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Abstract

Visual analysis of histopathology slides of lung cell tissues is one of the main methods used by
pathologists to assess the stage, types and sub-types of lung cancers. Adenocarcinoma and
squamous cell carcinoma are two most prevalent sub-types of lung cancer, but their distinction
can be challenging and time-consuming even for the expert eye. In this study, we trained a deep
learning convolutional neural network (CNN) model (inception v3) on histopathology images
obtained from The Cancer Genome Atlas (TCGA) to accurately classify whole-slide pathology
images into adenocarcinoma, squamous cell carcinoma or normal lung tissue. Our method slightly
outperforms a human pathologist, achieving better sensitivity and specificity, with ~0.97 average
Area Under the Curve (AUC) on a held-out population of whole-slide scans. Furthermore, we
trained the neural network to predict the ten most commonly mutated genes in lung
adenocarcinoma. We found that six of these genes — STK11, EGFR, FAT1, SETBP1, KRAS and
TP53 — can be predicted from pathology images with an accuracy ranging from 0.733 to 0.856,
as measured by the AUC on the held-out population. These findings suggest that deep learning
models can offer both specialists and patients a fast, accurate and inexpensive detection of

cancer types or gene mutations, and thus have a significant impact on cancer treatment.
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Introduction

According to the American Cancer Society, over 150,000 lung cancer patients succumb to their
disease each year, while another 200,000 new cases are diagnosed on a yearly basis. It is one
of the most widely spread cancers in the world, due mostly to smoking, but also exposure to toxic
chemicals like radon, asbestos and arsenic. Non-small cell lung cancers represent 85% of the
cases and three sub-types are distinguished: Adenocarcinoma (LUAD), Squamous Cell
carcinoma (LUSC) and, most rarely, large-cell carcinoma. Lung biopsies are typically used to
diagnose lung cancer subtype and stage. Targeted therapies are applied depending on the type
of cancer, stage and the presence of sensitizing mutations™?. For example, EGFR (epidermal
growth factor receptor) mutations, present in about 20% of LUAD, and ALK mutations (anaplastic
lymphoma receptor tyrosine kinase), present in less than 5% of LUAD?, both have currently
targeted therapies approved by the Food and Drug Administration (FDA)*. Mutations in other
genes, such as KRAS and TP53 are very common (about 25% and 50% respectively), but have
proven particularly challenging drug-targets so far>®.

Virtual microscopy of stained images of tissues are typically acquired at magnifications of x20 to
x40, generating very large two-dimensional images (10,000 to over 100,000 pixels in each
dimension) that can be tricky to visually analyze in an exhaustive way. Furthermore, accurate
interpretation can be difficult and the distinction between LUAD and LUSC is not always clear,
particularly in poorly-differentiated tumors, where ancillary studies is recommended for accurate
classification. To assist experts, automatic analysis of lung cancer whole-slide images has been
recently studied for survival prognosis® and classification’. In these studies, Yu et al. combined
conventional thresholding and image processing techniques with machine learning methods,
such as random forest classifiers, SVM or Naive Bayes classifiers, achieving an Area Under the
Curve (AUC) of ~0.85 in distinguishing normal from tumor slides, and ~0.75 in distinguishing

LUAD from LUSC slides. Here, we demonstrate how the field can greatly benefit from deep
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learning, by presenting a strategy based on Convolutional Neural Networks (CNNs) that not only
outperforms previously published work, but also achieves accuracies that are at least comparable,
if not superior, to human pathologists. The development of new inexpensive and more powerful
technologies with higher computing power (in particular Graphics Processing Units, GPUs) has
made possible the training of larger and more complex systems®'%. This resulted in the design of
several deep CNNs, capable of accomplishing complex visual recognition tasks. Such algorithms
have already been successfully used for segmentation’” or classification of medical images'? and

1315 colon cancers'® or osterosarcoma’’. CNNs have also been studied

cancers such as breast
for classifying lung patterns on CT (Computerized Tomography) scans, achieving a f-score of
~85.5%%. Here, to study the automatic classification of lung cancer tissues, we used the inception
v3 architecture’® and whole-slide images of hematoxylin and eosin stained histopathology images
from TCGA obtained by excision. In 2014, Google won the ImageNet Large-Scale Visual
Recognition Challenge by developing the GoogleNet architecture?’, derived from the work from

Lin et. al*

, Which increased the robustness to translation and non-linear learning abilities by using
multi-layer perceptrons and global averaging pooling. Inception architecture is particularly useful
for processing the data in multiple resolutions, a feature that makes this architecture suitable for

pathology tasks. This network has already been successfully adapted to other specific types of

classifications like skin cancers? and diabetic retinopathy detection?.

Results

We are here comparing several approaches for the classification of tumor slides. First, we
employed a strategy similar to the one used by Yu et al.’, consisting of a two-step binary
classification of normal versus tumor slides, followed by a classification of LUAD versus LUSC
slides. We then explored a direct classification of the three types of whole-slide images. Finally,

we further analyzed LUAD slides to identify which gene mutations could be predicted from those
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97 images: we modified and trained the inception v3 architecture on the 10 most common mutations

98 found in the TCGA dataset and related to lung cancer. In this study, we also compare two training

99  approaches: transfer learning versus fully training the inception architecture. In the first case, most
100  of the network keeps the weights learned after the network was trained on object recognition task
101  onthe ImageNet dataset, while only the last layer (fully connected layer) of the network is trained.
102 In the second case, the weights are reinitialized randomly, and the network is trained end-to-end,
103 using exclusively lung cancer images.
104
105  Fully-trained inception v3 network provides accurate diagnosis (AUC=0.97) of lung
106  histopathology images
107 The TCGA dataset characteristics and our overall computational strategy are summarized in
108  Figure 1 (see method section for details). We used 1634 whole-slide images from the Genomic
109 Data Commons database: 1176 tumor tissues and 459 normal (Figure 1a). These whole-slide
110  images were split into three sets: training, validation and testing (Figure 1d). Because the sizes
111  of the whole-slide images are too large to be used as direct input to a neural network (sometimes
112 over 100,000 pixels wide, Figure 1b), the network was instead trained, validated and tested using
113 512x512 pixel tiles, obtained from non-overlapping windows of the whole-slide images. This
114  resulted in tens to thousands of tiles per slide depending on the original size (Figure 1c). These
115 tiles were first processed individually by the network, and then, per-slide aggregation (see

116  Methods for details) of the results generated a diagnosis for each slide.
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118  Figure 1. Data and strategy: (a) Number of whole-slide images per class. (b) Size distribution
119  of the images widths (gray) and heights (black). (c) Distribution of the number of tiles per slide.
120  (d) Strategy: (d1) Images of lung cancer tissues were first downloaded from the Genomic Data
121  Common database; (d2) slides were then separated into a training (70%), a validation (15%) and
122 atestset(15%); (d3) slides were tiled by non-overlapping 512x512 pixels windows, omitting those
123 with over 50% background; (d4) the Inception v3 architecture was used and partially or fully re-
124  trained using the training and validation tiles; (d5) classifications were run on tiles from an
125 independent test set and the results were finally aggregated per slide to extract the heat-maps
126  and the AUC statistics.

127

128  Our deep learning approach effectively distinguishes tumor from normal tissue, resulting in a
129  96.1% per tile accuracy. To assess the accuracy on the test set, the per-tile results were
130  aggregated on a per-slide basis either by averaging the probabilities obtained on each tile, or by
131  counting the percentage of tiles positively classified (Figure 2a). This process resulted in an Area
132 Under the Curve (AUC) of 0.990 and 0.993 (Table 1) respectively, outperforming the AUC of
133 ~0.85 achieved by the feature-based approach of Yu et al.”. Next, we tested the performance of

134 our approach on the more challenging task of distinguishing LUAD and LUSC. First, we tested


https://doi.org/10.1101/197574

bioRxiv preprint doi: https://doi.org/10.1101/197574; this version posted October 3, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

135  whether convolutional neural networks can outperform the published feature-based approach,
136  even when plain transfer learning is used. For this purpose, the weights of the last layer of
137  inception v3 — previously trained on the ImageNet dataset to identify 1,000 different classes —
138  were initialized randomly and then trained for our classification task. After aggregating the
139  statistics on a per slide basis (Figure 2b), this process resulted in an Area Under the Curve (AUC)
140  of 0.847 (Table 1), i.e. a gain of ~0.1 in AUC compared to the best results obtained by Yu et al’.
141  using image features combined with random forest classifier’. The performance can be further
142 improved by fully training inception v3 leading to AUC of 0.947 when aggregation is done by
143  computing the percentage of tiles positively classified, and to AUC of 0.950 when the aggregation
144  is done by averaging the per-tile probabilities (Figure 2c). These AUC values are improved by
145  another 0.002 when the tiles previously classified as “normal” by the first classifier are not included
146  in the aggregation process (Table 1 and Figure 2d). The ROC of such a classifier shows
147  performance better than that of a specialist who was asked to classify the images in the test set,
148  independently of the classification provided in TCGA (Figure 2d, red cross). About a third of the
149  slides wrongly classified by the algorithm were also misclassified by the specialist, while 85% of

150  those incorrectly classified by the specialist were properly classified by the algorithm (Figure 2e).
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151

152  Figure 2. Accurate classification of lung cancer histopathology images: (a) Per-slide
153  Receiver Operating Characteristic (ROC) curves after classification of normal versus tumor
154  images resulted in an almost error-free classification. Aggregation was either done by averaging
155 the probability scores (purple ROC curves in a to d) or by counting the percentage of properly
156 classified tiles (green ROC curves in a to d). (b) The ROC curves obtained after transfer learning
157  for LUAD vs LUSC images classification shows poorer results than when (c) the same network
158  has been fully trained. The red crosses correspond to the manual classification by a specialist.
159  (d) The ROC curves from (c) is only slightly improved once the tiles classified initially as “normal”
160  have been removed. (e) Proportion of slides misclassified by the specialist as a function of the
161  true positive probability assigned in (d). The number of slides are indicated on the bars. (f) Multi-
162  class ROC of the Normal vs LUAD vs LUSC classification shows the best result for overall
163  classification of cancer type. Dotted lines are negative control trained and tested after random
164 label assignments. (g) Comparison of AUCs obtained with different techniques for classification
165  of cancer type and (h) of normal slides.

166
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167  Figure 3a-r show heatmap examples for LUAD and LUSC, comparing transfer-learning results
168  with the fully trained network. In the second case, more tiles are true positive and the distribution
169 is more homogeneous, showing for LUSC that almost all of the tiles display LUSC-like features,
170  while for the LUAD, two regions are more prominent with LUAD-like features (one horizontal at
171  the top, one vertical on the left) and some patches showing lower probabilities. Interestingly, most
172  of the LUSC tiles were previously classified as tumor by the first classifier (Figure 3t) while for
173 LUAD, the regions with patches having probability near 0.5 in the LUAD/LUSC classification are
174  also those classified as normal with higher probability by the first classifier (Figure 3s). We
175 investigated further the use of the deep-learning model by training and testing the network for a
176  direct classification of the three types of images (Normal, LUAD, LUSC in Figure 2f). Such an
177  approach resulted in the highest performance with all the AUCs improved to at least 0.968 (Table
178  1). Figure 4 shows how the heat-maps are affected by such an approach: the LUSC image shows
179  most of its tiles with a strong true positive probability of LUSC while in the LUAD image, some
180 regions have strong LUAD features, with normal cells on the side (as confirmed by a specialist),
181  and some light blue tiles where LUSC probability is slightly leading.

182

183  Table 1. Area Under the Curve (AUC) achieved by the different classifiers

AUC after aggregation by...

... average ... percentage
Classification Information
predicted of positively
probability classified tiles
Normal vs a) Inception v3, fully-trained 0.993 0.990
Tumor
b) Inception v3, transfer learning 0.847 0.847

LUAD vs LUSC

c¢) Inception v3, fully-trained 0.950 0.947
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d) Same as (c) but aggregation done  0.952 0.949

solely on tiles classified as “tumor” by

A
Normal 0.991 NA
3 classes. LUAD 0.968 NA
Normal vs LUSC 0.971 NA
LUAD vs LUSC \icro-average 0.971 NA
Macro-average 0.978 NA
STK11 0.856 0.842
EGFR 0.826 0.782
SETBP1 0.775 0.752
TP53 0.760 0.754
FAT1 0.750 0.750
Mutations
KRAS 0.733 0.716
KEAP1 0.675 0.659
LRP1B 0.656 0.657
FAT4 0.642 0.640
NF1 0.640 0.632
184
185

186
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Figure 3. Examples of heatmaps for different binary classifications strategies: (a) Typical
slide of Lung Adenocarcinoma (LUAD) tissue. (b) Zoom region corresponding to the yellow box
in (a). (c¢) Tile corresponding to the green box in (b). (d) and (e) are the heat-maps corresponding
to images (a) and (b), with probability assigned to each tile from brown (false positive) to green
(true positive). (f) Per-tile heat-map generated after having applied a rolling mask on part of the
tile. Yellow pixels show regions not affected by masking while the pink pixels show regions where
features were important for proper classification. Images (d) to (f) were obtained after transfer
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195 learning while images (g) to (i) were obtained after fully training inception v3. Images (j) to (r)
196  show similar examples for a Lung Squamous Cell (LUSC) tissues. (s) and (t) show the results of
197  the “normal vs tumor” tiles classifier.

198
199
T
a &
S
pd
200

201  Figure 4. Heatmaps for classification of Normal vs LUAD vs LUSC: (a) and (b) Heatmaps
202  corresponding to images of (Figure 3a) and (Figure 3b) with probabilities of the winning class
203  assigned to each tile such as: red for tiles classified as LUAD, blue for LUSC and grey for Normal.
204

205

206  Whole-slide images can predict 6 mutations with an AUC above 0.74

207  The LUAD whole-slide images were further trained to predict gene mutations. Inception v3 was
208  modified to allow multi-output classification and tests were conducted using around 44,000 tiles
209  from 62 slides. Box plot and ROC curves analysis (Figure 5a-b and Figure supp 1) show that at
210 least six frequently mutated genes seem predictable using our deep learning approach: AUC
211 values for STK11, EGFR, FAT1, SETBP1, KRAS and TP53 were found between 0.733 and 0.856
212 (Table 1). As mentioned earlier, EGFR already has targeted therapies. STK11 (Serine/Threonine
213 protein Kinase 11), also known as Liver Kinase 1 (LKB1), is a tumor suppressor inactivated in 15-
214 30% of non-small cell lung cancers® and is also a potential therapeutic target: it has been shown
215 on mice that phenformin, a mitochondrial inhibitor, increases survival®. Also, it has been shown
216  that STK11 mutations may play a role in KRAS mutations which, combined, result in more

217  aggressive tumors?. FAT1 is an ortholog of the Drosophila fat gene involved in many types of
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218  cancers and its inactivation is suspected to increase cancer cell growth?’. Mutation of the tumor
219  suppressor gene TP53 is thought to be more resistant to chemotherapy leading to lower survival
220 ratesin small-cell lung cancers®. As for SETBP1 (SET 1 binding protein), like KEAP1 and STK11,
221  has been identified as one of the signature mutations of LUADZ. Finally, for each gene, we
222 compare the classification achieved by the deep learning approach with the allele frequency
223 (Figure 5c). Among the gene mutations predicted with a high AUC, four of them seem to show

224 probabilities related to the allele frequency: FAT1, KRAS, SETBP1 and STK11.
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226  Figure 5. Gene mutation prediction from histopathology slides give promising results for
227  at least 6 genes: (a) Mutation probability distribution for slides where each mutation is present
228 and absent after tile aggregation done by averaging output probability. (b) ROC curves associated
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229  with (a). (c) Allele frequency as a function of slides classified by the deep-learning network as
230  having a certain gene mutation (P=0.5), or the wild-type (P<0.5). p-values estimated with Mann-
231  Whitney U-test are shown as ns (p>0.05), * (p<0.05), ** (p<0.01) or *** (p<0.001).

232

233 Discussion

234  The analysis of lung cancer slide images using the inception v3 convolutional neural network
235 shows a clear improvement over classification techniques combining random forest classifiers,
236  SVM or Naive Bayes classifiers with conventional image processing tools’ (Figure 2g-h). For
237  LUAD vs LUSC classification, while transfer learning outperforms this previous approach by about
238  10% and another ~10% is gained by fully training the network, at the expense of a much longer
239  training period. Finally, another ~2.8% is gained on cancer type classification when “normal”
240 tissues are immediately considered and binary classification is replaced by a direct three-class
241  analysis. This latest approach results in performances slightly better than those achieved by a
242  specialist. It is interesting to notice that around a third of the slides misclassified by the algorithms
243  have also been misclassified by the specialist, showing the intrinsic difficulty to distinguish LUAD
244  from LUSC in some cases. However, 22 out of 26 of the slides misclassified by the specialist were
245  assigned to the correct cancer type by the algorithm showing that it could be beneficial in assisting
246  the specialistin their prognosis. As for classification of normal versus tumor cells, the classification
247  is nearly unambiguous with CNN. Per-slide heat-maps (Figure 3) show that true positive tiles
248  appear with a stronger probability when the network has been fully trained. For the LUAD sample,
249 it also shows more consistency with tiles in the same adjacent regions being assigned similar
250  probabilities while the bottom right side of the slide seems to contain less LUAD-like tumor cells
251  according to the classification (Figure 3g) and is consistent with visual inspection of that region
252 by a specialist. An example of the important features used for classification of individual is shown
253  for LUAD (Figure 3f,i) and LUSC (Figure 3o0,r). In both cases, the per-tile heat-map of the fully
254  trained network shows a more varied gradient of colors while the tests done after transfer-learning

255 shows more of a binary-like heat-map with regions either very yellow or very pink. The
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256  development of appropriate tools for visualizing deep learning models will help in the future to
257  better understand the features used by the classifier®. In the current strategy, the only selection
258  used for early tile removal is to make sure that there are enough information and the portion of
259  background present is low. Afterwards, all the remaining tiles belonging to a given slide are used
260 for training and all are associated with the label associated with it. This assumption gives good
261  result since AUCs of 0.95 to 0.97 performance is achieved for LUSC vs LUAD, but it is unlikely
262  that 100% of the tiles are indeed representative of the labelled cancer type. Oftentimes, the tumor
263 is only local and some regions of the slides are not affected by the tumor. Performing an initial
264  classification of “normal” vs “tumor” partially addresses this issue removing normal-like tiles. The
265 fact that these are excisions of lung cancer, the tumor cells spread over the whole slide images
266  available and not a small portion of which has clearly been beneficial for this classification. Finally,
267 it is surprising to note the high AUCs achieved considering that several slides present artifacts
268 inherent to freezing techniques used to prepare those samples. However, it should be noted that
269  the available images may not fully represent the diversity that specialists have to deal with and it
270  may be interesting in the future to assess how the network performs under the less than ideal
271  circumstances that can occur (poor staining quality, focus not optimal or autofocus failure, lack of
272 homogeneity in the illumination, etc). Before this study, it was a priori unclear if and how a given
273  gene mutation would affect the pattern of tumor cells on a whole-slide image but the training of
274  the network using mutated genes as a label lead to very promising prediction results for 6 genes:
275 EGFR, STK11, FAT1, SETBP1, KRAS and TP53. STK11 mutation leads to the highest prediction
276  rate with AUC above 0.85 using aggregation by averaging tile probabilities. Though the number
277  of cases is low (44,000 tiles from 62 test slides), it is interesting to see that our training protocol
278  gives non-random values for several genes, showing that mutation of these particular genes could
279  be predicted from whole-slide images. Hopefully, these predictions will be confirmed once more
280 data are made available. It means that those mutations somehow affect the way the tumor cells

281  look like. Future work on deep-leaning models visualization tools > would help identifying those
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282  features. These probabilities could be reflecting the percentage of cells effectively affected by the
283  mutation, the allele frequency being significantly higher for at least 4 genes when they were
284  predicted as mutated by the neural network (Figure 5c¢). Looking, for example, at the predictions
285 done on the whole-slide image from Figure 3a, our process successfully identifies TP53 (allele
286  frequency of 0.33) and STK11 (allele frequency of 0.33) are two gene most likely mutated (Figure
287  supp 2a). The heatmap shows that almost all the LUAD tiles are highly predicted as showing
288  TP53-mutatant-like features (Figure supp 2b), and two major regions with STK11-mutatant-like
289  features (Figure supp 2c). Interestingly, when the classification is applied on all tiles, it shows
290 that even tiles classified as LUSC present TP53 mutations (Figure supp 2d) while the STK11
291  mutant is confined to the LUAD tiles (Figure supp 2e). These results are realistic since, as
292 mentioned earlier, STK11 is a signature mutations of LUAD 2 while TP53 is more common in
293  human cancers. Being able to predict gene mutations at this stage could be beneficial regarding
294  the importance and impact of those mutations*?*%?. This study shows that using deep-learning
295  convolutional neural networks for cancer analysis greatly improve the state-of-the-art automatic
296  classification and could be a very promising tool to assist the specialist in their classification of
297  whole-slide images of lung tissues. Histopathology slides are very large, they usually contain
298 artifacts and be noisy with features of cancer type ambiguous, and making a prognosis manually
299  based on every single region of it can be challenging. Those new techniques can efficiently
300 highlight regions associated with a certain cancer type. Finally, we have shown for the first time
301 the potential to use deep-learning on histopathology images to predict some gene mutations at
302  an early stage.

303

304 Methods

305 The overall steps described in this section are summarized in Figure 1 and described in the

306 following sections.
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307

308 Dataset of 1,634 whole-slide images

309 Our dataset comes from the NCI Genomic Data Commons®' which provides the research
310 community with an online platform for uploading, searching, viewing and downloading cancer-
311 related data. All freely available slide images of Lung cancer were uploaded from this source. We
312  studied the automatic classification of “solid tissue normal” and “primary tumor” slides using a set
313  ofrespectively 459 and 1175 eosin stained histopathology whole-slide images. Then, the “primary
314  tumor” were classified between LUAD and LUSC types using a set of respectively 567 and 608

315  of those whole-slide images.
316
317 Image pre-processing generates 987,931 tiles

318 The slides were tiled in non-overlapping 512x512 pixel windows at a magnification of x20 using
319 the openslide library®? (533 of the 2167 slides initially uploaded were removed because of
320 compatibility and readability issues at this stage). The slides with a low amount of information
321  were removed, that is all the tiles where more than 50% of the surface is covered by background
322  (where all the values are below 220 in the RGB color space). This process generated nearly
323 1,000,000 tiles.

324

325 Table 2. Dataset information for normal vs tumor classification: number of tiles / slides in each

326  category.

Training Validation Testing
Normal 132,185/ 332 28,403/ 53 28,741/ 74
Primary tumor 556,449 / 825 121,094 / 181 121,059 /180

327

328
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329 Table 3. Dataset information for LUAD vs LUSC classification: number of tiles / slides in each

330  category.

Training Validation Testing
LUAD 255,975 /403 55,721 /85 55,210/79
LUSC 300,474 / 422 65,373 /96 65,849/ 91
331
332

333  Deep learning with Convolutional Neural Network

334  We used 70% of those tiles for training, 15% for validation, and 15% for final testing (Table 2 and
335 Table 3). The tiles associated with a given slide were not separated but associated as a whole to
336 one of these sets to prevent overlaps between the three sets. Typical CNN consist of several
337 levels of convolution filters, pooling layers and fully connected layers. We based our model on
338 inception v3 architecture'®. This architecture makes use of inception modules which are made of
339 a variety of convolutions having different kernel sizes and a max pooling layer. The initial 5
340  convolution nodes are combined with 2 max pooling operations and followed by 11 stacks of
341 inception modules. The architecture ends with a fully connected and then a softmax output layer.
342 For “normal” vs “tumor” tiles classification, we fully trained the entire network. For the classification
343  of type of cancer, we followed and compared different approaches to achieve the classification:
344  transfer learning, which includes training only the last fully-connected layer, and training the whole
345 network. Tests were implemented using the Tensorflow library (tensorflow.org).

346

347  Transfer learning on inception v3

348  We initialized our network parameters to the best parameter set that was achieved on ImageNet

349  competition. We then fine-tuned the parameters of the last layer of the network on our data via

350 back propagation. The loss function was defined as the cross entropy between predicted
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351  probability and the true class labels, and we used RMSProp®® optimization, with learning rate of
352 0.1, weight decay of 0.9, momentum of 0.9, and epsilon of 1.0 method for training the weights.
353  This strategy was tested for the binary classification of LUAD vs LUSC.

354

355 Training the entire inception v3 network

356 The inception v3 architecture was fully trained using our training datasets and following the
357  procedure described in **. Similar to transfer learning, we used back-propagation, cross entropy
358 loss, and RMSProp optimization method, and we used the same hyperparameters as the transfer
359 learning case, for the training. In this approach, instead of only optimizing the weights of the fully
360 connected layer, we also optimized the parameters of previous layers, including all the
361 convolution filters of all layers. This strategy was tested on three classifications: normal vs tumor,
362 LUAD vs LUSC and Normal vs LUAD vs LUSC. The training jobs were run for 500,000 iterations.
363  We computed the cross-entropy loss function on train and validation dataset, and used the model
364  with best validation score as our final model. We did not tune the number of layers or hyper-
365  parameters of the inception network such as size of filters.

366

367 Identification of gene mutations

368 To study the prediction of gene mutations from histopathology images, we modified the inception
369 v3 to perform multi-task classification rather than a single task classification. Each mutation
370 classification was treated as a binary classification, and our formulation allowed multiple
371 mutations to be assigned to a single tile. We optimized the average of the cross entropy of each
372  individual classifier. To implement this method, we replaced the final softmax layer of the network
373  with a sigmoid layer, to allow each sample to be associated with several binary labels *>. We
374  used RMSProp algorithm for the optimization, and fully trained this network for 500k iterations

375 using only LUAD whole-slide images, each one associated with a 10-cell vector, each cell
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376  associated to a mutation and set to 1 or 0 depending on the presence or absence of the mutation.
377  Only the most common mutations were used (Table 4), leading to a training set of 223,185 tiles.
378  Training and validation were done over 500,000 iterations (Figure supp 3). The test was then
379  achieved on the tiles, and aggregation on the 62 test-slides where at least one of these mutations
380 is presentwas done only if the tile was previously classified as “LUAD” by the Normal/LUAD/LUSC
381  3-classes classifier.

382

383 Table 4. Gene included in the multi-output classification and the percentage of patients with LUAD

384 in the database where the genes are mutated.

Gene TP53 LRP1B KRAS KEAP1 FAT4 STK11 EGFR FAT1 NF1 SETBP1
mutated
%Patients 50 34 28 18 16 15 12 11 11 11
385
386

387 Results analysis

388  Once the training phase was finished, the performance was evaluated using the testing dataset
389  which is composed of tiles from slides not used during the training. We then aggregated the
390 probabilities for each slide using two methods: either average of the probabilities of the
391 corresponding tiles, or percentage of tiles positively classified. The ROC (Receiver Operating
392  Characteristic) curves and the corresponding AUC (Area Under the Curve) were computed in
393 each case. Tumor slides could contain a certain amount of “normal’ tiles. Therefore, we also
394  checked how the ROC & AUC were affected when tiles classified as “normal” were removed from
395 the aggregation. Heat-maps were also generated for some tested slide to visualize the differences
396 between the two approaches and identify the regions associated with a certain cancer type. To
397 visualize the regions of a given tile which were important for the algorithm to take a decision, a

398 rolling mask was applied to the tile. The masked tile was then fed to the network to analyze how
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399 the classification is affected. 128x128 pixel overlapping masks were generated over the whole tile
400  with 87.5% overlapping between adjacent masks.
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