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Abstract

The Developing Human Connectome Project (dHCP) seeks to create the first
4-dimensional connectome of early life. Understanding this connectome in
detail may provide insights into normal as well as abnormal patterns of brain
development. Following established best practices adopted by the WU-MINN
Human Connectome Project (HCP), and pioneered by FreeSurfer, the project
utilises cortical surface-based processing pipelines. In this paper, we propose
a fully automated processing pipeline for the structural Magnetic Resonance
Imaging (MRI) of the developing neonatal brain. This proposed pipeline
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consists of a refined framework for cortical and sub-cortical volume segmen-
tation, cortical surface extraction, and cortical surface inflation, which has
been specifically designed to address considerable differences between adult
and neonatal brains, as imaged using MRI. Using the proposed pipeline our
results demonstrate that images collected from 465 subjects ranging from 28
to 45 weeks post-menstrual age (PMA) can be processed fully automatically;
generating cortical surface models that are topologically correct, and cor-
respond well with manual evaluations of tissue boundaries in 85% of cases.
Results improve on state-of-the-art neonatal tissue segmentation models and
significant errors were found in only 2% of cases, where these corresponded
to subjects with high motion. Downstream, these surfaces will enhance com-
parisons of functional and diffusion MRI datasets, supporting the modelling
of emerging patterns of brain connectivity.

Keywords: Developing Human Connectome Project, dHCP, neonatal MRI,
pipeline, segmentation, cortical surface reconstruction
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1. Introduction

The period of rapid cortical expansion during fetal and early neonatal life
is a crucial time over which the cortex transforms from a smooth sheet to a
highly convoluted surface. During this time, the cellular foundations of our
advanced cognitive abilities are mapped out, as connections start to form
between distant regions (Ball et al., 2013b; Van Essen, 1997), myelinating,
and later pruning, at different rates. Alongside the development of this neural
infrastructure, functional brain activations start to be resolved (Doria et al.,
2010), reflecting the development of cognition.

Much of what is currently known about the early human connectome
has been learnt from models of preterm growth (Ball et al., 2013b; Counsell
et al., 2013; Doria et al., 2010; Keunen et al., 2017). Whilst invaluable,
it is known that early exposure to the extra-uterine environment has long-
term implications (Ball et al., 2012, 2013a, 2017; Counsell et al., 2014; Hintz
et al., 2015; Ullman et al., 2015). For this reason, the Developing Human
Connectome Project (dHCP) seeks to image emerging brain connectivity for
the first time in a large cohort of fetal and term-born neonates.

More broadly, the goals of the dHCP are to pioneer advances in structural,
diffusion, and functional Magnetic Resonance Imaging (MRI), in order to col-
lect high-quality imaging data for fetuses and (term/preterm-born) neonates,
from both control and at-risk groups. Imaging sets will be supported by a
database of clinical, behavioural, and genetic information, all made publicly
available via an expandable and user-friendly informatics structure. The
dataset will allow the community to explore the neurobiological mechanisms,
and genetic and environmental influences, which underpin healthy cognitive
development. Models of healthy development will provide a vital basis of
comparison from which the effects of preterm birth, and neurological condi-
tions such as cerebral palsy or autism, may become better understood.

The dHCP takes inspiration from the WU-MINN Human Connectome
Project (HCP) (Van Essen et al., 2013). Now in its final stages, the HCP
has pushed the boundaries of MRI based brain connectomics, collecting 1200
sets of healthy adult functional and structural connectomes, at high spatial
and temporal resolution. Data from this project has been used to generate
refined maps of adult cortical organisation (Glasser and Van Essen, 2011),
and improve understanding of how the functional connectome correlates with
behaviour (Smith et al., 2015)

A core tenet, underlying the success of the HCP approach, has been the
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advocation of surface-based processing and analysis of brain MR images.
This is grounded in the understanding that distances between functionally
specialised areas on the convoluted cortical sheet are more neurobiologically
meaningful, when represented on the 2D surface rather than in the 3D vol-
ume (Glasser et al., 2013). Surface-based processing therefore minimises the
mixing of data from opposing sulcal banks or between tissue types. Further,
surface-based registration approaches (Durrleman et al., 2009; Fischl et al.,
1999c; Lombaert et al., 2013; Robinson et al., 2014; Wright et al., 2015; Yeo
et al., 2010) improve the alignment of cortical folds and areal features.

Unfortunately, modelling cortical connectome structure in neonates and
fetuses is particularly challenging. MRI, especially functional and diffusion
protocols, is highly sensitive to head motion during scanning. This is a
particular issue for the dHCP, where the goal is to image un-sedated neona-
tal, and free-moving fetal subjects. Therefore, correcting for this has re-
quired the development of advanced scanning protocols and motion correc-
tion schemes (Cordero-Grande et al., 2017; Hughes et al., 2016; Kuklisova-
Murgasova et al., 2012).

Outside of the challenges facing acquisition and reconstruction, the prop-
erties of neonatal and fetal MRI differ significantly from that of adult data.
Specifically, baby and adult brains differ vastly in terms of size, with the fetal
and neonatal brain covering a volume in the range of 100-600 millilitres in
contrast to an average adult brain volume of more than 1 litre (Allen et al.,
2002; Orasanu et al., 2014; Makropoulos et al., 2016). Furthermore, the
perinatal brain develops rapidly, which results in vast changes in scale and
appearance of the brain scanned at different weeks. This, together with the
fact that scanning times must be limited for the well-being and comfort of
mother and baby, means that spatial and temporal resolution of the resulting
images are reduced relative to adults. Furthermore, immature myelination
of the white matter in neonatal and fetal brains results in inversion of MRI
contrast when compared to adult brain scans (Prastawa et al., 2005). This
requires image processing to be performed on T2-weighted rather than T1-
weighted structural MRI.

Combined, these vast differences in image properties considerably limit
the translation of conventional adult methods for image processing to fetal
and neonatal cohorts. In particular, the popular FreeSurfer framework (Fis-
chl, 2012), utilised within the HCP pipelines (Glasser et al., 2013), fails on
neonatal data as it relies solely on fitting surfaces to intensity-based tissue
segmentation masks (Dale et al., 1999). These pipelines have been optimised
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to work with adult MRI data, and are not compatible with neonatal image
intensity distributions, which are significantly different and vary drastically
within different weeks of development. For this reason, simple adoption of
the adult HCP processing pipelines has not been possible.

Instead, this paper presents a refined surface extraction and inflation
pipeline, that will accompany the first data and software release of the dHCP.
This proposed framework builds upon a legacy of advances in neonatal im-
age processing. This includes the development of specialised tools for tis-
sue segmentation that address the difficulties in resolving tissue boundaries
blurred through the presence of low resolution and partial volume. A vari-
ety of techniques have been proposed for tissue segmentation of the neonatal
brain in recent years: unsupervised techniques (Gui et al., 2012), atlas fu-
sion techniques (Weisenfeld and Warfield, 2009; Gousias et al., 2013; Kim
et al., 2016), parametric techniques (Prastawa et al., 2005; Song et al., 2007;
Xue et al., 2007; Shi et al., 2010; Cardoso et al., 2013; Makropoulos et al.,
2012; Wang et al., 2012; Wu and Avants, 2012; Beare et al., 2016; Liu et al.,
2016), classification techniques (Anbeek et al., 2008; Srhoj-Egekher et al.,
2012; Chiţă et al., 2013; Wang et al., 2015; Sanroma et al., 2016; Moeskops
et al., 2016) and deformable models (Wang et al., 2011; Dai et al., 2013;
Wang et al., 2013, 2014). A review of neonatal segmentation methods can be
found in Devi et al. (2015); Makropoulos et al. (2017). The majority of these
techniques have been applied to images with a lower resolution than those
acquired within the dHCP, and typically to images of preterm-born subjects.

Once segmentations are extracted, surface mesh modelling approaches
are, to an extent, agnostic of the origin of the data; allowing, in principle, the
application of a wide variety of cortical mesh modelling approaches to neona-
tal data, including those provided within the FreeSurfer (Dale et al., 1999;
Fischl, 2012), BrainSuite (Shattuck and Leahy, 2002), BrainVISA (Rivière
et al., 2009), and CIVET (MacDonald et al., 2000; Kim et al., 2005, 2016)
packages. In general, these methods fit surfaces to boundaries of tissue seg-
mentation masks, which, allowing for some need for topological correction,
relies on the accuracy of the segmentation. In neonatal imaging data, the use
of T2 images however leads to segmentation errors not seen in adult data.
This is the misclassification of CSF as white matter, caused by the fact that
CSF and white matter appear bright in neonatal T2 images, whereas in
adult T1 data white matter is bright and CSF is dark. If not fully accounted
for during segmentation, these errors will be propagated through to surface
reconstruction (Xue et al., 2007).
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In what follows, we present a summary of our proposed pipeline. This
brings together existing tools for neonatal segmentation (refined to minimise
the propagation of misclassification errors through to surface extraction) with
new tools for cortical extraction that combine information from segmenta-
tion masks and T2-weighted image intensities, in order to compensate for
the effects of partial volume and improve correspondence with true tissue
boundaries. Re-implementations of existing tools for surface inflation and
projection to the sphere are provided to minimise software overhead for users.

The processing steps are as follows: 1) acquisition and reconstruction
of T1 and T2 images (Cordero-Grande et al., 2017; Hughes et al., 2016;
Kuklisova-Murgasova et al., 2012); 2) tissue segmentation and regional la-
belling (Makropoulos et al., 2012, 2014, 2016); 3) cortical white and pial sur-
face extraction (Schuh et al., 2017); 4) inflation and projection to a sphere
(for use with spherical alignment approaches) (Fischl et al., 1999a; Elad et al.,
2005); and 5) definition of cortical feature descriptors, including descriptors
of cortical geometry and myelination (Glasser et al., 2013). Manual quality
control is performed by two independent expert raters to assess the quality
of the acquired images, segmentations, and reconstructed cortical surfaces.
Assessment of these data sets shows, that with very few exceptions (3%) the
protocol is able to extract cortical surfaces which fit closely the expectations
for observed anatomy.

2. Project Overview

The goal of the dHCP is to create a dynamic map of human brain con-
nectivity from 20 to 45 weeks post-conceptional age (PMA) from healthy,
term-born neonates, infants born prematurely (prior to 36 weeks PMA), and
fetuses. The infants are being scanned using optimised protocols for struc-
tural (T1 and T2-weighted) images, resting state functional MRI (fMRI),
and multi-shell High Angular Resolution Diffusion Imaging (HARDI). Imag-
ing data will be combined with genetic, cognitive, and environmental infor-
mation in order to aid understanding of the developing human brain, and to
give crucial insight into brain vulnerability and disease development. Novel
image analysis and modelling tools will be developed and integrated into
HCP inspired surface-processing pipelines in order to extract structural and
functional connectivity maps. All data and supporting software will be made
publicly available within an expandable, future-proof informatics structure,
which will provide the research community with a user-friendly environment
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for hypothesis-based studies, and allow continual ongoing addition of new
data.

3. The Neonatal Structural Pipeline

The first stage of the project has been to optimise acquisition protocols
and collect data for the neonatal cohort (Cordero-Grande et al., 2017; Hughes
et al., 2016; Kuklisova-Murgasova et al., 2012). The methods in this paper
therefore reflect neonatal structural processing protocols, and are designed
to accompany the first data release of neonatal subjects.

The workflow of the neonatal processing pipeline is summarised in Fig.
1. The motion-corrected, reconstructed T2-weighted image is first bias-
corrected and brain-extracted. Following this, the brain image is segmented
into different tissue types (CSF: cerebrospinal fluid, WM: white matter, cGM:
cortical grey matter, and GM: subcortical grey matter) using the Draw-EM
algorithm (based on Makropoulos et al. (2014) section 3.2) (B). Next, white
matter masks are split along the mid-line between the hemispheres and filled
to represent binary masks for each hemisphere, and topologically correct
white matter surfaces are fit first to the grey-white tissue boundary and then
the grey-white interface of the MR intensities (section 3.3) (C). Pial surfaces
are generated by expanding each white matter mesh towards the grey-CSF
interface (D), and midthickness surfaces are generated halfway between the
pial and the white, by taking the Euclidean mean of corresponding inner-
and outer-cortical vertex coordinates (E). The cortical thickness is estimated
based on the Euclidean distance between the white and pial surface. In a
separate process, inflated surfaces are generated through expansion-based
smoothing of the white surface (F). This acts as initialisation to a Multi-
Dimensional Scaling (MDS, section 3.4) scheme that projects all points onto a
sphere, whilst preserving relative distances between neighbouring points. Fi-
nally, surface geometry and myelo-structure are summarised through a series
of surface feature maps. These include: G) maps of mean surface curvature,
estimated from the white surface; H) maps of mean convexity/concavity (sul-
cal depth); estimated during inflation; and I) maps of cortical myelination;
estimated from the ratio of T1- and T2-weighted intensities projected onto
the surface. Prior to myelin estimation, the motion-corrected reconstructed
T1 image is rigidly registered to the T2 image.

Following adult frameworks, proposed for FreeSurfer (Fischl et al., 1999b),
and refined by the Human Connectome Project (Glasser et al., 2013), all com-
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Figure 1: Structural pipeline steps: A) Pre-processing; B) Tissue segmentation (shown
as contour map); C) White-matter mesh extraction; D) Expansion of white surface to
fit the pial surface; E) Fitting of midthickness surface midway between white and pial
and estimation of thickness; F) Inflation of white surface to fit the inflated surface and
projection onto a sphere; G) Estimation of surface curvature from the white surface; H)
Estimation of sulcal depth maps (mean convexity/concavity); I) Estimation of T1/T2
myelin maps;
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puted surfaces of each subject (white, pial, midthickness, inflated, spherical)
have one-to-one point correspondence between vertices. This ensures that
for each individual brain the same vertex index represents the same relative
point on the anatomy for all these surfaces. In other words, two correspond-
ing points on the white and pial surface would approximate the endpoints
of where a column of neurons through the cortex would travel. This simpli-
fies downstream processing, and facilitates straightforward visualisation of
features across multiple surface views.

Figure 2: Distribution of age at birth and age at scan for the 453 processed subjects (492
scans).

3.1. Acquisition

The data used in the paper were collected at St. Thomas Hospital, Lon-
don, on a Philips 3T scanner using a 32 channel dedicated neonatal head coil
(Hughes et al., 2016). To reduce the effects of motion, T2 images were ob-
tained using a Turbo Spin Echo (TSE) sequence, acquired in two stacks of 2D
slices (in sagittal and axial planes), using parameters: TR=12s, TE=156ms,
SENSE factor 2.11 (axial) and 2.58 (sagittal) with overlapping slices (res-
olution (mm) 0.8 × 0.8 × 1.6). T1 images were acquired using an IR (In-
version Recovery) TSE sequence with the same resolution with TR=4.8s,
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TE=8.7ms, SENSE factor 2.26 (axial) and 2.66 (sagittal). Motion correc-
tion and super-resolution reconstruction techniques were employed combin-
ing Cordero-Grande et al. (2017); Kuklisova-Murgasova et al. (2012) result-
ing in isotropic volumes of resolution 0.5 × 0.5 × 0.5mm3. Subjects were
not sedated, but imaged during natural sleep. All images were reviewed by
an expert paediatric neuroradiologist and checked for possible abnormalities.
In this paper we report results from 453 subjects that have been processed
through the proposed pipeline. 38 subjects had repeat longitudinal scans
resulting in a total 492 scans. T1 images were available for 411 out of the
492 scans. The distribution of ages at birth and ages at scan is shown in Fig.
2.

3.2. Segmentation

3.2.1. Atlases

The segmentation in the dHCP utilises the atlases manually annotated
by Gousias et al. (2012) that divide the brain into 50 regions. Gousias et al.
(2012) have manually labelled 20 subjects and provide T1 and T2 images
accompanied by the label map for each subject2. 15 of the 20 subjects were
born prematurely at a median age at birth of 29 weeks (range 26−35 weeks).
These were scanned at term at a median age of 40 weeks (range 37 − 43
weeks), and had a median weight of 3.0 kg (range 2.0 − 4.0 kg) at the time
of scan. The remaining 5 subjects were born at term at a median age of
41 weeks (range 39 − 45 weeks), and had a median weight of 4.0 kg (range
3.0− 5.0 kg). We refer the reader to Gousias et al. (2012) for information on
the protocol used for the labelling. In Makropoulos et al. (2014) we further
subdivided the 50 regions to create a set of 87 regions as follows: the cortical
regions, which contain both WM and cGM in the atlases, were split into
their WM and cGM part; thalamus was split into the high intensity part and
the low intensity part (mainly ventrolateral nuclei); CSF, background and
unlabelled brain region (mainly internal capsule) were further added. Table
1 presents the 87 resulting regions.

3.2.2. Segmentation method

The T2 image data is segmented into 9 tissue classes (Table 1 ), using
the Draw-EM 3 (Developing brain Region Annotation With Expectation-

2http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert
3https://github.com/MIRTK/DrawEM
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Tissues

1 Cerebrospinal fluid (CSF)
2 Cortical grey matter (cGM)
3 White matter (WM)
4 Background
5 Ventricle
6 Cerebellum
7 Deep Grey Matter (GM)
8 Brainstem
9 Hippocampus

Table 1: Tissue labels
WM, cGM regions

1 Frontal lobe (left/right)

2 Parietal lobe (left/right)

3 Occipital lobe (left/right)

4 Anterior temporal lobe, medial part (left/right)

5 Anterior temporal lobe, lateral part (left/right)

6 Gyri parahippocampalis et ambiens, anterior part (left/right)

7 Gyri parahippocampalis et ambiens, posterior part (left/right)

8 Superior temporal gyrus, middle part (left/right)

9 Superior temporal gyrus, posterior part (left/right)

10 Medial and inferior temporal gyrus, anterior part (left/right)

11 Medial and inferior temporal gyrus, posterior part (left/right)

12 Fusiform gyrus, anterior part (left/right)

13 Fusiform gyrus, posterior part (left/right)

14 Insula (left/right)

15 Cingulate gyrus, anterior part (left/right)

16 Cingulate gyrus, posterior part (left/right)

Subcortical regions

1 Hippocampus (left/right)

2 Amygdala (left/right)

3 Cerebellum (left/right)

4 Caudate nucleus (left/right)

5 Thalamus, high intensity part (left/right)

6 Thalamus, low intensity part (mainly ventrolateral nuclei) (left/right)

7 Sub-thalamic nucleus (left/right)

8 Lentiform nucleus (left/right)

9 Lateral ventricles (left/right)

10 Brainstem

11 Corpus callosum

Other regions

1 Cerebrospinal fluid (CSF)

2 Background

3 Unlabelled brain region (mainly internal capsule)

Table 2: 87 regional labels segmented with Draw-EM, based on the 20 atlases of (Gousias
et al., 2012).

Maximization) algorithm. This is an open-source software for neonatal brain
MRI segmentation based on the method proposed in Makropoulos et al.
(2014).

In summary, segmentation proceeds following brain-extraction, imple-
mented using the Brain Extraction Tool (BET) (Smith, 2002), in order
to remove non-brain tissue. BET has been configured to provide a liberal
mask that always retains the brain tissue and CSF, and removes most of the
skull (fractional intensity threshold=0.1). An accurate initial brain mask is
not crucial for the Draw-EM segmentation, as it is based on an adaptive
Expectation-Maximization algorithm. The brain mask is consequently re-
fined from the Draw-EM tissue segmentation. Then images are corrected for
intensity inhomogeneity with the N4 algorithm (Tustison et al., 2010).

Segmentation is performed with an Expectation-Maximization (EM) al-
gorithm that includes a spatial prior term and an intensity model of the
image, similar to the approach described in Van Leemput et al. (1999). The
spatial prior probability of the different brain structures is defined based on
multiple labelled atlases. These atlases are registered to the target image, and
their labels are transformed and averaged according to the local similarity
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of each atlas (based on the local Mean Square Distance as proposed in Ar-
taechevarria et al. (2009). The intensity model of the image is approximated
with a Gaussian Mixture Model (GMM). Spatial dependencies between the
brain structures are modelled with Markov Random Field (MRF) regularisa-
tion. The segmentation algorithm further includes CSF-WM partial volume
correction to account for the similar intensity of CSF to the WM along the
CSF-cGM boundary, and model averaging of EM and label fusion to limit
the influence of intensity in the delineation of structures with very similar
intensity profiles. The resulting segmentation contains 87 regional structures
(see Table 1). These are merged to further produce the following files: tissue
labels, left/right white surface masks and left/right pial surface masks.

The dHCP data differs significantly from previous neonatal cohorts col-
lected by our group, in that the vast majority of the data in previous studies
were acquired from prematurely-born neonates and typically at lower spatial
resolutions. Thus Draw-EM includes several modifications with respect to
Makropoulos et al. (2014) in order to maximise the benefits for downstream
processing. These include: modelling of additional tissue classes to account
for the presence of hyper/hypo intense pockets of white matter, which oc-
cur naturally in the maturing brain; together with improvements afforded by
a multi-channel volumetric registration, which simultaneously registers sub-
jects’ T2 images and their grey-matter tissue segmentation masks (obtained
from a preliminary run of the segmentation algorithm - see below).

All major steps of the Draw-EM pipeline are summarised in Fig. 6. An
example segmentation using Draw-EM is illustrated in Fig. 7. The impor-
tance of the modifications to the segmentation approach are demonstrated
through Figures 3 to 5. Specifically, Fig. 3 demonstrates improvements to
segmentation accuracy through modelling two additional tissue classes: 1)
low and 2) high intensity WM. Here, the low-intensity WM class is included
to account for myelinated WM that is often mislabelled for cGM in particu-
lar around the insula and the frontal lobe, and the high-intensity WM class
is included to correct for WM hyper-intensities around the ventricular area
that are often mislabelled as ventricles. Low-intensity and high-intensity
WM classes are merged to WM after the segmentation has completed.

The labelled atlases (Gousias et al., 2012) are registered to the subject
using a multi-channel registration approach, where the different channels of
the registration are the original intensity T2-weighted images and GM prob-
ability maps. These GM probability maps are derived from an initial tissue
segmentation, performed using tissue priors propagated through registration
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of a preterm probabilistic tissue atlas Serag et al. (2012) to each term-born
subject. Preterm subjects typically have increased CSF volume over term
neonates (Makropoulos et al., 2016), and this is reflected in the preterm
template Serag et al. (2012). Therefore, to account for the effects of mis-
registration resulting from the different amounts of CSF (see Fig. 4), we use
a trimmed version of the preterm template (eroding CSF intensities from the
template image) to perform the registration and initial tissue segmentation.
Afterwards, these initial GM maps are then used along with the intensity
T2-weighted images in the multi-channel registration of the labelled atlases
(Gousias et al., 2012). Fig. 5 presents the benefit of using a multi-channel
registration approach instead of a single-channel registration using only the
intensity. It has been found that inclusion of the GM probability maps im-
proves the accuracy of the alignment of the cortical ribbon, despite the large
differences in cortical folding that are observed throughout the developing
period. For more details on the individual parts of the original segmentation
pipeline we refer the reader to Makropoulos et al. (2014).

3.3. White, Pial and Midthickness Surface Extraction

Following segmentation, white-matter mesh extraction is performed by
fitting of a closed, genus-0, triangulated surface mesh (convex hull) onto the
inferred white-matter segmentation boundary. However, the segmentation
may include WM holes (WM misclassified as CSF) and undetected sulci
(CSF misclassified as WM) due to partial volume effects. We therefore refine
the shape of the mesh by incorporating intensity information from the bias-
corrected T2 and (if available) T1 images (Schuh et al., 2017). This takes into
account local geometry and favours sheet-like boundaries over thin bridges,
or small pockets caused by CSF mislabelled as WM. Examples of the im-
provements gained by intensity based refinement, over a straightforward fit
to the segmentation boundary, are shown in Fig. 8.

In Schuh et al. (2017), the deformation of the initial genus-0 surface,
inwards towards the white-grey tissue boundary, is governed through a trade-
off between external and internal forces. Specifically, the external force seeks
to minimise the distance between the placement of the surface mesh vertices
and the locations of the tissue boundaries, and this is regularised by three
different internal forces, which seek to: 1) enforce smoothness by reducing
curvature; 2) flatten creases in the mesh along sulcal banks; and 3) discourage
mesh intersections by introducing a repulsion force between adjacent nodes.
In addition to the repulsion force, self-intersection is further prevented by
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(a)

(b)

Figure 3: a) Segmentation of a subject T2 image without and with the inclusion of the
low-intensity WM class (left and right image respectively). b) Segmentation of a subject
T2 without and with the inclusion of the high-intensity WM class (left and right image
respectively). Affected areas are noted with a red circle.

predefining a minimum distance (0.1 mm) that the mesh triangles can reach
between each other. If the new movement of a triangle moves it to a distance
less than the minimum allowed distance to any other triangle in the mesh,
this movement is prevented by limiting the total force of its vertices.

Surface reconstruction proceeds over two stages, where, in the first stage,
external forces are derived from distances to the tissue segmentation mask,
and in the second stage, boundaries are refined using external forces derived
from intensity information: specifically, the force attracts each vertex node
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Figure 4: Segmentation of a subject T2 image based on the original preterm template
Serag et al. (2012) and the trimmed template registration (right image). Affected areas
are noted with a red circle.

Figure 5: Segmentation of a subject T2 image with single-channel registration (left image)
and multi-channel registration (right image). Affected areas are noted with a red circle.

towards the closest WM/cGM edge in the normal direction.
A median filtering and Laplacian smoothing of surface distances is per-

formed to reduce the influence of small irregularities in the segmentation
boundary. Small holes in the segmentation manifest themselves in the sur-
face distance map as small clusters of supposedly distant points as seen left
of Fig. 10. These are filled in to avoid the surface mesh to deform into them.

The closest WM/cGM edge in the second stage is found by analysing
the one-dimensional intensity profile and directional derivative sampled at
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Figure 6: The major steps of the Draw-EM pipeline are: 1) Pre-processing. The original
MRI is brain-extracted and corrected for intensity inhomogeneity; 2) The preterm atlas
template is registered to the bias-corrected T2 image and an initial (tissue) segmentation
is generated; 3) The GM probability map obtained from the initial segmentation is used
together with the MR intensity image as different channels of a multi-channel registration
of the labelled atlases by (Gousias et al., 2012) to the subject. 4) Regional labels are
segmented based on the labels propagated from the atlases; 5) Segmented labels are merged
in different granularities to further produce the following files: tissue labels, left/right white
surface masks and left/right pial surface masks.

Figure 7: Example segmentation using Draw-EM. The subject T2, label segmentation,
tissue segmentation, white surface and pial surface mask are presented from left to right.

equally-spaced ray-points. Examples are shown in Fig. 9. Here, a white-
matter boundary edge occurs between a maximum with WM intensity, fol-
lowed by a minimum with cGM intensity (left/right of green vertical line).
Starting at the ray centre (red vertical line, yellow dot), a suitable edge is
found by searching both inwards and outwards from the node until either a
WM/cGM edge is found, a maximum search depth is exceeded, or the ray
intersects the surface.

Next, the pial surface is obtained by deforming the white-matter mesh
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towards the cGM/CSF boundary using the same model but modifying the
external force to search for the closest cGM/CSF image edge outside the
white-matter mesh. These edges correspond to a positive derivative in normal
direction of the T2 intensity (yellow arrows in Fig. 9). When no such edge is
found, e.g. within a narrow sulcus due to partial volume, the opposing sulcal
banks expand towards each other until stopped by the non-self-intersection
constraint. Finally, a midthickness surface is generated half-way in-between
by averaging the positions of corresponding nodes. Please refer to Schuh
et al. (2017) for more details on the surface reconstruction.

Figure 8: Segmented T2 image intersected by white and pial surfaces (left). White boxes
outline corrections in areas where CSF appears dark due to partial volume effects, and
yellow boxes corrections in areas where the CSF has been mislabelled as WM. Zoom of
white surface mesh before (middle) and after (right) edge-based refinement. The top row
demonstrates correction of a sulcus by moving the surface inwards, and the bottom row
correction of a segmentation hole by moving the surface outwards.

3.4. Surface Inflation and Spherical Projection

In a separate process, the white matter surface is inflated using a re-
implementation of the inflatable surface model of FreeSurfer (Fischl et al.,
1999a). This uses an inflation energy functional that consists of an inflation
term, that forces the surface outwards (for vertex points in sulcal fundi) and
inwards (for points on gyral crowns), and a metric-preservation term that
preserves distances between neighbouring points. Surfaces are expanded until
they fulfil a pre-set smoothness criterion (Fischl et al., 1999a).

As a by-product of the surface inflation, a measure of average concav-
ity/convexity is obtained for each vertex. This represents the change of a
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Figure 9: T2 signal intensity after bias correction (blue curve) and derivative (dashed
curve) sampled at blue crosses. The yellow dot marks the mesh node on the initial surface
(red). The green contour depicts the white-matter surface. Yellow arrows point at the
cGM/CSF edge of the pial surface.

Figure 10: WM segmentation boundary distance in normal direction, before clustering
based hole filling (left), and after the hole filling and smoothing (right). A number of
holes in the segmentation are indicated by yellow arrows.

node’s position in normal direction, and is proportional to the depth of ma-
jor sulci.

In a final step, inflated meshes are projected onto a sphere using spher-
ical Multi-Dimensional Scaling (sMDS) as proposed by (Elad et al., 2005).
This computes an embedding, or projection, of each inflated mesh onto a
sphere, whilst minimising distortion between mesh edges. More specifically,
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the projected positions of vertex points on the sphere are optimised so as
to preserve the relative distances between points, as measured in the initial
inflated mesh space. In each case, the distances (measured for the sphere
and the input mesh) are estimated as geodesics, and are computed using a
fast marching method for triangulated domains (Kimmel and Sethian, 1998).
Note, the input mesh must first be scaled so that its surface area is equal to
that of the unit sphere.

The benefit of sMDS is that the optimisation of the spherical projection
is performed directly on spherical coordinates, while in FreeSurfer the dis-
tances are optimized in 3D. To evaluate the performance of sMDS relative
to FreeSurfer we compared areal and edge distortion distributions for vertex
spacing in the original white matter mesh relative to the sphere. Here, areal
distortions measure change in mesh faces area estimated as log

2

A1

A2
(for tri-

angle A1 in white mesh, and equivalent triangle A2 on the sphere). Edge dis-
tortions reflect change in relative vertex spacing and are estimated as log

2

E1

E2

(for edge length E1 in white mesh, and equivalent A2 on the sphere). Dis-
tortion distributions are averaged across all subjects and both hemispheres,
and results are shown in Fig 11. Results show that while distortions for the
sMDS method slightly exceed that of FreeSurfer, they are in a comparable
range.

Figure 11: Spherical projection distortions for FreeSurfer (FS) and spherical MDS (sMDS)

3.5. T1-T2 registration

As the neonatal pipeline is based on T2 image processing rather than
T1 (as for the adults), each T1 image was rigidly registered to its T2 image
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pair. Similarly to the HCP, registration is performed with Boundary-Based
Registration (BBR) Greve and Fischl (2009) to estimate the 6 degrees of
freedom (DOF) rigid registration parameters. However, directly computing
the registration with BBR resulted in misalignments in 16.8% of the scans
(69 out of the 411 cases with both T1/T2 scans). Due to these mis-alignment
issues, we performed an initial rigid registration of the T1 to an eroded T2
excluding the cGM and CSF (including the WM and sub-cortical structures).
BBR is then initialised with the parameters from this initial registration,
which provides further minor improvements. The combined rigid registration,
initial rigid followed by BBR, resulted in only one case with minor residual
misalignment to its corresponding T2 image (0.2% of the scans).

3.6. Feature Extraction

The processes of surface extraction and inflation generate a number of well
known feature descriptors for the geometry of the cortical surface. These
include: surface curvature estimated from the mean curvature (or average
of the principal curvatures) of the white matter surface; cortical thickness
estimated as the average distance between a) the Euclidean distance from the
white surface to the closest vertex in the pial surface and b) the Euclidean
distance from the pial surface to the closest vertex in the white surface;
and sulcal depth which represents average convexity or concavity of cortical
surface points estimated during the inflation process.

In addition to geometric features, the pipeline also estimates correlates of
cortical myelination using the protocol described in Glasser and Van Essen
(2011); adopted by the HCP. These feature maps are estimated from the
ratio of T1-weighted and T2-weighted images and represent an architectonic
marker that reliably traces areal boundaries of cortical areas and correlates
with cytoarchitecture and functionally distinct areas in the cortex Glasser
and Van Essen (2011). As the neonatal pipeline is based on T2 image pro-
cessing rather than T1 (as for the adults), neonatal T1/T2 myelin maps are
estimated by first rigidly registering each T1 image to its T2 image pair. The
ratio is estimated from the original T2 image and the transformed T1 image
(prior to bias correction). Following this, the T1/T2 ratio is projected onto
the midthickness surface, using volume-to-surface mapping (Glasser et al.,
2013).

Further, regional labels (from the method described in Gousias et al.
(2012)) are automatically generated during segmentation. These regional
labels are further projected onto the cortical surface. The closest voxel in
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the volume with respect to each vertex in the midthickness surface is used
to propagate the label to that vertex. The projected labels are consequently
post-processed with filling of small holes and removal of small connected
components.

Fig 12 depicts exemplar surfaces for three subjects aged 32, 36 and 40
weeks PMA (at time of scan) together with cortical labels, sulcal depth,
cortical thickness, mean curvature, and T1/T2 myelin maps. This demon-
strates the considerable differences in surface geometry and myelination over
the developmental period covered by this cohort.
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Figure 12: Exemplar surfaces and feature sets for three individuals scanned at 32, 36 and
40 weeks PMA (left hemisphere). From top to bottom: white surface, pial surface, inflated
surface, cortical labels, sulcal depth maps, mean curvature, cortical thickness and T1/T2
myelin maps (all features shown on the very inflated surface)
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4. Quality Control (QC)

The quality of the pipeline was assessed by manually scoring a sub-set
of randomly selected images from the cohort. We performed three indepen-
dent scorings for the different parts of the pipeline: image reconstruction,
segmentation and surface reconstruction. 160 images were used for the im-
age reconstruction and segmentation QC. A sub-set of 43 images was then
used for the surface reconstruction QC due to the more manually intensive
and time consuming scoring of cortical details. All images and surfaces were
scored independently by two expert raters (one neuro-anatomist, one meth-
ods specialist) to assess inter-rater agreement. The image and segmentation
QC was performed by AM and SJC and surface QC by AM and JS. The
results are presented in the following sections.

4.1. Image QC

Quality checking of neonatal images was performed by first binning all
subjects’ PMA (at scan) into weeks (in the range: 37−44 weeks) and selecting
20 images at random from each weekly interval. This yielded a total of 160
images. Note, the relatively low limit of 20 per week was selected due to the
limited amount of images (57 out of the total 492 scans, less than 20 per age)
acquired at earlier scan ages (29−36 weeks). The protocol for manual scoring
of the image quality is presented in Fig. 13. Scoring was performed by visual
inspection of the whole 3D volume slice by slice. Poor quality images were
rated with score 1. Images with significant motion were rated with score 2.
Images with negligible motion visible only in a few slices were rated with
score 3. Images of good quality with no visible artefacts were rated with
score 4.

Fig. 14 presents the percentage of images rated with the different scores
by the two reviewers. On average, 90% of the images were considered to have
negligible or no motion (score 3 and 4) and only 2% of the images had to
certainly be discarded due to poor image quality according to the raters. The
raters’ scoring was the same in 78% of the images and within a difference of
one scoring point in 99% of the images.

4.2. Segmentation QC

Following image QC, tissue segmentation masks were evaluated for the
same set of subjects. Quality was assessed using the protocol presented in
Fig. 15. Specifically, images that were poorly segmented were rated with
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Figure 13: Manual QC score of image quality. From left to right: poor image quality -
score 1, significant motion - score 2, negligible motion - score 3, good quality image - score
4.

Figure 14: Image scores from the 2 raters (based on 160 images).

score 1; images with regional errors were rated with score 2; images with
localised segmentation errors were rated with score 3; images with segmen-
tations of good quality with no visible errors were rated with score 4.

Regional errors often occurred at the interface between the cerebellum and
the inferior part of the occipital and temporal lobe, where part of the cortical
ribbon was mislabelled as cerebellum due to poor image contrast between the
regions; another source of regional problems was when WM was mislabelled
as cGM or CSF due to partial volume effects. By contrast, localised errors
typically occurred when the CSF inside a sulcus was mislabelled as WM due
to partial voluming effects.We further refer the reader to Makropoulos et al.
(2014) for additional validation of the segmentation method.

The scores attributed by the two raters are presented in Fig. 16. Poor
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segmentation occurred only in 5 scans (3% of cases) and these were related
to poor image quality or significant motion (image score 1 and 2). Regional
(24% of cases) and localised errors (64% of cases) were present in the majority
of the cases. The scoring of the raters agreed in 71% of the images and was
within a difference of one scoring point in 99% of the images.

Figure 15: Manual QC score of segmentation quality. From left to right: poor segmen-
tation quality - score 1, regional errors - score 2, localised errors - score 3, good quality
segmentation - score 4.

Figure 16: Segmentation scores from the 2 raters (based on 160 images).
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Furthermore, we assessed the improvements with the proposed segmen-
tation. We manually inspected segmentations of all the 492 scans obtained
with: a) the proposed segmentation method and b) the tissue segmentation
method outlined in Makropoulos et al. (2012), that uses the original tem-
plate from Serag et al. (2012) for the atlas priors, as baseline (Makropoulos
et al. (2012) presented the most accurate results in the NeoBrainS12 challenge
(Išgum et al., 2015)). Fig. 17 presents the occurrence of the different segmen-
tation problems presented in Section 3.2 with the baseline and the proposed
method: top part of cGM missing (see Fig. 4), CSF inside WM (see Fig.
5), hyper-intense WM misclassified as ventricles (see Fig. 3), hypo-intense
WM misclassified as cGM (see Fig. 3). The segmentation method with the
proposed modifications has diminished the occurrences of this problems (top
part of cGM missing in 1.6% compared to the baseline 23.8% of cases, CSF
inside WM in 1.4% compared to 36.4%, hyper-intense WM misclassified as
ventricles in 7.7% compared to 90.7% and hypo-intense WM misclassified as
cGM in 0% compared to 84.6%). These problems, where still present in the
proposed method, are typically reduced in extent.

Figure 17: Occurrence of segmentation problems with the baseline segmentation method
(Makropoulos et al., 2012) and the proposed segmentation (based on 492 images).

The tissue segmentations presented additional errors that were not ex-
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amined in the segmentation QC. These can be seen in Fig. 18. Narrow WM
folds present in the medial temporal and occipital lobe, and gyri at the most
superior part of the brain can be misclassified as cGM. This is due to partial
volume effects and low local intensity contrast that can not be easily resolved
by intensity alone without prior knowledge of the cortical morphology.

Figures A.1, A.2 present example segmentations from the subjects in-
cluded in this study.

Figure 18: Additional errors remaining at the segmentations due to low intensity contrast
and partial volume effects. WM at the superior part of the brain (left images) and nar-
row cortical folds at the medial part of the occipital lobe (right images) are occasionally
misclassified as cGM.

4.3. Surface QC

Cortical surface quality was assessed by visual scoring of the reconstructed
white surface, as this is the primary surface used in downstream functional
and diffusion MRI processing. Visual surface QC by an expert was performed
for a number of regions of interest (ROIs), automatically selected per subject.
In order to specifically focus the surface QC on the improvements of the
reconstructed surface over the tissue segmentation boundary produced from
Draw-EM, we aimed to identify regions that deviate from this boundary. We
additionally reconstructed each surface with an alternative surface extraction
technique that faithfully follows the tissue mask segmentation boundaries
(Wright et al., 2015). Surface QC then proceeded for ROIs where the surfaces
extracted from the two techniques (Schuh et al. (2017) and Wright et al.
(2015)) deviated most from each other. ROIs were viewed in image volume
space as 3D patches (of size 50× 50× 50 mm) located at the centre of each
cluster, with the white surface shown as a contour map (see Fig. 19 for
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examples of the ROI visualization). Due to the large number of patches,
a subset of 43 images was used from the 160 images included for the image
and segmentation QC. 20 ROIs were selected for each subject and were rated
independently. Scoring of the surfaces was done by assigning a score from 1
to 4 for each ROI according to the protocol in Fig. 19: score 1 was rated as
poor quality (this happened typically in cases where the contour substantially
deviated from the cortical boundary or there were extensive missing gyri);
score 2 was assigned in cases where the contour was close to the cortical
boundary but there were obvious mistakes; score 3 was used for contours
that were accurate but contained some minor mistakes; score 4 indicated an
accurate contour tracing of the cortical boundary.

Figure 19: Manual QC score of surface quality. From left to right: poor surface quality -
score 1, contour close to the cortical boundary but with obvious mistakes - score 2, minor
mistakes - score 3, good quality surface - score 4.

Fig. 20 presents the results of the surface QC. The proposed method
produced surfaces that were rated as accurate (score 3 or 4) in 85% of the
ROIs with 49% presenting no visual mistakes, averaged between the two
raters. The remaining percentage of ROIs (15%) were rated as having obvious
mistakes but being close to the cortical boundary (score 1 or 2), with only
less than 2% having poor quality (score=1). The scoring of the raters was
the same in 52% of the ROIs and was within a difference of one scoring point
in 93% of the ROIs. Fig. 21 presents the scoring for the different regions
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of the brain. With the exception of the temporal lobe, it can be observed
that the raters score similar number of ROIs with score 1 and 2, but differ
on the assignment of scores 3 and 4. On average, the occipital lobe presents
the largest proportion of scores 1 and 2 (22%), followed by the temporal lobe
(15%), the parietal lobe (11%), the frontal lobe (7%), corpus callosum (5%),
insula (3%) and the cingulate gyrus (0%). Parts of the occipital and temporal
lobe that contain narrow folds are hard to segment due to partial volume
effects and low contrast, and errors in these regions are also propagated to
the surfaces. Note, that in extreme cases of partial volume, tissue boundaries
will also not be apparent to manual observers. In such cases, evaluators must
make subjective choices that may explain the disagreement between raters.

Figure 20: Scoring of surface ROIs from the 2 raters (based on 43 images with 20 ROIs
per image).

Fig. 22 demonstrates examples of improvements with the proposed method
over a surface extracted to faithfully follow the segmentation boundary. Fig-
ures A.1, A.4 and A.5 present example surfaces reconstructed from the data.
Figures 23, 24 further present the regional and total cortical thickness of all
the subjects, and average thickness maps across different ages at scan. Av-
erage thickness maps were calculated by registering the sulcal depth maps
of the subjects with MSM (Robinson et al., 2014) to an average template
constructed using the method described in Bozek et al. (2016b). Cortical
thickness across the whole brain has a mean value of 1.1 mm, which increases
across the age at scan. Cortical thickness measurements in the neonatal pop-
ulation have been previously reported in the literature in (Xue et al., 2007;
Moeskops et al., 2013; Li et al., 2015a; Moeskops et al., 2015; Makropoulos
et al., 2016; Geng et al., 2017) with different ranges between 1-2 mm. Dif-
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Figure 21: Regional surface scores from the 2 raters (based on 43 images with 20 ROIs
per image).

Figure 22: Comparison of surfaces produced with the proposed method (overlaid with
green colour) over surface extraction that follows the tissue segmentation boundary pro-
duced from Draw-EM (overlaid with yellow colour).

ferences between reported values can be due to different image acquisition,
image segmentation and surface reconstruction methods. Moeskops et al.
(2013), in contrast to other studies, present thickness values estimated based
on manually segmented cortices. The estimated thickness in their study
varies between 0.95-1.2 mm which is very similar to the obtained measure-
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ments here. Different parts of the neonatal brain, such as the major lobes
(frontal, parietal, temporal, occipital), present differences in the thickness
values Moeskops et al. (2013, 2015); Geng et al. (2017). Li et al. (2015a)
present thickness values at 0,1 and 2 years of age and report higher values in
the frontal and temporal lobe, and lower values in the parietal and occipital
lobe. A similar trend can be observe here (temporal lobe: 1.15 mm, frontal
lobe: 1.13 mm, parietal: 1.1 mm, occipital: 1.05 mm).

Figure 23: Average thickness (mm) of the cortex and different lobes across different ages
at scan.
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Figure 24: Average thickness maps of the left and right hemisphere across different ages
at scan.

It should be noted that the adopted surface reconstruction model entails
a number of parameters (e.g. weight of external force, strength of smoothness
constraints imposed by internal forces and minimum vertex distance). Due
to lack of ground truth these parameters were set based on visual inspection
of the surface renders in 3D, and super-imposing them on the image. These
parameters are likely specific to the dHCP cohort, and reflect subjective
choices with respect to the balance of smoothness, relative to goodness of fit of
the boundaries. We recommend users of the pipeline re-optimise parameters
for new cohorts.
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5. Comparison to HCP Pipelines

The dHCP pipeline has been inspired by the HCP (Glasser et al., 2013).
However, there are several key differences between the pipelines, as high-
lighted in Table 3. Neonatal subjects are imaged during natural sleep.
Therefore, total scanning time for all structural, diffusion and rfMRI scans is
markedly reduced relative to the HCP. Furthermore, due to concerns about
the effects of motion, scans are acquired in stacks that must be reconstructed
and motion corrected prior to analysis. Finally, T1 and T2 image resolution
of the neonates is slightly reduced relative to the adults, but brains are much
smaller resulting in reduced resolution and increased partial volume.

The HCP performs gradient and read-out distortion correction prior to
estimation of surfaces. Gradient distortion, in particular, is motivated on
account of the HCP’s use of a specially designed 3T Skyra scanning system,
where the head is ∼ 5 cm above the iso-centre of the scanner. This makes gra-
dient non-linearities more pronounced for this system relative to those from
standard 3T scanners. Read-out distortion correction is performed through
collection of a field map. The dHCP has less noticeable distortions due to the
use of spin-echo readouts in the dHCP acquisition. Additionally, distortions
are less extreme in neonates due to differences in the air tissue interfaces
from adults. As such the dHCP does not perform these corrections.

Surface extraction, within the HCP pipeline, is performed using a refined
version of the FreeSurfer recon-all method Fischl et al. (1999b,c), which ad-
justs for the high spatial resolution of HCP data, and uses T2 surfaces to
refine and improve the placement of white and pial surfaces. This accounts for
limited contrast between grey and CSF tissue within adult T1 images. Mod-
ified pre-processing is performed prior to recon-all with brain tissue masks
propagated (following non-linear registration) from the MNI Template, and
T1-T2 registration is performed using a 6-DOF BBR Greve and Fischl (2009).

Image processing for the dHCP is performed on T2 images which provide
better tissue intensity contrast in the neonatal age groups. Brain extraction
is performed liberally on each subject’s T2 image using FSL BET Smith
(2002), and this brain mask is then refined from the Draw-EM segmentation.
T1-T2 registration is performed with an initial 6-DOF rigid registration of
the T1 image to the T2 image based on WM and sub-cortical structures (i.e.
excluding cGM and CSF), followed by BBR. Masks are then propagated from
T2 to T1 image data through the computed transformation. The reduced
resolution, and increased partial volume of neonatal data motivates use of
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specially designed tissue segmentation (Makropoulos et al., 2012, 2014, 2016)
and surface extraction protocols Schuh et al. (2017) (Sections 3.2,3.3). Fur-
ther differences between the dHCP and HCP pipelines, are motivated by a
desire to reduce software overhead: therefore, surface inflation is performed
using an in-house re-implementation of the FreeSurfer method, and spher-
ical projection is performed using a specially designed spherical MDS tool
(Section 3.4). Outside of the stated differences to the pre-processing and sur-
face extraction pipelines, cortical features (cortical thickness, cortical surface
curvature, sulcal depth, T1/T2 myelin maps) are estimated similarly to the
HCP.

HCP dHCP

Image Resolution 0.7mm
3 0.8 mm

3 (0.5 mm
3 after reconstruction)

Total scanning time 4 hours 76 minutes
Preprocessing:
Gradient Distortion Correction Yes No
Read-out distortion correction Yes No
Brain Extraction Propagation of atlas mask BET
T1 - T2 registration BBR Rigid Alignment, BBR

Bias Correction
√
T1 ∗ T2 N4

Segmentation / Surface extraction
Performed on T1 T2
Tissue Segmentation FreeSurfer Draw-EM
White and Pial Surface Extraction modified FreeSurfer Schuh et al. (2017)
Surface Inflation FreeSurfer FreeSurfer re-implementation
Spherical Projection FreeSurfer spherical MDS
Myelin Mapping T1/T2 T1/T2

Table 3: Comparison between HCP and dHCP pipelines

6. Discussion

This paper presents a fully automatic pipeline for brain tissue segmen-
tation and cortical surface modelling of neonatal MRI. All methods have
been tuned on images collected using the dHCP protocol, and take advan-
tage of improvements in image quality (gained from advances in acquisition,
reconstruction and motion correction (Cordero-Grande et al., 2017; Hughes
et al., 2016; Kuklisova-Murgasova et al., 2012)) to offer topologically correct
(genus-0) surface representations images acquired between 28 and 45 weeks
PMA. Manual QC of the images and surfaces suggest that, in the vast ma-
jority of cases, surfaces correspond closely with tissue boundaries, improving
upon results obtained with state-of-the-art tissue segmentation tools.

The goal of the dHCP project is to develop the first four-dimensional
model of emerging functional and structural brain-connectivity. Accordingly,
the dHCP is pushing the boundaries of structural, functional and diffusion
image acquisition, to improve the spatial resolution of T1 and T2-weighted
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images, the angular resolution of diffusion MRI (dMRI) and the temporal
resolution of functional MRI (fMRI), relative to previous neonatal and fetal
studies.

The results in this paper represent the foundations of a surface-constrained
set of functional and diffusion analysis pipelines, inspired by frameworks pro-
posed by the HCP (Glasser et al., 2013; Van Essen et al., 2013), and based
on FreeSurfer methods for surface extraction (Fischl et al., 1999b; Fischl,
2012). Studies have shown that surface-constrained analyses: improve the
localisation of functional units along the cortical surface (Fischl et al., 2008;
Glasser et al., 2013, 2016b; Van Essen et al., 2012); reduce the mixing of
white and grey matter fMRI signals during smoothing (Glasser et al., 2013);
and increase the alignment of functional areas during registration (Durrle-
man et al., 2009; Fischl et al., 1999c; Lombaert et al., 2013; Robinson et al.,
2014; Wright et al., 2015; Yeo et al., 2010).

However, surface-constrained analyses rely on highly (geometrically) ac-
curate reconstructions of the cortical surface. FreeSurfer-derived HCP pipelines
do not work for neonates, whose brains are smaller and still developing.
Neonatal images present inverted tissue intensity profiles, hypo/hyper in-
tense white-matter patches and, due to the smaller size of the imaged struc-
tures, even for same image resolution, they are more prone to partial volume
effects than for adult MRI. Further, dHCP neonates are imaged during nat-
ural sleep. As a result, motion artefacts are a concern, with a small subset
of acquisitions heavily affected.

FreeSurfer methods for surface extraction depend on tissue segmentation
models that are largely intensity-based (Dale et al., 1999). These are not ro-
bust to noise and are ill-suited to the inverted tissue intensity distributions,
and increased partial volume of neonatal data. Further, FreeSurfer white
cortical surface mesh modelling approaches rely on tessellating topologically
correct white matter tissue segmentations, and FreeSurfer pial surface extrac-
tion tools require tissue intensity information; making implicit assumption
that the image provided is a T1 (with light GM and dark CSF) (Dale et al.,
1999).

These restrictions have required the development of bespoke methods
for tissue segmentation and cortical surface mesh extraction for neonates
and this paper summarises a refined pipeline for cortical surface mesh mod-
elling and inflation that has been tuned on dHCP-acquired neonatal data.
Within this pipeline, some tools, such as the Draw-EM tool Makropoulos
et al. (2014), existed before the project. However, refinements have needed
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to be made to optimise this tool to work well with term-born neonates, and
the increased resolution and contrast in the new cohort. This is because
previous developmental brain studies performed by this project consortium,
have been conducted predominantly on preterm data. The contrast and ap-
pearance of these images is, due to the increased CSF and fewer cortical folds,
very different from healthy neonates at an equivalent developmental stage.
Therefore, this has required significant improvements to the Draw-EM tool
in order to: allow segmentation of hypo and hyper intense patches of white
matter (within the broader class of all WM tissue); and improve alignment
of tissue class priors in order to improve the accuracy of the segmentation,
particularly for gyral crowns. Prior to these improvements it was common
to observe segmentations missing broad sections of cortical folds.

Other tools have been newly implemented and improve on existing tools
in the literature. These include the methods for white and pial surface mesh
modelling (Schuh et al., 2017), which improves on the segmentation bound-
ary produced using Draw-EM by introducing intensity-based terms to reduce
the impact of partial volume. This approach is inspired by FreeSurfer (Dale
et al., 1999), which also refines surfaces based on image intensity values.
However, our neonatal approach is tuned to work with neonatal T2 inten-
sity information, allowing extraction of white and pial surfaces, using novel
deformable surface forces specifically designed for the reconstruction of the
neonatal cortex. Surface QC suggests this method generates surfaces that
agree well with tissue boundaries in 85% of cases, as assessed by expert raters.

Finally, methods for surface inflation and spherical projection, represent
direct re-implementation of the inflation approach used in FreeSurfer (Fischl
et al., 1999b) and the spherical MDS embedding approach proposed by (Elad
et al., 2005). Their inclusion within the pipeline is therefore designed to
reduce software overhead. Note, all tools described in this paper are open
source and are available as part of MIRTK4. The full pipeline is available
as open-source 5 and this paper accompanies the first open data release 6

(version 1.1). The pipeline has been tested with different Linux distributions
and macOS, and can be executed on a standard PC with 8 GB RAM. A
typical dataset can be processed in around 18 hours using 8 CPU cores

4https://biomedia.doc.ic.ac.uk/software/mirtk/
5https://github.com/DevelopingHCP/structural-pipeline
6https://data.developingconnectome.org
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(segmentation: 7 hours, surface processing: 10 hours, additional processing:
1 hour).

It is important to stress that surface extraction techniques described in
this paper are not infallible. Manual QC suggests that in a minority (2%) of
cases (typically overlapping with highly motion data sets) entire folds may
be excluded from the automatic segmentation. These errors are propagated
to the surface extraction, which despite accounting for tissue intensity may
not be able to recover from major segmentation errors, due to the significant
impact of partial volume. Surface QC suggests there exists regional biases,
highlighting the temporal and occipital lobe as regions most effected. For
these regions, in particular, comparisons of morphological features such as
cortical thickness, must be interpreted with caution.

The methods described in this paper are by no means designed to rep-
resent the breadth of tools available for neonatal image processing. Indeed,
several alternative methods for neonatal segmentation have been proposed
including (Xue et al., 2007; Hill et al., 2010; Li et al., 2012, 2014a, 2016;
Hazlett et al., 2017). Different techniques have also been proposed to ensure
consistent segmentation/reconstructed surfaces between different time points
in longitudinally acquired data (Nie et al., 2012; Dai et al., 2013; Wang et al.,
2013; Li et al., 2014a,c) is not something that has been explicitly dealt with
in our pipeline as relatively few data sets (8%) are longitudinal. Further,
longitudinal deformation studies that have been performed using this data
indicate that the patterns of deformation observed are biologically plausible
Robinson et al. (2017). Nevertheless, this type of approach may prove more
valuable when the project expands to fetal data.

In this paper, we extend upon our previous segmentation algorithms
Makropoulos et al. (2012, 2014). These methods are state-of-the-art gener-
ating the most accurate results on a recent neonatal segmentation challenge
(Išgum et al., 2015), and demonstrating robustness with respect to segmen-
tation of the neonatal brain at different scan ages, despite large differences
in appearance (Makropoulos et al., 2014, 2016). Part of the reason for the
success of these methods is the inclusion of terms that reflect prior knowl-
edge derived from manually annotated tissue atlases (Serag et al., 2012), and
knowledge of how partial volume reflects tissue contrast. Nevertheless, in
very low contrast areas, even our revised automated segmentation may still
fail. In these cases, the deformable surface model may also not recover the
correct boundaries, as information provided by tissue intensities is obscured
through partial volume. Complete correction of these issues will likely require
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development of completely new tools for segmentation and surface extraction
that incorporate enhanced prior information. This might be inferred from
higher resolution images, or improved manual segmentations.

The dHCP is not the only large-scale project focused on open-release of
developing brain data. The baby connectome project, run as a collaboration
between the University of North Carolina and the University of Minnesota,
seeks to provide data on how the human brain develops from birth through
early childhood by collecting 500 data sets of infants between 0 and 5 years
of age. Half of this data will be collected as longitudinal scans. The data set
does not overlap with the dHCP, where neonatal scans are all collected before
and within a few days of birth, but instead will collect valuable information
on how the brain develops in the years after birth. An important future goal
of both projects will be the provision of tools to link these data sets.

In the absence of ground truth knowledge of the correct tissue class mem-
bership and surface geometry of all neonatal datasets, assessment of different
parts of the proposed pipeline has been performed through quality control in-
spection of the images, resulting tissue segmentations and surface reconstruc-
tion by two expert raters. Quality was assessed through metrics designed to
meet our assessment of the needs of the community, including evaluation of
the amount of motion, and anatomical correctness of the segmentation and
surfaces. Results suggest that, out of 160 images, 2% had to be discarded
on account of the effects of motion being too severe to be corrected during
reconstruction. Of the remaining data sets, only an additional 1% had to
be discarded due to poor segmentations. Surface reconstruction quality was
assessed on 43 subjects for 20 ROIs each (860 ROIs) with only 2% of the
ROIs presenting poor quality.

There are limitations to this QC in as much as evaluation was performed
manually, by a relatively small number of raters. In future we aim to train
a classifier that will automatically score an image, segmentation or surface
based on the existing manual scores. Nevertheless, quality assessment of
neurological data is extremely challenging on account of the lack of ground
truth. We release the data openly and encourage users to feedback their
experience.

Structural image data for the dHCP have been collected at 0.8 mm
3 reso-

lution, and reconstructed at 0.5mm
3 isotropic resolution, with the goal of en-

suring the best possible quality surface extraction. We recommend that any
study, seeking to replicate results from the dHCP pipeline, acquire scans at a
similar, or higher, resolution. Nevertheless, the methods used in the paper are
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robust to the increased partial-volume effects of low-resolution neonatal MRI
data. In particular, the Draw-EM method is robust to lower-resolution data,
having been initially developed for data acquired from overlapping stacks
at 0.86 × 0.86 mm in-plane resolution, slice thickness 2 mm, and overlap of
1mm (Makropoulos et al., 2012). In principle, as surface extraction is contin-
gent upon the result of successful segmentation, surfaces could be extracted
from low resolution data. However, the parameters of intensity-based surface
correction tools used within the proposed pipeline would likely need to be
re-tuned, and it is possible that the proportion of errors, such as missing gyri,
would be increased. Note, for any study seeking to apply proposed pipeline
to new data, we must stress that the parameters used in the paper have not
been quantitatively assessed. Optimal choice of parameters is not feasible
due to the lack of available ground truth. Subjective choices have been made
that balance prior understanding, that the cortical surface is smooth, against
a perfect fit with tissue contrast (which is impacted by noise and tessellation
of the images.

The surface meshes generated through this pipeline will serve as a basis
from which structural, functional and diffusion datasets will be compared
across populations and over time. Comparisons between data sets will be
facilitated through development of standard ”grayordinate” CIFTI template
spaces Glasser et al. (2013), which will allow compact representations of high-
dimensional dMRI and fMRI data. Unlike for adult data these will evolve
spatio-temporally to account for the rapid development of neonatal brains.
Methods for generating these atlases are considered out of the scope of this
paper, but interested readers should refer to the frameworks described in
Schuh et al. (2015) and Bozek et al. (2016b, 2017) for more details. Alterna-
tive techniques have also been proposed for construction of perinatal surface
atlases (Hill et al., 2010; Li et al., 2015c).

Within this paper we present cortical T1/T2 myelin maps using the
method proposed in Glasser and Van Essen (2011) and adapted for use in
neonates as shown in Bozek et al. (2016a). The use of HCP-standard cortical
myelin maps is chosen to allow comparison with adult HCP data, and also
on account the choice of scans available through the dHCP protocol. Within
this limitation, it is important to note that the neonatal myelin maps were
generated from a IR-TSE T1 sequence, rather than the MPRAGE as used
in Glasser and Van Essen (2011). Outside of these restrictions, it is impor-
tant to acknowledge that myelin has been studied long before in the past
(Barkovich et al., 1988; Counsell et al., 2002; Prastawa et al., 2005). Fur-
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thermore, for studies specifically interested in the development of cortical
myelin, there exist more advanced methods for sensitising MRI acquisition
to myelin content (Borich et al., 2013; Deoni et al., 2011; Dinse et al., 2015;
Laule et al., 2008; MacKay and Laule, 2016; Melbourne et al., 2013; Stüber
et al., 2014). Some of these in particular, have been shown to be sensitive to
developmental changes in myelin (predominantly of the white matter) (Deoni
et al., 2011, 2015). A more thorough review of methods for myelin mapping
is provided in MacKay and Laule (2016).

In this work we provide an example cortical parcellation based on the
neonatal atlas constructed by Gousias et al. (2012), which is incorporated
within the Draw-EM segmentation tool. The regions in the Gousias et al.
(2012) atlas have been specifically annotated for the neonatal brain and are
different from the Desikan-Killiany atlas (Desikan et al., 2006) that has been
developed for adults, and is being used in FreeSurfer. Figure 25 presents
an example cortical surface parcellated with the two different atlases. Al-
ternative multi-label atlases could be used for the segmentation and cortical
parcellation (de Macedo Rodrigues et al., 2015; Alexander et al., 2016), how-
ever these are not publicly available and could not be included in our publicly
available pipeline software. The Melbourne Children’s Regional Infant Brain
(M-CRIB) atlas constructed by Alexander et al. (2016) would be particularly
interesting as it replicates the Desikan-Killiany protocol and delineates 100
regions in the T2 scans of 10 term-born neonates. This could help to link
regions between the perinatal and adult period. In future, it may also prove
valuable to delineate the cortex based on patterns of structural or functional
connectivity, using methods such as Arslan et al. (2015); Craddock et al.
(2012); Gordon et al. (2014); Parisot et al. (2016a,b), or train a classifier
that will propagate the Glasser et al. (2016a) method for multi-modal par-
cellation of the adult cortex onto neonatal brains.

Most importantly, application of the developed methods will allow to
study the developing brain and deviations due to pathology. Numerous works
have been published in the literature that have improved our understanding
of the perinatal brain (Ball et al., 2013b, 2017; Counsell et al., 2013; Doria
et al., 2010; Kapellou et al., 2006; Keunen et al., 2017; Krishnan et al., 2017;
Xue et al., 2007; Dubois et al., 2008a,b; Pienaar et al., 2008; Rodriguez-
Carranza et al., 2008; Awate et al., 2010; Hill et al., 2010; Rathbone et al.,
2011; Moeskops et al., 2013; Li et al., 2014b,a; Meng et al., 2014; Nie et al.,
2014; Wang et al., 2014; Engelhardt et al., 2015; Lefevre et al., 2015; Li et al.,
2015b; Moeskops et al., 2015; Li et al., 2016; Hazlett et al., 2017). Study-
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Figure 25: Comparison of the Draw-EM labels, based on Gousias et al. (2012), (top)
and FreeSurfer labels, based on Desikan et al. (2006), registered and transformed on an
example subject (bottom). Note that the colours used for the different atlas regions are
independently drawn for the atlases, and not correspond between the two atlas labellings.

ing the developing connectome will open up many opportunities in future,
not least because neonatal brain imaging data is changing rapidly, at scales
that can be clearly resolved using current MRI technology. Work is already
under-way for the reconstruction, artefact-removal and surface-projection of
neonatal functional, and diffusion data sets, and the extension of all pipelines
to fetal cohorts. Together, these image sets (and the genetic, behavioural and
clinical information that support them) will allow improved understanding of
the spatio-temporal development of the cortex at the millimetre scale. They
will enable modelling of the mechanisms of cognitive development, and poten-
tially allow to further link the perinatal brain development to the childhood
and adult period. Analysis of these data sets will provide a vital basis of
comparison from which preterm development, and the causes of neurological
conditions such as cerebral palsy or autism, may become better understood.
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Appendix A.

Figure A.1: Example segmentations and surface reconstructions of subjects scanned at 37, 38, 39 and 40 weeks (from
left to right: coronal T2, coronal T2 with segmentation overlaid, coronal T2 with white and pial surfaces overlaid,
axial T2, axial T2 with segmentation overlaid, axial T2 with white and pial surfaces overlaid).
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Figure A.2: Example segmentations and surface reconstructions of subjects scanned at 41, 42, 43 and 44 weeks (from
left to right: coronal T2, coronal T2 with segmentation overlaid, coronal T2 with white and pial surfaces overlaid,
axial T2, axial T2 with segmentation overlaid, axial T2 with white and pial surfaces overlaid).
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Figure A.3: Example left hemispheres white surface reconstructions of subjects (same as Fig. A.1) scanned at 37,
38, 39 and 40 weeks with cortical thickness overlaid (from left to right: lateral view of white surface, medial view
of white surface, lateral view of white surface showing cortical thickness, medial view of white surface with cortical
thickness).
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Figure A.4: Example left hemispheres white surface reconstructions of subjects (same as Fig. A.2) scanned at 41,
42, 43 and 44 weeks with cortical thickness overlaid (from left to right: lateral view of white surface, medial view
of white surface, lateral view of white surface showing cortical thickness, medial view of white surface with cortical
thickness).
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Figure A.5: Example left hemisphere pial surfaces for all subjects in Figs. A.3 and A.4). Lateral and medial views
are shown
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