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 3 

Abstract:  1 

Gliomas are the most common and malignant intracranial tumours in adults. Recent studies have 2 

shown that functional genomics greatly aids in the understanding of the pathophysiology and 3 

therapy of glioma. However, comprehensive genomic data and analysis platforms are relatively 4 

limited. In this study, we developed the Chinese Glioma Genome Atlas (CGGA, 5 

http://www.cgga.org.cn), a user-friendly data portal for storage and interactive exploration of multi-6 

dimensional functional genomic data that includes nearly 2,000 primary and recurrent glioma 7 

samples from Chinese cohorts. CGGA currently provides access to whole-exome sequencing (286 8 

samples), messenger RNA sequencing (1,018 samples) and microarray (301 samples), DNA 9 

methylation microarray (159 samples), and microRNA microarray (198 samples) data, as well as 10 

detailed clinical data (e.g., WHO grade, histological type, critical molecular genetic information, 11 

age, sex, chemoradiotherapy status and survival data). In addition, we developed an analysis tool to 12 

allow users to browse mutational, mRNA/microRNA expression, and DNA methylation profiles and 13 

perform survival and correlation analyses of specific glioma subtypes. CGGA greatly reduces the 14 

barriers between complex functional genomic data and glioma researchers who seek rapid, intuitive, 15 

and high-quality access to data resources and enables researchers to use these immeasurable data 16 

sources for biological research and clinical application. Importantly, the free provision of data will 17 

allow researchers to quickly generate and provide data to the research community. 18 

 19 
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 4 

Introduction 1 

Gliomas are the most frequent malignant tumours of the adult brain. According to a multi-centre 2 

cross-sectional study on brain tumours in China, the prevalence of primary brain tumours in all 3 

populations is approximately 22.52 per 100,000 persons, with gliomas accounting for 31.1% of the 4 

population aged 20–59 years [1-3]. According to the histopathological classification of the 2016 5 

World Health Organization (WHO) grading system, glioma is classified from grade II to grade IV 6 

by both histological characteristics and several new molecular pathological features, such as IDH 7 

mutation status and chromosome 1p/19q co-deletion status [4]. Despite advances in current 8 

treatment standards, the survival rate of patients with glioma has not changed in decades, especially 9 

for aggressive gliomas (with a poor median survival time of only 12 to 14 months) [5, 6]. In addition, 10 

most lower-grade gliomas (grade II and III, LGG) will progress to glioblastoma (grade IV, GBM) 11 

in less than 10 years [4, 7, 8]. At present, the reasons for glioma recurrence or malignant progression 12 

may be as follows: 1) infiltrative tumour cells cannot be completely removed by neurosurgical 13 

resection [9, 10]; 2) retained tumour cells cannot be effectively suppressed by limited postoperative 14 

treatment options [3, 11, 12]; 3) multiple lesions may develop [13, 14]; 4) cell cloning is rapid under 15 

chemotherapy and/or radiotherapy [7, 15]; 5) the adaptive tumour microenvironment permits 16 

tumour cells [16, 17]; and 6) limited data resources lead to limited research. Therefore, it is essential 17 

to collect clinical specimens and generate genomic data for the glioma research community. 18 

Recent high-throughput technologies have enabled extensive characterization of genomic 19 

status, including but not limited to DNA methylation modification, genetic alteration, and gene 20 

expression regulation. In the cancer research community, major large-scale projects, such as The 21 

Cancer Genome Atlas (TCGA, including 516 LGGs and 617 GBMs before Oct. 18, 2019) [18] and 22 

the International Cancer Genome Consortium (ICGC, excluding TCGA samples, including 80 adult 23 

GBMs and 50 paediatric GBMs before April. 3, 2019) [19, 20], have generated an unparalleled 24 

amount of functional genomic data. These projects have begun to transform our understanding of 25 

cancer and even lead to improvements in our ability to diagnose, treat, and prevent human cancers. 26 

Importantly, they have provided an opportunity to make and validate important discoveries for 27 

cancer genomic researchers around the globe. However, the data resources generated by these 28 

projects are often not easy to access directly, analyse or visualize, especially for researchers with no 29 
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bioinformatics skills, thus preventing the translation of functional genomics results into novel 1 

findings of biological significance for drug development and clinical treatment. Although several 2 

webservers, such as cBioportal [21, 22] and GlioVis [23], have been built to integrate analysed 3 

multi-dimensional glioma data, they have ignored the presence of cancer heterogeneity in gliomas, 4 

which cannot be examined in specific subtypes and is rarely found in recurrent glioma samples. 5 

Here, we introduce the CGGA (Chinese Glioma Genome Atlas, http://www.cgga.org.cn) 6 

database, which is an open-access and easy-to-use platform for interactive exploration of multi-7 

dimensional functional genomic datasets for nearly 2,000 primary and recurrent glioma samples 8 

from Chinese cohorts. CGGA currently contains whole-exome sequencing (286 samples), 9 

messenger RNA (mRNA) sequencing (1,018 samples), microarray (301 samples), DNA methylation 10 

microarray (159 samples), microRNA microarray (198 samples) and comprehensive clinical data. 11 

We also developed an analysis module to allow users to browse the mutational landscape profile, 12 

mRNA/microRNA expression profile and DNA methylation profile as well as to perform survival 13 

and correlation analyses for specific glioma subtypes. We believe that this website will greatly 14 

reduce the barriers between complex functional genomic data and glioma researchers who seek 15 

rapid, intuitive, and high-quality access to data resources. 16 

Results 17 

Database content and usage 18 

The CGGA database was designed to store functional genomic data and to allow interactive 19 

exploration of multi-dimensional datasets from primary and recurrent gliomas in Chinese cohorts; 20 

it is available at http://www.cgga.org.cn/. Currently, CGGA contains whole-exome sequencing data 21 

(286 samples), messenger RNA sequencing data (total: 1,018 samples, batch 1 with 693 samples 22 

and batch 2 with 325 samples), microarray data (301 samples), DNA methylation microarray data 23 

(159 samples), and microRNA microarray data (198 samples) for glioma. The database also contains 24 

detailed clinical data (including WHO grade and histological type, critical molecular genetic 25 

information, age, sex, chemoradiotherapy status and survival data). Detailed statistical information 26 

for each dataset is provided in Table 1. We organized the web interface of CGGA according to the 27 

three main functional features: (i) Home, (ii) Analyse, and (iii) Download. In the following context, 28 

we provide an example for using CGGA. 29 
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 6 

The home page 1 

On the ‘Home’ page, CGGA provides a statistical table for a glioma dataset, including the dataset 2 

name, data type, number of samples in each subgroup, clinical data and analysis purposes. For 3 

instance, we performed messenger RNA sequencing on 1,018 glioma samples included in two 4 

datasets (693 samples in batch 1 and 325 samples for batch 2, including 282 primary LGGs, 161 5 

recurrent LGGs, 140 primary GBMs and 109 recurrent GBMs in batch 1 and 144 primary LGGs, 6 

38 recurrent LGGs, 85 primary GBMs, 24 recurrent GBMs and 30 secondary GBMs in batch 2). To 7 

the best of our knowledge, CGGA is the first database to store the functional genomic data for both 8 

LGG and GBM recurrent gliomas. In addition, users can obtain a visualized result for the analysis 9 

of each dataset for a specific glioma subtype by clicking on a hyperlink on the ‘Home’ page. The 10 

‘Download’ and ‘Help’ pages can also be accessed directly from the ‘Home’ page. 11 

Overall analyses and results 12 

To facilitate analysis of the CGGA data by researchers, we developed four online modules in the 13 

‘Analyse’ tab, including ‘WEseq data’, ‘mRNA data’, ‘methylation data’, and ‘microRNA data’, to 14 

analyse whole-exome, mRNA expression, DNA methylation and microRNA expression data, 15 

respectively (Figure 1A). A key feature of CGGA is that it is easy to use. In the context below, we 16 

demonstrate the use of the ‘Analyse’ tab in CGGA. 17 

On the ‘WEseq data’ page, users are allowed to visualize the mutational profile of a gene set 18 

of interest and survival analysis of a specific gene of interest in a specific glioma subtype. In the 19 

‘Oncoprint’ section, users are guided to a) input a gene set of interest (‘IDH1 TP53 ATRX’ for 20 

example), and b) select a dataset of interest (‘All’ for example). Based on user input, this tool 21 

automatically generates visualized results. In this result, each case or patient is represented as 22 

columns, each gene is displayed as rows, and a colour map on the bottom is used to depict specific 23 

clinical information (Figure 1B). This ‘Oncoprint’ can be very useful for visualizing the mutational 24 

profile for a gene set of interest in a specific glioma subtype and for intuitively validating trends 25 

such as mutational frequency and mutual exclusivity or co-occurrence for a gene pair. In the above 26 

example, mutations in the IDH1 (47%), TP53 (46%) and ATRX (30%) genes were the most common 27 

mutations in all gliomas. In the ‘Survival’ section, users are allowed to a) input a specific gene of 28 

interest (‘IDH1’ for example), and b) select a dataset of interest (‘Primary LGG’ for example) to 29 

investigate the association of the mutation with severe functional consequences. Consistent with 30 
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previous studies [24], primary LGG cases with IDH1 mutations have a better overall survival than 1 

do cases with IDH1 wild-type tumours (p < 0.0001, Figure 1C, left). These analysis results from 2 

the ‘WEseq data’ section can be exported as a PDF file. For the sake of reproducibility, we provide 3 

the analysis data (Figure 1C, middle) and R code (Figure 1C, right), which allow users to reproduce 4 

the figure to be able to modify or adapt each figure according to each researcher’s demands. 5 

On the ‘mRNA data’ page, users are allowed to perform gene expression distribution, 6 

correlation and survival analyses for a specific gene of interest in a specific glioma subtype. Three 7 

mRNA datasets are available for users, including two batch RNA-seq datasets (batch 1: 693 samples; 8 

batch 2: 325 samples) and one microarray dataset (301 samples). In the ‘Distribution’ section, users 9 

can display one gene distribution pattern for each glioma subtype by selecting a dataset 10 

(‘mRNAseq_325’ for example) and inputting a gene name of interest (‘ADAMTSL4’ for example). 11 

The results show the gene expression pattern in each glioma subtype classified by clinical 12 

information. Similar to our previous studies [25], the ADAMTSL4 gene was shown to be 13 

differentially expressed according to the WHO 2016 classification based on the IDH mutation 14 

and/or 1p/19q co-deletion status (Figure 1D, left). Moreover, a critical feature of the CGGA dataset 15 

is the inclusion of recurrent gliomas. This module allows users to infer whether a gene may be a 16 

candidate factor that drives malignant progression if it is differentially expressed in primary and 17 

recurrent gliomas. In the ‘Correlation’ section, the user is allowed to validate the co-expression 18 

pattern by selecting a dataset (‘mRNAseq_325’ for example) and inputting a gene pair 19 

(‘ADAMTSL4’ and ‘CD274’ for example). As a result, the co-expression patterns in each glioma 20 

subtype will be displayed with the results of Pearson’s test and the p value (Figure 1D, middle). In 21 

the ‘Survival’ section, users can perform survival analysis based on gene expression by selecting a 22 

dataset (‘mRNAseq_325’ for example) and inputting a gene of interest (‘ADAMTSL4’ for example). 23 

All primary glioma patients with low ADAMTSL4 expression showed better overall survival than 24 

did those with high ADAMTSL4 expression (p < 0.0001, Figure 1D, right). The above results from 25 

the ‘mRNA data’ section are consistent with our previous study [25]. Similar to the ‘mRNA data’ 26 

page, users can also display the methylation/microRNA distribution and perform correlation and 27 

survival analyses on the ‘methylation data’ page and the ‘microRNA data’ page, respectively. 28 

Data acquisition 29 
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 8 

All the data sets in CGGA can be downloaded on the ‘Download’ page by both the community and 1 

researchers. Each data type is saved at the gene and/or probe level and is then combined with the 2 

available clinical data, including basic clinical information, survival and therapy information. 3 

Perspectives and concluding remarks 4 

The current version of the CGGA is the first release of our database, and it incorporates multi-5 

dimensional functional genomic glioma data, including whole-exome sequencing, mRNA and 6 

microRNA expression, and DNA methylation data for nearly 2,000 samples from Chinese cohorts. 7 

Considering the importance of these data for glioma research, CGGA is publicly available. To the 8 

best of our knowledge, CGGA is the first database to store the functional genomic data for both 9 

recurrent LGGs and GBMs. In addition, CGGA provides several tools that allow users to analyse 10 

these datasets, including mutational profile, distribution pattern, correlation and survival analysis 11 

tools. These tools will be useful for users to generate or validate findings of novel biological 12 

significance. 13 

We anticipate several future directions for our CGGA database. First, through the Beijing 14 

Neurosurgical Institute, Beijing Tiantan Hospital and Chinese Glioma Cooperative Group (CGCG) 15 

Research Network, we will continue to collect glioma samples and perform multiple ‘Omics’ 16 

sequencing/microarray analyses, and we will continue to update this database regularly in the future. 17 

Second, we also plan to add image-genomic data that match the ‘Omics’ data in CGGA. Third, we 18 

will develop more advanced features, including data for other ‘Omics’ analyses, search functions 19 

for clinical information on a patient of interest, and further extensions for the data analysis tools. In 20 

summary, CGGA facilitates access to functional genomic data for Chinese cohorts for the entire 21 

glioma community. It provides an easy-to-use, user-friendly interface for obtaining integrated data 22 

sets, performing intuitive visualized analysis, and downloading these datasets. CGGA greatly 23 

reduces the barriers between complex functional genomic data and glioma researchers, which 24 

empowers researchers to use functional genomic data into important biological insights and 25 

potential clinical applications. 26 

Materials and methods 27 

Clinical specimen collection 28 
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 9 

Glioma tissues, corresponding genomic data and patient follow-up information were obtained from 1 

Beijing Tiantan Hospital at Capital Medical University, Tianjin Medical University General 2 

Hospital, Sanbo Brain Hospital at Capital Medical University, the Second Affiliated Hospital of 3 

Harbin Medical University, the First Affiliated Hospital of Nanjing Medical University, and the 4 

First Hospital of China Medical University. All research performed was approved by the Beijing 5 

Tiantan Hospital Capital Medical University Institutional Review Board (IRB) and was conducted 6 

according to the principles of the Helsinki Declaration. According to the central pathology reviews 7 

of independent committee certified neuropathologists, all the subjects were consistently diagnosed 8 

with glioma and further classified according to the 2007/2016 WHO classification system. All 9 

patients provided written informed consent. The specimens were collected under IRB KY2013-017-10 

01 and frozen in liquid nitrogen within 5 min of resection. 11 

Data processing for whole-exome sequencing data 12 

Genomic DNA from tumours and the matched blood samples was extracted, and high integrity was 13 

confirmed by 1% agarose gel electrophoresis. The DNA was subsequently fragmented and quality-14 

controlled, and paired-end libraries were prepared. Agilent SureSelect kit v5.4 was used for target 15 

capture. Sequencing was performed using the Illumina HiSeq 4000 platform with a paired-end 16 

sequencing strategy. Valid DNA sequencing data were mapped to the reference human genome 17 

(UCSC hg19) using Burrows-Wheeler Aligner (v0.7.12-r1039, bwa mem) [26] with default 18 

parameters. SAMtools (version 1.2) [27] and Picard (version 2.0.1, Broad Institute) were then used 19 

to sort the reads by coordinates and mark duplicates. Statistics such as sequencing depth and 20 

coverage were calculated based on the resulting BAM files. SAVI2 was used to identify somatic 21 

mutations (including single-nucleotide variations and short insertions/deletions) as previously 22 

described [7, 8]. Briefly, in this pipeline, SAMtools mpileup and bcftools (version 0.1.19) [28] were 23 

employed to perform variant calling, and the preliminary variant list was filtered to remove positions 24 

with no sufficient sequencing depth, positions with only low-quality reads, and positions biased 25 

toward either strand. Somatic mutations were identified and evaluated by an empirical Bayesian 26 

method. In particular, mutations with a significantly higher mutation allele frequency in tumours 27 

than in normal controls were selected. 28 

Data processing for mRNA sequencing data 29 
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Prior to library preparation, total RNA was isolated using RNeasy Mini Kit (Qiagen) according to 1 

the manufacturer’s instructions. A pestle and QIAshredder (Qiagen) were used to disrupt and 2 

homogenize frozen tissue. The RNA intensity was checked using a 2,100 Bioanalyzer (Agilent 3 

Technologies), and only high-quality samples with an RNA integrity number (RIN) value greater 4 

than or equal to 6.8 were used to construct the sequencing library. Typically, 1 μg of total RNA was 5 

used with the TruSeq RNA library preparation kit (Illumina) in accordance with the low-throughput 6 

protocol, except that SuperScript III reverse transcriptase (Invitrogen) was used to synthesize first- 7 

strand cDNA. After PCR enrichment and purification of adapter-ligated fragments, the 8 

concentration of DNA with adapters was determined by quantitative PCR (Applied Biosystems 9 

7,500) using primers QP1 5’-AATGATACGGCGACCACCGA-3’ and QP2 5’-10 

CAAGCAGAAGACGGCATACGAGA-3’. The length of the DNA fragment was measured using a 11 

2,100 Bioanalyzer, with median insert sizes of 200 nucleotides. The RNA-seq libraries were 12 

sequenced using the Illumina HiSeq 2,000, 2,500 or 4,000 Sequencing System. The libraries were 13 

prepared using the paired-end strategy with read lengths of 101 bp, 125 bp or 150 bp. Base calling 14 

was performed by the Illumina CASAVA v1.8.2 pipeline. RNA-seq mapping and quantification were 15 

processed by using STAR (version v2.5.2b) [29] and RSEM (version 1.2.31) software [30]. Briefly, 16 

reads were aligned to the human genome reference (GENCODE v19, hg19) with STAR, and then 17 

sequencing read counts for each GENCODE gene were calculated using RSEM. The expression 18 

levels of different samples were merged into an FPKM (fragments per kilobase transcriptome per 19 

million fragments) matrix. We defined a gene as expressed only if its expression level was greater 20 

than 0 in half of the samples. Finally, we retained only expressed genes in the mRNA expression 21 

profile. 22 

Data processing for mRNA microarray data 23 

A rapid haematoxylin & eosin stain for frozen sections was performed on each sample to assess the 24 

tumour cell proportion before RNA extraction. RNA was extracted from only samples with >80% 25 

tumour cells. Total RNA was extracted from frozen tumour tissue with the mirVana miRNA Isolation 26 

Kit (Ambion), as described previously [31]. A NanoDrop ND-1000 spectrophotometer (NanoDrop 27 

Technologies) was used to evaluate the quality and concentration of extracted total RNA and an 28 

Agilent 2100 Bioanalyzer (Agilent) to assess the integrity. The qualified RNA was collected for 29 

further processing. cDNA and biotinylated cRNA were synthesized and hybridized to Agilent Whole 30 
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Human Genome Array according to the manufacturer's instructions. Finally, the array-generated 1 

data were analyzed by the Agilent G2565BA Microarray Scanner System and Agilent Feature 2 

Extraction Software (Version 9.1). GeneSpring GX11.0 was applied to calculate the probe intensity. 3 

Data processing for methylation microarray data 4 

A haematoxylin and eosin-stained frozen section was prepared for assessment of the percentage of 5 

tumour cells before RNA extraction. Only samples with greater than 80% tumour cells were selected. 6 

Genomic DNA was isolated from frozen tumour tissues using the QIAamp DNA Mini Kit (Qiagen) 7 

according to the manufacturer’s protocol. The DNA concentration and quality were assessed using 8 

a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Houston, TX). The microarray 9 

analysis was performed using Illumina Infinium HumanMethylation27 Bead-Chips (Illumina Inc.), 10 

which contains 27,578 highly informative CpG sites covering more than 14,000 human RefSeq 11 

genes. This allows researchers to investigate all sites per sample at a single-nucleotide resolution. 12 

Bisulfite modification of DNA, chip processing and data analysis were performed following the 13 

manufacturer’s manual at Wellcome Trust Centre for Human Genetics Genomics Lab, Oxford, UK. 14 

The array results were examined with the BeadStudio software (Illumina). 15 

Data processing for microRNA microarray data 16 

Total RNA (tRNA) was extracted from frozen tissues by using the mirVana miRNA Isolation Kit 17 

(Ambion, Inc., Austin, Tex), and the concentration and quality were determined with a NanoDrop 18 

ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, Del). microRNA expression 19 

profiling was performed using the human v2.0 microRNA Expression BeadChip (Illumina, Inc., 20 

San Diego, Calif) with 1146 microRNAs covering 97% of the miRBase 12.0 database according to 21 

the manufacturer’s instructions. 22 

Implementation 23 

In CGGA, all data are organized with MySQL 14.14 based on relational schema, which will be 24 

supported by future CGGA updates. The website code was written based on Java Server Pages using 25 

the Java Servlet framework. The website is deployed on the Tomcat 6.0.44 web server and runs on 26 

a CentOS 5.5 Linux system. JQuery was used to generate, render and manipulate data visualization. 27 

The ‘Analyse’ module was realized with Perl and R scripts. The CGGA website has been fully tested 28 

in Google Chrome and Safari browsers. 29 
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Figures 1 

Figure 1. An overview of the CGGA database. 2 

A. The CGGA contains whole-exome sequencing, mRNA and microRNA expression, and DNA 3 

methylation data, clinical data, and several analysis modules; B. The mutation profile in all gliomas 4 

(in the ‘WSseq_286’ dataset); C. left: the overall survival of glioma patients with IDH1 mutation 5 

and the wild-type gene from primary LGGs (in the ‘WSseq_286’ dataset); middle: the data was used 6 

to generate the plot; right: the R code was used to generate the plot; D. left: the ADAMTSL4 gene 7 

expression distribution in primary gliomas based on 2016 WHO grading system (in the 8 

‘mRNAseq_325’ dataset); middle: the gene expression correlation between ADAMTSL4 and 9 

CD274 genes (using ‘mRNAseq_325’ dataset); right: the overall survival of glioma patients with 10 

low and high ADAMTSL4 gene expression (in the ‘mRNAseq_325’ dataset). 11 
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Table 1. Clinical and Phenotypical Characteristics of Data Set in CGGA database 1 

 All Primary 

LGG 

Recurrent 

LGG 

Primary 

GBM 

Recurrent 

GBM 

Secondary  

GBM 

WEseq_286 dataset       

  No. of samples –no. (%) 286 126 (44%) 58 (20%) 54 (19%) 48 (17%) 0 (0%) 

  Age at diagnosis – yr.       

    Mean 42.0±12.3 39.6±10.3 37.3±8.7 50.2±14.7 44.5±13.3 - 

    Range 10-76 10-69 15-61 19-76 19-69 - 

  Male sex – no. (%) 168  78 (46%) 35 (21%) 29 (17%) 26 (15%) - 

  Therapy       

    Radiotherapy only 62  52 (84%) 4 (6%) 4 (6%) 2 (3%) - 

    Chemotherapy 13  8 (62%) 2 (15%) 0 (0%) 3 (23%) - 

    Cheomoradiotherapy 144  49 (34%) 27 (19%) 42 (29%) 26 (18%) - 

    No therapy 23  9 (39%) 8 (35%) 4 (17%) 2 (9%) - 

    Unknown 44  8 (18%) 17 (39%) 4 (9%) 15 (34%) - 

  Survival – month       

    Median (95% CI) 51.0 (37.2-98.1) 117.2 (99.4-) 28.5 (20.9-76.0) 16.5 (10.2-28.7) 14.7 (8.9-) - 

  IDH_mut_status       

    Mutant 161  88 (55%) 45 (28%) 12 (7%) 16 (10%) - 

    Wildtype 125  38 (30%) 13 (10%) 42 (34%) 32 (26%) - 

  1p19q_codeletion_status       

    Codel 51  28 (55%) 17 (33%) 1 (2%) 5 (10%) - 

    Non-codel 139 48 (35%) 33 (24%) 23 (17%) 35 (25%) - 

    Unknown 96 50 (52%) 8 (8%) 30 (31%) 8 (8%) - 

RNAseq_1018 dataset       

  No. of samples –no. (%) 1,018 426 (42%) 199 (20%) 225 (22%) 133 (13%) 30 (3%) 

  Age at diagnosis – yr.       

    Mean 43.2±12.3 40.2±10.8 40.2±9.6 51.0±12.9 45.0±13.2 38.8±11.4 

    Range 8-79 10-74 15-64 11-79 14-71 8-57 
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  Male sex – no. (%) 601 247 (41%) 115 (19%) 138 (23%) 76 (13%) 21 (3%) 

  Therapy       

    Radiotherapy only 200 128 (64%) 32 (16%) 26 (13%) 10 (5%) 4 (2%) 

    Chemotherapy 68 30 (44%) 13 (19%) 9 (13%) 11 (16%) 5 (7%) 

    Cheomoradiotherapy 567  204 (36%) 102 (18%) 159 (28%) 85 (15%) 15 (3%) 

    No therapy 89 41 (46%) 21 (24%) 18 (20%) 5 (6%) 4 (4%) 

    Unknown 91 23 (25%) 31 (34%) 13 (14%) 22 (24%) 2 (2%) 

  Survival – month       

    Median (95% CI) 35.0 (30.5-39.9) 108.0 (89.9-) 33.2 (26.1-39.8) 16.1 (13.7-19.7) 9.6 (8.2-11.0) 8.3 (7.1-14.7) 

  IDH_mut_status       

    Mutant 531  289 (54%) 150 (28%) 35 (7%) 34 (6%) 21 (4%) 

    Wildtype 435 104 (24%) 40 (9%) 183 (42%) 96 (22%) 9 (2%) 

    Unknown 52  33 (63%) 9 (17%) 7 (13%) 3 (6%) 0 

  1p19q_codeletion_status       

    Codel 212  137 (65%) 54 (25%) 5 (2%) 11 (5%) 4 (2%) 

    Non-codel 728  254 (35%) 139 (19%) 192 (26%) 118 (16%) 24 (3%) 

    Unknown 78  35 (45%) 6 (8%) 28 (36%) 4 (5%) 2 (3%) 

mRNA-array_301 dataset       

  No. of samples –no. (%) 301 156 (52%) 18 (6%) 108 (36%) 5 (2%) 11 (4%) 

  Age at diagnosis – yr.       

    Mean 42.4±11.8 39.6±10.7 38.2±11.2 47.3±12.5 45.6±9.6 38.5±8.6 

    Range 12-70 17-65 24-62 12-70 36-61 27-51 

  Male sex – no. (%) 180  93 (52%) 8 (4%) 65 (36%) 2 (1%) 9 (5%) 

  Therapy       

    Radiotherapy only 110  74 (67%) 0 33 (30%) 0 3 (3%) 

    Chemotherapy 12 1 (8%) 2 (17%) 4 (33%) 3 (25%) 2 (17%) 

    Cheomoradiotherapy 139 61 (44%) 12 (9%) 60 (43%) 1 (1%) 4 (3%) 

    No therapy 20  8 (40%) 2 (10%) 6 (30%) 0 2 (10%) 

    Unknown 20  12 (60%) 2 (10%) 5 (25%) 1 (5%) 0   
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Survival – month       

    Median (95% CI) 38.8 (27.2-53.9) - (99.8- ) 39.8 (13.8- ) 15.4 (13.3-19.0) 10.5 (7.7- ) 7.2 (6.5- ) 

  IDH_mut_status       

    Mutant 134  100 (75%) 12 (9%) 14 (10%) 2 (1%) 6 (4%) 

    Wildtype 165 54 (33%) 6 (4%) 94 (57%) 3 (2%) 5 (3%) 

    Unknown 2 2 (100%) 0 0 0 0 

  1p19q_codeletion_status       

    Codel 16  14 (88%) 2 (12%) 0 0 0 

    Non-codel 76  23 (30%) 14 (18%) 27 (36%) 5 (7%) 7 (9%) 

    Unknown 209  119 (57%) 2 (1%) 81 (39%) 0 4 (2%) 

methyl_159 dataset       

  No. of samples –no. (%) 159 100 (63%) 8 (5%) 33 (21%) 4 (3%) 6 (4%) 

  Age at diagnosis – yr.       

    Mean 40.2±12.5 39.5±12.2 35.6±12.0 44.2±14.2 41.5±3.7 33.7±7.4 

    Range 9-70 17-70 24-57 9-70 38-46 27-46 

  Male sex – no. (%) 89  58 (65%) 4 (4%) 19 (21%) 3 (3%) 5 (6%) 

  Therapy       

    Radiotherapy only 48 39 (81%) 1 (2%) 8 (17%) 0 0 

    Chemotherapy 10 0 3 (30%) 1 (10%) 3 (30%) 3 (30%) 

    Cheomoradiotherapy 66 46 (70%) 3 (5%) 16 (24%) 1 (2%) 0 

    No therapy 12 4 (33%) 1 (8%) 4 (33%) 0 3 (25%) 

    Unknown 19 11 (58%) 2 (5%) 4 (21%) 3 (16%) 0 

Survival – month       

    Median (95% CI) 45.8 (36.6-83.9) 107.2 (60.4- ) 85.0 (43.8- ) 8.5 (6.4-23.1) 16.0 (5.2- ) 43.3 (10.6- ) 

  IDH_mut_status       

    Mutant 81 65 (80%) 5 (6%) 5 (6%) 2 (2%) 4 (5%) 

    Wildtype 64 30 (47%) 3 (5%) 27 (42%) 2 (3%) 2 (3%) 

    Unknown 14 5 (36%) 0 1 (7%) 0 0 

  1p19q_codeletion_status       
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    Codel 7 5 (71%) 2 (29%) 0 0 0 

    Non-codel 18 7 (39%) 3 (17%) 2 (11%) 2 (11%) 4 (22%) 

    Unknown 134 88 (66%) 3 (2%) 31 (23%) 2 (1%) 2 (1%) 

microRNA-array_198 dataset       

  No. of samples –no. (%) 198 99 (50%) 8 (4%) 81 (41%) 4 (2%) 6 (3%) 

  Age at diagnosis – yr.       

    Mean 41.9±12.5 39.5±12.3 35.6±12.0 46.1±13.1 41.5±3.7 33.7±7.4 

    Range 12-70 17-70 24-57 12-70 38-46 27-46 

  Male sex – no. (%) 123 57 (46%) 4 (3%) 54 (44%) 3 (2%) 5 (4%) 

  Therapy       

    Radiotherapy only 57 38 (67%) 1 (2%) 18 (32%) 0 0 

    Chemotherapy 12 0 3 (25%) 3 (25%) 3 (25%) 3 (25%) 

    Cheomoradiotherapy 99 47 (47%) 3 (3%) 48 (48%) 1 (1%) 0 

    No therapy 15 4 (27%) 1 (7%) 7 (47%) 0 3 (20%) 

    Unknown 15 10 (67%) 0 5 (33%) 0 0 

Survival – month       

    Median (95% CI) 28.4(22.1-43.8) 121.6 

(60.4- ) 

85.0 

(43.8- ) 

13.7 

(12.7-18.8) 

16.0 

(5.2- ) 

43.3 

(10.6- ) 

  IDH_mut_status       

    Mutant 81 63 (78%) 5 (6%) 7 (9%) 2 (2%) 4 (5%) 

    Wildtype 106 30 (28%) 3 (3%) 69 (65%) 2 (2%) 2 (2%) 

    Unknown 11 6 (55%) 0 5 (45%) 0 0 

  1p19q_codeletion_status       

    Codel 7 5 (71%) 2 (29%) 0 0 0 

    Non-codel 19 7 (37%) 3 (16%) 3 (16%) 2 (11%) 4 (21%) 

    Unknown 172 87 (51%) 3 (2%) 78 (45%) 2 (1%) 2 (1%) 

 1 
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