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Abstract

RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA
sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and
throughputl. However, this approach captures only a static snapshot at a point in time, posing a
challenge for the analysis of time-resolved phenomena, such as embryogenesis or tissue
regeneration. Here we show that RNA velocity—the time derivative of the gene expression state—
can be directly estimated by distinguishing unspliced and spliced mRNAs in common single-cell
RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future
state of individual cells on a timescale of hours. We validate its accuracy in the neural crest
lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the
branching lineage tree of the developing mouse hippocampus, and examine the kinetics of
transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of
developmental lineages and cellular dynamics, particularly in humans.

During development, differentiation occurs on a time scale of hours to days, which is
comparable to the typical half-life of MRNA. The relative abundance of nascent (unspliced)
and mature (spliced) mRNA can be exploited to estimate the rates of gene splicing and
degradation, without the need for metabolic labelling, as previously shown in bulk2—-4. We
reasoned similar signals may be detectable in single-cell RNA-seq data, and could reveal the
rate and direction of change of the entire transcriptome during dynamic processes.

All common single-cell RNA-seq protocols rely on oligo-dT primers to enrich for
polyadenylated mMRNA molecules. Nevertheless, examining single-cell RNA-seq datasets
based on the SMART-seq2, STRT/C1, inDrop, and 10x Chromium protocols5-8, we found
that 15-25% of reads contained unspliced intronic sequences (Fig. 1a), in agreement with
previous observations in bulk4 (14.6%) and single-cell5 (~20%) RNA sequencing. Most
such reads originated from secondary priming positions within the intronic regions
(Extended Data Fig. 1). In 10x Genomics Chromium libraries, we also found abundant
discordant priming from the more commonly occurring intronic polyT sequences (Extended
Data Fig. 1), which may have been generated during PCR amplification by priming on the
first-strand cDNA. The substantial number of intronic molecules and their correlation with
the exonic counts suggest that these molecules represent unspliced precursor mRNAs. This
was confirmed by metabolic labeling of newly transcribed RNA9 followed by RNA
sequencing using oligo-dT-primed STRT10 (Extended Data Fig. 2); 83% of all genes
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showed expression time courses consistent with simple first-order kinetics, as expected if
unspliced reads represented nascent mRNA.

To quantify the time-dependent relationship between precursor and mature mRNA
abundances, we assumed a simple model for transcriptional dynamics2, where the first time
derivative of the spliced mRNA abundance (RNA velocity) is determined by the balance
between production of spliced mMRNA from unspliced mMRNA, and the mRNA degradation
(Fig. 1b, Supplementary Note 1). Under such a model, steady states are approached
asymptotically when the rate of transcripti@rnis constant, with the steady-state abundances
of spliced © and unsplicedd) molecules determined lay, and constrained to a fixed-slope
relationship wheres = ¥s(Supplementary Note 2 Section 1). The equilibrium slgpe
combines degradation and splicing rates, capturing gene-specific regulatory properties, the
ratio of intronic and exonic lengths, and the number of internal priming sites. Examining a
recently published compendium of mouse tissues11, steady-state behavior of most genes
across a wide range of cell types was consistent with a single fixed)s(&x¢ended Data

Fig. 3a-c). However, 11% of genes showed distinct slopes in different subsets of tissues
(Extended Data Fig. 3d-e), suggesting tissue-specific alternative splicing (Extended Data
Fig. 3f) or degradation rates.

During a dynamic process, an increase in the transcriptioa n&tgults in a rapid increase

of unspliced mRNA, followed by a subsequent increase of spliced mRNA (Fig. 1¢ and
Supplementary Note 2 Section 1) until a new steady state is reached. Conversely, a drop in
the rate of transcription first leads to a rapid drop in unspliced mRNA, followed by reduction
of spliced mRNAs. During induction of gene expression, unspliced mRNAs are present in
excess of the expectation based on the equilibriumptatdereas the opposite is true

during repression (Fig. 1d). The balance of unspliced and spliced mRNA abundance is,
therefore, an indicator of the future state of mature mRNA abundance, and thus the future
state of the cell.

To illustrate that such a simple model can be used to extrapolate the mature mRNA
abundance into the future, we examined a timecourse of bulk RNA-seq measurements of the
mouse liver circadian cyclel2. Unspliced mRNA levels at each time point were consistently
more similar to the spliced mRNA of the subsequent time (Fig. 1e), and many circadian-
associated genes showed the expected excess of unspliced mRNA relative jodsiopeg
up-regulation, and a corresponding deficit during down-regulation (Fig. 1f-g). Solving the
proposed differential equations for each gene allowed us to extrapolate each measurement
throughout the circadian cycle, accurately capturing the expected direction of progression of
the circadian cycle (Fig. 1h).

Next, to demonstrate ability to predict transcriptional dynamics in single-cell measurements,
we analyzed recently-published single-cell mRNA-seq data on mouse chromaffin cells13,
obtained using SMART-seq25 (Fig. 2). During development, a substantial proportion of
chromaffin cells, which are neuroendocrine cells of the adrenal medulla, arise from Schwann
cell precursors, providing a convenient test case in which the direction of differentiation can
be validated by lineage tracing. Phase portraits of many genes showed the expected
deviations from the predicted steady-state relationship (Fig. 2b-c). RNA velocity estimates
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of the individual cells accurately recapitulated the transcriptional dynamics within this
dataset, including general movement of the differentiating cells towards chromaffin fate

(Fig. 2d), as well as movement towards and away from the intermediate differentiation state.
The velocity also captured cell cycle dynamics involved in the chromaffin differentiation,
both in PCA projection and in a focused analysis of cell-cycle associated genes
(Supplementary Note 2 Section 5).

Our velocity estimation procedure incorporates several features to accommodate the
complexity of splicing biology (Supplementary Note 1). The estimation of the gene-specific
equilibrium coefficienty is performed using regression on the extreme expression quantiles,
ensuring robust estimation even when most of the observed cells are outside of the steady
state (Supplementary Note 2 Section 2). To accommodate genes observed far outside of their
steady state, we also developed an alternative fit based on gene structure (Extended Data
Fig. 4). A variety of technigues can be used to visualize the velocity estimates in low
dimensions. The observed and extrapolated cell states can be jointly embedded in a common
low-dimensional spaces(g.PCA in Fig. 2d). Alternatively, velocities can be projected onto
existing low-dimensional embeddings such as t-SNE based on the similarity of the
extrapolated state to other cells in the local neighborhood (Fig. 2h, see Supplementary Note
1). In large datasets, it is easier to visualize the prevalent pattern of cell velocities with

locally averaged vector fields (Fig. 2i). Since cells can have RNA velocities along multiple
independent components simultaneously, such as differentiation, maturation and
proliferation, care must be taken when interpreting low-dimensional representations, as cells
that lack apparent velocity in one particular embedding can nevertheless have substantial
velocity in some subspace that is not visualized.

Cell-specific RNA velocity estimates provide a natural basis for quantitative modeling of

cell fates. Metabolic labelling showed that for most genes, changes in the spliced/unspliced
ratio would be detectable after 10 - 100 minutes (Extended Data Fig. 2). The effective
timescale of extrapolation, on the other hand, depends on the biological process being
analyzed. Based on the pulse labeling of chromaffin progenitor cells by EdU
(Supplementary Note 2 Section 6), we estimate that we were able to extrapolate 2.5 - 3.8
hours into the future (Fig. 2f,g), which is also consistent with the ability to resolve cell-cycle
events. Given the linear nature of the extrapolation, however, this predictive time-scale will
depend on the shape of the gene expression trajectitné curvature of the expression
manifold). Cell fates can be predicted over longer time scales by tracing a sequence of small
extrapolation steps on the observed expression manifold (Supplementary Note 2 Section 7).

To demonstrate the generality of our approach we analyzed data generated using additional
single-cell RNA-seq protocols. We observed the transcriptional dynamics of neutrophil
maturation in mouse bone marrow, and of light-induced neuronal activation in mouse cortex
measured using the inDrop protocol (Extended Data Fig. 5), and of the intestinal epithelium
(Extended Data Fig. 6), oligodendrocyte differentiation (Extended Data Fig. 7), and
hippocampus development (see below), measured using 10x Genomics Chromium?7.
Estimates of RNA velocity were robust to variation of model parameters, gene and cell
subsampling, with the most sensitive parameter being the size of the neighborhood used in
visualization of velocity in pre-defined embeddings (Supplementary Note 2 Sections 10,11).
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Most genes showed a positive correlation between velocity estimates and empirically
observed expression derivatives (Extended Data Fig. 8), confirming that velocity vectors are
informative. Failures in specific cases were due to several apparent causes, including genes
observed exclusively far from equilibrium, uneven contribution of non-coding transcripts,
and alternative splicing leading to multiplerates across the measured populations
(Supplementary Note 2 Section 4).

We next applied RNA velocity to the branching lineage of the developing mouse
hippocampus14. After removing vascular and immune cells, and GABAergic and Cajal-
Retzius neurons (which originate from outside the hippocampus), t-SNE embedding
revealed a complex manifold with multiple branches (Fig. 3a). We used known markers to
identify the tips of the branches as corresponding to astrocytes, oligodendrocyte precursors
(OPCs), dentate gyrus granule neurons, and pyramidal neurons of the five fields of the
hippocampus: the subiculum, CA1, CA2, CA3, and hilus (Extended Data Fig. 9). Phase
portraits of individual genes showed specific induction and repression of gene expression
along the manifold (Fig. 3b, Extended Data Fig. 10). For exarjlg7a(a marker of

OPCs) was induced in pre-OPCs and maintained in OPCs; it showed corresponding positive
velocity in the pre-OPC state, but neutral in the OPCs. Similgvigp/Z was expressed
specifically in neuroblasts, and showed positive velocity from radial glia to neuroblasts, but
negative velocity going from neuroblasts to the two main neuronal branches.

RNA velocity showed a strong directional flow towards each of the main branches (Fig. 3c,
Extended Data Fig. 10), originating in a small group of cells arranged in a band (Fig. 3c
inset, dashed line). We identified these cells as radial glia based on the expression of markers
including the Notch targetfesZand the homeobox transcription factédopx (Extended

Data Fig. 9). Indeed, fate mapping has previously shown radial glia to be the true origin of
the lineage tree of the hippocampus15. Using a Markov random walk model on the velocity
field, the terminal and root states could be automatically identified (Fig. 3c), demonstrating
the power of RNA velocity to orient the lineage tree without prior knowledge about the
developmental process. On one side, velocity pointed towards astrocytes (exptepzing
without intervening cell division, or alternatively to a pre-OPC state, leading through a
narrow passage to proliferating OPCs. We speculated that the narrow passage represented
the moment of commitment to the oligodendrocyte lineage. At this microstate level, fate
choice is likely a non-deterministic process involving the tilting of gene expression in favor
of one or the other fate, followed by a lock-in of the final fate once transcription factor
feedback loops are established16. Comparing the probability distribution of future states for
a cell starting among the pre-OPCs, versus one starting in the narrow passage leading to
OPCs, revealed a clear difference, where the latter cell was overwhelmingly likely to end up
as a fully formed OPC, whereas the former was as likely to remain in the pre-OPC state
(Fig. 3d).

Some cycling progenitor cells (Extended Data Figs. 9b) expressed neurogenic transcription
factors e.g. Neurod2Neurod4 Eome}¥ and those cells showed velocity pointing toward the
immature neuroblast state, leading towards the three main neuronal branches in the upper
part of the manifold. Granule neurons of the dentate gyrus first split from the hippocampus
proper, and a second split divided the hippocampal cells into subiculum/CA1 and CA2-4,
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respectively (Extended Data Figs. 9, 10), in agreement with the major functional and
anatomical subdivisions of the hippocampus. The detailed, single-cell view of a branching
lineage allowed us to ask questions about fate choice. Examining two adjacent neuroblasts,
just at the entrance to the branching point between CA and granule fates (Fig. 3e), we found
that although their current states were neighbors (in gene expression space), their futures
were already tilted towards different fates, distinguished by activatiéaxtz(Fig. 3c,

insert). Consistent with these findings, it has been showrPtimatZis required for the

formation of granule neurons, and that wi&nxZis deleted, neuroblasts instead adopt a
pyramidal neuron fatel7.

To demonstrate that RNA velocity is detectable in the human embryo, we performed droplet-
based single-cell MRNA-seq of the developing human forebrain at ten weeks post-
conception, focusing on the glutamatergic neuronal lineage (Fig. 4a). We found a strong
velocity pattern originating from a proliferating progenitor state (radial glia), and proceeding
through a sequence of intermediate neuroblast stages to a more mature differentiated
glutamatergic neuron expressi&g  7A7(the vesicular glutamate transporter used in
forebrain excitatory neurons). We validated the expression of known and novel markers of
cortical neuron development by multiplexéds/ifuhybridization (Fig. 4b-c), confirming the
predicted expression @L{ and FBX0O32in the ventricular zone (radial glia; marked by
SOX3, UNC5Din the intermediate zone (neuroblasts; marked®®WES and SEZ6and
RBFOX1in the cortical plate (neurons; marked $%C17A7 also known as VGLUT1).

The layered expression of these genes in the tissue (Fig. 4c) corresponded closely to the
pseudotemporal distribution of their expression in the single-cell RNA-seq data (Fig. 4b).

We used principal curve analysis to order the cells according to a differentiation pseudotime,
and examined the temporal progression of transcription in human primary cells. We
confirmed that unspliced mRNAs consistently preceded spliced mRNAs during both up- and
down-regulation (Fig. 4d).We observed both fast and slow kinetics. For example,
RNASEHZBshowed fast kinetics, with little difference between unspliced and spliced

RNAs. In contrast, genes such@2€X, ELAVL4 and STMNZ2showed evidence of an initial

burst of rapid transcription, followed by sustained transcription at a reduced level (as
evidenced by the shape of the unspliced RNA curve, Fig. 4d), with spliced transcripts
following a noticeably delayed trajectory. Such dynamic induction with overshooting has
been proposed to help quickly induce genes whose degradation kinetics are slow2, but have
not been possible to study in human embryos.

The fact that RNA velocity is grounded in real transcription kinetics promises to bring a
more solid quantitative foundation to our understanding of the dynamics of cells in gene
expression space during differentiation. We envision future manifold learning algorithms
that simultaneously fit a manifold and the kinetics on that manifold, based on RNA velocity.
RNA velocity has already enabled the detailed study of dynamic processes in whole
organisms18, and will greatly facilitate lineage analysis particularly in the human embryo.
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Methods

Theoretical description of RNA velocity

Based on the model of transcription shown in Fig. 1, we developed a computational
framework for robust inference of RNA velocity. A detailed description of the theory and
computational methods is available as Supplementary Note 1.

Analysis pipeline, parameters and implementations details

We implemented the procedures above as two complete pipelines, one in R and one in
Python, called velocyto.R and velocyto.py, respectively. These were used to generate all the
analyses in the paper, with detailed settings as described in the following sections.

Annotation of spliced and unspliced reads

Read annotation for all protocols was performed using velocyto.py command-line tools. The
velocyto.py annotation starts with bam file(s). For the 10x genomics platform datasets, the
bam file was processed using default parameters afatrangesoftware (10x Genomics).

For the inDrop dataset, the reads were demultiplexed using dropEst pipelinel9, using ‘-F -L
eiEIBA’ options to produce an annotated bam file analogoesAaangenutput. For
SMART-seq?2 data, demultiplexed cell-specific bam files were fed into velocyto.py directly.
The genome annotations GRCm38.84 and GRCh37.82 frooethengepre-built

packages were used to count molecules while separating them into three categories:
“spliced”, “unspliced” or “ambiguous”.

The annotation process considered only reads that could be mapped uniquely. Reads with
multiple mappings and reads mapped inside repeat-masked (based on the UCSC genome
browser repeat masker output) regions were discarded. For UMI-based protocols, the
counting was performed on the level of molecules, taking into account annotation (spliced,
unspliced, etc.) of all reads associated with that molecule (supporting read sets) into
consideration. The supporting read sets for each molecule were determined by a
combination of cell barcode and UMI sequence. For inDrops datasets, where UMI barcode
does not have sufficient complexity to uniquely identify a molecule in the dataset, the reads
were grouped based on the cell barcode, UMI and the region of the genome where it mapped
(chromosomes, binned in 10Mbase regions). For each molecule, all annotated transcripts
that were compatible with the given set of read mappings were considered, and cases where
the set of reads associated with a given molecule was not compatible with any annotated
transcript model were discarded. Cases where a set of supporting read mappings was
compatible with transcript models of two or more different genes were also discarded.

The following set of rules was applied to annotate a set of read supporting a given molecule
as spliced, unspliced or ambiguous:

1 A molecule was annotated as spliced if all of the reads in the set supporting a
given molecule map only to the exonic regions of the compatible transcripts.

2. A molecule was annotated as unspliced if all of the compatible transcript models
had at least one read among the supporting set of reads for this molecule
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mapping that i) spanned exon-intron boundary, or ii) mapped to the intron of that
transcript.

Molecules for which some of the compatible transcript models had exonic-only mappings,
while others included intronic mappings were annotated as ambiguous and not used in the
downstream analyses.

Similar logic was applied in annotating and counting reads for the SMART-seq2 dataset,
with the following notable differences: 1) as reads lacked UMI, each read was considered to
be an independent molecule; 2) as the protocol does not distinguish strands, transcript
annotations on both strands were considered when annotating each read.

Chromaffin datasets processing (Fig. 2)

Chromatffin E12.5 and E13.5 datasets were processed using velocyto.R pipelige. The
coefficients and velocity estimates were calculated for genes meeting a number of filtering
criteria: y 20.1; Spearman rank correlation betweeandu20.1; averagescounts for a

gene =5 for at least one cell subpopulation (cluster); avetageunts for a gene =1 for at

least one cell subpopulation; for the datasets where spanning reads were annotated (E12.5,
E13.5), average spanning read counts were required to be 0.5 in at least one
subpopulation. For SMART-seq2 datasets, the abundance of reads spanning intron and exon
boundaries is sufficiently high to enable estimation of the unspliced off$ae offset was
estimated using a linear regression.

Mouse hippocampus dataset analysis (Fig. 3)

A total of 18,213 cells were analyzed (postnatal day 0: 8,113 cells; postnatal day 5: 10,100
cells). The embedding was computed on the correlation similarity matrix using pagoda2
(https://github.com/hms-dbmi/pagodaBriefly, gene variance normalization was

performed by fitting a generalized additive model of variance on expression magnitude, and
rescaling the gene variance by matching the tail probabilities of log residuals from the F
distribution to the chi squared distribution with the degrees of freedom corresponding to the
total number of cells. Cell distances were determined ag;lwhererj; is Pearson linear
correlation of the celland; scores on the first 100 principal components of the top 3000
variable genes in the dataset. Clustering was performed using the Louvain community
detection algorithm on the nearest neighbor cell grapBQ, pagoda? implementation). For

the velocity analysis lowly expressed (spliced) genes were excluded (requiring 40 minimum
expressed counts and detected over 30 cells) and the top 3000 high variable genes were
selected on the basis of a non-parametric fit of coefficient of variation ¥€vf)ean (using
support vector regression). Only 1706 genes that had unspliced molecule counts above a
detection threshold (25 minimum expressed counts and detected over 20 cells) were kept for
the analysis. To normalize for the cell size, the counts were divided by the total number of
molecules in each cell, and multiplied by the mean number of molecules across all cells.
Spliced and unspliced counts were normalized separately. To reduce dimensionality, PCA
was performed and the top 19 variable components were kept on the basis of the explained
variance ratio profile. Euclidean distance in this reduced PCA space was used to construct a
k-nearest neighbor graph (k=500), using a greedy balanced k-NN algorithm that limits each
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node to have no more than 4*k incoming edges. This graph was used to perfrom k-NN
pooling. Velocity-based extrapolation was performed using Model | assumptions.

Human glutamatergic neurogenesis analysis (Fig. 4)

Pseudotime analysis was performed by fitting principal curve in the space of the top four
principal components (using the R packag@curvd. The cell positions were projected

onto the curve and the length of the arc between projections was used as pseudotime
coordinates. The direction of the pseudotime was determined using the velocity field.
Clusters were determined using Louvain community detection algorithm on the nearest
neighbor graph in the same subspace. For the velocity analysis lowly expressed (spliced)
genes were excluded (requiring 30 minimum expressed counts and detected over 20 cells).
The top 2000 most variable genes were selected on the basis of a hon-parametric fit of CV
vs.mean (using support vector regression). A total of 987 genes that had unspliced
molecules above a detection threshold (requiring 25 minimum expressed counts and detected
over 20 cells; average spliced counts for a gene 0.06 in a subpopulation and average
unspliced counts for a gene 0.007 in a subpopulation) were kept for the analysis. To
normalize for the cell size, the counts were divided by the total number of molecules in each
cell, and multiplied by the median number of molecules across all cells. For cell k-NN
pooling, a k-nearest neighbor graph (k=550) was constructed based on Euclidean distance in
the space of the top six principal components, as described above. The gamma coefficients
were fit using the extreme quantile fit with diagonal quantiles, as described above.

For the visualizations in Figure 4b, the following maxprojection procedure was used to color
the cells according to expression of the pre-defined gene set. First, the (cell-size normalized)
expression of each gene included in the set was rescaled, dividing it by'thber@8ntile
magnitude. After rescaling, each cell was colored with the color corresponding to the gene
that was expressed at highest level compared to other genes, and the saturation of the color
was chosen to be proportional to the level of expression in the cell. The rescaled expression
of the gene was required to exceed 0.45 in order for the cell to be colored.

Genes whose expression peaks at different stages of neurogenesis were selected using a
- . Hotuster  clus -
heuristic gene enrichment sco#éw whereyindicates the average molecule
all 7 all
count of a gene anfis the fraction of cells in which the gene is detected. Figure 4d shows a
selection of top-enriched genes, spliced and unspliced molecules were brought to a

comparable scale by multiplying spliced molecular counts by the estirmated

Analysis of Mouse Oligodendrocytes lineage (Extended Data Fig. 7)

We analyzed a dataset of oligodendrocyte differentiation from murine pons extracted from a
recently published cellular atlas20. We restricted the analysis to the trajectory of
differentiation from oligodendrocyte precursor cells (OPCs) to mature oligodendrocytes by
selecting cells that were labeled in the atlas as OPCs, COPs. NFOLs or MFOLs, for a total
of 6307 cells.
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As an initial step, for the Supp. Figure 7d-f, we performed a straightforward feature
selection, first removing genes expressed lower than 15 spliced molecules, or lower than 8
unspliced molecules, requiring a minimal average spliced expression of 0.075 and minimal
unspliced expression of 0.03 in the highest expressing cluster. A CV-mean fit was used to
select the 606 most variable genes.

As the simple procedure above retained significant sex-driven batch effect (shown in Supp.
Figure 7e), we then used a different approach aimed at minimizing batch effects by focusing
on the genes that were uniquely relevant to the observed oligeodendrocytes. Specifically, a
list of genes enriched in the oligodendrocyte lineage when compared to all other cell types
was used to analyze the dataset. For each cell cluster we used the top 190 genes as sorted by
enrichment (differential upregulation) scores, calculated as described in 20. The resulting set
of genes was subjected to further filtering where lowly detected genes where excluded,
requiring at least 5 spliced and 3 unspliced mMRNA molecules detected in the whole dataset,
resulting in 606 genes. We then normalized the cell total molecule counts using the initial
molecule count as normalization factor. For cell k-NN pooling we built a k-nearest neighbor
graph (k=90) based on Euclidean distance in the top nine principal components. Data was
clustered using Louvain community detection algorithm on the nearest neighbor graph and
colored according a pseudotime computed by a principal curve. Finally, we calculated
gammas, velocity and extrapolation as described above; transition probabilities were
computed using n_sight=300 and log transform.

Analysis of visual cortex response to light simulation (Extended Data Fig. 5)

For the pre-processing of the inDrops light stimulated mouse visual cortex dataset21 we
used the dropEst pipelinkt{ps://github.com/hms-dbmi/dropBsFirst thedroptag

command was run on each fastq file using 10 as the minimum quality parameter. Then,
mapping was performed using the STAR aligner. Finallyaitmpestommand was run to
perform UMI and cell barcode correction, and the following flags were passed/'-b

—-L ei El BA" to produce acellrangeftike bam file. velocyto.pyrun_dr opest ” command
was used to annotate and count molecules.

Cell annotations from the original publication were used to extract ExcL23 1 (the largest
and most homogeneous cell population described as responsive to stimulus in the original
publication). We excluded cells whose total spliced RNA abundance was below 15th
percentile (as low quality cells) and above the 99.5th percentile (as possible doublets). The
dataset was further balanced by equalizing the number of cells representing each stimulation
condition (unstimulated, 1h stimulation, 4h stimulation), randomly down-sampling
subpopulations to match the number of cells in the less abundant condition. Genes whose
total spliced molecule count was less than 250, or the number of expression cells was less
than 150 were removed. Similarly, we removed genes whose total unspliced molecule count
was less than 18, or number of expression cells was less than 15. To focus our analysis on
the stimulation process and to avoid capturing orthogonal variation we performed a model-
based feature selection. Briefly, we considered a negative binomial generalized linear model
with predictors: size (as estimated by total number of molecules), the stimulation time
(categorical and interaction with size) and no offset (i.e. correspondent to the R formula:
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expression ~ size + size:stimulation - 1 ). We then performed likelihood ratio

test comparing our model against the alternative model that does not take the stimulation
predictor in account. Only statistically significant genes (p < 0.001 for spliced and p < 0.03
for unspliced molecules) were considered for the downstream analysis. After this step we
further eliminated the cells ranking in bottom 10% of total molecular counts over all of the
selected genes. For the cell k-NN pooling, we built a k-nearest neighbor graph (k=70) based
on the Euclidean distance. Importantly, in this case, we reasoned that it was not correct to
average across different independent stimulation conditegspn-stimulated and 1h-
stimulation), therefore pooling was only allowed between cells of the same stimulation
condition. Model 2 was used for velocity-based extrapolation, #gigh to 15. For the

transition probability calculation, the sightparameter was set to 200, and square root was
used as a variance stabilizing transformation. Early and late response genes illustrated in
Extended Data Figure 6 were extracted from the Supplementary Table 3 of the original
publication, containing a list of significantly induced genes in different cell types21.

Analysis of gammas over different cell types using Tabula Muris (Extended Data Fig. 3)

The Tabula Muris dataset (including only the samples generated using droplet-based 10x
Genomics Chromium protocol) was analyzed using velocyto.py, using the bam files and the
valid barcodes list provided by the authors. All of the experiments were merged into a single
dataset. The average of spliced and unspliced raw molecule counts over the different
annotated cell types were calculated, and Pearson’s correlation coefficient was computed. To
reduce bias associated with variation in cell coverage, we removed from the analysis the
clusters with less than 120 cells as well as several outlier clusters that had more than 3000
cells. Erythrocytes were also excluded, as they lack nuclei. To avoid inflating our
correlations with trivial cases where a gene is expressed by just one or two cell types we
applied the following filters: A gene was taken into consideration only if its expression

levels met all of the following conditions: (1) at least 5 cell types with average of at least
0.04 spliced molecules; (2) at least 4 cell types with average of at least 0.02 unspliced
molecules; (3) the highest expressing cell type expressed the gene at an average of at least
0.15 spliced molecules; (4) at least 2 other cell types express the gene at least 15% the level
of the maximum expressing cell type. Furthermore, to avoid that inflation of correlation
estimates by zeros, correlation of each gene was calculated considering only the cell types
that expressed the gene at minimurt® 8pliced and 5x18 unspliced levels. The estimates

of gammas provided in Extended Data Fig. 3 were obtained as the slope of RANSAC
regression without intercept. Double gammas were estimated using a mixture of generalized
linear regression models fitted by expectation maximization, as implemented in the R
packagefexmix. The fraction of genes that are better explained by two or more values of
gammas than by a single gamma was estimated by comparing the double gamma model fit
with a single-gamma generalized linear model fit. Specifically, a log likelihood ratio test was
used with the difference in degrees of freedom between the single- and double-gamma
models taken to be the number of cell types + 1. Bonferroni correction was applied, and
genes with p<0.05 were reported as being significantly better explained by two gammas.
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Analysis of the Intestinal epithelium (Extended Data Fig. 6)

velocyto.py, was run on the bam files and the valid barcode list provided by the authors.
Cells with low levels of spliced (< 2000 molecules) and unspliced (< 300 molecules) were
filtered out. Cell cycle genes, as defined by gene ontology annotation (Bsatgo/¥ were
removed from the analysis. Genes with at least 30 spliced molecules and 20 unspliced
molecules in the dataset were used in the downstream analysis. No clustering was
performed, instead the cell type cell type annotation from the original publication was used.
Feature selection was performed using these clusters. Specifically, the top 110 genes
differentially upregulated in each cluster were selected. Genes whose minimum average
expression in the highest expressing cluster was low were removed (unspliced <0.008, and
spliced <0.08). Principal component analysis was performed on the cell-size-normalized
data, and the first nine principal components were retained and used to calculate the t-SNE
embedding €yfograpfimplementation, Euclidean distance). We calculated cell KNN

pooling using the 70 nearest neighbors, as determined by the Euclidean distance in the same
nine dimensional PCA space. Gammas were fitted, velocities computed using default
parameters, and extrapolation carried on using Model Il &&th. Transition probability
was computed using_sightof 30, using square root variance stabilizing transformation.

Human tissue and single-cell RNA sequencing (Fig. 4)

Human first trimester subcortical forebrain tissue was obtained from elective routine
abortions (10 weeks postconception) with the written informed consent of the pregnant
woman and in accordance with the ethical permit given by the Regional Ethics Vetting
Board (Stockholm, Sweden). Human fetal forebrain tissue was collected and stored in
hibernation media with addition of GlutaMAX and B-27 supplements according to the
manufacture’s instructions (overnight, 40C, Hibernate-A, Thermo-Fisher). The tissue was
then cut into small cubic pieces of approximately 1-2mm length. Tissue was dissociated
using a dissociation kit (Miltenyi, Neural Tissue Dissociation Kit (P)) according to
manufacture’s instructions. In short, tissue was prepared in the kit buffer containing
0.067mM beta-mercaptoethanol. After addition of enzyme mix 1 and 2, the tissue was
mechanically dissociated using three increasingly smaller gauges of fire polished Pasteur
pipettes, pipetted 20, 15 and 10 times up and down respectively. Ultimately, collected cells
were stored on ice in PBS containing 1% BSA and immediately prepared for single cell
library preparation. Single-cell RNA sequencing was performed using the 10X Genomics
Chromium V2 kit, following the manufacturer’s protocol, and sequenced on an lllumina
Hiseq 2500.
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Extended Data

aluah sod ndudaind . ‘ i 'll']il sl

#mcton ofinronic mads (k)
01 23 45 6 7
#mcon ofreronic reads (o)

(e}
#raction ofinronic roads (ob) *
30

00

15
§
%
H

20
R

10
s

#raction ofinonic reads ob) *
10

Extended Data Figure 1. Most of theintronic reads arise dueto internal priming from stable

positions.

a-d. Examples of read density around intronic polyA and polyT sequences. The browser
screenshots show density of reads from the 10x Chromium mouse hippocampus dataset (top
track of each panel), mouse bone marrow inDrop dataset (second track from the top), and
chromaffin differentiation assessed using SMART-seq?2 (third track). The bottom two tracks
show gene annotation, and positions of polyA or polyT sequences (of length at least 15bp

Nature Author manuscript; available in PMC 2019 February 08.



siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

La Manno et al.

Page 14

with one allowed mismatch). The polyA/polyT boxes are colored blue if the stretch is in a
concordant orientation to the transcription of the underlying gene (i.e. would result in a
polyA sequence in the nascent RNA molecule being transcribed), or red if they are oriented
in the discordant position (i.e. would result in a polyT sequence in the RNA). The 3’-end
based 10x Chromium and inDrop protocols show discrete peaks downstream of the polyA
priming sites, with the 10x dataset also showing peaks upstream of the polyT sites. The
SMART-seq?2 protocol shows much more diffused peaks, expected from the full-length
purification procedure used by the protoash. Average read density profiles around
concordant and discordant internal priming sites. The plots show observed/expected intronic
read density around (4Ag or (T);5 sequences (with 1 allowed mismatch) within the intronic
regions. The x axis shows position relative to the motif position (in basepairs), in a genomic
reference orientation. The bold lines show genome-wide average (trimmed of two extreme
values among chromosomes for each position). The averages of individual chromosomes are
shown semi-transparent lines. (e.) shows the profiles of mouse hippocampus 10x Chromium
dataset (n=18,213), (f.) shows profile for human forebrain 10x data (n=1720), (g.) shows
profile for the chromaffin differentiation data measured using SMART-seg2 (n=385), and

(h.) shows profile for the mouse bone marrow data measured using inDrop (n=3018). The
top left corner of each plot shows the number of all intronic reads (i.e. falling within the
gene, but not touching an exon) that falls within the 250bp around internal priming sites
(1500bp was used for the SMART-seg2 dataset). In 10x data, while concordant internal
priming sites produce stronger signal, their frequency within the genome is lower than those
of discordant sites, so that overall discordant sites account for slightly higher fraction of
intronic signals. By contrast, the inDrop dataset appears to have very limited discordant
priming.
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Extended Data Figure 2. Estimation of the characteristic time of RNA metabolism in human
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cells.
a. Design of the metabolic labeling experiment in human cells. HEK 293 cells were exposed

to 4sU for 5, 15 or 30 min, the labeled fraction was isolated and analyzed. A no pull-down
control was also analyzed, and represents the equilibrium state (indicaed liny

Expected profiles of the abundance and fraction of labeled spliced and unspliced RNA
moleculesc. The observed dynamic profiles of genes were clustered, yielding two groups:
the majority (83.4%) were concordant with the expectation of increasing labeling; and a
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smaller fraction (16.6%) of discordant genes. Bars indicate SEdMed098, NechnicaF2
NpiologicaF2- d. Curves showing maximum likelihood fit to the data, based on the analytical
solution for a step increase of the transcription rate. The fit yields val@esnafy, and of

the characteristic time constantdefined as the time required to reach 1 —4 68.2 % of

the asymptotic valuee The distribution ofc values and. The joint distribution of the fi

andy parameters (n=832).
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Extended Data Figure 3. Degradation rates are conserved over a widerange of terminally
differentiated cell types.
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Conservation of the RNA degradation rate over a wide range of different cell types in the
adult mouse (Tabula Muris dataset)The distribution over the genes of the correlation of
spliced and unspliced molecule counts across all the cell typgs$8,385).b. Legend
enumerating the tissues and cell classes annotated by the Tabula Muris consortium (n=48).
Functionally, developmentally or phenotypically related are colored with similar colors to
aid the interpretation of the plots belavA representative selection of genes with high
correlation p > 0.9) andl. typical correlation (0.9 » > 0.4).y was estimated by robust

linear regression (RANSAQ Plots show a selection of genes displaying two clearly

distinct degradation rates (such genes with doytdenounted to 10.8% of the total). The
values of the two different were estimated by regression mixture modefijgg. Two

examples of genes where multiple gammas are explained by alternative splicing in different
cell types.
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Extended Data Figure 4. Structure-based velocity estimation.
a,b. For genes that are observed only outside of the steady state, such as genes upregulated

late in the chromaffin differentiation (a) or down-regulated early in the Schwann cell
precursors (b), gene-relatiyefit will likely deviate from its steady-state valued. To

correct for such effects, a structure-bagdd will first predict ) for every gene based on its
structural parameters, and then ésaost correlated genes in the dataset to adjust M-value
(M = logy| uf usd, whereuggis the unspliced counts predicted from spliced counts under
steady-state, ang, is the observed unspliced count) using robust mean, and re-esgimate

Nature Author manuscript; available in PMC 2019 February 08.



s)duosnuepy Joyiny sispund ONd adoin3 ¢

syduasnuely Joyiny sispund DN 8doin3 g

La Manno et al. Page 19

e. Scatter-plot comparing gene-relative and structure-basstimates, with colored circles
highlighting y adjustments for genes down-regulated early in SCPs (blue) and up-regulated
late in chromaffin cells (green). The values are shown on a natural logfscélell

expression velocity in the chromaffin E12.5 dataset, based on the structuresbased
estimates, shown on the first five PCs.
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Extended Data Figure 5. RNA velocity analysis of inDrop datasets: visual stimulusresponse of
cortical pyramidal neurons and neutrophil differentiation.
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a. Simplified illustration of a model of activation of pyramidal neurons of the visual cortex
after exposure to a light stimulus.Velocity estimates projected onto a two-dimensional

PCA embedding of the dataset (n=962)verage transition probability of unstimulated

cells (top), cells stimulated for 1h (middle) and cell stimulated for 4h (bottom). The
unstimulated cells mostly were stationary and only few cells show tendency of activating
early response genes (likely as a result of the dissociation procedure). Cells stimulated for 1h
were characterized by expressing immediate early genes and high velocity in late response
genes, and they were therefore transitioning to a state more similar to the one observed 4h
activation time point. After 4h of stimulations cells appeared to be reverting to a state
comparable to the unstimulated sample (bottahe).Above, phase portraits of early (d) and
late (e) response genes. Below, Violin plots show expression distribution over the cell
population at each time point (left half of the violin) and extrapolation in to the future using
velocity (right half of the violin). In the plot, transitions of single cells are indicated by lines
connecting the two halves of the violins and colored by the sign of the velocity of each gene.
f. Grid visualization shows cell expression velocity estimates for the inDrop mouse bone
marrow dataset on a t-SNE embedding (n=304.8Ylajor cell populations are labeled based

on manual annotation. The velocity flow in (a) captures neutrophil maturation, starting from
the dividing cells on the right, all the way to ll1b activation on the left. Expression profiles
for five marker genes are shown belbwThe plots illustrate gene-relative model fits for
several example genes. For each gene, the first column shows spliced molecular counts in
different cells. The second column shows unspliced molecular counts. Third column shows
phase portrait of a gene (unsplicesispliced dependency) and the resultjnfit (dashed

red line), as determined using extreme quantile method. Each point corresponds to a cell,
colored according to cluster labels shown in (g). The last column shows unspliced count
signal residual based on the estimagefd, with positive residuals indicating expected
upregulation, and negative residuals indicating expected downregulation of a gene.
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Extended Data Figure 6. Dynamics of maturation of enterocytes during intestinal homeostasis.
a. Velocity field projected on a 2D t-SNE embedding. The clusters are labeled and colored

as in the original publication to facilitate comparison (n=2683). Velocity analysis revealed a
transition related to the maturation of distal and proximal enterocytes. No consistent velocity
was observed in the part of the manifold occupied by stem cells and transit amplifying (TA)
cells, suggesting that stem cell dynamics is more difficult to capture either for its slower rate
or a more stochastic nature. The small velocities of transit amplifying cells were likely

driven by cell cycle procesk. A selection of the cell cycle genes that were removed in the
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analysis are plotted on the t-SNE. Despite the removal of the genes annotated as cell cycle
genes we still observed important segregation by cell cycle, illustrating the difficulty of
disentangling cell cycle phase from the cell staté selection of phase portraits that show
genes underlying the observed velocity field. Markers of Endocrine, Goblet and Tuft cells
displayed no detectable velocity. Velocity towards and from stem cell states was detectable
for limited set of genes (like the stem cell marker Lgr5), however on the genome-wide level
the exact dynamics of this process was likely confounded by the high correlation with cell
cycle.
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Extended Data Figure 7. RNA velocity unveils the dynamics of differentiation and myelination of
oligodendrocytes.

a. t-SNE projection shows the landscape of oligodendrocyte lineage differentiation and

myelination process in the hindbrain (pons) of adolescent (P20) mice (n=6307). The velocity

field reflects the dynamics of expression of both the initial differentiation wave and the

following expression changes associated to the myelination process. The cell clusters are

colored by pseudotime as in (c) to facilitate interpretatioBExpression patterns of
landmark genes of the differentiation procéRdgfrais the canonical marker of
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oligodendrocyte precursors (OPCAgu4marks committed oligodendrocyte precursors
(COPs),Tmemds enriched in newly formed oligodendrocyte (NFOLS) and the expression

of Mogis upregulated at the beginning of the myelination process in myelin forming
oligodendrocytes (MFOLSsE. A selection of phase portraits underlying the velocity field
showed in (a)d. t-SNE projections and velocity vector field of the same dataset, but

analyzed using a more naive feature selection that has retained other axes of variation on top
of the oligodendrocyte maturation (sex and day of dissection). Notice that despite separation
of populations intoXist+ and Xist- tracks, the velocity field correctly captures progression

from progenitors to newly formed oligodendrocytes in the two parallel tracksvel of
expression ofX/st showing that most of the extra variation is driven by the sex of the animal.

f. Cells colored by the day the experiment was performed in.
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Extended Data Figure 8. Agreement of velocity predictions with the observed expression
derivatives.

a. Maturation progression of granule neurons in the mouse hippocampus dataset is
approximated by pseudotime (estimated with a principal cuov€pr a pair of example

genes (rows), the plots show unspliced and spliced gene expression profiles along the
pseudotime (left panels), empirically-estimated smoothed pseudotime derivative of the
observed gene expression and the estimated RNA velocity (middle panels), as well as the
relationship between spliced and unspliced expression (right panel). The velocity estimates
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for the two chosen genes are highly correlated with the empirically-observed derivative,
indicating accurate velocity estimatian.The majority (75%) of the genes that were
differentially regulated along the pseudotime trajectory showed positive correlation with the
empirical expression derivative. The distribution of such genes is split according to three
classes of trajectory-associated genes as shown in d. By contrast, velocity estimates for
genes that were not differentially expressed along the pseudotime trajectory did not show
such correlation (grey). Incorporating information about co-regulated genes into velocity
estimation using gene kNN clustering (see Supplementary Note 1) can significantly boost
the accuracy of the velocity predictions (lower parekl)lrajectory-associated genes were
classified as early, transient and late, according to their peak expression time. x-axis: cells
ordered by pseudotime, y-axis: genes ordered by their peak expressian Tieegenes

that were well-correlated in terms of their spliced expression pattern#pith also

showed high correlation of their velocity estimates vithrg To assess the degree
consistency of the velocities of co-regulated genes, we introduced a measure of velocity
coordination for a given gene, as a difference between the mean correlations of the velocity
estimates of the co-regulated genes and the velocity estimates of all genes. The two
guantities being compared are shownAgwrgwith dotted vertical lines: grey — mean

velocity correlation with all genes, red — mean velocity correlation with top co-regulated
genes. Velocity coordination provides an unbiased measure of quality of velocity estimates.
f. Velocities of co-regulated genes were correlated. Distribution of gene velocity
coordination values is shown for genes that had co-regulated gentsz(genes that had
well-correlated gene neighbors in terms of their spliced expression pattern, green), as well as
for the genes that did not have enough co-regulated genes (without neighborg, grey).
regulated genes that had high velocity coordination tended to have high correlation with the
empirical derivatives. Spearman correlation coefficient is shbvim Velocity performance
during maturation of pyramidal neurons (h). Genes differentially expressed during
maturation had high correlation of velocity with empirical derivative (i), co-regulated genes
tended to have correlated velocity estimates (j) and the degree of velocity coordination was
associated with its correlation with empirical derivative I Velocity performance

during chromaffin differentiatiorp-s. Velocity performance during maturation of
oligodendrocytes. Number of top co-regulated genes analyzed for velocity correlation: (g):
200 genes, (k,0,s): 150 genes.
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Extended Data Figure 9. Branching developmental trajectories of developing hippocampus.
a. t-SNE embedding of the developmental dentate gyrus dataset. Cells are colored by cluster

identities, with labels shown for the major cell tyge<€Expression of radial glia (and
astrocyte) marketHes and cell cycle geneBoplaand CdkIshown on the t-SNE
embeddingc. Marker genes of different regions of the hippocampusi{uhybridization
images from Allen Brain Atlas) show prominent expression signals at different extremities
of the branching embedding. Scale bars, 0.5 mm.
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Extended Data Figure 10. Single cell velocity estimates for individual cellsin the embryonic
hippocampus dataset.

a. Arrows indicate the extrapolated state projected onto the t-SNE embedding of the
manifold.b. Selected phase portraits and fits of the equilibrium slgpéo( the developing

cells in the embryonic hippocampus dataset. For each gene, the first column shows spliced-
unspliced phase portrait. The dashed line showsg fiteThe second column illustrates the
magnitude of the residualsé. difference between observed and expected unspliced
abundance, which closely tracks with velocity) for several genes involved in the
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development of different neural lineages. The third column shows the observed expression
profile for spliced molecules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Balance between unspliced and spliced mMRNAs s predictive of cellular state
progression.

a. Spliced and unspliced counts are estimated by separately counting reads that incorporate
intronic sequence. Multiple reads associated with a given molecule are grouped (* boxes) for
UMI-based protocols. Pie charts show typical fractions of unspliced molecules.

b. Model of transcriptional dynamics, capturing transcriptio) éplicing (8), and

degradation) rates involved in production of unspliceg énd spliced§ mRNA

products.

c. Solution of the model in (b) as a function of time, showing unspliced and spliced mRNA
dynamics in response to step changes.in

d. Phase portrait showing the same solution (solid curves). Steady states for different values
of transcription rates fall on the diagonal given by slope(dashed line). Levels of

unspliced mMRNA above or below that proportion indicate increasing (red shading) or
decreasing (blue shading) expression of a gene, respectively.

e. Abundance of spliceds(and unsplicedd) mRNAs for circadian-associated genes in a

24h time course of mouse liver12. The unspliced mMRNAs are predictive of spliced mRNA at
the next time point.

f,g. Phase portraits observed for a pair of circadian-driven gégés(f) and Cbs(g). The
circadian time of each point is shown using a clock symbol (see bottom of Fig. 1e). The
dashed diagonal line shows steady-state relationship, as predicgdd.by

h. Change in expression state at a future #nas predicted by the model, is shown in the
space of the first two principal components (PCs), recapitulating the progression along the
circadian cycle. Each circle shows the observed expression state, with the arrow pointing at
the position of the future state, extrapolated from velocity estimates.

Nature Author manuscript; available in PMC 2019 February 08.



siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

La Manno et al. Page 32
wn
K Serpine2 __ 7 | Serpine2 ° . Serpine2
ot Y ,.:-7‘/’»‘ ~ o | ° 4»( o' o
Seiinge 7 o 5 S
O B T & - ° ‘] ° ° =2 4
r b?‘ g) - n | oe&od O%ﬂfuo '..’é;‘. %°
o \;& éo 2. do&.& oo % °
~o 830 bridge -3
& o |asdete .
expression (5] 00 05 10 15 1 residual
low high spliced (8)
o~
«  Chga __—| Chga . *
5 © 7 . 2
T o bridge 2
E 7 ® o fo
2‘ p '8%’ £
AR 3 chromaffin
o P 2
S T T T T T 1 f Q
1 2 3 4 5 S}
spliced ($) > 7
<84
e =]
€ PLP1CreERT2/R26YFF embryos 2
o
] 7 E115—E135 JE=RE; e
T T T T T T
< 00 02 04 06 08 10
sympathetic differentiation pseudotime
anglion
gang ga S
){' .g o
& B—> <a T dorsal aorta % g
PC2 N 2 = > o
> v \ 2 & % =}
/ v N B g
PC1 ‘ o '8 2
?‘ x = 8
S 4 : =

tSNE2 N L

Figure 2. RNA velocity recapitulates dynamics of chromaffin cell differentiation.
a. PCA projection showing major subpopulations of Schwann cell precursors (SCPs)

differentiating into chromaffin cells in E12.5 mouse (n=385 cells).

b,c. Expression pattern (left), unspliced/spliced phase portraits (center, cells colored
according to a), andresiduals (right) are shown for the represSegpineZb) and induced
Chga(c) genes. Read counts were pooled ackes$ nearest cell neighbors.

d. The observed and the extrapolated future (arrows) states are shown on the first two PCs.
RNA velocity was estimated without cell or gene pooling.
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e. SCP-to-chromaffin cell transition as evidenced by lineage tracing with SCP-specific
PLP1-CreERT2 line. A cross-section through the developing adrenal medulla is shown. Note
high proportion of TH+/YFP+ cells in the developing medulla and the absence of such
double-positive cells in the sympathetic ganglion (N=3 replicates).

f. Extrapolation distance along the chromaffin differentiation trajectory is estimated for a
single cell at pseudotimig, based on the correlation (y axis) between the velodityd cell
expression difference. Red line shows optimal extrapolation tithésee Supplementary
Note 2 Section 6).

g. Distribution of optimal extrapolation times*{ ¢y for the chromaffin differentiation
timecrouse. Red line marks the distribution mode (2.1 hours).

h. The velocities are visualized on the pre-defined t-SNE embedding from the original
publication13. Velocity estimates based on nearest-cell podtind] were used.

i. Same velocity field as (h) visualized using Gaussian smoothing on a regular grid.
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Figure 3. RNA velocity field describesfate decisions of major neural lineagesin the
hippocampus.

a. A t-SNE embedding of the developing mouse hippocampus cells (n=18,213 cells),
showing major transient and mature subpopulations.

b. Phase portraits (left, colored as in a), unspliced residuals (middle), and spliced expression
(right) are shown for two regulated genes. kNN cell pooling was used.

c. Velocity field projected onto the t-SNE embedding. Arrows show the local average
velocity evaluated on a regular grid. Upper right insert: differentiation endpoints as high
density regions on the manifold after forward Markov process with velocity-based transition
probabilities; the root of the branching tree is identified simulating the process in the reverse
direction. Lower right insert: Summary schematic of the RNA velocity field, and expression
of the transcription factoProx1

d. Commitment to oligodendrocyte fate. Left, visualization of single-step transition
probabilities from two starting cells (red) to neighbouring cells. Right, velocities of a
sampled subset of cells shown on the t-SNE embedding in (c).

e. Fate decision of neuroblasts. Left, visualization of single-step transition probabilities from
two starting cells (red) to neighbouring cells. Right, velocities of a sampled subset of cells
shown on the t-SNE embedding in (c).
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Figure 4. Kinetics of transcription during human embryonic glutamater gic neurogenesis.
a. PCA projection of human glutamatergic neuron differentiation (n=1,720 cells) at post-

conception week 10, shown with velocity field. Colors indicate cell types and intermediate
states. A corresponding principal curve is shown in bold.

b. Gene expression for known markers of radial gi&@XJ3, neuroblastsEOMES and
neurons §LC17A7% and for novel markers are visualized on the PCA projection as in
indicated genes in pseudocolor.
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c¢. Fluorescentn situhybridization (RNAscope) for the same genes as in (b) on a cross-
section of human developing cortex, oriented with the ventricular zone towards the bottom
and the cortical surface towards the top (N=1). Scale bars, 25 um.

d. Pseudotime expression profiles for six example genes regulated in glutamatergic neuron
maturation. Unspliced abundance was divideg/tty match the scale of spliced abundance.
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