
Phylogenetics

Nextstrain: real-time tracking of pathogen

evolution

James Hadfield1,*, Colin Megill1, Sidney M. Bell1,2, John Huddleston1,2,

Barney Potter1, Charlton Callender1, Pavel Sagulenko3,

Trevor Bedford1,† and Richard A. Neher3,4,5,†

1Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA, 2Molecular

and Cellular Biology Program, University of Washington, Seattle, WA, USA, 3Max Planck Institute for

Developmental Biology, Tübingen, Germany, 4Biozentrum, University of Basel, Basel, Switzerland and 5SIB Swiss

Institute of Bioinformatics, Basel, Switzerland

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the last two authors should be regarded as Joint last Authors.

Associate Editor: Janet Kelso

Received on October 11, 2017; revised on April 20, 2018; editorial decision on May 14, 2018; accepted on May 16, 2018

Abstract

Summary: Understanding the spread and evolution of pathogens is important for effective public

health measures and surveillance. Nextstrain consists of a database of viral genomes, a bioinfor-

matics pipeline for phylodynamics analysis, and an interactive visualization platform. Together

these present a real-time view into the evolution and spread of a range of viral pathogens of high

public health importance. The visualization integrates sequence data with other data types such as

geographic information, serology, or host species. Nextstrain compiles our current understanding

into a single accessible location, open to health professionals, epidemiologists, virologists and the

public alike.

Availability and implementation: All code (predominantly JavaScript and Python) is freely avail-

able from github.com/nextstrain and the web-application is available at nextstrain.org.

Contact: jhadfiel@fredhutch.org

1 Introduction

Viral pathogens pose an ever-present danger to global human

health, highlighted by recent events such as the West African Ebola

epidemic and the ongoing Zika epidemic in the Americas. The rapid

evolution of these viruses allows inference of epidemic history from

genomic data. Such analyses are often done in isolation, and may

lack the spatial or temporal context in which to best interpret the

results (Pybus et al., 2013). Furthermore, the results of analyses are

rarely made available to the public or health bodies until after publi-

cation, which may be too late to aid understanding or effect change

in policy. We have developed Nextstrain to visualize outbreaks in as

close to real time as possible. Whilst currently encompassing a selec-

tion of viruses, extension to non-viral pathogens is forthcoming.

The regularly updated nature and rapidity of these analyses

is crucial to the monitoring and understanding of pathogen

epidemiology and evolution. Sequencing times and costs are

continually dropping, with on-the-ground sequencing used during

recent epidemics (Faria et al., 2017; Quick et al., 2016). Rapid

methods by which to analyze, interpret, and disseminate results

must complement this speed of sequencing.

Nextstrain consists of data curation, analysis and visualization

components: Python scripts maintain a database of available sequen-

ces and related metadata, sourced from public repositories such as

NCBI (www.ncbi.nlm.nih.gov), GISAID (www.gisaid.org) and

ViPR (www.viprbrc.org), as well as GitHub repositories and other

sources of genomic data. A suite of tools perform phylodynamic

analysis (Volz et al., 2013), including subsampling, alignment,

phylogenetic inference, temporal dating of ancestral nodes and dis-

crete trait geographic reconstruction, including inference of the most

likely transmission events. This leverages the maximum likelihood
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analyses implemented in TreeTime (Sagulenko et al., 2018), allow-

ing a full analysis of the entire Ebola epidemic (n¼1581 genomes)

in under 2 h on a modern laptop. These scripts separate generic

core functionality from a light pathogen-specific layer such that

they are easily adapted to different pathogens. Visualization is

available through nextstrain.org. This approach is similar in concept

to Nextflu (Neher and Bedford, 2015) however extended and

generalized to different viral pathogens. There is a growing need

for surveillance of non-influenza viruses (Tang et al., 2017),

and Nextstrain is able to be extended to most outbreaks with readily

accessible genomic data, although we note the potential for recom-

bination or low mutation rate to confound phylogenetic signal.

2 Joint temporal and spatial visualization

Conveying understanding of pathogen evolution through space and

time involves filtering large amounts of data into forms that can be

easily reasoned with. Multiple views into different facets of the data

are presented and remain in sync as one interacts with the data.

This allows simultaneous interrogation of phylogenetic and spatial

relationships, with additional data such as genotype or serotype

expressed through colourings (Fig. 1). This is coupled with an inter-

active time slider to see how the pathogen has evolved and spread

over the course of the epidemic. By animating the temporal dimen-

sion, a high level overview of how the entire outbreak unfolded is

quickly gained. This approach both communicates the geographical

spread of the epidemic alongside the underlying genomic data that

supports this geographic reconstruction.

Maximum likelihood ancestral state reconstruction of discrete

traits such as country or region of isolation allows identification of

probable transmission events given the sampled data, together with

inferred probability distributions of ancestral state at each node.

Internal node colours indicate ancestral state and shifts are drawn as

links between demes on the map. Confidence is conveyed by match-

ing colour saturation to the confidence of that trait, and by display-

ing all relevant information when one hovers over the corresponding

branch or isolate on the tree. Sampling bias and lack of data can ob-

scure transmission links, and in certain cases we have chosen not to

display the inferred states.

3 Monitoring of evolution and adaptation

Nextstrain tracks and reconstructs mutations across the tree and dis-

plays this information as a bar chart of entropy at each position in

the genome, as well as showing the mutations inferred to occur on

each branch by hovering over the tree. Selecting a position in the

genome with non-zero entropy reveals the distribution of the segre-

gating variant in the phylogeny and on the map. This allows interro-

gation of genetic change which may be adaptive or underlying a

change in disease dynamics.

For many pathogens, the emergence and spread of gain-of-

function variants is a grave concern. For instance, China has experi-

enced seasonal epidemics of influenza A/H7N9 over the past five

years. Despite no known human-to human-transmission events, the

high mortality rate of 30% (Li et al., 2014) makes the threat of

mutations which facilitate human-to-human transmission of ex-

treme concern. For example, mutations identified by de Vries et al.

(2017) are readily visible at nextstrain.org/avian/h7n9. Continual

monitoring of such putatively adaptive mutations is critical.

4 A model for public sharing of data

Nextstrain presents a single, continuously updated overview of both

endemic viral disease (seasonal influenza, dengue) as well as emergent

viral outbreaks (avian influenza, Zika, Ebola), all based upon the

same underlying bioinformatics architecture. This architecture is well

positioned to respond to future outbreaks, be they viral or bacterial.

Analysis of such outbreaks relies on public sharing of data, and

Nextstrain has the ability to automatically update as new sequences

from a range of public databases and repositories appear. Scientists

are justifiably hesitant to cede control of their data, and we try to

address these concerns by preventing access to the raw genome

sequences, and by clearly indicating the source of each sequence.

Derived data, such as phylogenetic trees, metadata and screenshots

are available, and one can append private metadata via CSV files.

We believe this strikes a compromise between keeping certain data

private and allowing the dissemination of results important to the

wider scientific community, thereby encouraging collaboration be-

tween scientists. Genomic epidemiology has the potential to inform

the public, health organisations and scientists alike, a potential

realized by sharing of data in real-time rather than retrospectively

(Croucher and Didelot, 2015).

Funding

This work was supported by the Open Science Prize to TB and RAN, by the

NSF through DGE-1256082 to SMB, by the ERC through StG-260686 to RAN

and by NIH R35 GM119774-01 to TB. TB is a Pew Biomedical Scholar.

Conflict of Interest: none declared.

Fig. 1. Genomic epidemiology of Zika virus as of Oct 2017 (live display at

nextstrain.org/zika). The main interface consists of three linked panels—a

phylogenetic tree, geographic transmissions and the genetic diversity across

the genome
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