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QuPath: Open source software for
digital pathology image analysis
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Accepted: 21 November 2017 © QuPath is new bioimage analysis software designed to meet the growing need for a user-friendly,
Published online: 04 December 2017  : extensible, open-source solution for digital pathology and whole slide image analysis. In addition to
. offering a comprehensive panel of tumor identification and high-throughput biomarker evaluation
tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an
extensible platform with which to develop and share new algorithms to analyze complex tissue images.
Furthermore, QuPath’s flexible design makes it suitable for a wide range of additional image analysis
applications across biomedical research.

The ability to acquire high resolution digital scans of entire microscopic slides with high-resolution whole slide
scanners is transforming tissue biomarker and companion diagnostic discovery through digital image analytics,
automation, quantitation and objective screening of tissue samples. This area has become widely known as digital
pathology®?. Whole slide scanners can rapidly generate ultra-large 2D images or z-stacks in which each plane
may contain up to 40 GB uncompressed data. Manual subjective scoring of this data by traditional pathologist
assessment is no longer sufficient to support large-scale tissue biomarker trials, and cannot ensure the high qual-
ity, reproducible, objective analysis essential for reliable clinical correlation and candidate biomarker selection.
New and powerful software tools are urgently required to ensure that pathological assessment of tissue is practi-
cal, accessible and reliable for biological discovery and the development of clinically-relevant tissue diagnostics.

In recent years, a vibrant ecosystem of open source bioimage analysis software has developed. Led by Image]>,
researchers in multiple disciplines can now choose from a selection of powerful tools, such as Fiji*, Icy®, and
CellProfiler®, to perform their image analyses. These open source packages encourage users to engage in further
development and sharing of customized analysis solutions in the form of plugins, scripts, pipelines or work-
flows — enhancing the quality and reproducibility of research, particularly in the fields of microscopy and high
content imaging. This template for open-source development of software has provided opportunities for image
analysis to add considerably to translational research by enabling the development of the bespoke analytical
methods required to address specific and emerging needs, which are often beyond the scope of existing com-
mercial applications’. However, none of the aforementioned software applications tackle the specific visualiza-
tion and computational challenges posed by whole slide images (WSI) and very large 2D data. Rather, open
source tools for digital pathology to date have comprised libraries to handle digital slide formats (e.g. OpenSlide®,
Bio-Formats?), software to crop whole slide images into manageable tiles or perform analysis on such cropped
tiles (e.g. SlideToolKit!?, ImmunoRatio!!), or web platforms for data management and collaborative analysis (e.g.
Cytomine!?). While each of this makes a valuable contribution, the field continues to lack a commonly-accepted,
open software framework for developing and distributing novel digital pathology algorithms in a manner that is
immediately accessible for any researcher or pathologist. In practice, this has meant that users without access to
expensive commercial solutions have had to either resort to inefficient workarounds (such as image downsam-
pling and cropping) to apply limited quantitative analysis using general open source analysis tools to a subset of
their data'®", or to rely primarily on laborious manual evaluation of slides, which is known to have high variabil-
ity and limited reproducibility’*'>. It has also made it more difficult for computational researchers to innovate in
algorithm development, and to make state-of-the-art analysis methods widely available!®.
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Figure 1. Illustration of QuPath’s use and functionality. (a) A typical workflow for TMA analysis (here, p53)
demonstrates several of QuPath’s main features (left-to-right): Creation of a multi-slide project with automated
TMA dearraying, stain estimation, cell detection and feature computation, trainable cell classification, batch
processing, and survival analysis. (b) QuPath offers a wide range of additional functionality, including support
for whole face tissue sections and fluorescence image analysis, data exchange with existing software and
platforms (e.g. Image] and MATLAB), scriptable data mining, and rapid generation, visualization and export of
spatial, morphological and intensity-based features.

QuPath (https://qupath.github.io) has been developed to address these needs by offering the first comprehen-
sive, open source desktop software application specifically designed to analyze and explore whole slide imaging
data. At its core is a cross-platform, multithreaded, tile-based whole slide image viewer, which incorporates exten-
sive annotation and visualization tools. On top of this, QuPath offers an array of novel algorithms to provide not
only ready-made, user-friendly solutions to common, challenging analysis problems in pathology, but also the
building blocks to create custom workflows — and link these together for batch processing with powerful scripting
functionality (Fig. 1). Finally, QuPath enables developers to add their own extensions to solve new challenges and
applications, and to exchange data in a streamlined manner with existing tools that otherwise provide limited
whole slide support, such as Image] and MATLAB.

A key feature underpinning QuPath’s functionality, and a major technical distinguishing factor between
QuPath and other bioimaging analysis software, is its hierarchical, ‘object-based’ data model. Here, an ‘object’
refers primarily to a structure or region within the image, which may be created and manipulated by either inter-
active drawing tools (e.g. to annotate a particular region of interest) or automated segmentation commands (e.g.
to detect individual nuclei or cells). However, in addition to representing a region of interest, objects can also be of
different types (e.g. detection, annotation) and support the assignment of classifications, measurements and links
to ‘parent’ and ‘child’ objects in a manner that can be rapidly queried and manipulated using built-in command or
scripting. This generic model allows QuPath to represent and display relationships between very large numbers
of image objects in an efficient and intuitive manner across gigapixel images, and support the fast and interactive
training of object classifiers using machine learning techniques.

A practical example of this is in the evaluation of the presence, localization and intensity of expression of
key diagnostic, prognostic and predictive biomarkers in tissue sections. These biomarkers are typically detected
using antibodies and chromogenic based detection systems, and are selectively expressed in tumor cells or in
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Figure 2. Survival analysis of colon cancer cohort based on QuPath automated image analysis. (a—d) Kaplan
Meier survival analysis for biomarker scores of TMAs stained for CD3, CD8, p53 and PD-L1. Median cutoffs
are applied in all cases, except p53 where two cutofls were selected by an experienced pathologist to distinguish
between aberrant negative, “wild type” (normal) and aberrant positive groups. Representative images showing
an original core and QuPath markup image are included below. (e) Kaplan Meier curve showing patient
stratification based on median tumor stromal percentage. Representative images show the original images and
markup for tumors with a high and low stromal percentage respectively. Green indicates regions classified as
stroma, dark red indicates tumor epithelium, while yellow represents other classified tissue or whitespace.

other cellular compartments. QuPath’s built-in cell segmentation algorithms can detect potentially millions of
cells as objects within a single WSI, in addition to measuring cell morphology and biomarker expression. QuPath
further supports the classification of different cell types according to these features, to generate a comprehensive
phenotypic description of each cell within the tissue sample. This in turn provides a quantitative cellular map of
the entire tissue section, which can be subsequently selected, queried and filtered to mine the image data and
uncover morphological subtleties not immediately visible during traditional pathological assessment. All of this
can typically be achieved within minutes, without a requirement for specialist hardware.

Results and Discussion

To demonstrate some of these capabilities, including its biological and clinical validity, we used QuPath to analyze
several image sets derived from surgical resection specimens from a population-based cohort of 660 patients
with stage II and stage III colon cancer, diagnosed between 2004-2008 (392 stage II, 268 stage III) and with
high-quality curation of clinicopathological information. From representative paraffin-embedded tumor blocks,
provided via the Northern Ireland Biobank, whole sections were haematoxylin and eosin-stained in the Northern
Ireland Molecular Pathology Laboratory. Tissue microarrays (TMAs) were generated from representative 1 mm
diameter tumor cores from each case, sampled in triplicate from the tumor center after annotation.

The aim was to test the performance of QuPath in the context of known and novel biological and clinical data,
using cancer immunology and tumor suppressor genes as paradigms. Firstly, we applied QuPath to analyze TMAs
immunohistochemically-stained (IHC) for the T cell markers CD3 and CD8. Following digital scanning of the
WSI, the initial QuPath setup required importing the images, applying automated ‘dearraying’ to identify tissue
cores, manually refining the resulting dearrayed grid, and removing cores unsuitable for analysis. After this step,
batch analysis was applied across all TMA slides to identify the tissue within each core and automatically count
the number of positive cells per mm? tissue based upon a fast peak-finding algorithm after stain separation by
color deconvolution'” (Supplementary Fig. 1, Supplementary Video 1). Running on a standard Mac Pro (3.5 GHz,
6-Core Intel Xeon E5, 32-GB RAM)), this approach required less than 4 minutes for each biomarker to analyze
21 whole slide images, representing a total of >2000 tissue cores per biomarker and counting approximately 1.2
million CD3 positive and 0.6 million CD8 positive cells, while simultaneously exporting low-resolution images of
each core both with and without markup for verification. After applying a median cutoft to the exported results, a
statistically significant association between disease-specific survival and positive cell density scores was demon-
strated for both CD3 and CD8 (log-rank test, p-values 0.006 and 0.007 respectively; Fig. 2a,b). This recapitulates
within our cohort the seminal work of Galon et al. in demonstrating the prognostic relevance of adaptive immu-
nity in colorectal cancer'®, while demonstrating a highly-efficient method of investigating similar markers within
other cohorts and cancer types.

Next, we used QuPath to evaluate immunohistochemistry for p53 in a second set of TMAs from the same
cohort. This required a more sophisticated analysis to encompass the biological understanding and staining
pattern of the marker. After applying QuPath’s cell detection algorithm to segment and measure cells within
each core, a random trees classifier'® was interactively trained to enable p53 expression to be scored selectively
within the epithelial cell population according to nuclear staining intensity and proportion (Supplementary Fig. 2,
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Supplementary Video 2). This analysis showed that aberrant p53 expression (diffuse intense or completely absent
immunoreactivity) is associated with significantly poorer unadjusted disease-specific survival when compared
with intermediate, ‘wild-type’ expression (p =0.003 extreme negative/positive vs. intermediate; Fig. 2c). Despite
the well-established role of TP53 in colorectal cancer carcinogenesis, results from prognostic studies assessing
p53 IHC expression have been inconsistent?’. However, the extreme negative pattern of aberrant p53 immuno-
reactivity has only been described relatively recently??? and has not been widely assessed in colorectal cancer
cohorts. This example therefore emphasises the flexibility of the QuPath open source platform in measuring
common IHC markers with variable tumor expression patterns, and demonstrates how the relationship between
quantitative cellular analysis and clinical outcome can be robustly assessed.

We then applied QuPath to the analysis of programmed cell death ligand 1 (PD-L1) immunoexpression in the
same TMA cohort. PD-L1 immunoexpression is a prognostic marker in a range of cancer types and also a predic-
tor of response to immune checkpoint therapy in some cancers****. However, there is a lack of consensus on the
epitopes of clinical relevance and, more importantly, the optimal scoring systems for evaluation. The approach to
analysis was similar in principle to that adopted for p53, however further attention was required because of addi-
tional challenges posed by PD-L1 immunostaining. Firstly, staining is cytoplasmic and/or membranous rather
than nuclear. Secondly, PD-L1 can be expressed in tumor epithelium, but is more commonly expressed in other
tissue compartments, notably within peritumoral stromal inflammatory cells. Although this level of heterogeneity
in staining pattern is increasingly being recognised, the clinical importance of distinguishing tumor epithelial
from inflammatory cell staining is yet to be fully understood. Sufficient cell classification is therefore required to
identify both positively and negatively staining tumor (epithelial) and non-tumor cell populations, in addition to
distinguishing true protein expression levels from the various staining artefacts that are inherent with IHC-based
tissue analysis. Here, applying QuPath, a cell was classified as positive or negative based on maximal DAB stain-
ing intensity, as a surrogate marker of protein expression, within a full cell region approximated by expanding
detected nuclei (Supplementary Fig. 3). The percentage of all cells exhibiting PD-L1 positivity was calculated for
each TMA core to give a summary PD-L1 score for that core. A median cutoff of 1.46% positive cells was deter-
mined from across the cohort to stratify patients, showing higher PD-L1 expression to be significantly associated
with improved disease-specific survival in unadjusted analysis (p = 0.004, Fig. 2d). Additionally, an analysis based
on tertiles exhibited a dose-response effect, and separation of the tumor (epithelial) and non-epithelial compo-
nents suggested that PD-L1 expression in colon cancer tissue is primarily found in the non-epithelial compart-
ment (Supplementary Fig. 4). These results support the incipient evidence of PD-L1 prognostic value in colorectal
cancer reported by ourselves and others in independent cohorts?*-¢, and may be of help when used together with
tumor microsatellite instability status for patient stratification in consideration of anti-PD-L1 therapy.

Finally, to demonstrate QuPath’s flexibility beyond IHC scoring in TMAs, we applied texture-based analysis
to calculate the tumor stromal percentage in whole face representative tumor sections stained with hematoxylin
and eosin (H&E) from 312 patients with stage II colon cancer from the same cohort. Several studies have reported
that a higher intratumoral stromal percentage correlates with a worse prognosis in patients with stage II and stage
I1I colorectal cancer?”?. Given highly variable clinical outcomes within stage II disease, there is a particular need
for additional prognostic features in this group, to identify those patients most likely to benefit from adjuvant
chemotherapy. These studies employed a crude visual estimate of tumor stromal percentage. Applying QuPath’s
more fine-grained and reproducible assessment, and a median cutoff for analysis, we found lower disease-specific
survival among patients with a high tumor stromal percentage in unadjusted analysis (p = 0.013; Fig. 2e), consist-
ent with previous findings??%.

In summary, QuPath represents a uniquely comprehensive, user-friendly, open source bioimage analysis
platform designed for whole slide images. We have demonstrated that it provides the tools necessary for fast,
accurate and reproducible digital pathology analysis across a range of challenging applications. All of the above
represent analyses that are cumbersome and time-consuming for pathologists to perform manually, given that
they depend upon the accurate visual estimation of proportional staining within large numbers of stained cells,
or of proportional composition of complex tissue areas. Accurate assessment is particularly difficult when the
clinically relevant cutoff is very low and expression very localized (e.g. PD-L1), requiring detailed examination
and precision. Such precise analyses are becoming increasingly necessary and important, both clinically in the era
of personalized medicine, and in a research context for high-throughput evaluation of novel biomarkers. By offer-
ing an extensible environment for pathologists, biologists, and computer scientists to build highly performant
algorithms for image interpretation and analysis, there is potential to drive adoption of quantitative imaging in
academic, diagnostic and pharmaceutical research organizations, and to accelerate biomarker discovery in large
scale multinational clinical trials. This is an absolute requirement to ensure a return on the global investment
made in companion diagnostics for precision medicine.

Materials and Methods
Cohort. This analysis was based on a population-based cohort of 660 stage II/III colon adenocarcinoma
patients, representing 89% of all patients undergoing surgery for stage II/III colon adenocarcinoma in two
Healthcare Trusts in Northern Ireland between 2004 and 2008. Patients were sampled and clinical information
obtained from the Northern Ireland Cancer Registry. All patients were followed up for occurrence and cause of
death via linkage to the Northern Ireland Registrar General’s Office up to 31* December 2013. Ethical approval
for these linkages was given by ORECNI (REC: 10/NIR02/53). Over ten years (and a mean of 5 years) of clin-
ical follow-up, 46% of patients had died, of which 38% were from CRC-specific causes. Corresponding tumor
slides and blocks were retrieved and collated via the Northern Ireland Biobank which has ethical approval to use
de-identified tissue samples from the Belfast Health and Social Care Tissue Pathology archive (REC:11/NI1/0013).
This study was conducted in accordance to REporting recommendations for tumour MARKer prognostic
studies (REMARK)?. The reporting standards of the current study fulfill these recommendations.
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Following slide review, a new section was cut for H&E staining from a single representative tumor block in
each case, and the new slides annotated for tissue microarray (TMA) construction. Three representative areas
within the tumor center of each block were annotated for targeted coring (by an experienced biomedical scientist
and confirmed by expert pathologists, MBL and JAJ). One millimeter diameter tissue cores were extracted from
donor blocks and inserted into recipient blocks using a manual tissue arrayer (Estigen, Tartu, Estonia).

Immunohistochemistry. All IHC was performed in a hybrid laboratory (Northern Ireland Molecular
Pathology Laboratory) that has UK Clinical Pathology Accreditation. Internally validated biomarker conditions,
which followed UK-NEQAS guidelines (CD3 and CD8) or were based on expected performance from the lit-
erature (p53 and PD-L1), were as follows: CD3 (clone 2GV6 Ventana BenchMark; CC1 32 minutes, Optiview
detection), CD8 (clone c8/144B, Dako: Leica Bond III, ER2 20 mins, 1/50, polymer detection), p53 (clone DO-7,
Dako, ER2 30 mins, 1/100, polymer detection), PD-L1 (clone SP142, Ventana BenchMark, CC1 24 mins, optiview
detection).

Image data acquisition. All TMA slides were scanned using an Aperio ScanScope CS whole slide scan-
ner at 40X magnification, with a resolution of 0.25 pm/pixel. H&E slide scanning was heterogenous: 231 were
scanned on the Aperio ScanScope scanner, while 81 were scanned on a Hamamatsu Nanozoomer. The resolution
of all images was within the range 0.231-0.253 pm/pixel.

Software. QuPath was written as a novel, cross-platform Java application. The core software was developed
using Java 8, with a user interface written using JavaFX. Whole slide image reading made use of QuPath’s inter-
faces to the OpenSlide library®, while the implementations of QuPath’s cell detection and superpixel segmentation
commands made use of Image] as a library for standard image processing operations’. The random trees classifier
and fast cell counting were implemented using the OpenCV library (http://opencv.org). The analysis for this study
was performed on a Mac Pro (3.5 GHz, 6-Core Intel Xeon E5, 32-GB RAM).

Code availability. Source code and documentation for QuPath are available at https://qupath.github.io.

Statistical analysis. Survival curves using the Kaplan Meier method were generated and log-rank tests
applied using the TMA data viewer within QuPath, and independently verified using R (version 3.2.2)* with the
‘Survival’ package (version 2.38-3)3!. For the calculation of disease-specific survival, deaths from other causes
were treated as censored events. Median cutoff values were used in all cases, except for p53 where an experienced
pathologist (MBL) selected two biologically-plausible cutoffs (H-scores 10 and 160) to separate extreme posi-
tive and extreme negative cases from those with intermediate (‘wild-type’) expression, based upon viewing all
TMA cores post-analysis ranked by H-score. Stratification based on tertiles is also provided in the Supplementary
Materials for PD-L1.

For TMA analysis, up to three tissue cores were available from each tumor, all selected from the same paraffin
block representing the central tumor region. A single patient biomarker score was defined as the median of all
available scores for the corresponding patient and biomarker. The median was chosen to aid the robustness of
the measurement in a high-throughput setting, and reduce the likelihood of basing the score for any individual
patient on an outlier that may have been caused by a tissue or staining artefact.

Tissue microarray preprocessing. Separate projects were created within QuPath for each biomarker, and
the slide images imported to the corresponding projects. QuPath’s automated TMA dearrayer was applied in
batch over all slides within each project to identify tissue cores. The resulting TMA grid was manually verified
and amended where necessary, e.g. to adjust the locations of cores that were outside their expected position, or to
remove cores where prominent artefacts were visible. Patient identifiers were then imported into QuPath for each
core to assist alignment with survival data later. Additionally, stain vector (i.e. color) and background estimates
were applied for each THC analysis project to improve stain separation within QuPath using color deconvolu-
tion'. This was achieved by selecting a representative area containing an area of background along with examples
of strong hematoxylin and DAB staining, and applying QuPath’s Estimate stain vectors command to identify stain
vectors within this region. The resulting vectors were then used for all images in the project.

Analysis of CD3 and CD8IHC.  After the initial TMA preprocessing steps described above, analysis of CD3
and CD8 was performed using QuPath’s Simple tissue detection and Fast cell counts commands. Briefly, tissue
was detected within each TMA core by thresholding a downsampled and smoothed image of the core, followed
by cleanup of the resulting binary image by morphological operations. Individual cells were identified by sepa-
rating stains using color deconvolution and identifying peaks in either the hematoxylin channel (CD3) or sum
of the hematoxylin and DAB channels (CD8) after smoothing, and assigning these as positive or negative cells
based upon the smoothed DAB channel information. The number of positive cells and area detected were used
to calculate the average number of positive cells per mm?, and these results exported along with markup images
showing the detected cells, for visual verification. The detection and export steps were fully automated using a
batch processing script.

Analysis of p53 IHC.  Preprocessing steps were applied as described above. QuPath’s Cell detection command
was then used to identify cells across all cores based upon nuclear staining. This command additionally estimates
the full extent of each cell based upon a constrained expansion of the nucleus region, and calculates up to 33
measurements of intensity and morphology, including nucleus area, circularity, staining intensity for hematoxylin
and DAB, and nucleus/cell area ratio. Because not all of these measurements are expected to provide independ-
ent or useful information with regard to cell classification, a subset of 16 measurements was chosen empirically
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and supplemented for each cell by measuring the local density of cells, and taking a Gaussian-weighted sum of
the corresponding measurements within neighboring cells using QuPath’s Add smoothed features command. A
two-way random trees classifier was then interactively trained to distinguish tumor epithelial cells from all other
detections (comprising non-epithelial cells, necrosis, or any artefacts misidentified as cells) and applied across all
slides (see Supplementary Video 2). Intensity thresholds were set to further subclassify tumor cells as being neg-
ative, weak, moderate or strongly positive for p53 staining based upon mean nuclear DAB optical densities. An
H-score was calculated for each tissue core by adding 3x% strongly stained tumor nuclei, 2x% moderately stained
tumor nuclei, and 1x% weakly stained tumor nuclei*?, giving results in the range 0 (all tumor nuclei negative) to
300 (all tumor nuclei strongly positive).

Analysis of PD-L1 IHC. The approach to scoring PD-L1 was similar to p53, apart from the following: 1) a
three-way random trees classifier was trained to distinguish between epithelial, non-epithelial and ‘other’ detec-
tions (including artefacts and necrosis); 2) cells were classified as positive or negative based upon a single intensity
threshold applied to the maximum DAB optical density within the full cell area, and 3) summary scores were
generated as the percentage of cells classified as positive, with ‘other’ detections removed.

Analysis of tumor stromal percentage in H&E whole face sections. Representative tumor regions
were annotated across all 312 H&E-stained slides by an experienced pathologist (MBL) using QuPath’s manual
annotation tools. A script was then applied in batch to automatically identify and set the average background
intensity for the red, green and blue channels of each image, which varied markedly according to the scanner
used. A second script was then run over all images to apply QuPath’s SLIC superpixel segmentation command to
subdivide each annotated region into ‘superpixels’ based upon simple linear iterative clustering®. This script addi-
tionally calculated both the average hue for each superpixel along with Haralick texture features®* from optical
density values using QuPath’s Add intensity features command. QuPath’s Add smoothed features command was
also applied to calculate a Gaussian-weighted sum of the features of neighboring superpixels, and append these
to the existing features for each superpixel. This provide additional contextual information extending beyond the
superpixel itself.

A subset of 40 ‘training’ images was then identified for the pathologist to interactively train a random trees
classifier to distinguish between tissue areas comprising tumor epithelium, stroma and ‘other’ (e.g. whitespace,
mucin, normal muscle or necrosis). This required drawing around regions containing tissue of each class and
annotating these accordingly. During this process, QuPath used all available features to train the classifier in a
background process and thereby provide immediate feedback on classification performance. Once the classifica-
tion was considered adequate across the training images, the classifier was applied to all images within the set and
the total area of superpixels for each class was exported. The tumor stromal percentage (TSP) was then calculated
as

TSP = AS/(AE + AS) x 100 %

where AS represents the total area classified as stroma, and AE represents the total area classified as epithelium.
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