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QuPath: Open source software for 
digital pathology image analysis
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QuPath is new bioimage analysis software designed to meet the growing need for a user-friendly, 

extensible, open-source solution for digital pathology and whole slide image analysis. In addition to 

o昀؀ering a comprehensive panel of tumor identi昀؀cation and high-throughput biomarker evaluation 
tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an 

extensible platform with which to develop and share new algorithms to analyze complex tissue images. 

Furthermore, QuPath’s 昀؀exible design makes it suitable for a wide range of additional image analysis 
applications across biomedical research.

Ve ability to acquire high resolution digital scans of entire microscopic slides with high-resolution whole slide 
scanners is transforming tissue biomarker and companion diagnostic discovery through digital image analytics, 
automation, quantitation and objective screening of tissue samples. Vis area has become widely known as digital 
pathology1,2. Whole slide scanners can rapidly generate ultra-large 2D images or z-stacks in which each plane 
may contain up to 40 GB uncompressed data. Manual subjective scoring of this data by traditional pathologist 
assessment is no longer suocient to support large-scale tissue biomarker trials, and cannot ensure the high qual-
ity, reproducible, objective analysis essential for reliable clinical correlation and candidate biomarker selection. 
New and powerful sogware tools are urgently required to ensure that pathological assessment of tissue is practi-
cal, accessible and reliable for biological discovery and the development of clinically-relevant tissue diagnostics.

In recent years, a vibrant ecosystem of open source bioimage analysis sogware has developed. Led by ImageJ3, 
researchers in multiple disciplines can now choose from a selection of powerful tools, such as Fiji4, Icy5, and 
CellProfler6, to perform their image analyses. Vese open source packages encourage users to engage in further 
development and sharing of customized analysis solutions in the form of plugins, scripts, pipelines or work-
fows – enhancing the quality and reproducibility of research, particularly in the felds of microscopy and high 
content imaging. Vis template for open-source development of sogware has provided opportunities for image 
analysis to add considerably to translational research by enabling the development of the bespoke analytical 
methods required to address specifc and emerging needs, which are ogen beyond the scope of existing com-
mercial applications7. However, none of the aforementioned sogware applications tackle the specifc visualiza-
tion and computational challenges posed by whole slide images (WSI) and very large 2D data. Rather, open 
source tools for digital pathology to date have comprised libraries to handle digital slide formats (e.g. OpenSlide8, 
Bio-Formats9), sogware to crop whole slide images into manageable tiles or perform analysis on such cropped 
tiles (e.g. SlideToolKit10, ImmunoRatio11), or web platforms for data management and collaborative analysis (e.g. 
Cytomine12). While each of this makes a valuable contribution, the feld continues to lack a commonly-accepted, 
open sogware framework for developing and distributing novel digital pathology algorithms in a manner that is 
immediately accessible for any researcher or pathologist. In practice, this has meant that users without access to 
expensive commercial solutions have had to either resort to ineocient workarounds (such as image downsam-
pling and cropping) to apply limited quantitative analysis using general open source analysis tools to a subset of 
their data10,13, or to rely primarily on laborious manual evaluation of slides, which is known to have high variabil-
ity and limited reproducibility14,15. It has also made it more diocult for computational researchers to innovate in 
algorithm development, and to make state-of-the-art analysis methods widely available16.
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QuPath (https://qupath.github.io) has been developed to address these needs by ofering the frst comprehen-
sive, open source desktop sogware application specifcally designed to analyze and explore whole slide imaging 
data. At its core is a cross-platform, multithreaded, tile-based whole slide image viewer, which incorporates exten-
sive annotation and visualization tools. On top of this, QuPath ofers an array of novel algorithms to provide not 
only ready-made, user-friendly solutions to common, challenging analysis problems in pathology, but also the 
building blocks to create custom workfows – and link these together for batch processing with powerful scripting 
functionality (Fig. 1). Finally, QuPath enables developers to add their own extensions to solve new challenges and 
applications, and to exchange data in a streamlined manner with existing tools that otherwise provide limited 
whole slide support, such as ImageJ and MATLAB.

A key feature underpinning QuPath9s functionality, and a major technical distinguishing factor between 
QuPath and other bioimaging analysis sogware, is its hierarchical, 8object-based9 data model. Here, an 8object9 
refers primarily to a structure or region within the image, which may be created and manipulated by either inter-
active drawing tools (e.g. to annotate a particular region of interest) or automated segmentation commands (e.g. 
to detect individual nuclei or cells). However, in addition to representing a region of interest, objects can also be of 
diferent types (e.g. detection, annotation) and support the assignment of classifcations, measurements and links 
to 8parent9 and 8child9 objects in a manner that can be rapidly queried and manipulated using built-in command or 
scripting. Vis generic model allows QuPath to represent and display relationships between very large numbers 
of image objects in an eocient and intuitive manner across gigapixel images, and support the fast and interactive 
training of object classifers using machine learning techniques.

A practical example of this is in the evaluation of the presence, localization and intensity of expression of 
key diagnostic, prognostic and predictive biomarkers in tissue sections. Vese biomarkers are typically detected 
using antibodies and chromogenic based detection systems, and are selectively expressed in tumor cells or in 

Figure 1. Illustration of QuPath9s use and functionality. (a) A typical workfow for TMA analysis (here, p53) 
demonstrates several of QuPath9s main features (leg-to-right): Creation of a multi-slide project with automated 
TMA dearraying, stain estimation, cell detection and feature computation, trainable cell classifcation, batch 
processing, and survival analysis. (b) QuPath ofers a wide range of additional functionality, including support 
for whole face tissue sections and fuorescence image analysis, data exchange with existing sogware and 
platforms (e.g. ImageJ and MATLAB), scriptable data mining, and rapid generation, visualization and export of 
spatial, morphological and intensity-based features.

https://qupath.github.io
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other cellular compartments. QuPath9s built-in cell segmentation algorithms can detect potentially millions of 
cells as objects within a single WSI, in addition to measuring cell morphology and biomarker expression. QuPath 
further supports the classifcation of diferent cell types according to these features, to generate a comprehensive 
phenotypic description of each cell within the tissue sample. Vis in turn provides a quantitative cellular map of 
the entire tissue section, which can be subsequently selected, queried and fltered to mine the image data and 
uncover morphological subtleties not immediately visible during traditional pathological assessment. All of this 
can typically be achieved within minutes, without a requirement for specialist hardware.

Results and Discussion
To demonstrate some of these capabilities, including its biological and clinical validity, we used QuPath to analyze 
several image sets derived from surgical resection specimens from a population-based cohort of 660 patients 
with stage II and stage III colon cancer, diagnosed between 2004–2008 (392 stage II, 268 stage III) and with 
high-quality curation of clinicopathological information. From representative paraon-embedded tumor blocks, 
provided via the Northern Ireland Biobank, whole sections were haematoxylin and eosin-stained in the Northern 
Ireland Molecular Pathology Laboratory. Tissue microarrays (TMAs) were generated from representative 1 mm 
diameter tumor cores from each case, sampled in triplicate from the tumor center ager annotation.

Ve aim was to test the performance of QuPath in the context of known and novel biological and clinical data, 
using cancer immunology and tumor suppressor genes as paradigms. Firstly, we applied QuPath to analyze TMAs 
immunohistochemically-stained (IHC) for the T cell markers CD3 and CD8. Following digital scanning of the 
WSI, the initial QuPath setup required importing the images, applying automated 8dearraying9 to identify tissue 
cores, manually refning the resulting dearrayed grid, and removing cores unsuitable for analysis. Ager this step, 
batch analysis was applied across all TMA slides to identify the tissue within each core and automatically count 
the number of positive cells per mm2 tissue based upon a fast peak-fnding algorithm ager stain separation by 
color deconvolution17 (Supplementary Fig. 1, Supplementary Video 1). Running on a standard Mac Pro (3.5 GHz, 
6-Core Intel Xeon E5, 32-GB RAM), this approach required less than 4 minutes for each biomarker to analyze 
21 whole slide images, representing a total of >2000 tissue cores per biomarker and counting approximately 1.2 
million CD3 positive and 0.6 million CD8 positive cells, while simultaneously exporting low-resolution images of 
each core both with and without markup for verifcation. Ager applying a median cutof to the exported results, a 
statistically signifcant association between disease-specifc survival and positive cell density scores was demon-
strated for both CD3 and CD8 (log-rank test, p-values 0.006 and 0.007 respectively; Fig. 2a,b). Vis recapitulates 
within our cohort the seminal work of Galon et al. in demonstrating the prognostic relevance of adaptive immu-
nity in colorectal cancer18, while demonstrating a highly-eocient method of investigating similar markers within 
other cohorts and cancer types.

Next, we used QuPath to evaluate immunohistochemistry for p53 in a second set of TMAs from the same 
cohort. Vis required a more sophisticated analysis to encompass the biological understanding and staining 
pattern of the marker. Ager applying QuPath9s cell detection algorithm to segment and measure cells within 
each core, a random trees classifer19 was interactively trained to enable p53 expression to be scored selectively 
within the epithelial cell population according to nuclear staining intensity and proportion (Supplementary Fig. 2, 

Figure 2. Survival analysis of colon cancer cohort based on QuPath automated image analysis. (a–d) Kaplan 
Meier survival analysis for biomarker scores of TMAs stained for CD3, CD8, p53 and PD-L1. Median cutofs 
are applied in all cases, except p53 where two cutofs were selected by an experienced pathologist to distinguish 
between aberrant negative, <wild type= (normal) and aberrant positive groups. Representative images showing 
an original core and QuPath markup image are included below. (e) Kaplan Meier curve showing patient 
stratifcation based on median tumor stromal percentage. Representative images show the original images and 
markup for tumors with a high and low stromal percentage respectively. Green indicates regions classifed as 
stroma, dark red indicates tumor epithelium, while yellow represents other classifed tissue or whitespace.
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Supplementary Video 2). Vis analysis showed that aberrant p53 expression (difuse intense or completely absent 
immunoreactivity) is associated with signifcantly poorer unadjusted disease-specifc survival when compared 
with intermediate, 8wild-type9 expression (p = 0.003 extreme negative/positive vs. intermediate; Fig. 2c). Despite 
the well-established role of TP53 in colorectal cancer carcinogenesis, results from prognostic studies assessing 
p53 IHC expression have been inconsistent20. However, the extreme negative pattern of aberrant p53 immuno-
reactivity has only been described relatively recently21,22 and has not been widely assessed in colorectal cancer 
cohorts. Vis example therefore emphasises the fexibility of the QuPath open source platform in measuring 
common IHC markers with variable tumor expression patterns, and demonstrates how the relationship between 
quantitative cellular analysis and clinical outcome can be robustly assessed.

We then applied QuPath to the analysis of programmed cell death ligand 1 (PD-L1) immunoexpression in the 
same TMA cohort. PD-L1 immunoexpression is a prognostic marker in a range of cancer types and also a predic-
tor of response to immune checkpoint therapy in some cancers23,24. However, there is a lack of consensus on the 
epitopes of clinical relevance and, more importantly, the optimal scoring systems for evaluation. Ve approach to 
analysis was similar in principle to that adopted for p53, however further attention was required because of addi-
tional challenges posed by PD-L1 immunostaining. Firstly, staining is cytoplasmic and/or membranous rather 
than nuclear. Secondly, PD-L1 can be expressed in tumor epithelium, but is more commonly expressed in other 
tissue compartments, notably within peritumoral stromal infammatory cells. Although this level of heterogeneity 
in staining pattern is increasingly being recognised, the clinical importance of distinguishing tumor epithelial 
from infammatory cell staining is yet to be fully understood. Suocient cell classifcation is therefore required to 
identify both positively and negatively staining tumor (epithelial) and non-tumor cell populations, in addition to 
distinguishing true protein expression levels from the various staining artefacts that are inherent with IHC-based 
tissue analysis. Here, applying QuPath, a cell was classifed as positive or negative based on maximal DAB stain-
ing intensity, as a surrogate marker of protein expression, within a full cell region approximated by expanding 
detected nuclei (Supplementary Fig. 3). Ve percentage of all cells exhibiting PD-L1 positivity was calculated for 
each TMA core to give a summary PD-L1 score for that core. A median cutof of 1.46% positive cells was deter-
mined from across the cohort to stratify patients, showing higher PD-L1 expression to be signifcantly associated 
with improved disease-specifc survival in unadjusted analysis (p = 0.004, Fig. 2d). Additionally, an analysis based 
on tertiles exhibited a dose-response efect, and separation of the tumor (epithelial) and non-epithelial compo-
nents suggested that PD-L1 expression in colon cancer tissue is primarily found in the non-epithelial compart-
ment (Supplementary Fig. 4). Vese results support the incipient evidence of PD-L1 prognostic value in colorectal 
cancer reported by ourselves and others in independent cohorts24–26, and may be of help when used together with 
tumor microsatellite instability status for patient stratifcation in consideration of anti-PD-L1 therapy.

Finally, to demonstrate QuPath9s fexibility beyond IHC scoring in TMAs, we applied texture-based analysis 
to calculate the tumor stromal percentage in whole face representative tumor sections stained with hematoxylin 
and eosin (H&E) from 312 patients with stage II colon cancer from the same cohort. Several studies have reported 
that a higher intratumoral stromal percentage correlates with a worse prognosis in patients with stage II and stage 
III colorectal cancer27,28. Given highly variable clinical outcomes within stage II disease, there is a particular need 
for additional prognostic features in this group, to identify those patients most likely to beneft from adjuvant 
chemotherapy. Vese studies employed a crude visual estimate of tumor stromal percentage. Applying QuPath9s 
more fne-grained and reproducible assessment, and a median cutof for analysis, we found lower disease-specifc 
survival among patients with a high tumor stromal percentage in unadjusted analysis (p = 0.013; Fig. 2e), consist-
ent with previous fndings27,28.

In summary, QuPath represents a uniquely comprehensive, user-friendly, open source bioimage analysis 
platform designed for whole slide images. We have demonstrated that it provides the tools necessary for fast, 
accurate and reproducible digital pathology analysis across a range of challenging applications. All of the above 
represent analyses that are cumbersome and time-consuming for pathologists to perform manually, given that 
they depend upon the accurate visual estimation of proportional staining within large numbers of stained cells, 
or of proportional composition of complex tissue areas. Accurate assessment is particularly diocult when the 
clinically relevant cutof is very low and expression very localized (e.g. PD-L1), requiring detailed examination 
and precision. Such precise analyses are becoming increasingly necessary and important, both clinically in the era 
of personalized medicine, and in a research context for high-throughput evaluation of novel biomarkers. By ofer-
ing an extensible environment for pathologists, biologists, and computer scientists to build highly performant 
algorithms for image interpretation and analysis, there is potential to drive adoption of quantitative imaging in 
academic, diagnostic and pharmaceutical research organizations, and to accelerate biomarker discovery in large 
scale multinational clinical trials. Vis is an absolute requirement to ensure a return on the global investment 
made in companion diagnostics for precision medicine.

Materials and Methods
Cohort. Vis analysis was based on a population-based cohort of 660 stage II/III colon adenocarcinoma 
patients, representing 89% of all patients undergoing surgery for stage II/III colon adenocarcinoma in two 
Healthcare Trusts in Northern Ireland between 2004 and 2008. Patients were sampled and clinical information 
obtained from the Northern Ireland Cancer Registry. All patients were followed up for occurrence and cause of 
death via linkage to the Northern Ireland Registrar General9s Ooce up to 31st December 2013. Ethical approval 
for these linkages was given by ORECNI (REC: 10/NIR02/53). Over ten years (and a mean of 5 years) of clin-
ical follow-up, 46% of patients had died, of which 38% were from CRC-specifc causes. Corresponding tumor 
slides and blocks were retrieved and collated via the Northern Ireland Biobank which has ethical approval to use 
de-identifed tissue samples from the Belfast Health and Social Care Tissue Pathology archive (REC:11/NI/0013).

Vis study was conducted in accordance to REporting recommendations for tumour MARKer prognostic 
studies (REMARK)29. Ve reporting standards of the current study fulfll these recommendations.
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Following slide review, a new section was cut for H&E staining from a single representative tumor block in 
each case, and the new slides annotated for tissue microarray (TMA) construction. Vree representative areas 
within the tumor center of each block were annotated for targeted coring (by an experienced biomedical scientist 
and confrmed by expert pathologists, MBL and JAJ). One millimeter diameter tissue cores were extracted from 
donor blocks and inserted into recipient blocks using a manual tissue arrayer (Estigen, Tartu, Estonia).

Immunohistochemistry. All IHC was performed in a hybrid laboratory (Northern Ireland Molecular 
Pathology Laboratory) that has UK Clinical Pathology Accreditation. Internally validated biomarker conditions, 
which followed UK-NEQAS guidelines (CD3 and CD8) or were based on expected performance from the lit-
erature (p53 and PD-L1), were as follows: CD3 (clone 2GV6 Ventana BenchMark; CC1 32 minutes, Optiview 
detection), CD8 (clone c8/144B, Dako: Leica Bond III, ER2 20 mins, 1/50, polymer detection), p53 (clone DO-7, 
Dako, ER2 30 mins, 1/100, polymer detection), PD-L1 (clone SP142, Ventana BenchMark, CC1 24 mins, optiview 
detection).

Image data acquisition. All TMA slides were scanned using an Aperio ScanScope CS whole slide scan-
ner at 40X magnifcation, with a resolution of 0.25 µm/pixel. H&E slide scanning was heterogenous: 231 were 
scanned on the Aperio ScanScope scanner, while 81 were scanned on a Hamamatsu Nanozoomer. Ve resolution 
of all images was within the range 0.231–0.253 µm/pixel.

Software. QuPath was written as a novel, cross-platform Java application. Ve core sogware was developed 
using Java 8, with a user interface written using JavaFX. Whole slide image reading made use of QuPath9s inter-
faces to the OpenSlide library8, while the implementations of QuPath9s cell detection and superpixel segmentation 
commands made use of ImageJ as a library for standard image processing operations3. Ve random trees classifer 
and fast cell counting were implemented using the OpenCV library (http://opencv.org). Ve analysis for this study 
was performed on a Mac Pro (3.5 GHz, 6-Core Intel Xeon E5, 32-GB RAM).

Code availability. Source code and documentation for QuPath are available at https://qupath.github.io.

Statistical analysis. Survival curves using the Kaplan Meier method were generated and log-rank tests 
applied using the TMA data viewer within QuPath, and independently verifed using R (version 3.2.2)30 with the 
8Survival9 package (version 2.38–3)31. For the calculation of disease-specifc survival, deaths from other causes 
were treated as censored events. Median cutof values were used in all cases, except for p53 where an experienced 
pathologist (MBL) selected two biologically-plausible cutofs (H-scores 10 and 160) to separate extreme posi-
tive and extreme negative cases from those with intermediate (8wild-type9) expression, based upon viewing all 
TMA cores post-analysis ranked by H-score. Stratifcation based on tertiles is also provided in the Supplementary 
Materials for PD-L1.

For TMA analysis, up to three tissue cores were available from each tumor, all selected from the same paraon 
block representing the central tumor region. A single patient biomarker score was defned as the median of all 
available scores for the corresponding patient and biomarker. Ve median was chosen to aid the robustness of 
the measurement in a high-throughput setting, and reduce the likelihood of basing the score for any individual 
patient on an outlier that may have been caused by a tissue or staining artefact.

Tissue microarray preprocessing. Separate projects were created within QuPath for each biomarker, and 
the slide images imported to the corresponding projects. QuPath9s automated TMA dearrayer was applied in 
batch over all slides within each project to identify tissue cores. Ve resulting TMA grid was manually verifed 
and amended where necessary, e.g. to adjust the locations of cores that were outside their expected position, or to 
remove cores where prominent artefacts were visible. Patient identifers were then imported into QuPath for each 
core to assist alignment with survival data later. Additionally, stain vector (i.e. color) and background estimates 
were applied for each IHC analysis project to improve stain separation within QuPath using color deconvolu-
tion17. Vis was achieved by selecting a representative area containing an area of background along with examples 
of strong hematoxylin and DAB staining, and applying QuPath9s Estimate stain vectors command to identify stain 
vectors within this region. Ve resulting vectors were then used for all images in the project.

Analysis of CD3 and CD8 IHC. Ager the initial TMA preprocessing steps described above, analysis of CD3 
and CD8 was performed using QuPath9s Simple tissue detection and Fast cell counts commands. Briefy, tissue 
was detected within each TMA core by thresholding a downsampled and smoothed image of the core, followed 
by cleanup of the resulting binary image by morphological operations. Individual cells were identifed by sepa-
rating stains using color deconvolution and identifying peaks in either the hematoxylin channel (CD3) or sum 
of the hematoxylin and DAB channels (CD8) ager smoothing, and assigning these as positive or negative cells 
based upon the smoothed DAB channel information. Ve number of positive cells and area detected were used 
to calculate the average number of positive cells per mm2, and these results exported along with markup images 
showing the detected cells, for visual verifcation. Ve detection and export steps were fully automated using a 
batch processing script.

Analysis of p53 IHC. Preprocessing steps were applied as described above. QuPath9s Cell detection command 
was then used to identify cells across all cores based upon nuclear staining. Vis command additionally estimates 
the full extent of each cell based upon a constrained expansion of the nucleus region, and calculates up to 33 
measurements of intensity and morphology, including nucleus area, circularity, staining intensity for hematoxylin 
and DAB, and nucleus/cell area ratio. Because not all of these measurements are expected to provide independ-
ent or useful information with regard to cell classifcation, a subset of 16 measurements was chosen empirically 

http://opencv.org
https://qupath.github.io
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and supplemented for each cell by measuring the local density of cells, and taking a Gaussian-weighted sum of 
the corresponding measurements within neighboring cells using QuPath9s Add smoothed features command. A 
two-way random trees classifer was then interactively trained to distinguish tumor epithelial cells from all other 
detections (comprising non-epithelial cells, necrosis, or any artefacts misidentifed as cells) and applied across all 
slides (see Supplementary Video 2). Intensity thresholds were set to further subclassify tumor cells as being neg-
ative, weak, moderate or strongly positive for p53 staining based upon mean nuclear DAB optical densities. An 
H-score was calculated for each tissue core by adding 3x% strongly stained tumor nuclei, 2x% moderately stained 
tumor nuclei, and 1x% weakly stained tumor nuclei32, giving results in the range 0 (all tumor nuclei negative) to 
300 (all tumor nuclei strongly positive).

Analysis of PD-L1 IHC. Ve approach to scoring PD-L1 was similar to p53, apart from the following: 1) a 
three-way random trees classifer was trained to distinguish between epithelial, non-epithelial and 8other9 detec-
tions (including artefacts and necrosis); 2) cells were classifed as positive or negative based upon a single intensity 
threshold applied to the maximum DAB optical density within the full cell area, and 3) summary scores were 
generated as the percentage of cells classifed as positive, with 8other9 detections removed.

Analysis of tumor stromal percentage in H&E whole face sections. Representative tumor regions 
were annotated across all 312 H&E-stained slides by an experienced pathologist (MBL) using QuPath9s manual 
annotation tools. A script was then applied in batch to automatically identify and set the average background 
intensity for the red, green and blue channels of each image, which varied markedly according to the scanner 
used. A second script was then run over all images to apply QuPath9s SLIC superpixel segmentation command to 
subdivide each annotated region into 8superpixels9 based upon simple linear iterative clustering33. Vis script addi-
tionally calculated both the average hue for each superpixel along with Haralick texture features34 from optical 
density values using QuPath9s Add intensity features command. QuPath9s Add smoothed features command was 
also applied to calculate a Gaussian-weighted sum of the features of neighboring superpixels, and append these 
to the existing features for each superpixel. Vis provide additional contextual information extending beyond the 
superpixel itself.

A subset of 40 8training9 images was then identifed for the pathologist to interactively train a random trees 
classifer to distinguish between tissue areas comprising tumor epithelium, stroma and 8other9 (e.g. whitespace, 
mucin, normal muscle or necrosis). Vis required drawing around regions containing tissue of each class and 
annotating these accordingly. During this process, QuPath used all available features to train the classifer in a 
background process and thereby provide immediate feedback on classifcation performance. Once the classifca-
tion was considered adequate across the training images, the classifer was applied to all images within the set and 
the total area of superpixels for each class was exported. Ve tumor stromal percentage (TSP) was then calculated 
as

= + ×TSP AS/(AE AS) 100 %

where AS represents the total area classifed as stroma, and AE represents the total area classifed as epithelium.
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