bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A tutorial on Gaussian process regression: Modelling,
exploring, and exploiting functions

Eric Schulz*, Maarten Speekenbrink™*, Andreas Krause

Abstract

This tutorial introduces the reader to Gaussian process regression as an
expressive tool to model, actively explore and exploit unknown functions.
Gaussian process regression is a powerful, non-parametric Bayesian ap-
proach towards regression problems that can be utilized in exploration and
exploitation scenarios. This tutorial aims to provide an accessible intro-
duction to these techniques. We will introduce Gaussian processes which
generate distributions over functions used for Bayesian non-parametric re-
gression, and demonstrate their use in applications and didactic examples
including simple regression problems, a demonstration of kernel-encoded
prior assumptions and compositions, a pure exploration scenario within an
optimal design framework, and a bandit-like exploration-exploitation sce-
nario where the goal is to recommend movies. Beyond that, we describe
a situation modelling risk-averse exploration in which an additional con-
straint (not to sample below a certain threshold) needs to be accounted for.
Lastly, we summarize recent psychological experiments utilizing Gaussian
processes. Software and literature pointers are also provided.

Keywords: Gaussian Process Regression, Active Learning,

*Department of Psychology, Harvard University.
**Department of Experimental Psychology, University College London.
Department of Computer Science, Swiss Federal Institute of Technology Ziirich.

Preprint submitted to biorziv October 11, 2017

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Exploration-Exploitation, Bandit Problems

1. Introduction

Whether we try to find a function that accurately describes participants’
behaviour (Cavagnaro, Aranovich, McClure, Pitt, and Myung, 2014), esti-
mate parameters of psychological models (Wetzels, Vandekerckhove, Tuer-
linckx, and Wagenmakers, 2010), try to sequentially optimize the stimuli
used in an experiment (Myung and Pitt, 2009), or model how participants
learn to interact with their environment (Meder and Nelson, 2012), many
problems require us to assess unknown functions that map inputs to out-
puts. Often, the shape of the underlying function is unknown, the function
might be hard to evaluate analytically, or other requirements such as design
costs might complicate the process of information acquisition. In these situ-
ations, Gaussian process regression can serve as a useful tool for performing
inference both passively (for example, describing a given data set as best
as possible, allowing one to also predict future data) as well as actively (for
example, learning while choosing input points to produce the highest possi-
ble outputs, cf Williams and Rasmussen, 2006). Gaussian process regression
is a non-parametric Bayesian approach (Gershman and Blei, 2012) towards
regression problems. It can capture a wide variety of relations between in-
puts and outputs by utilizing a theoretically infinite number of parameters
and letting the data determine the level of complexity through the means
of Bayesian inference (Williams, 1998).

This tutorial will introduce Gaussian process regression as an approach
towards describing, and actively learning and optimizing unknown functions.

It is intended to be accessible to a general readership and focuses on practi-

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

cal examples and high-level explanations. It consists of six main parts: The
first part will introduce the mathematical underpinnings of Gaussian process
regression. The second part will show how different kernels can encode prior
assumptions about the underlying function. Next, we will show how Gaus-
sian processes can be used in problems of optimal experimental design, when
the goal is pure exploration, i.e., to learn a function as well as possible. The
fourth part will describe how Gaussian process-based Bayesian optimiza-
tion (here defined as an exploration-exploitation problem) works. In the
fifth part, we will talk about ways of utilizing Gaussian process exploration-
exploitation methods in situations with additional requirements and show
one example of “safe exploration”, where the goal is to avoid outputs below
a certain threshold. We will conclude by summarizing current research that
treats Gaussian process regression as a psychological model to assess human
function learning.

As a tutorial like this can never be fully comprehensive, we have tried

to provide detailed references and software pointers whenever possible.

2. Gaussian processes — distributions over functions

2.1. Motivation

Let f denote an (unknown) function which maps inputs = to outputs
y: f: X — Y. Throughout the following examples, we will use Gaussian
process regression to accomplish either one of three different goals:

By modelling a function f we mean mathematically representing the re-
lation between inputs and outputs. An accurate model of f allows us to
predict the output for many possible input values. In practice, this means

collecting observations of both inputs and outputs and on the basis of this

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

generating accurate predictions for newly observed points. As an example of
this, we will use Gaussian process regression to model mouse trajectories in
a categorization experiment. Additionally, we will use compositional Gaus-
sian process regression to decompose temporal dependencies in participants’
reaction times into interesting patterns.

By exploring a function we mean to actively choose the input points for
which to observe the outputs in order to accurately model the function. In
pure exploration problems, the only objective is to explore the underlying
function well in order to learn about it as quickly and accurately as possi-
ble. This set-up is closely related to optimal experimental design scenarios
as it equates to adaptively selecting the input points based on what is al-
ready known about the function and where knowledge can be improved.
In a simple simulation experiment, we will show how exploration based on
Gaussian process regression can recover underlying response functions faster
than other commonly used techniques.

In exploration-exploitation problems, the outcomes of chosen inputs are
accrued over time. The objective is to find inputs that produce the highest
outputs in order to maximise the total reward accrued within a particu-
lar period of time. Exploration solely serves the purpose of doing so most
effectively. This set-up is closely related to optimization problems as the
goal is to find the maximum of the function as efficiently as possible. It
is called exploration-exploitation as scenarios where the output of the un-
derlying function has to be optimized require us to both sample uncertain
areas in order to gain more knowledge about the function (exploration)
as well as sampling input points that are likely to generate high outputs
given the current knowledge of the function (exploitation). As an example,

we will show how Gaussian process-based exploration-exploitation quickly

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

finds highly rated items in a movie recommendation application. Moreover,
we will show how this method can be adapted to additional requirements
such as avoiding outputs below a given threshold.

Both exploration and exploration-exploitation tasks require choosing use-

ful inputs. Doing so requires two ingredients:

1. A model used to learn about the function f.

2. A method to select inputs based on the current knowledge of f.

As a valid model of the underlying function f is crucial for all three goals
of modelling, exploration, and exploitation, we will first focus on Gaussian
processes as a powerful and expressive method to model unknown functions.
We will focus on applying this tool to exploration-exploitation scenarios
afterwards. Table 1 provides an overview of the different Gaussian process

methods (and their example applications) introduced in this tutorial.

Table 1: Overview of different Gaussian process methods (including their example appli-

cations) introduced in this tutorial.

Method Purpose Approach | Example
Modelling Simple regression passive Mouse trajectories
Compositional | Find patterns within)
passive Response time patterns

modelling data

Learn function as) Learn simulated
Exploration active

quickly as possible functions
Exploration- i

Optimize function active Movie recommendation
exploitation

Optimize function
Safe) Cautious stimulus

while staying above a active
exploration optimization

threshold

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Table 2: Observations for the regression example. Inputs x; and corresponding outputs

y+ observed at 6 different times t = 1,...,6.

U] @ | Y
1109]0.1
2138 1.2
315221
4161 |1.1
5175 | 1.5
6196 1.2

2.2. Modelling functions: the weight space view

Let us start by considering a standard approach to model functions:
linear regression (here approached from a Bayesian viewpoint). Imagine we
have collected the observations shown in Table 2 and that we want to predict
the value of y for a new input point x, = 3. In linear regression, we assume

that the outputs are a linear function of the inputs with additional noise:

v = f(x) + &
= Bo + Br¢ + €,
where the noise term ¢; follows a normal distribution

e ~ N(0,0%)

with mean 0 and variance o2. As this will be useful later, we can also write
this in matrix algebra as

yt:xtTw—Fq

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

defining the vectors

1 Bo

Xt = s W =

Tt ﬁl

To predict the output for z,, we need to estimate the weights from the

previous observations

(1 0.9] [0.1]

1 38 1.2
Xe=1| | yr =

1 9.6] 1.2]

Adopting a Bayesian framework, we do so through the posterior distribution
over the weights. If we use a Gaussian prior over the weights p(w) = N(0, X)
and the Gaussian likelihood p(y:| X, w) = N (X w,02I), then this poste-

rior distribution is

p(W‘Yt, Xt) (08 p(yt|Xt7 W)p(W)

1
:N (O_QAt_lxtyt7At_1> (1)

e
where A; = X714+ 072X X, (see also Williams, 1998).

As inference is performed over the weights (i.e., we try to find the best
estimate for the S-weights given the data), this is also sometimes referred to
as “the weight space view of regression”. To predict the output y, at a new
test point x4, we can average out the error term and focus on the expected
value which is provided by the function f, predicting f, = yx — €x = f(xx).

In the predictive distribution of f,, we average out our uncertainty regarding

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

the weights

P(fulxe; Xty y1) = /p(f*\x*,W)p(WIXt,Yt)dW
1
- (AT Xy A) ®
€

You can also imagine generating this posterior predictive distribution over
fx by first sampling weights from the posterior distribution over weights (see
Equation 1), and then using these sampled weights to generate predictions
for the new input points.

A good point prediction of ¥, is the mean of this predictive distribution.
Comparing the mean in (2) to the mean in (1), we see that we can simply
multiply the posterior mean of w with the new input x,, resulting in the
prediction 0.56 + 3 x 0.12 = 0.92.

While linear regression is often chosen to model functions, it assumes the
function has indeed a linear shape. However, only few relations in the real
world are truly linear, and we need a way to model non-linear dependencies
as well. One possible adjustment is to use a mapping of the inputs x onto a
“feature space”, i.e. by transforming the inputs with a non-linear function
¢(x), resulting in an n-dimensional vector of numerical features representing
the transformed input. After transformation, we can again perform linear
Bayesian regression, but now on the transformed input. A common mapping
is to use polynomials, resulting in polynomial regression. Take cubic regres-
sion as an example, which assumes a function f(z) = Bo+ B2+ Box? + Ba3.

Deriving the posterior for this model is similar to the linear regression de-

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

scribed before, only that the input matrix X; is replaced by the mapping:

[1 09 081 0729 |

1 3.8 14.44 54.872
P, = p(Xy) =

|1 9.6 92.16 884.736]

In our example —and again using the posterior mean of the weights— this

would result in the prediction f, = —0.6740.98 x 3—0.13 x 32+0.01 x 3% =

1.37.
Bayesian Regression
Linear Cubic

5.0

251 . .
> 0.0 .

-25

-5.01

0.0 25 5.0 75 10.0 0.0 25 5.0 75 10.0
X

Figure 1: Example of performing Bayesian linear and cubic regression. Grey lines indicate
predictions for different sampled posterior weights. Black dots mark empirical observa-
tions. Dark grey lines mark the current mean posterior predictions. The red triangle

shows the prediction for a new data point x, = 3.

Mapping input variables into a feature space offers considerably more
flexibility and allows one to model functions of any shape. However, this

flexibility is also a drawback. There are infinitely many mappings possible

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

and we have to choose one either a priori or by model comparison within a
set of possible mappings. Especially if the problem is to explore and exploit a
completely unknown function, this approach will not be beneficial as there is
little guidance to which mapping we should try. Gaussian process regression,
to which we turn next, offers a principled solution to this problem in which
mappings are chosen implicitly, effectively letting “the data decide” on the

complexity of the function®.

2.8. Modelling functions: the function space view

In the weight space view of the previous section, we focused on distri-
butions over weights. As each set of weights implies a particular function, a
distribution over weights implies a distribution over functions. In Gaussian
process regression, we focus directly on such distributions over functions.

A Gaussian process defines a distribution over functions such that, if
we pick any two or more points in a function (i.e., different input-output
pairs), observations of the outputs at these points follow a joint (multivari-
ate) Gaussian distribution. More formally, a Gaussian process is defined as
a collection of random variables, any finite number of which have a joint
(multivariate) Gaussian distribution.

In Gaussian process regression, we assume the output y of a function f

at input x can be written as

y=f(x)+e (3)

with € ~ N(0,02). Note that this is similar to the assumption made in lin-

ear regression, in that we assume an observation consists of an independent

1We will see later that it is in fact not only the data that determines the complexity

of the Gaussian process, but also the chosen kernel.

10

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

“signal” term f(x) and “noise” term e. In Gaussian process regression, how-
ever, we assume that the signal term is also a random variable which follows
a particular distribution. This distribution is subjective in the sense that
the distribution reflects our uncertainty regarding the function. The uncer-
tainty regarding f can be reduced by observing the output of the function at
different input points. The noise term e reflects the inherent randomness in
the observations, which is always present no matter how many observations
we make. In Gaussian process regression, we assume the function f(x) is

distributed as a Gaussian process:
f(x) ~GP (m(x), k(x,x')))

A Gaussian process GP is a distribution over functions and is defined by
a mean and a covariance function. The mean function m(x) reflects the

expected function value at input x:

i.e. the average of all functions in the distribution evaluated at input x. The
prior mean function is often set to m(x) = 0 in order to avoid expensive
posterior computations and only do inference via the covariance function.
Empirically, setting the prior to 0 is often achieved by subtracting the (prior)
mean from all observations. The covariance function k(x,x’) models the

dependence between the function values at different input points x and x':

k(x,x) = E [(f(x) — m(x))(f(x) — m(x))]

The function k is commonly called the kernel of the Gaussian process
(Jékel, Scholkopf, and Wichmann, 2007). The choice of an appropriate

kernel is based on assumptions such as smoothness and likely patterns to be

11

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

expected in the data. A sensible assumption is usually that the correlation
between two points decays with the distance between the points. This means
that closer points are expected to behave more similarly than points which
are further away from each other. Ome very popular choice of a kernel
fulfilling this assumption is the radial basis function kernel, which is defined

as

k(x,x') = a]% exp (—”X;;;/H2> .
The radial basis function provides an expressive kernel to model smooth
and stationary functions. The two hyper-parameters A (called the length-
scale) and 012[(the signal variance) can be varied to increase or reduce the a
priori correlation between points and consequentially the variability of the
resulting function.
Once a mean function and kernel are chosen, we can use the Gaussian

process to draw a priori function values, as well as posterior function values

conditional upon previous observations.

2.8.1. Sampling functions from a GP

Although Gaussian processes are continuous, sampling a function from
a Gaussian process is generally done by computing the function values of a
selected set of input points. Theoretically, a function can be represented as
a vector of infinite size; however, as we only have to make predictions for
finitely many points in practice, we can draw outputs for these points by
using a multivariate normal distribution with a covariance matrix generated
by the kernel. Let X, be a matrix with on each row a new input point

i =1,...,n. To sample a function, we first compute the covariances

12

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

between all inputs in X, and collect these in an n x n matrix:

k(X’f,Xl) k(XT,X’i) k(XT7X¢L)
k(x3,x k(x3,x k(x3, %7
) | FOSEXD) O x0) o ki)
E(xxT) k(. x3) - k(XX

Choosing the usual prior mean function m(x) = 0 to simplify the matrix
algebra shown in Equation 4, we can then sample values of f at inputs X,

from the GP by sampling from a multivariate normal distribution
£~ N (07 K(X*7 X*))

where we use the notation f, = [f(x}),..., f(x%)]". Note that f, is a sample
of the function values. To sample observations y,, we would have to add an

additional and independent sample of the noise term e.

2.8.2. Posterior predictions from a GP

Suppose we have collected observations Dy = {X;,y;} and we want to
make predictions for new inputs X, by drawing f, from the posterior distri-
bution p(f|D;). By definition, previous observations y; and function values
f, follow a joint (multivariate) normal distribution. This distribution can

be written as

Yt K(Xy,Xy) + 021 K(X,X,)
~N|o,
£ K (X, Xt) K(X4, Xy)
where K (X, X;) is the covariance matrix between all observed points so far,

K(X,,X,) is the covariance matrix between the newly introduced points as

described earlier, K (X,, X;) is the covariance matrix between the new input

13

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

points and the already observed points and K (X, X,) is the covariance
matrix between the observed points and the new input points. Moreover, I is
an identity matrix (with 1’s on the diagonal, and 0’s elsewhere) and o2 is the
assumed noise level of observations (i.e. the variance of €). Using standard
results (see for example Rasmussen and Nickisch, 2010), the conditional
distribution p(f,|X¢, y¢, X,) is then a multivariate normal distribution with
mean

K(X,, Xo) [K(X, X0) +021] 'y
and covariance matrix
K (X, X,) = K(X,, Xy) [K(X, X¢) + afI] - K(X, Xy)
Note that this posterior is also a GP with mean function
me(x) = K (x,X) [K (X1, X0) + 021y (4)
and kernel
ke(x, %) = k(x, %) — K(x,X;) [K(Xy, Xq) + 021 K(Xy,x) (5)

This means that calculating the posterior mean and covariance of a GP in-
volves first calculating the 4 different covariance matrices above and then
combining them according to Equations 4-5. In order to aid the under-
standing of the matrix algebra involved in these calculations, the different

matrices are represented visually in Figure 2.

14

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- | | + —
L) —
Covariance 1
between observed Covariance Noise matrix: Y observations
points and all between all diagonal=02.
possible input observed else 0 i
points points Posterior mean

—
- -
Covariance Covariance Noise matrix:

between observed between all

]

) s ;
Covariance between points and all observed g::g%"a' o E:ovananc:lsl Posterior

all possible input possible input points ?s‘gﬁff:ﬁ ut and i

points points P P Covariance

observed points

Figure 2: Visual representation of calculating the GP posterior mean and covariance given
the example points from Table 2. Lighter colours indicate higher values. For the posterior
mean, the covariance between all observed points is multiplied by the inverse of the sum of
the covariance of the observed points and the noise matrix, as well as by the observations
of the dependent variable. For the posterior covariance, the overall covariance between all
possible input points is calculated and afterwards the product of the covariance between
the observed points and all possible input points, the inverse of the sum between the
covariance of the observed points and the noise matrix, as well as the covariance between

all possible input points and the observed points, is subtracted.

15

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

To predict f,, we can simply use the mean function in (4), or sample
functions from the GP with this mean function and the kernel in (5), as
described in the previous section.

Figure 3 shows an example of samples from a GP prior with a radial
basis function kernel (with A = 0.5), and samples from the posterior mean

functions after the data in Table 2 has been observed.

2.8.8. Switching back to the weight view

We can rewrite the mean function in (4) as

me(x) = Zwik(xi,x)
i=1

where each x; is a previously observed input value in X; and the weights are
collected in the vector w = [K (X, X4) + 0621]71 y:. This equation shows
that Gaussian process regression is equivalent to a linear regression model
using basis functions k to project the inputs into a feature space. To make
new predictions, every output y; is weighted by how similar its associated
input x; is to the to-be-predicted point x by a similarity measure induced
by the kernel. This results in a simple weighted sum to make predictions
for new points®. Therefore, a conceptually infinite parameter space boils
down to a finite sum when making predictions®. This sum only depends on
the chosen kernel £ and the data D; observed thus far (Kac and Siegert,
1947). This is why Gaussian process regression is referred to as a non-
parametric technique. It is not the case that this regression approach has

no parameters; actually, it has theoretically as many parameters w as there

2In fact, simple Bayesian linear regression can be recovered by using a linear kernel

k(z,2') = o} + 0}(z — ¢)(2' — c), which means that for 0-mean, k(z,z') = z "2’

3This is also sometimes referred to as the “kernel trick”

16

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Gaussian Process Regression

Prior Posterior
5.
> 0 s
Y
0.0 2.5 5.0 75 1d.oxoio 2.5 5.0 7.5 10.0

Figure 3: Samples from a Gaussian process prior and posterior. Grey lines indicate
samples from the GP. Black dots mark empirical observations. The dark grey line marks

the current mean of the GP. The red triangle shows the prediction for the new input point.

17

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

are observations. However, making predictions involves only a finite sum
over all past observations. Details for generating a prediction for z, = 3
given a radial basis function kernel with length scale A = 1, observation

variance 02 = 0.01, and signal variance 0]20 = 1 are provided in Table 4.

Table 3: Example of generating a prediction using a Gaussian process with a radial basis

function kernel. w; = [K(X,X) 4 o21] i 1=3;

t] x| oy Wy k(ze, xy) | wik(zy, z4)
1109]0.1 0.51 0.38 0.19
2138 12| -3.88 0.87 -3.37
315221 13.3 0.34 4.53
4161 | 1.1]-12.55 0.12 -1.48
5175 |15 5.83 0.01 0.06
6196 |12]| -0.34 0.00 0.00

Z?:l wek (e, Ty): -0.06

2.4. Optimizing hyper-parameters

The kernel usually contains hyper-parameters such as the length-scale,
signal variance, and noise variance, which are unknown and need to be in-
ferred from the data. As the posterior distribution over the hyper-parameters
is non-trivial to obtain, full Bayesian inference of the hyper-parameters is
not frequently used in practice. Instead, common practice is to obtain point
estimates of the hyper-parameters by maximising the marginal (log) likeli-
hood. This is similar to parameter estimation by maximum likelihood and
is also referred to as type-II maximum likelihood (ML-II, cf Williams and

Rasmussen, 2006). Given the data D = {X,y} and hyper-parameters 6

18

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(e.g., 0 = (A, a]%, 02)), the log marginal likelihood is
1 ., 1 n
logp(y|X,0) = —oy K,y — 5 log|Ky[— 5 log2m (6)

where K, = K(X,X) + 021 is the covariance matrix of the noisy output
values y. The marginal log likelihood can be viewed as a penalized fit mea-
sure, where the term —%yTK; ly measures the data fit —that is how well
the current kernel parametrization explains the dependent variable— and
—% log |K,| is a complexity penalization term. The final term —% log 27 is
a normalization constant. The marginal likelihood is normally maximized
through a gradient-ascent based optimization tool such as implemented in
Carl Rasmussen’s MATLAB function minimize.m 4. These routines make

use of the partial derivatives of (6) with respect to :

3 1+, 1 0K
——logp(y|X,0) = 5y 'K, 'y — 5 tr <Ky1 y)

d0; 2 2 06
1 T -1, 9Ky
= 2tr ((aa K,") o,

with o = K/ ly.

There are recent efforts to make hyper-parameter estimation fully Bayesian,
for example by using Stan (Flaxman, Gelman, Neill, Smola, Vehtari, and
Wilson, 2015), which are promising to result in more robust estimates by

additionally providing uncertainty estimates for the obtained parameters.

3. Example: Modelling mouse trajectories

As an example of modelling functions, we consider mouse trajectory data

from Kieslich and Henniger (2017). Participants performed a task in which

1A recent version of this function is available at

http://learning.eng.cam.ac.uk/carl/code/minimize

19

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

they had to classify animals (for example, a lion or a falcon) into different
categories (for example, a mammal or a bird) by using a computer mouse to
move a cursor from a start position (on the left of the screen) to the correct
category (on the right of the screen). Kieslich and Henniger tracked the lo-
cation of participants’ cursors at different time points, and these discretized
points can be summarized by functions describing movement trajectories
over the screen. Studying mouse trajectory data can reveal additional real-
time information about psychological processes such as categorization and
perception (see Freeman and Ambady, 2010).

Gaussian process regression has been successfully applied to such scenar-
ios, where it is useful as the priors over different functions can also be mod-
elled hierarchically, thereby assessing whether participants move the mouse
differently for typical (e.g., “monkey-mammal”) or atypical (e.g., “penguin-
bird”) category members, as described in more detail by Cox, Kachergis,
and Shiffrin (2012). Here, we simply want to test if Gaussian process re-
gression can be used as an appropriate smoothing technique for such data.
Smoothing mouse trajectory data is especially important if one wants to
make claims about the underlying shapes of group-level trajectories, for ex-
ample whether or not trajectories look different for typical than for atypical
exemplars. Additionally, smoothing mouse trajectories by using Gaussian
process regression comes with the additional benefit that possible posterior
trajectories can be samples as the GP provides not only a descriptive but
also a generative model of the data.

We take participants’ raw trajectory data (their x-y-coordinates) over
time and assess how well Gaussian process regression is able to predict left-
out trajectory points. More specifically, we use participants x coordinates

as input, and the y coordinates as output; for every trajectory, we randomly

20

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

sample 80% of the points and use them as a training set, and then pre-
dict the left-out 20% trajectory points. In order to make meaningful claims
about GP’s usefulness, we compare its performance to two other smoothing
techniques. First, a polynomial regression with up to 5 degrees, where the
order is chosen by Akaike’s “An Information Criterion” (Akaike, 1974; Lee,
2004). Secondly, a cubic smoothing spline with the degrees of freedom de-
termined by cross validation within the training set (Durrleman and Simon,
1989).

The left part of Figure 4 shows the mean square error over 1000 runs
including the attached standard error. We can see that Gaussian process
regression produces a lower out-of-sample prediction error than either the
polynomial regression or the spline smoothing, thereby demonstrating that
it is a useful tool for mouse trajectory modelling. The right part of Figure 4

shows an example of smooth lines generated by Gaussian process regression.

4. Encoding prior assumptions via the kernel

So far we have only focused on the radial basis function kernel to per-
form Gaussian process regression. However, other kernels are possible and
flexibility in choosing the kernel is one of the benefits of Gaussian process
regression. The kernel function k directly encodes prior assumptions about
the underlying function such as its smoothness and periodicity. Additionally,
more complex kernels can be created by combining simpler kernels through

operations such as addition or multiplication.

4.1. Encoding smoothness

The radial basis function kernel is a special case of a general class of

kernel functions called the Matérn kernel. The Matérn covariance between

21

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Model performance Mouse trajectories

75 5004
c
w 50 g

%) B 0
= g
>-

25
=500
GP Polynomial Spline 0 200 400 600 80C
Model X Position

Figure 4: Modeling mouse trajectories. Left: Performance of Gaussian Process mouse
trajectory smoothing as compared to Splines and polynomial regression. Error bars rep-
resent the standard error of the mean. Right: Smoothing lines produced by Gaussian

Process regression.

two points with distance 7 = |x — x/| is

k() = 022 (@%) K, (@f>

I'(v) p

where I' is the gamma function, K, is the modified Bessel function of the

second kind, and p and v are non-negative covariance parameters. A GP
with a Matérn covariance function has sample paths that are v — 1 times
differentiable. When v = p + 0.5, the Matérn kernel can be written as a
product of an exponential and a polynomial of order p.

P

2vr \ I'(p+1) (p+)! 8vt
kpros(T) = 0%exp | — X , :
pros(7) p] (2p+1) ZZ!(p—Z)! p

Here, p directly determines how quickly the covariance between two points

thins out in dependency of the distance between the two points. If p = 0,

22

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

then this leads to the Ornstein-Uhlenbeck process kernel

k()= UJ% exp <—§> ,

which encodes the prior assumption that the function is extremely unsmooth
(rough) and that observations do not provide a lot of information about
points that are anything but very close to the points we have observed so
far. In the limit as p — oo, the Matérn kernel becomes a radial basis func-
tion kernel. This kernel expects very smooth functions for which observing
one point provides considerably more information than if we assume very
rough underlying functions. Figure 5 shows prior and posterior samples for
both the Ornstein-Uhlenbeck process and the radial basis function kernel.
Notice how the prior samples are a lot more “rugged” for the former and
very smooth for the later. We can also see how encoding different prior
smoothness assumptions leads to different posterior samples after having
observed the same set of points (the points we used before). In particu-
lar, expecting very rough functions a priori leads to posteriors that do not
generalize far beyond the encountered observations, whereas expecting very
smooth functions leads to posterior samples that generalize more broadly
beyond the encountered points.

In most real world applications, practitioners choose the radial basis
function kernel and then optimize its length-scale in order to account for po-
tential mismatches between prior smoothness assumptions and the observed
data. The main reason for this is that the radial basis function kernel is
easy to specify and also computationally convenient as one only has to eval-
uate an exponentiated distance instead of a product between a polynomial
and an exponent as is the case for the Matern kernel. Within exploration-

exploitation scenarios, another frequent choice is to use a Matérn kernel with

23

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Differently Smooth GPs

Prior Posterior
o
21 ?
3.
¥ 7
0+ i c
=5
g
-2 =3
@
o
~
>)
8
2] 5
[os]
0 A& %
2.
=
=
-2 a
z
I I I I I I I I I I o |
0.0 2.5 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0
X

Figure 5: Samples from differently smooth Gaussian process priors and posteriors after
having observed the same set of points. Grey lines indicate samples from the GP. Black
dots mark empirical observations. The dark grey line marks the current mean of the GP.

The red triangle shows the prediction for the new data point.

24

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

p = 5 as an intermediate solution to encode the expectation of “smooth but
not too smooth” functions. However, instead of relying on such default
choices, it will be usually better to choose the level of smoothness by con-
sidering the expected properties of the underlying function, in order to avoid
mismatched priors (Schulz, Speekenbrink, Herndndez-Lobato, Ghahramani,
and Gershman, 2016¢). For example, whereas mouse trajectories are nor-
mally smooth and therefore might lend themselves well to using a radial
basis function kernel, other processes such as eye movements might be less
smooth and therefore modelled more precisely with an Ornstein-Uhlenbeck

kernel (Engbert and Kliegl, 2004).

4.2. Composing kernels

Another advantage of Gaussian process regression is that different kernels
can be combined, thereby creating a rich set of interpretable and reusable
building blocks (Duvenaud, Lloyd, Grosse, Tenenbaum, and Ghahramani,
2013). For example, adding two kernels together models the data as a super-
position of independent functions. Multiplying a kernel with a radial basis
function kernel, locally smooths the predictions of the first kernel.

Take the data set of atmospheric concentration of carbon dioxide over
a forty year horizon as shown in Figure 6. We can immediately see a pat-
tern within this data, which is that the CO2-concentration seems to increase
over the years, that there seems to be some periodicity by which at some
times within each year the CO2 emission is higher, and that this period may
not be perfectly replicated every year. Using a Gaussian process regression
framework, we can combine different kernels as building blocks in the at-
tempt to explain these patterns. Figure 6 shows posterior mean predictions

for different kernel combinations.

25

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Kernel composition example

RBF

400+

3757

3501

325+

RBF+Lin

400+

375+

CO2

325+

RBFxPer+Lin

400+

375+

350+

3251

1960 1980 2000
Year

Figure 6: Example of composing kernels by combining simpler kernels in order to explain
a complex function. Data were mean-centred before fitting the Gaussian process and
predictions were transformed back afterwards. Grey lines show observed CO2 emissions.
Red lines show posterior predictions of Gaussian process regressions with different kernels:
RBF is a radial basis function kernel, RBF+Lin is a kernel composed by adding a RBF
and a linear kernel, RBFxPer + Lin is a kernel composed by multiplying a radial basis

and periodic kernel and adding a linear kernel.

26

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

The first one shows a radial basis function alone, the second a sum of
a radial basis function kernel and a linear kernel, k(z,2') = (x — ¢)(2’ —
¢), and the third one the sum between a linear kernel and the product
between a radial basis function kernel and a periodic kernel, k(z,z’) =
62 exp (—w) As the radial basis function kernel tends to re-
verse back to the mean over time, it does not do a good job capturing the
linear trend of the data. Therefore, adding a linear kernel to the radial
basis function kernel already seems to improve predictions. Finally, mul-
tiplying the radial basis function kernel with a periodic kernel to create a
locally smoothed periodic kernel, which is then combined with an increasing
trend by adding a linear kernel seems to predict the data best. This shows
that the kernel can also be used to encode structural assumptions about
the underlying function more explicitly, especially when one wants to cover
more complex patterns than just interpolating smooth functions. Lloyd,
Duvenaud, Grosse, Tenenbaum, and Ghahramani (2014) show how compo-
sitional Gaussian process regression can be used to create an “automatic
statistician” which generates a full descriptive report when provided with a

time series.

4.3. Example: Temporal dependencies in response time analysis

Compositional Gaussian process regression is most useful if the underly-
ing function is supposed to show some inherent structure. One application
for which structural patterns have been discussed in the literature is the
analysis of long distance dependencies of response time patterns (Wagen-
makers, Farrell, and Ratcliff, 2004; Van Zandt and Townsend, 2014). In
particular, previous investigation suggest that response times over multiple

trials are dependent based on an auto-regressive term (i.e., previous response

27

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

times can predict the following) and a moving average term (i.e., the aver-
age response time can shift over trials). Here, we use compositional Gaus-
sian Process regression in order to see what kind of patterns it can extract
from participants long distance response time trials. For this, we analyse 4
participants of Wagenmakers et al. (2004) original study investigating long
distance dependencies. We do not think that this analysis can supplant the
more detailed approaches described in the literature, but nonetheless think
it is interesting to probe such data sets for compositional patterns.

The results of a compositional Gaussian process regression modelling
response times over 500 trials are shown for each participant individually in

Figure 7.

28

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Compositional response time modeling

Kernel — Linear — Linear+RBF — Linear+RBFxPeriodic

Participant 2

Participant 1

Participant 3 Participant 4

0 100 200 300 400 500 0 100 200 300 400 500
Trial

Figure 7: Response time data from Wagenmakers et al.. Grey line shows raw log-response

times. Coloured lines are created by the compositions extracted by compostional Gaussian

Process regression.

29

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Interestingly, all of the participants are best described by the same com-
positional components which are a Periodic x Linear + RBF (see Figure 7)
which indicates a repeating pattern with increasing amplitude and an over-
all smooth inter-dependency between trials. This means that participants
might be going through stages of shorter and longer response trials while
the biggest effect is that trials are predicted by previous trials in a smooth

way, similar to what has been found in the literature before.

5. General set-up for exploration-exploitation problems

Having found a powerful way to model functions, we can now focus on
ways to cleverly explore and exploit unknown functions. Within the Gaus-
sian process approach both pure exploration and exploration-exploitation
can be treated in a similar manner. Both use Gaussian process regression to
model the underlying function® and estimate the utility of available queries
(candidate input points to sample next) through what is called an acqui-
sition function. An acquisition function V can be seen as measuring the
usefulness (or utility) of candidate input points in terms of allowing one to
learn the function as best as possible (exploration) or producing the best
possible output (exploitation). The approach then goes on to choose as the
next input the one that promises to produce the highest utility. The way
this works is shown in Algorithm 1.

This algorithm starts out with a Gaussian process distribution over func-
tions, then assesses the usefulness of the available samples by utilizing the

acquisition function and selects the point that currently maximizes this func-

5In this context, a Gaussian process regression is sometimes also referred to as a “sur-

rogate model” (see Gramacy and Lee, 2008).

30

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Algorithm 1 General GP optimization algorithm
Require: Input space X’; acquisition function V;; GP-prior for f with mean

function m(x) and kernel k(x,x’)
fort=1,2,... do
Choose x} = arg maxyxex Vi(x)
Sample y; = f(x}) + &

end for

tion. The value of the utility function V;(x) thereby always depends on the
current posterior of the Gaussian process at time point ¢ (it can change on
every trial). Afterwards, the new output at the chosen sample point is ob-
served, the Gaussian process is updated, and the process starts anew. We
will use a simple radial basis function kernel to model the unknown func-
tions for all of the remaining examples. This choice is reasonable as in this
setting, we need to choose an input from a bounded range of possible input
points. As we do not have to extrapolate beyond the lower and upper bound

of this range, modelling the function mostly consists of interpolation.

6. Gaussian process active learning

The goal in a active learning setting is to learn an unknown function
as accurately and quickly as possible. In a psychological setting this could
mean for example to try and find out what a participant-specific forgetting
curve might look like and choosing retention intervals adaptively in order to
optimally learn about this function on each subsequent trial of an experiment

(e.g., Myung, Cavagnaro, and Pitt, 2013).

31

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

6.1. Acquisition function

In Bayesian inference, learning about a function means that the pos-
terior distribution over possible functions becomes more certain (e.g., less
dispersed). A useful measure of the uncertainty about a random variable Y

with probability distribution p is the differential entropy

H(Y)=— / p(y)logp(y) dy = E[log p(Y)].

The information that an input x provides about the random variable, which
we call the information gain, is the reduction in entropy due to observing

the input and corresponding output

I(Y;z)=H(Y) - H(Y|z) = — /p(y) log p(y) + p(y, z) log p(y, =) dy.

For example, if Y follows a d-variate Gaussian distribution with mean p

and covariance 3I, then the entropy is
1 d
HY)= §log (2me)?|X).

In our setting, we want to learn about the function, i.e. reduce the
entropy in the distribution p(f). In Gaussian process regression, we can

write the information gain as
1 -2
1(f;y) = ylog|I +0 K] 7)

where K = [k(x, 2')].

Even though finding the overall information gain maximizer is NP-hard,
it can be approximated by an efficient greedy algorithm based on Gaussian
process regression. If F/(A) = I(f;ya) is the information about the function

f after having observed a set of points A, then this algorithm picks x; =

32

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

argmax F'(A;—1 U {x}), that is greedily querying the point whose predicted

output is currently most uncertain.
Vi(x) = ki1(x, %) (8)

Here, uncertainty is measure by the variance of f at input x.

This algorithm starts with a Gaussian process prior for f and at each
time t = 1,...,T, sequentially samples those input points where the current
posterior predictive distribution p(f|D;—1) evaluated at x shows the highest
variance, i.e. the highest predictive uncertainty. This is a “greedy” algo-
rithm in the sense that it focuses on minimizing the current uncertainty,
rather than looking further ahead into the future. Even though this algo-
rithm, sometimes also called uncertainty sampling in statistics, looks naive
at first, it can actually be shown to obtain at least a constant fraction of the
maximum information gain reachable using at most 7" samples (see Krause,

Singh, and Guestrin, 2008, for more details):

F(Ar) > (1 - 1) max F(4) (9)

where F'(Ar) measures the information about f at time point ¢ within the
set A and e is Euler’s number. This is based on two properties of the acqui-
sition function called submodularity and monotonicity (Krause and Golovin,
2012). Intuitively, submodularity here corresponds to a diminishing returns
property of the acquisition function by which newly sampled points will add
less and less information about the underlying function. Montonicity means
that information never hurts (it is always helpful to observe more points).
Both properties are crucial to show that the greedy algorithm can be suc-
cessful. A simple example of the Gaussian process uncertainty reduction
sampler is shown in Figure 8 below. We have used the same set of obser-

vations as before and let the algorithm select a new observation by picking

33

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

as the next observation the one that currently has the highest predictive

uncertainty attached.

Optimal design

Output f(x)

0.0 25 5.0 75 10.0 0.0 25 5.0 75 10.0
Input

Figure 8: GP-uncertainty reduction example. The dark grey line marks the current mean
of the GP. The dashed line shows the mean plus the standard deviation. The light grey
lines are samples from the GP. The red triangle marks the current candidate point with

the highest attached uncertainty.

6.2. Example: Learning unknown functions

In order to demonstrate how Gaussian process-based exploration works,
we will show how the algorithm learns a set of unknown functions and
compare it to other algorithms. The objective is to learn an unknown
function as quickly and accurately as possible. For simplicity, we will fo-
cus on a function f which takes a one-dimensional and discretized input
x €10,0.01,0.02,...,10.00] and to which it maps an output y.

As GP regression is considered to learn many different functions well, we

will test the algorithm on a number of different functions that are frequently

34

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

encountered in psychology: a linear, quadratic, cubic, logarithmic, sine, and

a non-stationary® function. The functions are summarized in Table 4.

Table 4: Functions used in the Gaussian process exploration simulation.

Function Equation
linear flz)==x
quadratic flx)=2>+z
cubic flx) =23 -2+
sine f(z) = x x sin(z)
sin(mx) + cos(wz), if x <8
non-stationary | f(z) =
x, otherwise

In addition to a GP regression model, we also used models that explicitly
assume the function has a particular parametric form. These latter models
learn the parameters (the weights) defining the function directly and were
defined as a Gaussian process with a polynomial kernel with fixed degrees of
freedom, i.e. performing Bayesian linear regression. All of the models were
set up to learn the underlying function by picking as the next observation
the one that currently has the highest uncertainty (standard deviation of
the predicted mean) from within the input space = = [0, 10].

We let each model run 100 times over 40 trials for each underlying func-
tion and averaged the mean squared error over the whole discretized input
space for each step. We tested two different versions of learning the un-
derlying functions with a Gaussian process regression, one which selected

input points at random, i.e. uniformly from within the input space (GP-

5A non-stationary function for our purpose is a function that changes its parametric

form over different parts of the input space.

35

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Random), and the uncertainty reduction sampler described above, which
learns actively by choosing input points based on their predictive variance
(GP-Active). For all models, on each trial, the hyper-parameters (e.g., the
length-scale of the RBF kernel) were optimized by maximizing the marginal

log likelihood of the observations thus far. Results are shown in Figure 9.

36

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Performance over time

Linear Quadratic

Cubic Logarithm

Model

e Linear

+ Quadratic

® Cubic

X GP-Passive
* GP-Active

1.00-
0.75-
0.50-
0.25-
OIOO- 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 0 10 20 30 40
Trial

Figure 9: GP-uncertainty reduction example. GP-produced error always goes down. Lin-

ear model not always shown due to poor performance.

37

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

It can be seen that the Gaussian process model learns all functions ef-
ficiently. Even when the inputs are sampled at random, the error always
goes down for a Gaussian process regression. However, the error generally
goes down faster when inputs are selected actively. The other models only
occasionally learn better than the GP models, when the assumed parametric
form matches the true underlying form (for example, using a linear func-
tion to learn an underlying linear function). In some cases, using a cubic
Bayesian regression seems to result in overfitting which leads to the overall
error increasing again. In such cases, it might sometimes be better to select
input points at random first. Overall, the results indicate that Gaussian
process regression is especially useful in cases where the underlying function

is not known.

7. Exploration-Exploitation and Bayesian Optimization

In an exploration-exploitation scenario the goal is to find the input to a

function that produces the maximum output as quickly as possible.

x* = arg max f(x) (10)

where x* is the input that produces the highest output. One way to mea-
sure the quality of this search process is to quantify regret. Regret is the
difference between the output of the currently chosen argument and the best

output possible

r(x) = f(x*) = f(x). (11)

38

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

The cumulative regret is the sum of the regret over all trials, and the goal in

an exploration-exploitation scenario is to minimize the cumulative regret:

T

By =3 r(w) (12)

t=1
Again, finding the strategy that chooses the inputs to minimize the expected
cumulative regret is NP-hard. That is, determining the sequence of queries
(i.e. input choices) that lead to the lowest total regret is impossible for all but
the most trivial cases. However, there is again a greedy trick one can apply
in this scenario, which starts by reinterpreting the function maximization —
or regret minimization — problem as a multi-armed bandit task (cf Katehakis
and Veinott Jr, 1987). In a bandit task there are multiple options (arms)
with unknown probability of producing a reward and the goal is to choose the
best arm in order to maximise the overall reward (the name stems from the
one armed bandits that can be found in casinos). In the current situation, we
can view the discretized input points as the arms of a multi-armed bandit,
and the output of the function at those points as the unknown rewards
that are associated to each arm. What distinguishes the current situation
from traditional bandit tasks is that the rewards of the arms are correlated
in dependency of the underlying covariance kernel. Nevertheless, viewing
the task as a multi-armed bandit allows us to use strategies that have been
devised for traditional bandit tasks. One popular strategy is called the upper
confidence bound (UCB) algorithm, which relies on the following acquisition

function:

Vi) = m1 (%) + wiy/se1 (), (13)

where /s;—1(x) is the predictive standard deviation at a point x, and my is

the posterior mean function (4) and the posterior variance is s; = ki(x, x)

39

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(5). Finally, w; is a free parameter that determines the width of the confi-
dence interval. For example, setting w; = 1.96, results in a 95% confidence
interval for a single value x given a Gaussian distribution.

The UCB algorithm chooses the arm for which the upper confidence
bound is currently the highest. The upper confidence bound is determined
by two factors: the current estimate of the mean of f at a particular point
(the higher the estimate, the higher the bound) and the uncertainty at-
tached to that estimate (the higher the uncertainty, the higher the bound).
Therefore, the UCB algorithm trades off naturally between expectation and
uncertainty. An example of how the UCB algorithm works, using the same

data as before, is shown in Figure 10.

Upper Confidence Band sampling

Step 1 Step 2

3.
— 21
Re)
3 1
5
O

0.

_1.

0.0 25 5.0 75 10.0 0.0 25 5.0 75 10.0

Input

Figure 10: GP-UCB example. The dark grey line marks the current mean of the GP. The
dashed line marks the GP’s upper confidence bound. The light grey lines are samples
from the GP. The red triangle marks the point that currently produces the highest UCB.

Even though the greedy UCB strategy is naive, it can be shown that its

40

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

regret is sublinear for suitable choices of wy, again using an argument that
relies on the submodularity and monotonicity of the overall information
gain (Srinivas, Krause, Kakade, and Seeger, 2009). Sublinear regret here
just means that the regret per round goes down in expectation, thereby
guaranteeing that the algorithm picks better points over time. These regret
bounds are known even for the agnostic case in which the underlying function
is unknown (but lies in the RKHS norm, see Srinivas et al., 2009). However,
trying to optimize an underlying function with the wrong prior kernel can

lead to a noticeable increase in regret (Schulz et al., 2016¢).

7.1. GP-UCB Example: Recommending movies

As an example of applying Gaussian Process upper confidence bound
sampling (GP-UCB) to exploration-exploitation problems, we will use it in
a movie recommendation scenario, where the task is to recommend the best
movies possible to a user with unknown preferences. This involves both
learning how different features of movies influence the liking of a movie and
recommending the movies that will be liked the most. For this application,
we sampled 5141 movies from the IMDb database and recorded their fea-
tures such as the year they appeared, the budget that was used to make
them, their length, as well as how many people had evaluated the movie on
the platform, number of facebook likes of different actors within the movie,
genre of the movie, etc. As a proxy for how much a person would enjoy the
movie, we used the average IMDb score, which is based on the ratings of
registered users. As there were 27 features in total, we performed a Principal
Component Analysis extracting 8 components that together explained more
than 90% of the variance within the feature sets. These components were

then used as an input for the optimization routine. We used a GP-UCB

41

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

with a radial basis function kernel, set w = 3 in the UCB acquisition func-
tion to encourage exploration’, initialized the GP with 5 randomly sampled
observations, and then let the algorithm pick 20 movies sequentially. This
procedure was repeated 50 times. Even though recommender systems nor-
mally try to recommend the best movie for a particular user, this approach

can be seen as recommending movies to an average user.

"Running the algorithm with w = 2 or setting w dynamically leads to similar results.

42

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Score over trials Regret over trials
8-
7.5-
6-
<4 <4
3 3 4-
» 5.0~ %}
24
25-
0-
0 5 10 15 20 0 5 10 15 20
Trial Trial
Most frequently sampled movies on first 5 trials Most frequently sampled movies on last 5 trials
50+ 50+
40+ 40+
&30+ Qso-
S o
] 3
2 T
g o
(5 bt
(L 20+ L 20+
N . I

Fight~
Club
Wolf of "

Rises
Wall Street

Winnie
the Pooh
You've
got mail
What just’
Lord of "
the Rings
X-Men
Final
Destination
Inception
Avatar

i
i
Pulp Fiction 7 -

happened
Anchorman
The Host”
Fight Club]
Inception
Avengers
Dark Knight
Interstellar
Shawshank
Redemption
Dark Knight~

<
Qo
<.
®

Movie

Figure 11: Recommending movies with a GP-UCB algorithm. The score (upper left, error
bars represent the standard error of the mean) goes up over all runs and plateaus very
quickly at around the highest value possible (9.3). Vice versa, the overall regret (upper
right) goes down over trials an quickly approaches 0. Within the first 5 samples, movies
are mostly picked at random and no clear pattern of movies seems to dominate (bottom

right). However, within the last 5 trials GP-UCB preferentially samples highly rated

movies (bottom right).

43

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Results are shown in Figure 11. It can be seen that the algorithm quickly
starts choosing movies that produce high scores which results in the overall
mean score to go up and the regret to go down over time. Moreover, the
variance of the picked movies also goes down over time as GP-UCB almost
exclusively samples highly rated movies later on. Whereas the 10 most
frequently sampled movies within the first 5 samples seem to be sampled
closely to random, the most frequently sampled movies within the last 5
trials are movies that are generally highly rated. In the end, the algorithm
has explored the input space well, learned the unknown preference function
of the average user rather well, and returned movies that are on average
highly rated. When we let the GP-UCB algorithm run over 200 trials, it
frequently starts sampling the movie “The Shawshank Redemption”, which

is the highest rated movie on the internet movie database.

8. Safe exploration-exploitation

Sometimes an exploration-exploitation scenario may come with addi-
tional requirements. For example, one such requirement can be to avoid
certain outputs. Consider excitatory stimulation treatment, where the task
is to stimulate the spinal chord in such a way that certain movements are
achieved (Desautels, Choe, Gad, Nandra, Roy, Zhong, Tai, Edgerton, and
Burdick, 2015). Here, it is important to stimulate the spinal chord such that
optimal recovery is obtained, but not too much as this might lead to painful
reactions for the patients.

Again, Gaussian process optimization methods can be used to learn the
underlying function of what stimulation leads to which strength of reaction.

However, an additional requirement now is to avoid particularly reactions

44

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

that result in pain. An algorithm that balances exploration and exploitation
whilst avoiding certain outputs is called Safe Optimization (Sui, Gotovos,
Burdick, and Krause, 2015). This algorithm adapts the Upper Confidence
Bound approach described earlier to accommodate this additional require-
ment. It works by trading-off two different goals: Firstly, it keeps track of
a set of safe options it considers to be above a given safe threshold (points
currently showing a high likelihood of being above the threshold) and tries
to expand this set as much as it can. Secondly, it maintains a set of po-
tential maximizers (points likely to produce high outcomes) that, if used as
an input, would potentially achieve the highest output. It then chooses as
the next input a point within the intersection of these two sets, that is a
safe point that is either a maximizer or an expander that has the highest
predictive variance and potentially expands the set of maximisers. This al-
gorithm can also be adapted to separate the objective function from a set
of constraints as described by (Berkenkamp, Krause, and Schoellig, 2016).
More formally, a safe set of possible inputs that are likely to provide
outputs above the threshold is defined and then further separated into a
set of mazimizers (inputs that promise to provide the maximum output)
and ezpanders (inputs that promise to expand the safe set). This algorithm
uses the upper and lower bounds of a confidence interval as described in
Equation 13 above, i.e. by either setting w to 3 or —3 for the upper and
lower confidence bound respectively. Using these bounds, it is possible to
define the safe set as all the input points in the set of available inputs whose
lower confidence bound is above the provided threshold. This is intuitive
as one would expect these points to be above the threshold in 0.1% of the
cases. The set of potential maximizers contains all safe inputs that promise

to obtain the maximum output value; these are the safe inputs for which

45

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

their upper confidence bound is above the highest lower bound within the
input set, i.e. points with an upper bound better than the best lower bound.
The set of expanders is normally found by forward simulations, where it is
assessed if the safe set is —in expectation— expanded by sampling a given
point. For further technical details, we refer the interested reader to Sui

et al. (2015).

8.1. Example: Cautious stimulus optimization

As an illustration of the Safe Optimization algorithm, we apply it to a
situation in which the objective is to choose inputs x in order to learn about
the underlying function in a two-dimensional space such that —eventually—
points that produce high outputs in y will be sampled whilst avoiding to
choose inputs that produce an output below 0. To simplify presentation, we
sampled the underlying function from a Gaussian process parameterized by
a radial basis function kernel. This can be seen as similar to the case where
one wants to present stimuli to participants, but make sure that participants
never react with an intensity below a certain threshold.

Results are shown in Figure 12. It can be seen that the Safe Optimization
algorithm explores the function exceptionally well in its attempt to expand
the space of possible safe inputs. At the same time, the algorithm does not
at any time choose inputs from the white area (producing output values
below 0). This algorithm could be applied to optimal design settings that

require additional constraints.

46

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

GP Safe Optimization

t=10

X2
X2

20 40 60 80 100 20 40 60 80 100

Xz

20 40 60 80 100 20 40 60 80 100

Figure 12: GP-Safe Optimization example showing samples after 1,10, 50 and 100 samples.
White represents areas below 0. The black crosses show where the Safe Optimization
algorithm has sampled. Lighter areas represent higher scores. The algorithm efficiently
explores other safe areas. It never samples points within the surrounding white area as

these are below the threshold.

47

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

9. Gaussian processes and cognition

We have seen that Gaussian process regression is a powerful tool to
model, explore, and exploit unknown functions. However, Gaussian process
regression might also be applied in a different, more psychological context,
namely as a model of human cognition in general and function learning in
particular. Recently, Lucas, Griffiths, Williams, and Kalish (2015) have
proposed to use Gaussian process regression as a rational model of func-
tion learning that can explain various effects within the literature of human
function learning. Schulz, Tenenbaum, Reshef, Speekenbrink, and Gersh-
man (2015) used Gaussian processes to assess participants’ judgements of
the predictability of functions in dependency of the smoothness of the un-
derlying kernel. As many different kernels can be used to model function
learning, Wilson, Dann, Lucas, and Xing (2015) tried to infer backwards
what the human kernel might look like by using a non-parametric kernel ap-
proach to Gaussian process regression. As explained above, kernels can also
be added together and multiplied to build more expressive kernels, which led
Schulz, Tenenbaum, Duvenaud, Speekenbrink, and Gershman (2016d) to as-
sess if participants’ functional inductive biases can be described as made up
of compositional building blocks. In a slightly different context, Gershman,
Malmaud, Tenenbaum, and Gershman (2016) modelled participants’ utility
of combinations of different objects by a Gaussian process parametrized by
a tree-like kernel.

Within an exploration-exploitation context, Borji and Itti (2013) and
Wu, Schulz, Speekenbrink, Nelson, and Meder (2017) showed that Gaus-
sian process-based optimization can explain how participants actively search

for the best output when trying to optimize one-dimensional functions.

48

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Schulz, Konstantinidis, and Speekenbrink (2016b) used Gaussian process
exploration-exploitation algorithms to model behaviour in tasks that com-
bine function learning and decision making (contextual multi-armed bandit
tasks). Lastly, Schulz, Huys, Bach, Speekenbrink, and Krause (2016a) ap-
plied the safe optimization algorithm described here to scenarios in which
participants had to cautiously optimize functions while never sampling be-

low a given threshold.

10. Discussion

This tutorial has introduced Gaussian process regression as a general
purpose technique to model, explore and exploit unknown functions. We
have mainly focused on Gaussian process regression with a radial basis func-
tion kernel, but many other kernels and kernel combinations are possible and
—as we have indicated above— many standard Bayesian regression approaches
can be re-parametrized to be equivalent to Gaussian process regression, given
specific assumptions about the kernel (Duvenaud et al., 2013).

Of course a tutorial like this can never be fully comprehensive. For
example, many other acquisition functions than the ones introduced here
(uncertainty sampling and UCB) exist. For pure exploration, another com-
monly used acquisition function attempts to minimize the expected variance
over the whole input space (Gramacy and Apley, 2014). This method tends
to sample less on the bounds of the input space, but can be hard to com-
pute, especially if the input space is large. There also exist many different
acquisition functions in the exploration-exploitation context, that are mostly
discussed under the umbrella term Bayesian optimization (de Freitas, Smola,

and Zoghi, 2012). Two other acquisition functions that are frequently ap-

49

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

plied here are the probability of improvement and the expected improvement
(Mockus, 1975), which choose inputs that have a high probability to produce
a better output than the input that is currently estimated to be best, or that
produce an output which is expected to surpass the expected outcome of the
input currently thought best. Thompson sampling (Thompson, 1933; May,
Korda, Lee, and Leslie, 2012) is another acquisition function, which chooses
an action that maximizes the expected outcome with respect to a randomly
drawn belief, and has recently gained popularity because of its competitive
empirical performance (Chapelle and Li, 2011).

Another situation in which Gaussian processes are frequently applied is
called “global optimization”, in which the goal is finding the overall maxi-
mum of a function as quickly as possible, but without worrying about the
outputs that were produced in the search process. Parameter estimation is
an example of such a problem and again different algorithms have been pro-
posed, in particular the proposal by Hennig and Schuler (2012) to maximize
the information gain about the location of the maximum. There is also a
growing community of researchers who apply Gaussian process-based algo-
rithms to return uncertainty estimates of traditional computational methods
such as optimization, quadrature, or solving differential equations under the
umbrella term “probabilistic numerics” (Hennig, Osborne, and Girolami,
2015).

Gaussian process regression does have some drawbacks. One such draw-
back, as compared to traditional regression models, is that parameter-based
interpretations such as “if x increases by 1, y increases by 2” are not di-
rectly possible. However, as different kernels encode different assumptions
about the underlying functions, assessing which kernel describes the under-

lying function best can be used as a basis to interpret the modelled function

50

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(Lloyd et al., 2014). Choosing the appropriate kernel is a difficult problem.
General solutions to this are to construct more complicated kernels from
a set of relatively simple base kernels (as shown above) and to search the
kernel space by proposing and checking new kernel combinations (Duvenaud
et al., 2013), or to define the kernel in a non-parametric manner by using a
non-parametric approach towards estimating the kernel itself (Wilson and
Adams, 2013). Possibly the biggest drawback of Gaussian process regression
is its poor scaling. As inferring the posterior involves inverting the matrix
[K(X;,X;) + 021I], inference scales cubically with the number of observa-
tions®. Speeding up inference for Gaussian process regression therefore is a
topic of ongoing research. Some methods that have been proposed are to
sparsely approximate inputs (Lawrence, Seeger, and Herbrich, 2003) or to
bound the computational cost of the matrix inversion by projecting into a
pre-defined finite basis of functions drawn from the eigen-spectrum of the
kernel (Rahimi and Recht, 2007).

We hope to have shown some interesting examples of Gaussian pro-
cess regression as a powerful tool for many applied situations, specifically
exploration-exploitation scenarios, and hope that this tutorial will inspire
more scientists to apply these methods in the near future. Currently avail-

able software that can assist in this is listed in Table 5.

8This is the computational complexity: the regret remains the same as before.

o1

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Table 5: Gaussian process packages

Name Algorithm Language Author

GPML GP Toolbox Matlab Rasmussen and Nickisch (2010)
SFO Optimization Matlab Krause (2010)

GPy GP Toolbox Python Sheffield ML group (since 2012)

Matthews, van der Wilk, Nickson,
GPflow TensorFlow GP library Python Fujii, Boukouvalas, Leén-Villagra,
Ghahramani, and Hensman (2017)
Vanhatalo, Rithimé&ki, Hartikainen,

GPstuff GP Toolbox Matlab
Jylénki, Tolvanen, and Vehtari (2013)
tgp Tree GPs, GP regression R Gramacy et al. (2007)
References

Akaike, H., 1974. A new look at the statistical model identification. IEEE

transactions on automatic control 19 (6), 716-723.

Berkenkamp, F., Krause, A., Schoellig, A. P., 2016. Bayesian optimization
with safety constraints: safe and automatic parameter tuning in robotics.

arXiv preprint arXiv:1602.04450.

Borji, A., Itti, L., 2013. Bayesian optimization explains human active search.

In: Advances in Neural Information Processing Systems. pp. 55—63.

Cavagnaro, D. R., Aranovich, G. J., McClure, S. M., Pitt, M. A., Myung,
J. L., 2014. On the functional form of temporal discounting: An optimized

adaptive test.

Chapelle, O., Li, L., 2011. An empirical evaluation of thompson sampling.

In: Advances in neural information processing systems. pp. 2249-2257.
Cox, G., Kachergis, G., Shiffrin, R., 2012. Gaussian process regression for

52

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

trajectory analysis. In: Proceedings of the Cognitive Science Society.

Vol. 34.

de Freitas, N., Smola, A., Zoghi, M., 2012. Regret Bounds for Deterministic

Gaussian Process Bandits. arXiv preprint arXiv:1203.2177.

Desautels, T. A., Choe, J., Gad, P., Nandra, M. S., Roy, R. R., Zhong,
H., Tai, Y.-C., Edgerton, V. R., Burdick, J. W., 2015. An active learning
algorithm for control of epidural electrostimulation. IEEE Transactions

on Biomedical Engineering 62 (10), 2443-2455.

Durrleman, S., Simon, R., 1989. Flexible regression models with cubic

splines. Statistics in medicine 8 (5), 551-561.

Duvenaud, D., Lloyd, J. R., Grosse, R., Tenenbaum, J. B., Ghahramani, Z.,
2013. Structure discovery in nonparametric regression through composi-

tional kernel search. arXiv preprint arXiv:1302.4922.

Engbert, R., Kliegl, R., 2004. Microsaccades keep the eyes’ balance during
fixation. Psychological science 15 (6), 431-431.

Flaxman, S., Gelman, A., Neill, D., Smola, A., Vehtari, A., Wilson, A. G.,

2015. Fast hierarchical gaussian processes.

Freeman, J. B., Ambady, N., 2010. Mousetracker: Software for studying
real-time mental processing using a computer mouse-tracking method.

Behavior Research Methods 42 (1), 226-241.

Gershman, S. J., Blei, D. M., 2012. A tutorial on Bayesian nonparametric
models. Journal of Mathematical Psychology 56 (1), 1-12.

93

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Gershman, S. J., Malmaud, J., Tenenbaum, J. B., Gershman, S., 2016.

Structured representations of utility in combinatorial domains.

Gramacy, R. B., Apley, D. W., 2014. Local gaussian process approximation
for large computer experiments. Journal of Computational and Graphical

Statistics (just-accepted), 1-28.

Gramacy, R. B., Lee, H. K., 2008. Bayesian treed Gaussian process mod-
els with an application to computer modeling. Journal of the American

Statistical Association 103 (483).

Gramacy, R. B., et al., 2007. tgp: an R package for Bayesian nonstationary,
semiparametric nonlinear regression and design by treed Gaussian process

models.

Hennig, P., Osborne, M. A., Girolami, M., 2015. Probabilistic numerics and
uncertainty in computations. Proc. R. Soc. A 471 (2179), 20150142.

Hennig, P., Schuler, C. J., 2012. Entropy search for information-efficient
global optimization. Journal of Machine Learning Research 13 (Jun),

1809-1837.

Jakel, F., Scholkopf, B., Wichmann, F. A., 2007. A tutorial on kernel meth-
ods for categorization. Journal of Mathematical Psychology 51 (6), 343—
358.

Kac, M., Siegert, A., 1947. An explicit representation of a stationary gaus-
sian process. The Annals of Mathematical Statistics, 438—442.

Katehakis, M. N., Veinott Jr, A. F., 1987. The multi-armed bandit prob-
lem: decomposition and computation. Mathematics of Operations Re-

search 12 (2), 262-268.

54

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Kieslich, P. J., Henniger, F., 2017. Mousetrap: An integrated, open-source

mouse-tracking package. Behavioral Research Methods.

Krause, A., 2010. Sfo: A toolbox for submodular function optimization.

Journal of Machine Learning Research 11 (Mar), 1141-1144.

Krause, A., Golovin, D., 2012. Submodular function maximization.

Tractability: Practical Approaches to Hard Problems 3, 19.

Krause, A., Singh, A., Guestrin, C., 2008. Near-optimal sensor placements
in gaussian processes: Theory, efficient algorithms and empirical studies.

The Journal of Machine Learning Research 9, 235-284.

Lawrence, N., Seeger, M., Herbrich, R., 2003. Fast sparse gaussian process
methods: The informative vector machine. In: Proceedings of the 16th
Annual Conference on Neural Information Processing Systems. No. EPFL-

CONF-161319. pp. 609-616.

Lee, C. H., 2004. A phase space spline smoother for fitting trajectories. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

34 (1), 346-356.

Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B., Ghahramani, Z.,
2014. Automatic construction and natural-language description of non-

parametric regression models. arXiv preprint arXiv:1402.4304.

Lucas, C. G., Griffiths, T. L., Williams, J. J., Kalish, M. L., 2015. A rational

model of function learning. Psychonomic bulletin & review, 1-23.

Matthews, A. G. d. G., van der Wilk, M., Nickson, T., Fujii, K., Boukou-
valas, A., Leén-Villagrd, P., Ghahramani, Z., Hensman, J., 2017. Gpflow:

95

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A gaussian process library using tensorflow. Journal of Machine Learning

Research 18 (40), 1-6.

May, B. C., Korda, N., Lee, A., Leslie, D. S., 2012. Optimistic bayesian
sampling in contextual-bandit problems. Journal of Machine Learning Re-

search 13 (Jun), 2069-2106.

Meder, B., Nelson, J. D., 2012. Information search with situation-specific

reward functions. Judgment and Decision Making 7 (2), 119-148.

Mockus, J., 1975. On Bayesian methods for seeking the extremum. In: Op-
timization Techniques IFIP Technical Conference. Springer, pp. 400-404.

Myung, J. I., Cavagnaro, D. R., Pitt, M. A., 2013. A tutorial on adaptive

design optimization. Journal of mathematical psychology 57 (3), 53—67.

Myung, J. 1., Pitt, M. A., 2009. Optimal experimental design for model

discrimination. Psychological review 116 (3), 499.

Rahimi, A., Recht, B., 2007. Random features for large-scale kernel ma-
chines. In: Advances in neural information processing systems. pp. 1177—

1184.

Rasmussen, C. E., Nickisch, H., 2010. Gaussian processes for machine learn-
ing (gpml) toolbox. Journal of Machine Learning Research 11 (Nov),
3011-3015.

Schulz, E., Huys, Q. J., Bach, D. R., Speekenbrink, M., Krause, A., 2016a.
Better safe than sorry: Risky function exploitation through safe optimiza-

tion. arXiv preprint arXiv:1602.01052.

56

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Schulz, E., Konstantinidis, E., Speekenbrink, M., 2016b. Putting bandits
into context: How function learning supports decision making. Journal of

Experimental Psychology: Learning, Memory, and Cognition.

Schulz, E., Speekenbrink, M., Hernandez-Lobato, J. M., Ghahramani, Z.,
Gershman, S. J., 2016c. Quantifying mismatch in bayesian optimization.
In: Nips workshop on bayesian optimization: Black-box optimization and

beyond.

Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink, M., Gershman,
S. J., 2016d. Probing the compositionality of intuitive functions. Tech.
rep., Center for Brains, Minds and Machines (CBMM).

Schulz, E., Tenenbaum, J. B., Reshef, D. N., Speekenbrink, M., Gersh-
man, S. J., 2015. Assessing the perceived predictability of functions. In:
Proceedings of the Thirty-Seventh Annual Conference of the Cognitive

Science Society.

Sheffield ML group, since 2012. GPy: A gaussian process framework in
python. http://github. com/SheffieldML/GPy.

Srinivas, N., Krause, A., Kakade, S. M., Seeger, M., 2009. Gaussian process
optimization in the bandit setting: No regret and experimental design.

arXiv preprint arXiv:0912.3995.

Sui, Y., Gotovos, A., Burdick, J., Krause, A., 2015. Safe exploration for
optimization with gaussian processes. In: Proceedings of the 32nd Inter-

national Conference on Machine Learning (ICML-15). pp. 997-1005.

Thompson, W. R., 1933. On the likelihood that one unknown probability ex-

o7

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

ceeds another in view of the evidence of two samples. Biometrika 25 (3/4),

285-294.

Van Zandt, T., Townsend, J. T., 2014. Designs for and analyses of response
time experiments. The Oxford Handbook of Quantitative Methods: Foun-
dations 1, 260.

Vanhatalo, J., Riihimaki, J., Hartikainen, J., Jyldnki, P., Tolvanen, V.,
Vehtari, A., 2013. Gpstuff: Bayesian modeling with gaussian processes.
Journal of Machine Learning Research 14 (Apr), 1175-1179.

Wagenmakers, E.-J., Farrell, S., Ratcliff, R., 2004. Estimation and interpre-
tation of 1/fa noise in human cognition. Psychonomic bulletin & review

11 (4), 579-615.

Wetzels, R., Vandekerckhove, J., Tuerlinckx, F., Wagenmakers, E.-J., 2010.
Bayesian parameter estimation in the expectancy valence model of the

iowa gambling task. Journal of Mathematical Psychology 54 (1), 14-27.

Williams, C. K., 1998. Prediction with gaussian processes: From linear re-
gression to linear prediction and beyond. In: Learning in graphical models.

Springer, pp. 599-621.

Williams, C. K., Rasmussen, C. E., 2006. Gaussian processes for machine

learning. the MIT Press 2 (3), 4.

Wilson, A. G., Adams, R. P., 2013. Gaussian process kernels for pattern
discovery and extrapolation. In: ICML (3). pp. 1067-1075.

Wilson, A. G., Dann, C., Lucas, C., Xing, E. P., 2015. The human kernel.

In: Advances in Neural Information Processing Systems. pp. 2854-2862.

o8

https://doi.org/10.1101/095190

bioRxiv preprint doi: https://doi.org/10.1101/095190; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., Meder, B., 2017.

Exploration and generalization in vast spaces. bioRxiv, 171371.

99

https://doi.org/10.1101/095190

