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Abstract:

Gliomas are the most common and malignant intracranial tumours in adults. Recent studies have
shown that functional genomics greatly aids in the understanding of the pathophysiology and
therapy of glioma. However, comprehensive genomic data and analysis platforms are relatively
limited. In this study, we developed the Chinese Glioma Genome Atlas (CGGA,

http://www.cgga.org.cn), a user-friendly data portal for storage and interactive exploration of multi-

dimensional functional genomic data that includes nearly 2,000 primary and recurrent glioma
samples from Chinese cohorts. CGGA currently provides access to whole-exome sequencing (286
samples), messenger RNA sequencing (1,018 samples) and microarray (301 samples), DNA
methylation microarray (159 samples), and microRNA microarray (198 samples) data, as well as
detailed clinical data (e.g., WHO grade, histological type, critical molecular genetic information,
age, sex, chemoradiotherapy status and survival data). In addition, we developed an analysis tool to
allow users to browse mutational, mRNA/microRNA expression, and DNA methylation profiles and
perform survival and correlation analyses of specific glioma subtypes. CGGA greatly reduces the
barriers between complex functional genomic data and glioma researchers who seek rapid, intuitive,
and high-quality access to data resources and enables researchers to use these immeasurable data
sources for biological research and clinical application. Importantly, the free provision of data will

allow researchers to quickly generate and provide data to the research community.

KEYWORDS: Glioma; Functional genomics; Chinese Glioma Genome Atlas; Database
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Introduction

Gliomas are the most frequent malignant tumours of the adult brain. According to a multi-centre
cross-sectional study on brain tumours in China, the prevalence of primary brain tumours in all
populations is approximately 22.52 per 100,000 persons, with gliomas accounting for 31.1% of the
population aged 20-59 years [1-3]. According to the histopathological classification of the 2016
World Health Organization (WHO) grading system, glioma is classified from grade II to grade IV
by both histological characteristics and several new molecular pathological features, such as /IDH
mutation status and chromosome 1p/19q co-deletion status [4]. Despite advances in current
treatment standards, the survival rate of patients with glioma has not changed in decades, especially
for aggressive gliomas (with a poor median survival time of only 12 to 14 months) [5, 6]. In addition,
most lower-grade gliomas (grade II and I1I, LGG) will progress to glioblastoma (grade IV, GBM)
in less than 10 years [4, 7, 8]. At present, the reasons for glioma recurrence or malignant progression
may be as follows: 1) infiltrative tumour cells cannot be completely removed by neurosurgical
resection [9, 10]; 2) retained tumour cells cannot be effectively suppressed by limited postoperative
treatment options [3, 11, 12]; 3) multiple lesions may develop [13, 14]; 4) cell cloning is rapid under
chemotherapy and/or radiotherapy [7, 15]; 5) the adaptive tumour microenvironment permits
tumour cells [16, 17]; and 6) limited data resources lead to limited research. Therefore, it is essential
to collect clinical specimens and generate genomic data for the glioma research community.
Recent high-throughput technologies have enabled extensive characterization of genomic
status, including but not limited to DNA methylation modification, genetic alteration, and gene
expression regulation. In the cancer research community, major large-scale projects, such as The
Cancer Genome Atlas (TCGA, including 516 LGGs and 617 GBMs before Oct. 18, 2019) [18] and
the International Cancer Genome Consortium (ICGC, excluding TCGA samples, including 80 adult
GBMs and 50 paediatric GBMs before April. 3, 2019) [19, 20], have generated an unparalleled
amount of functional genomic data. These projects have begun to transform our understanding of
cancer and even lead to improvements in our ability to diagnose, treat, and prevent human cancers.
Importantly, they have provided an opportunity to make and validate important discoveries for
cancer genomic researchers around the globe. However, the data resources generated by these

projects are often not easy to access directly, analyse or visualize, especially for researchers with no
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bioinformatics skills, thus preventing the translation of functional genomics results into novel
findings of biological significance for drug development and clinical treatment. Although several
webservers, such as cBioportal [21, 22] and GlioVis [23], have been built to integrate analysed
multi-dimensional glioma data, they have ignored the presence of cancer heterogeneity in gliomas,
which cannot be examined in specific subtypes and is rarely found in recurrent glioma samples.

Here, we introduce the CGGA (Chinese Glioma Genome Atlas, http://www.cgga.org.cn)

database, which is an open-access and easy-to-use platform for interactive exploration of multi-
dimensional functional genomic datasets for nearly 2,000 primary and recurrent glioma samples
from Chinese cohorts. CGGA currently contains whole-exome sequencing (286 samples),
messenger RNA (mRNA) sequencing (1,018 samples), microarray (301 samples), DNA methylation
microarray (159 samples), microRNA microarray (198 samples) and comprehensive clinical data.
We also developed an analysis module to allow users to browse the mutational landscape profile,
mRNA/microRNA expression profile and DNA methylation profile as well as to perform survival
and correlation analyses for specific glioma subtypes. We believe that this website will greatly
reduce the barriers between complex functional genomic data and glioma researchers who seek

rapid, intuitive, and high-quality access to data resources.

Results

Database content and usage
The CGGA database was designed to store functional genomic data and to allow interactive
exploration of multi-dimensional datasets from primary and recurrent gliomas in Chinese cohorts;

it is available at http://www.cgga.org.cn/. Currently, CGGA contains whole-exome sequencing data

(286 samples), messenger RNA sequencing data (total: 1,018 samples, batch 1 with 693 samples
and batch 2 with 325 samples), microarray data (301 samples), DNA methylation microarray data
(159 samples), and microRNA microarray data (198 samples) for glioma. The database also contains
detailed clinical data (including WHO grade and histological type, critical molecular genetic
information, age, sex, chemoradiotherapy status and survival data). Detailed statistical information
for each dataset is provided in Table 1. We organized the web interface of CGGA according to the
three main functional features: (i) Home, (i1) Analyse, and (ii1)) Download. In the following context,

we provide an example for using CGGA.
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The home page

On the ‘Home’ page, CGGA provides a statistical table for a glioma dataset, including the dataset
name, data type, number of samples in each subgroup, clinical data and analysis purposes. For
instance, we performed messenger RNA sequencing on 1,018 glioma samples included in two
datasets (693 samples in batch 1 and 325 samples for batch 2, including 282 primary LGGs, 161
recurrent LGGs, 140 primary GBMs and 109 recurrent GBMs in batch 1 and 144 primary LGGs,
38 recurrent LGGs, 85 primary GBMs, 24 recurrent GBMs and 30 secondary GBMs in batch 2). To
the best of our knowledge, CGGA is the first database to store the functional genomic data for both
LGG and GBM recurrent gliomas. In addition, users can obtain a visualized result for the analysis
of each dataset for a specific glioma subtype by clicking on a hyperlink on the ‘Home’ page. The
‘Download’ and ‘Help’ pages can also be accessed directly from the ‘Home’ page.

Overall analyses and results

To facilitate analysis of the CGGA data by researchers, we developed four online modules in the
‘Analyse’ tab, including ‘WEseq data’, ‘mRNA data’, ‘methylation data’, and ‘microRNA data’, to
analyse whole-exome, mRNA expression, DNA methylation and microRNA expression data,
respectively (Figure 1A). A key feature of CGGA is that it is easy to use. In the context below, we
demonstrate the use of the ‘Analyse’ tab in CGGA.

On the “WEseq data’ page, users are allowed to visualize the mutational profile of a gene set
of interest and survival analysis of a specific gene of interest in a specific glioma subtype. In the
‘Oncoprint’ section, users are guided to a) input a gene set of interest (‘/DHI TP53 ATRX’ for
example), and b) select a dataset of interest (‘All’ for example). Based on user input, this tool
automatically generates visualized results. In this result, each case or patient is represented as
columns, each gene is displayed as rows, and a colour map on the bottom is used to depict specific
clinical information (Figure 1B). This ‘Oncoprint’ can be very useful for visualizing the mutational
profile for a gene set of interest in a specific glioma subtype and for intuitively validating trends
such as mutational frequency and mutual exclusivity or co-occurrence for a gene pair. In the above
example, mutations in the IDHI (47%), TP53 (46%) and ATRX (30%) genes were the most common
mutations in all gliomas. In the ‘Survival® section, users are allowed to a) input a specific gene of
interest (‘/DH1’ for example), and b) select a dataset of interest (‘Primary LGG’ for example) to
investigate the association of the mutation with severe functional consequences. Consistent with
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previous studies [24], primary LGG cases with IDH mutations have a better overall survival than
do cases with IDH1 wild-type tumours (p < 0.0001, Figure 1C, left). These analysis results from
the ‘WEseq data’ section can be exported as a PDF file. For the sake of reproducibility, we provide
the analysis data (Figure 1C, middle) and R code (Figure 1C, right), which allow users to reproduce
the figure to be able to modify or adapt each figure according to each researcher’s demands.

On the ‘mRNA data’ page, users are allowed to perform gene expression distribution,
correlation and survival analyses for a specific gene of interest in a specific glioma subtype. Three
mRNA datasets are available for users, including two batch RNA-seq datasets (batch 1: 693 samples;
batch 2: 325 samples) and one microarray dataset (301 samples). In the ‘Distribution’ section, users
can display one gene distribution pattern for each glioma subtype by selecting a dataset
(‘mRNAseq 325’ for example) and inputting a gene name of interest (‘ADAMTSL4’ for example).
The results show the gene expression pattern in each glioma subtype classified by clinical
information. Similar to our previous studies [25], the ADAMTSL4 gene was shown to be
differentially expressed according to the WHO 2016 classification based on the /DH mutation
and/or 1p/19q co-deletion status (Figure 1D, left). Moreover, a critical feature of the CGGA dataset
is the inclusion of recurrent gliomas. This module allows users to infer whether a gene may be a
candidate factor that drives malignant progression if it is differentially expressed in primary and
recurrent gliomas. In the ‘Correlation’ section, the user is allowed to validate the co-expression
pattern by selecting a dataset (‘mRNAseq 325’ for example) and inputting a gene pair
(‘ADAMTSL4’ and ‘CD274 for example). As a result, the co-expression patterns in each glioma
subtype will be displayed with the results of Pearson’s test and the p value (Figure 1D, middle). In
the ‘Survival’ section, users can perform survival analysis based on gene expression by selecting a
dataset (‘mRNAseq 325’ for example) and inputting a gene of interest (‘ADAMTSL4’ for example).
All primary glioma patients with low ADAMTSL4 expression showed better overall survival than
did those with high ADAMTSL4 expression (p < 0.0001, Figure 1D, right). The above results from
the ‘mRNA data’ section are consistent with our previous study [25]. Similar to the ‘mRNA data’
page, users can also display the methylation/microRNA distribution and perform correlation and
survival analyses on the ‘methylation data’ page and the ‘microRNA data’ page, respectively.

Data acquisition
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All the data sets in CGGA can be downloaded on the ‘Download’ page by both the community and
researchers. Each data type is saved at the gene and/or probe level and is then combined with the

available clinical data, including basic clinical information, survival and therapy information.

Perspectives and concluding remarks

The current version of the CGGA is the first release of our database, and it incorporates multi-
dimensional functional genomic glioma data, including whole-exome sequencing, mRNA and
microRNA expression, and DNA methylation data for nearly 2,000 samples from Chinese cohorts.
Considering the importance of these data for glioma research, CGGA is publicly available. To the
best of our knowledge, CGGA is the first database to store the functional genomic data for both
recurrent LGGs and GBMs. In addition, CGGA provides several tools that allow users to analyse
these datasets, including mutational profile, distribution pattern, correlation and survival analysis
tools. These tools will be useful for users to generate or validate findings of novel biological
significance.

We anticipate several future directions for our CGGA database. First, through the Beijing
Neurosurgical Institute, Beijing Tiantan Hospital and Chinese Glioma Cooperative Group (CGCG)
Research Network, we will continue to collect glioma samples and perform multiple ‘Omics’
sequencing/microarray analyses, and we will continue to update this database regularly in the future.
Second, we also plan to add image-genomic data that match the ‘Omics’ data in CGGA. Third, we
will develop more advanced features, including data for other ‘Omics’ analyses, search functions
for clinical information on a patient of interest, and further extensions for the data analysis tools. In
summary, CGGA facilitates access to functional genomic data for Chinese cohorts for the entire
glioma community. It provides an easy-to-use, user-friendly interface for obtaining integrated data
sets, performing intuitive visualized analysis, and downloading these datasets. CGGA greatly
reduces the barriers between complex functional genomic data and glioma researchers, which
empowers researchers to use functional genomic data into important biological insights and

potential clinical applications.
Materials and methods

Clinical specimen collection


https://doi.org/10.1101/2020.01.20.911982

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.911982; this version posted January 21, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Glioma tissues, corresponding genomic data and patient follow-up information were obtained from
Beijing Tiantan Hospital at Capital Medical University, Tianjin Medical University General
Hospital, Sanbo Brain Hospital at Capital Medical University, the Second Affiliated Hospital of
Harbin Medical University, the First Affiliated Hospital of Nanjing Medical University, and the
First Hospital of China Medical University. All research performed was approved by the Beijing
Tiantan Hospital Capital Medical University Institutional Review Board (IRB) and was conducted
according to the principles of the Helsinki Declaration. According to the central pathology reviews
of independent committee certified neuropathologists, all the subjects were consistently diagnosed
with glioma and further classified according to the 2007/2016 WHO classification system. All
patients provided written informed consent. The specimens were collected under IRB KY2013-017-
01 and frozen in liquid nitrogen within 5 min of resection.

Data processing for whole-exome sequencing data

Genomic DNA from tumours and the matched blood samples was extracted, and high integrity was
confirmed by 1% agarose gel electrophoresis. The DNA was subsequently fragmented and quality-
controlled, and paired-end libraries were prepared. Agilent SureSelect kit v5.4 was used for target
capture. Sequencing was performed using the Illumina HiSeq 4000 platform with a paired-end
sequencing strategy. Valid DNA sequencing data were mapped to the reference human genome
(UCSC hgl9) using Burrows-Wheeler Aligner (v0.7.12-r1039, bwa mem) [26] with default
parameters. SAMtools (version 1.2) [27] and Picard (version 2.0.1, Broad Institute) were then used
to sort the reads by coordinates and mark duplicates. Statistics such as sequencing depth and
coverage were calculated based on the resulting BAM files. SAVI2 was used to identify somatic
mutations (including single-nucleotide variations and short insertions/deletions) as previously
described [7, 8]. Briefly, in this pipeline, SAMtools mpileup and bcftools (version 0.1.19) [28] were
employed to perform variant calling, and the preliminary variant list was filtered to remove positions
with no sufficient sequencing depth, positions with only low-quality reads, and positions biased
toward either strand. Somatic mutations were identified and evaluated by an empirical Bayesian
method. In particular, mutations with a significantly higher mutation allele frequency in tumours
than in normal controls were selected.

Data processing for mRNA sequencing data
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Prior to library preparation, total RNA was isolated using RNeasy Mini Kit (Qiagen) according to
the manufacturer’s instructions. A pestle and QIAshredder (Qiagen) were used to disrupt and
homogenize frozen tissue. The RNA intensity was checked using a 2,100 Bioanalyzer (Agilent
Technologies), and only high-quality samples with an RNA integrity number (RIN) value greater
than or equal to 6.8 were used to construct the sequencing library. Typically, 1 pg of total RNA was
used with the TruSeq RNA library preparation kit (Illumina) in accordance with the low-throughput
protocol, except that SuperScript III reverse transcriptase (Invitrogen) was used to synthesize first-
strand cDNA. After PCR enrichment and purification of adapter-ligated fragments, the
concentration of DNA with adapters was determined by quantitative PCR (Applied Biosystems
7,500) using primers QP1 5-AATGATACGGCGACCACCGA-3> and QP2 5’-
CAAGCAGAAGACGGCATACGAGA-3’. The length of the DNA fragment was measured using a
2,100 Bioanalyzer, with median insert sizes of 200 nucleotides. The RNA-seq libraries were
sequenced using the Illumina HiSeq 2,000, 2,500 or 4,000 Sequencing System. The libraries were
prepared using the paired-end strategy with read lengths of 101 bp, 125 bp or 150 bp. Base calling
was performed by the [llumina CASAVA v1.8.2 pipeline. RNA-seq mapping and quantification were
processed by using STAR (version v2.5.2b) [29] and RSEM (version 1.2.31) software [30]. Briefly,
reads were aligned to the human genome reference (GENCODE v19, hg19) with STAR, and then
sequencing read counts for each GENCODE gene were calculated using RSEM. The expression
levels of different samples were merged into an FPKM (fragments per kilobase transcriptome per
million fragments) matrix. We defined a gene as expressed only if its expression level was greater
than O in half of the samples. Finally, we retained only expressed genes in the mRNA expression
profile.

Data processing for mRNA microarray data

A rapid haematoxylin & eosin stain for frozen sections was performed on each sample to assess the
tumour cell proportion before RNA extraction. RNA was extracted from only samples with >80%
tumour cells. Total RNA was extracted from frozen tumour tissue with the mirVana miRNA Isolation
Kit (Ambion), as described previously [31]. A NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies) was used to evaluate the quality and concentration of extracted total RNA and an
Agilent 2100 Bioanalyzer (Agilent) to assess the integrity. The qualified RNA was collected for
further processing. cDNA and biotinylated cRNA were synthesized and hybridized to Agilent Whole

10
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Human Genome Array according to the manufacturer's instructions. Finally, the array-generated
data were analyzed by the Agilent G2565BA Microarray Scanner System and Agilent Feature
Extraction Software (Version 9.1). GeneSpring GX11.0 was applied to calculate the probe intensity.
Data processing for methylation microarray data

A haematoxylin and eosin-stained frozen section was prepared for assessment of the percentage of
tumour cells before RNA extraction. Only samples with greater than 80% tumour cells were selected.
Genomic DNA was isolated from frozen tumour tissues using the QIAamp DNA Mini Kit (Qiagen)
according to the manufacturer’s protocol. The DNA concentration and quality were assessed using
a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Houston, TX). The microarray
analysis was performed using Illumina Infinium HumanMethylation27 Bead-Chips (Illumina Inc.),
which contains 27,578 highly informative CpG sites covering more than 14,000 human RefSeq
genes. This allows researchers to investigate all sites per sample at a single-nucleotide resolution.
Bisulfite modification of DNA, chip processing and data analysis were performed following the
manufacturer’s manual at Wellcome Trust Centre for Human Genetics Genomics Lab, Oxford, UK.
The array results were examined with the BeadStudio software (Illumina).

Data processing for microRNA microarray data

Total RNA (tRNA) was extracted from frozen tissues by using the mirVana miRNA Isolation Kit
(Ambion, Inc., Austin, Tex), and the concentration and quality were determined with a NanoDrop
ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, Del). microRNA expression
profiling was performed using the human v2.0 microRNA Expression BeadChip (Illumina, Inc.,
San Diego, Calif) with 1146 microRNAs covering 97% of the miRBase 12.0 database according to
the manufacturer’s instructions.

Implementation

In CGGA, all data are organized with MySQL 14.14 based on relational schema, which will be
supported by future CGGA updates. The website code was written based on Java Server Pages using
the Java Servlet framework. The website is deployed on the Tomcat 6.0.44 web server and runs on
a CentOS 5.5 Linux system. JQuery was used to generate, render and manipulate data visualization.
The ‘Analyse’ module was realized with Perl and R scripts. The CGGA website has been fully tested

in Google Chrome and Safari browsers.
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Figures

Figure 1. An overview of the CGGA database.

A. The CGGA contains whole-exome sequencing, mRNA and microRNA expression, and DNA
methylation data, clinical data, and several analysis modules; B. The mutation profile in all gliomas
(in the ‘WSseq 286’ dataset); C. left: the overall survival of glioma patients with IDH1 mutation
and the wild-type gene from primary LGGs (in the ‘WSseq 286’ dataset); middle: the data was used
to generate the plot; right: the R code was used to generate the plot; D. left: the ADAMTSL4 gene
expression distribution in primary gliomas based on 2016 WHO grading system (in the
‘mRNAseq 325’ dataset); middle: the gene expression correlation between ADAMTSL4 and
CD274 genes (using ‘mRNAseq 325’ dataset); right: the overall survival of glioma patients with
low and high ADAMTSLA4 gene expression (in the ‘mRNAseq 325’ dataset).
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Table 1. Clinical and Phenotypical Characteristics of Data Set in CGGA database

All Primary Recurrent Primary Recurrent Secondary
LGG LGG GBM GBM GBM
WEseq_286 dataset
No. of samples —no. (%) 286 126 (44%) 58 (20%) 54 (19%) 48 (17%) 0 (0%)
Age at diagnosis — yr.
Mean 42.0+12.3 39.6+10.3 37.3+8.7 50.2+14.7 44.5+13.3 -
Range 10-76 10-69 15-61 19-76 19-69 -
Male sex —no. (%) 168 78 (46%) 35 (21%) 29 (17%) 26 (15%) -
Therapy
Radiotherapy only 62 52 (84%) 4 (6%) 4 (6%) 2 (3%) -
Chemotherapy 13 8 (62%) 2 (15%) 0 (0%) 3 (23%) -
Cheomoradiotherapy 144 49 (34%) 27 (19%) 42 (29%) 26 (18%) -
No therapy 23 9 (39%) 8 (35%) 4 (17%) 2 (9%) -
Unknown 44 8 (18%) 17 (39%) 4 (9%) 15 (34%) -
Survival — month
Median (95% CI) 51.0 (37.2-98.1) 117.2.(99.4-) | 28.5(20.9-76.0) 16.5(10.2-28.7) | 14.7 (8.9-) -
IDH _mut_status
Mutant 161 88 (55%) 45 (28%) 12 (7%) 16 (10%) -
Wildtype 125 38 (30%) 13 (10%) 42 (34%) 32 (26%) -
1p19q_codeletion_status
Codel 51 28 (55%) 17 (33%) 1 (2%) 5 (10%) -
Non-codel 139 48 (35%) 33 (24%) 23 (17%) 35 (25%) -
Unknown 96 50 (52%) 8 (8%) 30 (31%) 8 (8%) -
RNAseq_1018 dataset
No. of samples —no. (%) 1,018 426 (42%) 199 (20%) 225 (22%) 133 (13%) 30 (3%)
Age at diagnosis — yr.
Mean 43.2+412.3 40.2+10.8 40.2+9.6 51.0£12.9 45.0+13.2 38.8+11.4
Range 8-79 10-74 15-64 11-79 14-71 8-57
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Male sex — no. (%) 601 247 (41%) 115 (19%) 138 (23%) 76 (13%) 21 (3%)
Therapy
Radiotherapy only 200 128 (64%) 32 (16%) 26 (13%) 10 (5%) 4 (2%)
Chemotherapy 68 30 (44%) 13 (19%) 9 (13%) 11 (16%) 5 (7%)
Cheomoradiotherapy 567 204 (36%) 102 (18%) 159 (28%) 85 (15%) 15 (3%)
No therapy 89 41 (46%) 21 (24%) 18 (20%) 5 (6%) 4 (4%)
Unknown 91 23 (25%) 31 (34%) 13 (14%) 22 (24%) 2 (2%)
Survival — month
Median (95% CI) 35.0 (30.5-39.9) 108.0 (89.9-) | 33.2(26.1-39.8) 16.1 (13.7-19.7) | 9.6 (8.2-11.0) 8.3 (7.1-14.7)
IDH mut_status
Mutant 531 289 (54%) 150 (28%) 35 (7%) 34 (6%) 21 (4%)
Wildtype 435 104 (24%) 40 (9%) 183 (42%) 96 (22%) 9 (2%)
Unknown 52 33 (63%) 9 (17%) 7 (13%) 3 (6%) 0
1p19q_codeletion_status
Codel 212 137 (65%) 54 (25%) 5 (2%) 11 (5%) 4 (2%)
Non-codel 728 254 (35%) 139 (19%) 192 (26%) 118 (16%) 24 (3%)
Unknown 78 35 (45%) 6 (8%) 28 (36%) 4 (5%) 2 (3%)
mRNA-array_301 dataset
No. of samples —no. (%) 301 156 (52%) 18 (6%) 108 (36%) 5 (2%) 11 (4%)
Age at diagnosis — yr.

Mean 42.4+11.8 39.6+10.7 38.2+11.2 47.3+£12.5 45.6+9.6 38.548.6
Range 12-70 17-65 24-62 12-70 36-61 27-51
Male sex — no. (%) 180 93 (52%) 8 (4%) 65 (36%) 2 (1%) 9 (5%)

Therapy
Radiotherapy only 110 74 (67%) 0 33 (30%) 0 3 (3%)
Chemotherapy 12 1 (8%) 2 (17%) 4 (33%) 3 (25%) 2 (17%)
Cheomoradiotherapy 139 61 (44%) 12 (9%) 60 (43%) 1 (1%) 4 (3%)
No therapy 20 8 (40%) 2 (10%) 6 (30%) 0 2 (10%)
Unknown 20 12 (60%) 2 (10%) 5(25%) 1 (5%) 0
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Survival — month
Median (95% CI) 38.8 (27.2-53.9) -(99.8-) 39.8 (13.8-) 15.4 (13.3-19.0) | 10.5(7.7-) 7.2 (6.5-)
IDH _mut_status
Mutant 134 100 (75%) 12 (9%) 14 (10%) 2 (1%) 6 (4%)
Wildtype 165 54 (33%) 6 (4%) 94 (57%) 3 (2%) 5 (3%)
Unknown 2 2 (100%) 0 0 0 0
1p19q_codeletion_status
Codel 16 14 (88%) 2 (12%) 0 0 0
Non-codel 76 23 (30%) 14 (18%) 27 (36%) 5 (7%) 7 (9%)
Unknown 209 119 (57%) 2 (1%) 81 (39%) 0 4 (2%)
methyl 159 dataset
No. of samples —no. (%) 159 100 (63%) 8 (5%) 33 (21%) 4 (3%) 6 (4%)
Age at diagnosis — yr.
Mean 40.2+12.5 39.5+12.2 35.6+12.0 442+14.2 41.5+3.7 33.747.4
Range 9-70 17-70 24-57 9-70 38-46 27-46
Male sex — no. (%) 89 58 (65%) 4 (4%) 19 (21%) 3 (3%) 5 (6%)
Therapy
Radiotherapy only 48 39 (81%) 1 (2%) 8 (17%) 0 0
Chemotherapy 10 0 3 (30%) 1 (10%) 3 (30%) 3 (30%)
Cheomoradiotherapy 66 46 (70%) 3 (5%) 16 (24%) 1 (2%) 0
No therapy 12 4 (33%) 1 (8%) 4 (33%) 0 3 (25%)
Unknown 19 11 (58%) 2 (5%) 4 (21%) 3 (16%) 0
Survival — month
Median (95% CI) 45.8 (36.6-83.9) 107.2 (60.4-) | 85.0 (43.8-) 8.5 (6.4-23.1) 16.0 (5.2-) 43.3 (10.6-)
IDH _mut_status
Mutant 81 65 (80%) 5 (6%) 5 (6%) 2 (2%) 4 (5%)
Wildtype 64 30 (47%) 3 (5%) 27 (42%) 2 (3%) 2 (3%)
Unknown 14 5 (36%) 0 1 (7%) 0 0
1p19q_codeletion_status
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Codel 7 5 (71%) 2 (29%) 0 0 0

Non-codel 18 7 (39%) 3 (17%) 2 (11%) 2 (11%) 4 (22%)

Unknown 134 88 (66%) 3 (2%) 31 (23%) 2 (1%) 2 (1%)

microRNA-array 198 dataset

No. of samples —no. (%) 198 99 (50%) 8 (4%) 81 (41%) 4 (2%) 6 (3%)
Age at diagnosis — yr.

Mean 41.9+12.5 39.5+12.3 35.6+12.0 46.1+13.1 41.5+3.7 33.747.4

Range 12-70 17-70 24-57 12-70 38-46 27-46
Male sex —no. (%) 123 57 (46%) 4 (3%) 54 (44%) 3 (2%) 5 (4%)
Therapy

Radiotherapy only 57 38 (67%) 1 (2%) 18 (32%) 0 0

Chemotherapy 12 0 3 (25%) 3 (25%) 3 (25%) 3 (25%)

Cheomoradiotherapy 99 47 (47%) 3 (3%) 48 (48%) 1 (1%) 0

No therapy 15 4 (27%) 1 (7%) 7 (47%) 0 3 (20%)

Unknown 15 10 (67%) 0 5(33%) 0 0

Survival — month
Median (95% CI) 28.4(22.1-43.8) 121.6 85.0 13.7 16.0 433
(60.4-) (43.8-) (12.7-18.8) (5.2-) (10.6-)

IDH mut_status

Mutant 81 63 (78%) 5 (6%) 7 (9%) 2 (2%) 4 (5%)

Wildtype 106 30 (28%) 3 (3%) 69 (65%) 2 (2%) 2 (2%)

Unknown 11 6 (55%) 0 5 (45%) 0 0
1p19q_codeletion_status

Codel 7 5 (71%) 2 (29%) 0 0 0

Non-codel 19 7 (37%) 3 (16%) 3 (16%) 2 (11%) 4 (21%)

Unknown 172 87 (51%) 3 (2%) 78 (45%) 2 (1%) 2 (1%)
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