
as a simplification of a more realistic model of cell migration
interacting with an extracellular matrix, see the supplementary
information, Section S2. While λ can be relatively easily
measured or inferred using estimates of the cell doubling time,
the diffusivity is notoriously difficult to measure. Reported
values of cell diffusivities in the literature vary over several
orders of magnitude [60, 61, 42, 43, 62, 44].

Having now introduced the model and described its mech-
anistic processes and its cell behavioural properties, we can
reformulate the key questions that we wish to explore in this
study in this way:

(i) Do estimates of D and λ vary across the cell bridging
experiments performed with various pore sizes? If so, is
there an optimal pore size that maximises tissue growth
rate?

(ii) Do estimates of D and λ vary in time within a single pore
during pore closing? If so, can we relate these changes
with changes in tissue geometry?

No variation of the rates D and λ across scaffolds of different
pore sizes would indicate that cell-level behaviour is unaffected
by the initial pore size and geometry. No variation of the rates
D and λ in time would indicate that cell-level behaviour is
unaffected by the current pore size and geometry. Without
connecting a mechanistic model to the experimental data
it would be very difficult to make such distinctions. It is
important to note here that by disentangling the mechanistic
behaviour and the cell-level behaviour of tissue growth in the
experimental data, the mathematical model is then able to
make predictions of tissue growth in other scaffold geometries
that have not been realised experimentally. These predictions
would allow the optimisation of scaffold topology based on
numerical simulations, helping to narrow the space of exper-
imental parameters to be tested experimentally. Taking such
an in silico approach to experimental design and optimisation
would lead to savings of time and experimental equipment.

2.2.1 Nondimensionalisation

The cell proliferation and cell diffusion processes included in
the mathematical model are described by three parameters:
the diffusivity D , the proliferation rate λ, and the carrying
capacity K . Two further constant parameters are associated
with the initial conditions of the model: the initial density
u0, and the initial pore size L . In addition, we introduce
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a threshold cell density uc above which cells are considered
part of the newly grown tissue, and under which they are
considered part of the pore. That is, the tissue interface in
the mathematical model is assumed to be given by the contour
line u (x , y , t ) = uc where cell density equals uc. The three
possible scalings that can be performed on the independent
and dependent variables (space, time, and cell density) allow
us to reduce the total number of independent parameters from
five to two. Setting nondimensional variables of space, time,
and density as x̃ = x/L , t̃ = tλ, and ũ = u/K , the governing
evolution equation becomes

∂ ũ

∂ t̃
=α2
∇̃ · (ũ ∇̃ũ ) + ũ (1− ũ ), (3)

with the initial condition ũ (x̃ , 0) = ũ0, where

α2 =
D

λL 2
=

�
Lc

L

�2

and ũ0 =
u0

K
(4)

are the independent dimensionless parameters. These are
supplemented by the dimensionless threshold density ũc =

uc/K that identifies the tissue interface. The cellular processes
of diffusion and proliferation define a characteristic length
scale Lc =
p

D /λ which corresponds to the average distance
travelled by a cell by diffusion before it undergoes division.
From this point on we work with dimensionless variables
unless otherwise stated and we suppress the tilde notation.
In essence, the nondimensional cell density is measured as a
fraction of K , time is measured in units of λ−1, and space is
measured in units of L . The combination of cell diffusivity
and cell proliferation rate in α2 can be conveniently pictured
as the ratio (Lc/L )

2.
In this work we interpret our experimental data using

numerical solutions of the nondimensional Porous-Fisher
model, Eq. (3). Numerical solutions of Eq. (3) are obtained
using the method of lines and no-flux (symmetry) boundary
condition on the unit square boundary. Full details of
the numerical solution are outlined in the Supplementary
Material. To connect the numerical solution of Eq. (3) with the
experimental data on bridging time, we first use the numerical
solution of u (x , y , t ) to estimate the pore area as a function of
time, A(t ), by integrating numerically the region of the solution
with u (x , y , t )< uc. We then define the time to bridge, Tb, in
the mathematical model as the time required for the normalised
pore area A(t )/A(0) to fall below the tolerance ε = 1 ·10−10.

3 Results

Images in Figure 1 show snapshots of the cell bridging
experiments, where we see that experiments with larger
pore size L require a longer period of time to bridge than
experiments with smaller pore size. For example, we see that
of the nine pores shown with L = 200µm, none are bridged
at day 7, one is bridged at day 10, and all are bridged by day
14. Similarly, of the nine pores shown with L = 600µm, none
are bridged at day 14, one is bridged at day 18, and four are
bridged at day 28. These results indicate that the time to bridge
increases with L , but this does not indicate whether those cells
in the experiments with larger L behave differently to those
cells in the experiments with smaller L .

5

10

15

20

25

30

35

200 300 400 500 600

T
b

(e
x
p
er

im
en

ts
)

[d
ay

s]

L [µm]

Regressions: Tb(L ) = Tb0L
µ and Tb(L ) = t0 + L/v

Tb0 = 0.050646±0.056870

µ= 0.999094±0.181650

t0 = 0.19±3.36

v = 20.02±3.17

Figure 3 – (Color online.) Experimental bridging times vs pore size, estimated
from Figure 2 and Supplementary Figure S1 (pluses). Error bars corresponds
to the asymptotic standard error of the determination of Tb (see text). These
experimental data are fitted with a power-law regression (interrupted black
line) and a linear regression (solid blue line). The coefficient of determination
quantifying the degree of linear correlation between Tb and L for the linear
regression is R 2

≈ 0.93.

To provide insight into how the mechanisms in the experi-
ments may vary with L we estimate the bridging time Tb from
the experimental data and plot it as a function of L in Figure 3.
We formalise the observed relationship between Tb and L by
fitting a power law∝ Lµ to the data in Figure 3. The regression
shows that bridging time is simply proportional to initial pore
size, since we find that µ ≈ 0.999094, which is remarkably
close to unity. To quantify the linearity of the relationship
between bridging time and initial pore size, we also fit the data
using a linear regression in Figure 3. The data clearly suggests
a constant, linear relationship between bridging time Tb and
inital pore size L for all L considered, which we write as

Tb = t0+
L

v
, with t0 = 0.2±3.4days, and v = 20±3µm/day.

(5)

The intercept t0 corresponds to the time taken to bridge a
pore of zero size (L = 0). Therefore, the estimate of t0 ≈ 0 is
expected. The linear regression parameter v can be interpreted
as an average velocity of tissue progression, and the estimate
of v ≈ 20µm/day is consistent with the time and length scales
in the experimental images shown in Figure 1. We will
now investigate the implication of the relationship (5) on the
potential values of the parameters D and λ of the model.

To see how the mathematical model relates to the ex-
perimental observations in Figure 1 we present numerical
solutions of Eq. (3) on the unit square in Figure 4. The still
frames in Figure 4a show the evolution of the system with
various values of α2 = 0.01, 0.02 and 0.05. The evolution of
the numerical solutions is consistent with the experimental
observations in Figure 1 since we see that during the early
part of the experiment, the new tissue is formed and the shape
of the infilling tissue is relatively square. As the experiment
proceeds, the shape of the infilling tissue becomes increasingly
rounded before closing at some point. In Figure 4, contour
lines of cell density are shown every 0.1 increment. The
red contour shows the interface that we take to represent the
boundary of the inward-growing tissue, i.e., the contour line
at density uc = 0.5. Comparing the evolution of this contour

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.03.12.989053doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.989053


(a) u0 = 0.5
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Figure 4 – (Color online.) Still frames from the nondimensionalised mathematical model at even time intervals for different combinations of the parameters
α2 = (Lc/L )

2 and u0 (rows). (a) The initial density is set to u0 = 0.5 and α2 varies; (b) The parameter α2 is set to α2 = 0.02 and the initial density u0 varies.
The threshold density (red) is set to uc = 0.5. Isolines of constant (nondimensional) density are shown every ∆u = 0.1. The middle rows in (a) and (b) are
identical and correspond to α2 = 0.02, u0 = 0.5.

for the different parameter values in Figure 4a shows that the
bridging time is a decreasing function of α2 = (Lc/L )

2. In
other words, the greater the distance Lc travelled by cells
before they undergo division, the lesser the bridging time.
Analogous results in Figure 4b show solutions for various
values of u0 = 0.8, 0.5 and 0.2. Again, the features of the
evolution of the numerical solutions are consistent with the
experimental images in Figure 1 and here we see that the
bridging time is a decreasing function of u0 at constant α, i.e.,
the more cells per unit surface we start with initially in a pore,
the lesser the bridging time, which is intuitively reasonable.
It is clear by inspection of the contour lines in Figure 4 that
similar conclusions hold for other choices of uc .

A closed-form solution to Eq. (3) is not known for this
particular geometry, so we use numerical estimates to describe

Tb as a function of initial pore size L . Using the dimensionless
model we plot Tb as a function of L in Figure 5a. Consistent
with the experimental data, we observe that Tb is a linear
function of L when D and λ are maintained at fixed values:

λTb = a + c
L

Lc
. (6)

This linear relationship holds for any value of the carrying
capacity K , the initial condition u0, and the threshold uc, but
the slope c and intercept a vary with u0 and uc (Figure 5a,
regression lines; Supplementary Table S4). We find that
the slopes c of the regression lines in Figure 5 are very
consistent, varying between 0.63–0.69, while the intercepts
a vary between −1.02 and 1.18 and depend on the initial
density. Starting the simulations with a different initial density
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Figure 5 – (Color online.) (a) Bridging times vs pore size in the mathematical model. Individual simulation results are shown as pluses (+) for a number
of choices of uc and u0. Corresponding lines of best fit satisfying Eq. (6) are shown as solid lines (uc = 0.5) and interrupted lines (uc = 0.2). Regression
parameters are listed in Supplementary Table S4. In this plot, time is measured in units of λ−1 and pore size (∝ 1/α) is measured in units of Lc. (b) Diffusivity
D vs cell division period λ−1 compatible with the experimental data. The slopes Dλ of the grey lines are mentioned in Supplementary table S4; they range
from 153µm2/day2 to 184µm2/day2 (grey shaded area between the solid black lines). The red shaded area displays the range of diffusivities compatible with
λ= 1.1/day.

affects the time to bridge by a constant offset which is the same
for all initial pore sizes. To connect these results with the
experimental relationship between bridging time and initial
pore size in Eq. (5), we rewrite Eq. (6) in dimensional form as

Tb = t0+
L

v
, where t0 =

a

λ
and v =

p
Dλ

c
.

In particular we obtain

Dλ= (c v )2, (7)

which provides a functional relationship between values of
the cell’s intrinsic properties D and λ that are consistent with
a linear dependence between bridging time and initial pore
size in the model. We plot the relationship (7) between D

and λ in Figure 5b by combining the regression estimate of
v from the experimental data in Eq. (5), and the regression
estimates of c from the numerical simulations with the set of
values u0 and uc listed in Supplementary Table S4. Figure 5b
shows that on average, the model matches the experimental
data for all pore sizes whenever the intrinsic cell diffusive
behaviour and cell migratory behaviours represented by D and
λ are (i) constant, i.e., independent of time and independent of
initial pore size; and (ii) such that Dλ≈ 170µm2/day2. Given
an estimate of λ we can determine an estimate of D . For
example, the doubling time of MC3T3-E1 osteoblast cells are
approximately 15 h [55], giving λ ≈ 24 log(2)/15 ≈ 1.1/day.
The relationship in Figure 5 indicates that this corresponds
to D ≈ 140–170µm2/day. This result is remarkable in its
consistency. For example, it is worth noting that estimates
of D in the literature vary over two orders of magnitude (see
[44, and refs cited therein]), so the fact that we obtain such
tight estimates here points to two important results: (i) our
experimental protocols are remarkably consistent; and (ii) the
experimental observations are extremely well described by the
Porous-Fisher model with a constant set of parameters.

4 Discussion

There is experimental evidence that the mechanical stress
experienced by a cell can affect its behaviour, such as its
propensity to undergo cell division [12, 24, 25]. Previous
experiments growing epithelial cell sheets suggest that the
shape of the tissue regulates patterns of proliferation, and that
this regulation may be induced by local mechanical stress [12].
In engineered tissue scaffolds, tissue grown by osteoblast-
derived cells in pores of different shapes is also observed
to be regulated by geometry. The local rate of growth is
found to correlate with the curvature of the tissue [13–15],
and thought to be due to tissue surface tension driving cell
proliferation [14–17]. Phenomenological models that describe
these scaffold experiments assume that the evolution of the
tissue interface is governed by mean curvature flows, by
analogy with surface-tension-induced mean curvature flows
that arises in the evolution of bubbles in fluid mechanics. In
these phenomenological models of tissue growth, cells are not
represented explicitly, and neither is the volumetric growth of
the tissue. Only the interface of the tissue is evolved, with
no consideration of the correlation between volumetric tissue
growth, and cell proliferation or tissue synthesis.

In our cell bridging experiments in Figure 1, the rounding
off of the tissue interface at corners of the initial pores
suggests that tissue grows preferentially where curvature is
high, consistently with other studies [13–15, 17]. Because
the tissue interface evolves through a series of shapes with
increasing curvature, it is not obvious why the time required to
bridge the pores in these scaffolds varies linearly with initial
pore size (Figure 2). It could be expected that cell-level
proliferation would vary not only in time, but also depending
on the size L of the initial pore, since the overall scale of a
pore affects its average curvature.

The mathematical model of cell diffusion and proliferation
that we propose enables us to model volumetric tissue growth
from cellular mechanisms. This allows us to analyse our
experimental observations in terms of the cell diffusive
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behaviour (encapsulated in the cell diffusivity D ) and the cell
proliferative behaviour (encapsulated in the cell proliferation
rate λ). As seen in Figure 4, the model agrees very well
qualitatively with the different shapes taken by the tissue during
its growth. New tissue forms at an increased rate near corners
of the initial pore, so that the interface gradually takes on a
more circular shape until bridging occurs. Importantly, the
time required to bridge the pores in the mathematical model
depends linearly on initial pore size L (Figure 5a) when it is
assumed that cell diffusivity D and cell proliferation rate λ (i)
are constant throughout the simulation (independent of time);
and (ii) take on the same values across pores of different initial
size. These results suggest that the mechanistic crowding
effects represented by the density dependence of collective
cell proliferation and cell diffusion in Equation (2) capture
the dynamics of tissue growth in different pore geometries
very well. Neither the initial pore size nor the transient
pore size or geometry affects the individual cell proliferative
behaviour (corresponding to λ) and individual cell diffusive
behaviour (corresponding to D ) in these scaffold experiments.
The mechanistic processes of proliferation and diffusion of
the model considered in Eq. (2), i.e., contact-stimulated
migration and contact-inhibited proliferation, are sufficient to
describe the evolution of the tissue without requiring additional
dependences upon geometrical features of the pores.

Despite the independence of the cell’s proliferative and
diffusive behaviour upon local curvature in the model, the
produced tissue exhibits curvature-dependent growth rates.
An often overlooked factor of the geometric control of tissue
growth is the mechanistic influence of tissue crowding or
spreading in confined spaces. The progression rate of the
tissue interface is determined both by how much new tissue is
produced locally, and by the availability of space around where
this tissue is produced [36, 27, 37]. The former is related to
cell behaviour, but the latter is a purely geometric influence.
Space in a concave region of the tissue quickly runs out, and so
to accommodate new tissue material, the tissue invades more
space in the normal direction than in the lateral directions,
leading to faster progression rates. In contrast, there is more
space available to accommodate new tissue in a convex region,
so that tissue progression in the normal direction is slower as
the new tissue needs to fill space laterally too. When new
tissue production is confined in a very narrow band near the
tissue interface (a situation called ‘surface growth’, such as
that which occurs during bone formation, and the growth of
seashells [63]), the mechanistic influence of space constraints
on growth rates lead mathematically to a type of hyperbolic
curvature flow in which the normal acceleration of the tissue
is proportional to curvature [36, 27, 37]. In the Porous-Fisher
model considered here, proliferation is not strictly confined to
the tissue interface. However, the logistic, contact-inhibited
proliferation term in Eq. (2) means that in the pore region,
where cell density is zero, and in the tissue region, where
cell density approaches carrying capacity, there is no cell
proliferation, and therefore no tissue growth locally. The
local production rate of the tissue induced by the logistic
proliferation term is highest where the normalised cell density
is 0.5, corresponding to uc and to the red contour in Figure 4.
Geometric control of tissue growth only occurs where there
is differential growth rate, i.e., where the progression rate

of the tissue interface is different in one region compared to
another. Clearly, differential growth rates in the Porous-Fisher
model arise where there are strong spatial heterogeneities in
cell density, which is precisely in a relatively narrow band
around the tissue interface marked in red in Figure 4. While
cell proliferation also occurs away from the tissue interface, or
after bridging has occured (e.g. top row in Figures 4a,b), there
is little influence of geometry on tissue growth in these regions
because density heterogeneities are small. In the experiments,
increases in density occur after bridging as well, until reaching
a maximum. For example, at Day 18 with L = 400µm in
Figure 1, some scaffold pores retain the memory of a circular
closing pore by having lower density there.

We note here that while the Porous-Fisher model has sharp
fronted solutions, the definition of a continuum density relies
on the definition of a local averaging window. A nonzero
density of cells u outside the tissue region corresponds to
taking parts of the cellular tissue into this averaging window.
Here we chose to emphasise the contour uc = 0.5 as the
tissue interface since this is midway between the minimum and
maximum densities in the nondimensionalised model. Other
numerical choices of uc are possible. Figure 5a shows that the
main result of the paper, i.e., that the time to bridge is a linear
function of pore size, holds regardless of the choice of uc.

The mathematical model presented is deterministic. As
such, it does not account for the variability seen in the experi-
mental images and data in Figures 1–3. Model results should
be interpreted in an average sense. From our experimental
observations, the largest factor of pore bridging variability
comes from whether, and when, the process of pore closing
is initiated. This often depends on the location of specific
pores within a scaffold, which may be due to experimental
confounding factors, e.g., related to cell seeding and nutrients,
and culture adaptation. Once pore closing is initiated, our
experimental observations suggest that the evolution of the
tissue in the pores follows a more deterministic course. Clearly,
the time at which pore closing is initiated influences the time to
bridge directly. Our mathematical model assumes pore closing
to be initiated immediately. However, low initial densities u0

in the model act mostly to delay the time to bridge by a constant
period of time (Figure 5a), and may thus be considered a good
proxy to model experimental delays in pore closing initiation.

The nondimensionalisation of the model shows that, up to
factors scaling physical units, only two parameters are indepen-
dent: the initial density u0 and the parameter α= Lc/L , which
combines cell-specific parameters related to proliferation and
diffusion, and initial pore size. The initial density mostly shifts
time to bridge Tb by a constant offset independent of initial
pore size (Figure 5a). The average distance Lc travelled by a
cell before it undergoes division measures a trade-off between
cell diffusion and cell proliferation for the behaviour of a single
cell. Different choices of cell proliferation and cell diffusivities
that combine into a same value of Lc will generate exactly the
same succession of cell density profiles and tissue interfaces
in space, except that these will be reached at different times
due to the scaling of time units by λ−1. Scaling analysis alone
does not predict that time to bridge Tb should be proportional
to initial pore size. This result is obtained by simulating the
model with pore sizes ranging from about two to ten times
the characteristic length scale Lc (Figure 5a). The linear
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Figure 6 – (Color online.) Porous-Fisher simulations on a rectangular initial pore. (a) Still frames from the nondimensional model at even time intervals for
α2 = 0.02, u0 = 0.8, and uc = 0.5; (b) Time to bridge for rectangular pore of different sizes: simulation data (crosses) with linear regression line (solid line).

relationship between Tb and L in the model shows that overall,
tissue invasion of a pore space of linear size L occurs with an
average speed v =

p
Dλ/c ≈ 1.5

p
Dλ. The linear relationship

between bridging time and initial pore size in the experiments
suggests that this average speed is approximately 20µm/day
for any initial pore size, see Eq. (5). This result indicates
that the dynamics of tissue invasion in these pores is mostly
geometric; there is no optimal pore size at which the rate of
tissue progression into the pore is highest. Time to bridge is
simply proportional to the geometric size of the pore. This
is consistent with our conclusion that cell behaviours do not
seem to be affected by the initial pore size significantly.

Several combinations of diffusivity D and cell division
period λ−1 are compatible with the experimental data. The
slopes of the curves D vs λ−1 in Figure 5b are remarkably
consistent across the numerical simulations, which is due to
the consistency in slope of the linear relationship between
bridging time and initial pore size. Cell doubling times for the
cell line employed in the experiments are known to be very
consistent [55]. There is more experimental uncertainty about
cell diffusivity [60, 61, 42, 43, 62, 44]. Figure 5b integrates
information both from the experimental data and from the
mathematical model, and enables us to estimate the range of
diffusivities for this cell line in the pore bridging experiments
conducted in Figure 1. With the estimated parameter values
λ≈ 1.1/day and D ≈ 140–170µm2/day, the estimated average
distance travelled by a cell in the bridging experiments before

it undergoes division is Lc ≈ 12µm. This is consistent with our
observation that the cells remain closely bound with each other
throughout the experiments [53]. We note that these estimates
of cell diffusivity are similar to the estimates 50–130µm2/day
found for prostate cancer cells in scratch assays [44]. These
estimates are remarkably consistent given that estimates of
D typically vary over several orders of magnitude in the
literature [44].

Porous-Fisher models are known to lead to travelling
waves for certain initial conditions, boundary conditions and
geometries [38, 42, 43]. In one spatial dimension, stable
travelling waves progress at speed ∝

p
Dλ. This suggests

that the linear dependence of time to bridge Tb with initial
pore size L is an approximation due to the fact that the tissue
interface propagates into the pore as a travelling wavefront at
constant speed for most of its trajectory, except at the onset
of pore closing where the wave requires sufficient cell density
buildup to establish itself [64]. This observation suggests that
other pore shapes with linear size L ¦ Lc would also bridge
with a time that increases linearly with L . Figure 6a shows
a simulation of the Porous-Fisher model of tissue growth in a
rectangular pore shape of size ratio 2:1. Figure 6b confirms
that time to bridge increases linearly with initial pore size also
for rectangular pores. The slope c of the linear regression is
similar to the slopes c reported in Figure 5a, meaning that
on average, the tissue front propagates at a similar velocity of
approximately 20µm/day.
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The key result of our experimental measurements and
numerical modelling is that Tb increases linearly with L is
limited to some intermediate range of L . For example, if
our experiments were repeated with L sufficiently small that
Tb was much less than the timescale of proliferation would
mean that cell migration alone would control Tb rather than
combined cell migration and cell proliferation. In this limit
we would expect Tb would be proportional to L 2 rather than
L [65]. Similarly, if we were dealing with an extremely large
pore size L , or less robust or multipotent primary cells or cell
lines, then some other mechanisms such as cell death or cell
differentiation could play an important role and so Tb may not
scale linearly with L in this case. Rather, the conclusions of
our investigation are relevant for pores with an intermediate
length scale, 200 ¶ L ¶ 600 µm and some care ought to be
exercised when extrapolating our results to pores that are either
sufficiently small or sufficiently large, or that use different cell
types.

5 Conclusion and Future Work

In this paper, we propose a simple reaction–diffusion model of
cells to analyse in detail the experimental observation that the
time to bridge pores in 3D printed scaffolds increases linearly
with initial pore size. The mathematical model includes
two cellular mechanisms at play during tissue growth: cell
proliferation, and cell transport. The model contrasts with
previous phenomenological models of the geometric control
of tissue growth based on mean curvature flow, which do
not consider cells explicitly and which assume an explicit
dependence on curvature.

Our mathematical analysis suggests that the linear depen-
dence observed experimentally between time to bridge and
initial pore size is solely due to geometric crowding effects
and the spatial scale of the pore space in which the tissue
grows. The cell behaviours, encapsulated in the model by the
diffusivity D and the cell division rate λ, do not need to be
adjusted for the model to recover a linearly increasing bridging
time with pore size. Furthermore, it is anticipated from the
model that pores of different shapes may also bridge in a time
that scales linearly with initial pore size. These results suggest
that there is not an optimal pore size that maximises the rate
of tissue progression within reasonable size limits leading to
tissue bridging.

While the Porous-Fisher model allows proliferation to
occur wherever cells occupy space with lower density than
the carrying capacity, in effect, geometric control of cell
proliferation is concentrated in a region near the tissue interface
where there are large density inhomogeneities. The Porous-
Fisher model is similar in this respect to the cellular models
of surface growth of Refs [36, 27, 37]. A common feature in
these cell-based models is that an influence of local curvature
on tissue growth rate is not necessarily indicative of changes
in cell-level behaviour. To determine cell-level behaviour, it is
important that experimental data is examined with the help of
mathematical models to factor out the mechanistic influences
of space constraints induced by tissue crowding [27], as we
have done here to conclude that cell-level proliferation and
diffusivity parameters are independent of pore size.

Our results suggest that the dynamics of tissue growth by

the MC3T3 cell line in 3D printed scaffold pores is dominated
by mechanistic proliferation and diffusion mechanisms that
rely only on local sensing of cell crowding, and not on local
sensing of geometric features of the tissue that may span many
cell diameters. While there seems to be no or little cell-level
geometric regulation in our experiments, there is emergence
of tissue-level geometric regulation arising from cell crowding
effects in confined spaces. The elucidation of the mechanistic
and cell-level diffusive and proliferative mechanisms required
to match our experimental data is an important outcome of
our study. It allows the prediction of the evolution of MC3T3-
cell-produced tissue in scaffold pores of new geometries, and
can thus help design optimal scaffold pore shapes to meet
conflicting constraints in both space and time, such as the
requirement to bridge pores quickly while maintaining some
degree of permeability [18].

A faithful mimicry of tissue or implant growth in biolog-
ically more complex environments would involve a consid-
eration of material properties, three dimensions, and several
tissue types with paracrine interactions. Our study focused
on the growth of tissue to bridge scaffold pores in a highly
reproducible setup that does not include more complex features
relevant to holistic tissue models, but that is particularly prone
to mathematical analysis. Our use of thin bilayer scaffolds and
frequent medium feeding circumvents issues of nutrient and
metabolite exchange, as well as issues of three-dimensional
tissue growth. Our use of a single, robust, proliferative
MC3T3 cell line avoids patient-to-patient variability, loss of
proliferative capacity, and multicellular interactions. The
mathematical model does not capture some more complex
cellular behaviours, including an initial culture lag phase or
differentiation. For example, it is experimentally observed
that very large pores are unlikely to bridge at all, whereas the
Porous-Fisher model presented in this paper will bridge pores
of any size. The diameter of the scaffold fibers could also
play a role for the spatio-temporal organisation of the tissue
created [20], particularly in the early stages of pore infilling.
More detailed mathematical models with further comparisons
to experimental data are needed to alleviate these limitations
and will be the subject of future works.

The model presented here is simple in both the experimental
data required and prediction provided. The remarkable
linearity between pore size and the time to bridge, coupled
with the predictive accuracy of this reaction-diffusion model,
posits that complex relationships between single cell behaviour
or substrate curvature may be unnecessary to identify useful
tissue engineering design equations for the additive manufac-
turing era.

There are many interesting extensions of the work presented
here, both experimentally and theoretically. The first extension
would be to consider very similar experiments on different
shaped pores, such as the rectangular pore that we studied
theoretically in Figure 6. Extending our experimental design
to include rectangular, circular, triangular and cross-shaped
(nonconvex) pores is of interest and some of our previous
in vitro work using much simpler two-dimensional wound
healing assays [46, 47] have begun to explore these details.
The investigation of nonconvex shapes is of particular interest
as previous studies have shown that the average rate of tissue
growth in porous scaffolds depends on whether pores are
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convex or nonconvex [13, 21].
More direct experimental measurements of single-cell

proliferative and migratory behaviours in their population
environment at different locations and time points during the
pore bridging experiments would help validate the importance
of cell crowding effects for the geometric control of tissue
growth. These kinds of experimental data would also be useful
to determine whether generalisations of the Porous-Fisher
model with time-dependent coefficients are required [61, 67],
such as a time dependent diffusivity D (t ) and a time dependent
proliferation rate, λ(t ), such that the product D (t )λ(t ) is
maintained constant. We have not considered this possibility
here because there are no obvious trends in our experimental
observation that motivate this kind of extension, however, this
is a potential avenue for future consideration.

Another interesting extension would be to extend the
mathematical modelling of the cell density presented here
using a full three-dimensional analogue of the Porous-Fisher
model. This would involve working with a three-dimensional
analogue of Equation 2 for cell density, u (x , y , z , t ). This
approach would be far more challenging because we would
need to specify much more information that is currently
uncertain. For example, this approach would require us to
specify the initial condition, u (x , y , z , 0), as a function of
vertical position as well as specifying boundary conditions
on the lower and upper surfaces of the domain. Both
of these details are presently uncertain and so this partly
justifies working with a simpler two-dimensional vertically
averaged model which is known to be accurate under the
conditions we consider here, namely that the vertical length-
scale is much smaller than the horizontal length scale [66].
Nonetheless, despite the challenges and uncertainties of
working with a full three-dimensional model, it would be
interesting to systematically compare the performance of a
full three-dimensional modelling approach with the current
two-dimensional modelling approach.

Finally, repeating our experiments and modelling work with
different cell types is also of high interest, particularly where
combinations of cell types involve paracrine interactions, since
this situation represents more closely tissue or implant growth
in biologically more complex environments.

Key algorithms used to generate numerical simulations of
the mathematical model are available on GitHub.
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S1 Experimental bridging times

The time to bridge for each pore size is estimated from experimental data on pore coverage area versus time [53]. Figure S1
shows plots of pore area versus time normalised by initial pore area. Each data point comes from the evaluation of a single pore
in an experimental scaffold. Nine pores are evaluated in each scaffold, but the data at different time points comes from different
scaffolds [53]. At each time, there is a total of 9×3= 27 data points for each mesh size L , except at t = 18days were there are
9× 2 = 18 data points for the mesh sizes L = 200, 400, 500µm. All the data from time points prior to bridging are used to fit
curves 1− (Tb/Tb0)

ν for each mesh size L using nonlinear least squares. (Bridging is assumed to have occurred when normalised
pore area data is below a tolerance of 0.02.) The fitted parameter Tb0 provides an estimate of the time to bridge. Estimates of the
standard error on this fitted parameter are given by the asymptotic standard error calculated during the fitting procedure [57, 56].
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Figure S1 – Estimation of time to bridge in the experiments. These figures show plots of the experimental pore area versus time, normalised by initial pore area
(circles), as well as curves (solid lines) fitted on all the data points prior to bridging. Fitted parameters Tb and ν and their asymptotic standard error [57, 56] are
mentioned in the figure legends.
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S2 Mathematical model formulation

In the main document we comment that the Porous-Fisher model can be thought of as a simplification of a more realistic model
where cells migrate in response to a substrate, such as the extracellular matrix (ECM). In this case we can think of cells producing
ECM, which then facilitates the migration of those cells, a mathematical model of this kind of interaction between a population
of cells, with density u (x , y , t ), and ECM with density e (x , y , t ), can be written as:

∂u

∂ t
=D∇· [D(e )∇u ] +λu

h

1−
u

K

i

, (S1)

∂e

∂ t
=αu −βe , (S2)

where D > 0 is the cell diffusivity, λ > 0 is the cell proliferation rate, K > 0 is the carrying capacity density, α > 0 is the
production rate of ECM and β > 0 is the decay rate of ECM. In Equations S1–S2 we suppose that the diffusion of cells is coupled
to the presence of the ECM through the nondimensional nonlinear diffusivity function, D(e ), which we have not specified, but
it would be reasonable to assume that D(e ) is an increasing function of the ECM, ∂D(e )/∂e > 0. A simple and instructive
choice would be D(e ) = e /emax, where emax is some maximum characteristic density of ECM. Setting D(e ) = e /emax indicates
that there is no migration in the absence of ECM and an increasing density of ECM enhances migration. To connect this model,
Equations S1–S2, with experimental data we would ideally have observations of both the cell population, u (x , y , t ), and the
density of ECM, e (x , y , t ). Since we do not have this kind of data in our experiments we invoke a standard simplification by
assuming the time scale of ECM production and decay is faster than the time scale of cell migration and cell proliferation. This
kind of quasi-steady assumption is widely invoked whereby the dynamics of some kind of signalling molecule is thought to
reach equilibrium conditions faster than some population of cells [69, 71].

To simplify Equations S1–S2 we set ∂e /∂ t = 0, giving u ∝ e , so that we may write D(e ) as D̄(u ), where D̄(u ) is an
increasing function of u such that D̄(0) = 0, with an obvious candidate being D(u ) = u , thereby recovering the Porous-Fisher
model, which we write as

∂u

∂ t
=D∇·
h� u

K

�

∇u
i

+λu
h

1−
u

K

i

, (S3)

where we have written D(u ) = u/K so that the nonlinear diffusivity function is non-dimensional. In this section we provide a
very brief justification of the use of the Porous-Fisher model in terms of simplifying a multi-species model of cell migration
and cell proliferation with a quasi-steady assumption simplifying the way that cell migration is coupled to ECM. This kind of
assumption is one way to motivate the use of the Porous-Fisher model. Other arguments have been used to support the use
of the Porous–Fisher model include arguments based on: (i) heuristic reasoning about the role of crowding-induced directed
motion [49]; (ii) effects of cell-to-cell crowding and cell shape [51, 68]; (iii) or geometric arguments relating to asymptotic
observations of hole-closing near to the time of closure [48]; and (iv) heuristic arguments about the observation of sharp fronts
in experimental images [42, 43].

S3 Numerical solution

Numerical solutions of the Porous-Fisher model are obtained by writing Equation S3 as

∂u

∂ t
=D

∂

∂ x

�

D(u )
∂u

∂ x

�

+D
∂

∂ y

�

D(u )
∂u

∂ y

�

+S (u ), (S4)

where we have written the model in terms of a general nonlinear diffusivity function, D(u ) and a general source term, S (u ).
For our purposes we set D(u ) = u/K and S (u ) = λu (1− u/K ). Our aim is to obtain numerical solutions of Equation S4 on
the square domain Ω = {(x , y ), 0 < x < L , 0 < y < L}. For convenience we assume that the origin is at the lower left corner of
the domain and we discretise Ω on a spatially uniform finite difference mesh with mesh spacing h > 0. We index the mesh in
the usual way so that the coordinates of each mesh point are (xi , yj , with i = 0, 1, 2, . . . , I and j = 0, 1, 2, . . . , J . Since we always
consider square domains we have I = J = L/∆, giving a finite difference mesh with a total of (I +1)2 nodes.

We solve Equation S4 using a standard method of lines approach so that at each internal mesh point we approximate Equation
S4 by

dui , j

dt
=

D

2h 2

��

D(ui , j ) +D(ui+1, j )
� �

ui+1, j −ui , j

�

−
�

D(ui , j ) +D(ui−1, j )
� �

ui , j −ui−1, j

��

+
D

2h 2

��

D(ui , j ) +D(ui , j+1)
� �

ui , j+1−ui , j

�

−
�

D(ui , j ) +D(ui , j−1)
� �

ui , j −ui , j−1

��

+S (ui , j ), (S5)

where we have approximated the internode diffusivity with an arithmetic average [72]. Equation S5 is valid at the central nodes,
i = 1, 2, . . . , I −1 and j = 1, 2, . . . , J −1, and is modified on the boundary nodes since we implement symmetry (no-flux) boundary
conditions along the boundaries where i = 1, i = I , j = 1 and j = J [72]. This system of (I + 1)2 coupled ordinary differential
equations is then integrated through time using MATLABs ode45 routine [70].
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S4 Regression parameters in Figure 5

The parameters of the regression lines used to fit dimensionless briding time vs dimensionless initial pore size in the model in
Figure 5 are listed in Table S4. The regression parameters of best fit c and a (slope and intercept, respectively) depend on the
initial density u0 and threshold density uc . The last column lists the corresponding value of Dλ estimated using Eq. (7). For
clarity, Figure 5 only shows results with uc = 0.2 and uc = 0.5.

Table S4 – Regression parameters

u0 uc c a Dλ

0.2 0.2 0.69 −0.15 184 µm2/day2

0.5 0.2 0.66 −0.79 167 µm2/day2

0.8 0.2 0.63 −1.02 153 µm2/day2

0.2 0.5 0.67 0.26 176 µm2/day2

0.5 0.5 0.66 −0.59 172 µm2/day2

0.8 0.5 0.64 −0.92 164 µm2/day2

0.2 0.8 0.63 1.18 154 µm2/day2

0.5 0.8 0.66 −0.03 173 µm2/day2

0.8 0.8 0.68 −0.68 183 µm2/day2
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