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Summary

Transcription Factors (TFs) influence gene expression by facilitating or disrupting the
formation of transcription initiation machinery at particular genomic loci. Because genomic
localization of TFs is in part driven by TF recognition of DNA sequence, variation in TF
binding sites can disrupt TF-DNA associations and affect gene regulation. To identify
variants that impact TF binding in human brain tissues, we quantified allele bias for 93
TFs analyzed with ChlP-seq experiments of multiple structural brain regions from two
donors. Using graph genomes constructed from phased genomic sequence data, we
compared ChlP-seq signal between alleles at heterozygous variants within each tissue
sample from each donor. Comparison of results from different brain regions within donors
and the same regions between donors provided measures of allele bias reproducibility.
We identified thousands of DNA variants that show reproducible bias in ChlP-seq for at
least one TF. We found that alleles that are rarer in the general population were more
likely than common alleles to exhibit large biases, and more frequently led to reduced TF
binding. Combining ChlP-seq with RNA-seq, we identified TF-allele interaction biases
with RNA bias in a phased allele linked to 6,709 eQTL variants identified in GTEx data,
3,309 of which were found in neural contexts. Our results provide insights into the effects
of both common and rare variation on gene regulation in the brain. These findings can
facilitate mechanistic understanding of cis-regulatory variation associated with biological
traits, including disease.

Introduction

Gene expression changes occur in essentially every biological process, including the
development of diseases (Emilsson et al. 2008; Lee and Young 2013) such as
neurodegenerative (Bonham et al. 2019, 2022; Zhao 2023) and psychiatric conditions
(Clifton et al. 2019; Mimmack et al. 2002; Huang et al. 2020). Transcription factors (TFs)
and their association with DNA are crucial determinants of gene expression, so identifying
factors that influence the association between TFs and DNA is key to understanding
variation in gene expression. A wide variety of tools have been developed to identify and
catalogue DNA sequence motifs to which TFs preferentially bind (Bailey et al. 2015;
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Ghandi et al. 2016; Castro-Mondragon et al. 2022). While informative, these approaches
are limited by the fact that a motif's presence is neither necessary nor sufficient for TF
association (Dror et al. 2015), so the impact of DNA sequence changes on motifs is of

limited utility.

An alternative approach is to leverage natural genetic diversity across and within humans,
specifically heterozygous variants, and assay TF binding behavior. Tools have been
developed to identify differential binding across multiple experiments to identify changes
in TF binding (Lun and Smyth 2016), but these are complicated by technical and biological
variation. Complicating this issue further is that reference allele bias is a known obstacle
in mapping sequence reads, and this can inflate the false discovery rate in studies of
allelic effects (Degner et al. 2009; Stevenson et al. 2013; Rozowsky et al. 2011; Smith et
al. 2013; Hach et al. 2014). The use of graph structures to represent personalized
genomes or pangenomes (Li et al. 2020; Paten et al. 2017) can reduce reference allele
bias (Garrison et al. 2018; Martiniano et al. 2020; Chen et al. 2021).

A recent study probed allele-specific binding across hundreds of cell types with
corrections for reference allele bias and aneuploid regions (Abramov et al. 2021). The
majority of these datasets were derived from cancer cell lines, limiting their applicability
to non-diseased human tissue, or in contexts relevant for specific disease states. Another
recent study highlighted the viability of a similar approach in human tissue samples by
identifying allele-specific loci with 15 assays in 4 human donors across 30 tissues,
including ChIP-seq assays of histone marks and several TFs, including the CCCTC-
binding factor CTCF (Rozowsky et al. 2023). This study found relationships between
allele-specificity of ChlP-seq and gene expression, including identifying GTEx eQTLs that
were allele-specific and those that were not. This highlights the value of identifying allele-
biased binding among transcription factors for understanding gene regulation.

Here, we greatly expand upon previous work by performing allele-biased binding analysis
for 1,004 (Loupe et al. 2023) TF-ChlP-seq datasets, spanning 93 distinct TFs, RNA
polymerase |l (POLR2), and 5 histone marks in tissue samples from 9 anatomically
defined brain regions in multiple donors. We used the vg toolkit to assemble personalized
genomes to overcome reference allele bias and demonstrated that this approach
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79 improves the calling of allele-biased binding. We explored dynamics of allele frequency
80 in the population with allele bias and the relationship between allele-biased binding and
81 disruption of TF binding motifs. We determined the effects on gene expression by using
82 RNA-seq reads to assess eQTLs in these donors, allowing a mechanistic exploration of
83 eQTL data. Finally, we highlight interesting examples of allele-biased binding identified in
84  our datasets.

85
86 Results

87  Graph Genomes improve read mapping and reduce reference allele bias

88 To study the impact of genetic variation on TF binding, we first performed linked-read
89 sequencing (10x Genomics) to generate phased genomes and call variants for two
90 donors (Figure 1A; see Methods). We built personalized graph genomes that use the vg
91 toolkit (Garrison et al. 2018), as it has been shown that it can reduce problems of
92 reference allele bias and has previously been used for detection of missing signal in
93 histones (Groza et al. 2020) and the detection of allele-biased TF footprints (Ouyang and
94 Boyle 2022). To measure the effectiveness of this approach on our datasets, we initially
95 mapped a pilot set of 20 ChlP-seq datasets, 10 in each of the two donors, using both
96 conventional mapping to the hg38 linear reference via bowtie2 and personalized graph-
97 genome mapping via vg. We observed an average increase in read mapping of 1.24% of
98 the total read pool when using personalized graph genomes (Table 1). Despite this small
99 change in overall mapping, the use of graph genomes greatly reduced the degree of
100 reference allele bias for variants identified as significantly biased using the two
101 approaches (Figure 1B). Because rare alternate alleles tend to be deleterious and may
102 show increased preference for the reference allele, we restricted to cases of MAF>0.05
103  for this analysis. Using hg38, we identified 21,207 cases of significant TF-allele bias at
104 the nominal p<=0.05 level (binomial test), 76.9% of which favor the reference allele,
105 compared to 17,823 cases of significant TF-allele bias using a graph genome, with 52.8%
106 favoring the reference allele. The reference bias trend was also observed, though
107 reduced, when considering all variants, including those with MAF<=0.05 with bias
108 (Supplemental Figure 1), as well as variants with at least six mapped reads whether or
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109 not there was a nominally significant bias (Supplemental Figure 2). Thus, graph genome
110 alignments tend to reduce reference-alignment artifact contributions to observed allelic
111  biases.
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Figure 1. Personalized graph genomes improve read mapping for detection of allele-biased binding.
A. Workflow for detection of allele biased binding. Whole Genome Sequencing and ChIP-seq of 93
TFs, POLR2, and 5 histone marks were performed in post-mortem brain samples from 2 donors.
ChIP-seq reads were mapped to personalized graph genomes to identify allele bias and were
compared within and across donors. B. Personalized genomes reduce problems of reference allele
bias, increasing confidence in allele-biased binding detection. Density plots are shown for the

reference allele frequency (x-axis) of significant (p<=0.05, binomial test) allele bias when using
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bowtie aligned to the linear reference (red) compared to using the vg toolkit aligned to a personalized
graph genome (blue). Allele bias is more balanced between the reference and alternate for
personalized graph genomes. C. There is significant disagreement in the number and identity of
variants found preferring the reference and alternate alleles between methods. Heatmap showing
the number of TF-biased allele interactions found nonsignificant, significant for reference, and
significant for alternate by bowtie and vg.
112
Percent of reads Mapped
Donor 1 Donor 2

Linear Graph Linear Graph
Control 99.48 99.95 99.47 99.95
BCL11A, DLPFC 86.88 91.61 90.69 93.23
CREB1, CB 98.54 99.37 98.65 98.24
CTCF, OL 94.99 96.97 94.72 96.15
CTCF, SG 96.24 97.70 96.30 96.86
MEF2A, DLPFC 97.21 98.47 96.83 97.22
RAD21, ANCG 96.64 98.04 97.62 97.60
RAD21, HC 95.80 97.46 96.77 96.97
SP1, AMY 94.35 96.49 93.37 95.15
TBR1, DLPFC 96.41 97.93 96.65 96.91
Table 1. Percentage of reads mapped generally increases using personalized genomes compared
to linear genomes. For 20 ChlP-seq datasets, the percentage of reads which were mapped to the
reference genome when using a linear genome (Linear) or a personalized graph genome (Graph)
for donor 1 (left) and donor 2 (right). In most cases, vg maps a larger percentage of reads.

113

114 To determine how specific variants were classified by each method, we next created a
115 heatmap of the number of variants classified as significant or nonsignificant with each
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116 mapping method (Figure 1C), and which of the alleles—reference or alternate—they
117 preferred. We found that, for TF-allele interactions identified as significant in both
118 methods, the direction of effect is well-conserved between the two methods. However,
119 we found 4,402 variants that were significant only when we used a graph-based
120 approach, and 8,508 variants that were significant only when we used a linear reference.
121 For these variants, we note that bowtie2’s mapping produces a strong preference for
122  predicting the reference allele as the preferred allele, with 7,961 of the 8,508 hg38-
123  specific allele biased events favoring the reference. In contrast, vg shows a more
124  balanced distribution of variants favoring the reference and alternate alleles (55.2%
125 favoring reference). This is consistent with the problems of reference allele bias seen in
126  Figure 1B. In addition, when the two methods disagree in their classification of a variant,
127  vgtends to have a higher read depth at the location (Supplemental Figure 3), suggesting
128 that improved mapping of reads with variants results in a change in the apparent
129  significance of the variant. Together, these findings suggest that use of personalized
130 genomes substantially improves both specificity and sensitivity for detection of TF-allele
131  bias.

132
133 Allele-biased binding is consistent across donors and tissues

134 We subsequently measured TF allelic bias using only the graph genome approach,
135 applying it to ChIP-seq data from 93 TFs, RNA Polymerase (POLR2A), and five histone
136 marks in up to nine anatomically defined regions of the brain across two donors, for a
137  total of 1,004 ChIP-seq datasets (Loupe et al. 2023). We used vg to map these ChlP-seq
138 datasets and calculate allele bias for each dataset in each haplotype. We initially identified
139  all allele bias at a nominal p-value <= 0.05 (binomial test). At that threshold, we found that
140 of the nearly two million regions with heterozygous DNA sequence variation in each
141 donor, roughly 7.5% were significantly biased for at least one ChlP-seq dataset (Table
142 2); as expected, this largely reflects the fact that TF binding occurs at only a small fraction
143 (7-10%) of genomic loci (Loupe et al. 2023). We note that, while 266,448 variants are
144  heterozygous in both donors (13.8%-14.1% of all heterozygous sites in each donor), only
145 5,954 heterozygous variants that showed significant bias in either donor are significantly
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146  biased in both donors (4.1-4.2%). This points to a 3-fold depletion of shared TF-biased
147  variation between our two donors, suggesting that selection reduces the frequency of
148  such variation in the population (p<=2.2 x 10-'6, binomial test).

Donor 1 Donor 2 Shared

(Significant in
Both Donors)

Variant regions 3,032,858 3,074,271 809,297

Heterozygous 1,894,277 1,932,258 266,488

regions

Significantly Biased | 139,234 144,952 28,751 (5,862;

(p<=0.05) 20.4%)

Significantly Biased | 4,328 3,876 486 (142; 29.2%)

(p<=0.001)

Significantly Biased | 7,828 9,570 1,195 (377; 31.5%)

when summed

across tissues

(p<=0.001)

Table 2. The number of variants found significant in each donor individual, as well as the shared
set of variants. When parentheses are present, the number outside of the parentheses denotes the
number of variants found significant in at least one of the two donors, while the number inside the

parentheses shows the number which were significant in both donors. Percentages denote the

percent of this intersect (within parentheses) compared to the union (outside of the parentheses).

149

150 We next assessed reproducibility. Given that we performed experiments in tissues from
151  multiple brain regions within each donor and two donors for each, we assessed
152  consistency of results both on the same region between the two donors and between
153 different regions within the same donor. Each comparison type captures a different
154  mixture of technical and biological factors. Cross-donor/within-region differences may be

155 due to either experimental errors or genuine between-donor differences, while cross-
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156  region/within-donor differences may be due to experimental errors or genuine region-level

157 differences.

158 We first assessed between-donor reproducibility of the effects of shared variants by
159  determining whether or not the variant was consistent in its effect direction between the
160 two donors. For each shared variant (i.e., both donors are heterozygous) that was
161  significant in at least one donor for a given TF in a given region, we determined the
162 number of reads mapping to each allele in both donors (restricting to cases with at least
163  six total reads mapped) and determined whether or not the same allele is favored in both
164  donors. We measured effect direction reproducibility as 100% minus twice the percentage
165 of inconsistent effect direction observations, as half of all random comparisons would by
166 chance appear to be consistent (i.e., if 10% of comparisons exhibit inconsistent effect
167 directions, the inferred reproducibility rate is 80%). We then assessed reproducibility
168 across a range of nominal bias p-value thresholds (Figure 2A). We found that at a p-
169  value cutoff of 0.05, just under 60% of variant effects on TF binding are inferred to be
170  reproducible across donors, but that at a cutoff of 0.001 that increases to more than 85%

171  of the variants.
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Figure 2. Reproducibility and concordance of TF-allele bias within and between donors.
A. Between-donor reproducibility. The fraction of TF-allele bias cases which were
reproducible in the comparable TF-allele interaction in the same tissue across donors
(y-axis) as a function of the minimum p-value cutoff used for significance (x-axis).
Reproducibility was defined as 1 — 2*(Percent of inconsistent directional effects
identified). B. Within-donor reproducibility. The fraction of TF-allele bias cases which
were reproducible when comparing the same TF-allele interaction across different
tissue contexts within the same donor. Reproducibility was defined as in 2A. C.
Correlation of -log(p-value) of effects of a variant across tissues, for variants with a
pvalue of <=0.001 in at least one tissue for factors with ChlP-seq datasets in all 9
tissues. Bottom shows dot-plots of variant effects. Top shows correlation coefficients
(Pearson) between each tissue. Diagonal line notes each tissue. Abbreviations
denote: dorsolateral prefrontal cortex (DLPFC), frontal pole (FP), occipital lobe (OL),
cerebellum (CB), anterior cingulate (AnCg), subgenual cingulate (SCg), dorsomedial
prefrontal cortex (DMPFC), amygdala (Amy), and hippocampus (HC).
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172

173  We also explored within-donor reproducibility between regions. This analysis yielded far
174  more comparisons, as all heterozygous variants are shared across all regions within the
175 same donor, and each TF could be compared across up to nine brain regions, resulting
176  in up to 36 total comparisons for each variant’'s impact on TF binding. We therefore
177  assessed within-donor reproducibility in the following way. We determined all variants that
178 impacted a TF’s binding in at least one brain region. We then looked in each brain region
179 where data were available for that TF with at least six total mapped reads and counted
180 the number of reads mapping to each allele. We then determined reproducibility as
181 described above, at each p-value cutoff. We found that at a p-value cutoff of 0.05,
182  reproducibility is only marginal at >30%, but that a p-value cutoff of 0.001 between-region

183  reproducibility was more than 80% (Figure 2B).

184 Based on these observations, we restricted further analyses of significant variants to
185 those with a nominal p-value <= 0.001 for a reproducibility rate of >80% unless otherwise
186  noted. This metric confidently identifies allele-biased TF-DNA interactions both within and
187 across donors. A summary of the number of variants impacting TF binding at this cutoff
188 isincluded in Table 2.

189  Because within-donor reproducibility was high, we assessed the overall correlation across
190 brain regions simultaneously for TF-DNA interactions. The ChIP-seq datasets we
191 analyzed fall into two categories, four large brain regions (cerebellum, dorsolateral
192  prefrontal cortex, occipital lobe and frontal pole), which provided enough material to do
193  ChlP-seq on 93 TFs, and five smaller brain regions, which provided enough material for
194 only 16 TF ChlP-seq maps. For each pairwise comparison of brain regions, we
195 determined the correlation of the -log10(pvalue) for each TF-DNA biased interaction we
196 identified (Figure 2C). We note that correlations between tissues range between 0.70
197 and 0.91 (Pearson’s correlation coefficient) when using TFs with ChlP-seq data (n=16) in
198  all nine brain regions, and 0.81-0.91 when using a larger number of TFs (n=93) limited to
199 four brain regions (Supplemental Figure 4). The cerebellum showed good but
200 comparatively lower correlation with other tissues. This is expected, as the cerebellum
201 has markedly different cellular makeup than other brain regions (Andersen et al. 1992;

11
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202  Loupe et al. 2023). Overall, this analysis shows a strong quantitative correlation for TF-
203  variant bias across multiple regions of the brain.

204 Because variants have strong reproducibility across and within donors and have high
205 correlation in their effect size of impact upon TF association within donors, we combined
206 reads across all brain regions for each variant for a given ChlP-seq target for other
207 downstream analyses (Table 2). Given the extra statistical power from combining reads,
208 we observed a 2-fold increase in the identified TF-biased variants at p<=0.001: 7,828 TF-
209 biased variants (0.41%) in Donor 1 and 9,570 (0.50%) in Donor 2 (at p<=0.001). Among
210 these variants, we asked how many showed corroborating bias in POLR2A or any of the
211  histone datasets, which would not be predicted to be directly altered by variants, but are
212 likely to reflect altered gene regulation at that variant. We identified those variants that
213 were also biased for at least one histone mark or POLR2A, and found that approximately
214  half are biased for at least one of these datasets (4,271 in donor 1 and 4,734 in donor 2).
215 We found that, for such variants, more TFs are generally biased for the variant
216  (Supplemental Figure 5), and that the significance of TF bias increases (Supplemental
217  Figure 6).

218 Supplemental Tables 1 and 2 show all nominally significant (p<=0.05) heterozygous
219 regions for any ChlP-seq target or input DNA in each donor based upon summed reads
220 across brain regions as well as relevant information about each variant. Hereafter, we
221  consider only those variants that impact TF binding, independent of POL2RA or histone
222  effects, at p<=0.001.

223
224  Allele Bias is prevalent in functional regions important for neuronal differentiation

225 We next explored the genomic properties of the 17,309 unique variants that impact TF
226  binding using candidate Cis-Regulatory Elements (cCREs) from the ENCODE
227  Consortium (Luo et al. 2020), which marks elements such as promoters and enhancers.
228 We classified each heterozygous region, TF ChlP-seq peak, and allele-biased variant into
229 cCRE categories (Figure 3A). Not surprisingly, we found that ChIP-seq peaks
230 overwhelmingly lie within cCRE regions, while the majority of heterozygous variation falls
231  outside of cCRE regions. However, most cases (73.3%) of TF-allele bias fall within or

12
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near cCREs, despite requiring only a minimum of 11 reads total across all experiments
to potentially be found as significantly biased at p<=0.001 for a given variant. Despite
being overwhelmingly within cCREs, 83.2% of allele-biased variants are not in a called

peak for that TF.
0.00 e AT e

T
-~

(=]

A

Haplotype 1

o
~
L&)

Peaks -

Signif. 1

Fraction of Regions
o o
n (42
o o

Signif. In Peaks 1

TR EEEY
1 3 2co0NNcQocc2g
T T T o g ©° o o °© 2
000 025 050 075  1.00 e
Fraction Derived Allele Frequency

W e dELls M CA-TF W CA
cCRES ¥ jels = cacror & 77 W Noro

- —-—ew
.

DAF
9e-4 .
7e-4 g
504 s

30
&
IS

<=1e-4

Anc. Stronger Motif
=

-log10(pval)
20

10
-

Der. Stronger Motif
1
o

-6 -3 0 6

) 3
Der. Preferred Anc. Preferred Der. Preferred Anc. Preferred

Figure 3. Genetic and genomic properties of variants displaying TF-allele bias. A. Stacked barplots
showing the fraction of regions which have overlap with a particular cCRE type for all variant
haplotypes (first from top), all TF peaks (second from top), haplotypes found significant for at least
one TF (second from bottom), and haplotypes found significant in at least one TF while also
overlapping with a TF peak (bottom) (y-axis). Cumulative fraction is shown on the x-axis. Barplots
are colored by cCRE type as PLS (promoter-like signal): red, pELS (proximal enhancer-like signal)
orange, dELS (distal enhancer-like signal) yellow, CA-CTCF (chromatin-accessible CTCF signal)
pink, CA-TF (chromatin-accessible, TF signal) blue, TF (TF signal) blue-green, CA (chromatin-
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accessible) green, and with non-cCRE regions plotted in grey. B. Variants which are either very
rare or very common in the population show highly significant allele bias. For varying ranges of
derived allele frequency (x-axis), we show the fraction of significant variants which were found at or
below a given significance threashold (y-axis). C. For very low-frequency derived alleles, a volcano-
like plot is shown which relates the ChIP-seq preference for the ancestral allele (x-axis, log(ancestral
ChiIP-seq reads+1 / derived ChlIP-seq reads+1) and the significance (y-axis, -log10(pvalue) as
determined by a binomial test) for each significantly-biased variant. Points are colored by their
derived allele frequency, with rarer derived alleles being black and more common, up to DAF=0.001,
being plotted in yellow. For very rare alleles, there is a stronger preference for the ancestral allele,
and the significance of bias is higher. D. For variants which weaken or strengthen a JASPAR motif
(i.e. a motif was found in each sequence, but the score changed) for one of our assays TFs, the
difference in FIMO score between the ancestral and derived allele (y-axis) versus the

log(ancestralReads/derivedReads) for the relevant TF. Spearman’s Rho = 0.658, p<=2. X 1076,

236

237  Restricting to only those cases of allele-biased binding within peaks, we found that,
238 relative to global peak locations, allele-biased binding is 1.8-fold enriched for PLS regions
239  (p<=2.2 x 10°'8, binomial test). We also found that a substantial number of biased variants
240 occurin dELS and pELS regions, consistent with noted trends in the evolution of variability
241  in enhancer function over evolutionary time (Rebeiz and Tsiantis 2017; Lynch et al. 2015;
242 Emera et al. 2016).

243  To explore the function of these regions, we performed GO analysis using GREAT
244  (McLean et al. 2010; Gu and Hubschmann 2023), using allele-biased regions as our
245 regions of interest and all peak regions minus allele-biased regions as controls
246  (Supplemental Table 3). We note that the top 10 enriched terms (sorted by adjusted
247  hypergeometric p-value) are largely involved in neural development, organismal

248  development, and cell communication.
249
250  Very rare variants are more likely to disrupt TF-DNA associations

251 Because allele-biased regions are found near neural and developmental genes,
252  suggesting a functional outcome on cellular and developmental phenotypes, we explored
253  how common these variants are in population databases. We hypothesized that any
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254  derived allele which significantly altered the expression of a key neural or developmental
255 gene would experience natural selection during human evolution. We identified ancestral
256 alleles via comparative genomics among apes using Ensembl (Cunningham et al. 2022)
257 and used gnomAD (Chen et al. 2022) to identify current allele frequency in the human
258 population. We then binned TF-biased variants by derived allele frequency and noted the
259 fraction in each bin with a given allele bias p-value (Figure 3B). We found that, for rare
260 variation in the population (extreme right and left derived allele frequency bins), bias tends
261 to be more significant than for common variation (middle bins). However, we note that
262 there are relatively few allele-biased variants that are rare in the population but for which
263  the derived allele is more common (e.g., 41 variants with DAF >0.999, vs 719 with DAF
264 < 0.001).

265 To further analyze effects of the ancestral and derived alleles among rare variants, we
266  selected the TF-biased variants with derived allele frequency (DAF) of 0.001 or lower (791
267 variants) and determined the number of reads that map to the ancestral and derived
268 alleles (Figure 3C). We found a strong preference for the ancestral allele both in the
269 number of cases supporting it (70.2% support ancestral versus 29.8% derived), and
270  degree of bias significance (Figure 3C). When restricting to variants with very high DAF
271 (>=0.999) (41 variants), we observed the opposite bias (33.7% support ancestral, 66.3%
272 support derived), (Supplementary Figure 7). Among variation with DAF between 0.001
273 and 0.999 (i.e., sites at which both alleles are frequently observed in the human
274  population, 24,818 variants), there is much reduced ancestral versus derived bias (56.2%
275 vs 43.8%, Supplemental Figure 8). This suggests that common alleles are
276  approximately equally likely to increase or decrease TF-DNA associations, whereas rare
277  alleles are more likely to specifically disrupt TF-DNA association, while a smaller fraction
278 appear to lead to new TF-DNA associations.

279  To evaluate the mechanism of allele-biased variation on TF-binding, we identified motifs
280 that are disrupted by a heterozygous variant using human motifs for relevant TFs in the
281 JASPAR database (Castro-Mondragon et al. 2022), and the fimo function of the meme
282 (Bailey et al. 2015) suite. We first checked, for each TF, each biased variant and asked
283 what percentage of the time the motif for that TF was significantly disrupted from
284  consensus. We found a wide range for this metric, with 0-44% of the biased loci showing
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285 disrupted motifs. This likely reflects each TF’s motif strength. For example, the zinc finger
286 factor CTCF, which has a long 14 bp consensus motif with many highly conserved bases,
287 had its motif disrupted at 44% of the loci showing bias for that factor. By comparison,
288 MAZ, which has a 7 bp motif with no strongly conserved nucleotides, had a disrupted
289  motif in only 9.5% of TF-biased loci (Supplemental Figure 9, Supplemental Table 4).
290 We next identified cases where a motif's score changed between the two alleles and
291 determined whether the derived or ancestral allele had a higher score, and the number
292  of reads mapping to each allele. We found that allelic disruption of a motif is moderately
293  correlated (Spearman’s Rho = 0.658) with TF ChlP-seq reads mapped (Figure 3D). This
294 s also true of variants that entirely remove or create a motif, defined as finding a fimo hit
295 in one allele and none at all in the other (Supplemental Figure 10) (Spearman’s Rho =
296  0.494).

297 Because we observed these trends in enrichment and in motif modifications, we then
298 determined whether or not there was evidence for enrichment or depletion of sites with
299 TF-biased variation being under purifying selection throughout mammalian evolution. We
300 used the Genomic Evolutionary Rate Profiling (GERP) (Davydov et al. 2010) metric and
301 identified those variants with GERP>4, a commonly-used cutoff for selective constraint
302 (Schubertetal. 2014; Marsden et al. 2016). For each TF, we identified all variant locations
303 with at least 11 reads mapped (minimum number of reads for binomial significance of
304 0.001), and determined the number of variants with GERP>4 and with GERP<4 for
305 variants that were significant and for those that were non-significant. (Supplemental
306 Figure 11). We find that, while most TFs have an apparent depletion of biased variants
307 under selective constraint, none are significantly depleted (Chi-squared test).

308
309 Allele-biased binding offers insight info eQTL mechanisms

310 Because TFs regulate the expression of RNA, we explored the relationship between
311 allele-biased binding and the GTEx (GTEx Consortium 2020) database of expression
312  quantitative trait loci (eQTLs) (Nica and Dermitzakis 2013). We found that 51.98% of all
313 significant GTEx variants were present in at least one of our donors in either a
314  heterozygous or homozygous state. We found 1,142,111 variants in a heterozygous state
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315 in Donor 1, and 1,123,497 in Donor 2, a necessary condition for detecting allele-biased
316  binding of TFs. Of these variants, we found significant TF-allele bias in 7,459 variants in
317 Donor 1 and 7,975 in Donor 2 for a total of 14,419 unique variants. We found that the
318 involvement of allele-bias for individual TFs in GTEx eQTLs is similar to the genome at
319 large (Supplemental Figures 9 and 12).

320 We next explored RNA-seq allele bias by mapping total RNA-seq reads to personalized
321 genomes, determining the number of reads preferring each allele, summing across
322 tissues, and identifying variants with a bias p-value <= 0.001. Using a model of known
323 genes in the hg38 build (Bioconductor Core Team 2017), we determined which of these
324  cases of allele bias overlapped with known genes. In Donor 1, 80.86% (5,850 of 7,191
325 total) of allele-biased RNA reads occurred in known gene models, and 81.35% (5,774 of
326 7,141 total) in Donor 2. We detected allele-biased expression in 10.16% of gene bodies
327 in Donor 1 and 11.32% in Donor 2, consistent with estimates of the fraction of genes with
328 allele-biased expression in earlier studies (Gimelbrant et al. 2007; Kravitz et al. 2023).

329  We nextidentified variants in eQTLs that displayed both TF-allele bias as well as in-phase
330 allele-biased RNA expression within the appropriate gene body as noted in GTEx. We
331 found 6,709 GTEXx variants that existed in a heterozygous state in one or both of our
332 donors and with both a ChlP-seq allele bias and an in-phase heterozygous variant in the
333 appropriate gene body with an RNA-seq allele bias. Because eQTLs can be tissue-
334  specific (Mizuno and Okada 2019), we restricted to GTEx variants with annotations in
335 neural tissue for further investigation. We found 3,309 of these variants were identified in
336 the brain or neural tissue by GTEx. For each of these 3,309 variants, we identified the
337 predicted slope of the variant for a given gene as well as the degree and direction of
338 observed RNA-seq allele bias in our reads. We found a modest, but highly significant,
339 correlation of 0.43 (Spearman’s Rho, p<=2.2 x 107¢) (Figure 4A). This suggests a
340 mechanistic link between allele-biased TF binding and RNA expression, consistent with
341 the general function of TFs, that at least partially explains population-wide genetically-

342  determined expression variation.
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Figure 4. Allele-biased binding is consistent with and offers insight to the mechanisms of GTEx
eQTLs. A. For GTEx eQTLs found in a neural context present in our data with significantly-biased
ChlIP-seq signal and phased significantly-biased RNA-seq reads in the appropriate genic region, a
violin plot showing the distribution of log(RNA bias) (y-axis) versus the binned GTEx eQTL slope (x-
axis). Spearman’s Rho 0.43, p<=2.2 x 107'6. B. Genomic track for the RPS14 gene showing the
location of the GTEx eQTL chr5 150449748 G_A b38 in the promoter. Green genes represent
presence on the reverse strand, blue genes represent presence on the forward strand. Asterisk
denotes the position of the eQTL. Tick marks denote heterozygous variants in the same phase as
our heterozygous eQTL. C. Stacked barplots showing the fraction of reads supporting the reference
or alternate strand (y-axis) of the eQTL for RNA (left) or ChlP-seq reads for biased TFs (right). D.
Sequence of DNA surrounding the eQTL in B for the reference (top) and alternate (bottom) alleles,
with the eQTL variant highlighted in red. Between them is displayed the MAZ motif MA1522.1 found
in JASPAR, highlighting the alternate allele’s destruction of the canonical motif.

343

344  We highlight a simple case found in Donor 2, chr6_150449748 G_A b38, in Figure 4B-
345 D. The variant occurs near the TSS of the RPS74 gene (Figure 4B), which encodes a
346 ribosomal protein. This eQTL was found to be significant in 10 tissue contexts in GTEX,
347 with slope values from -0.27 to -0.11, meaning that the alternate allele decreases
348 expression relative to the reference allele. We found that RNA expression in our dataset
349 s biased in the expected direction (Figure 4C, left), and that there is TF-allele bias over
350 the variant for the MAZ transcription factor (Figure 4C, right). Comparing the two
351 sequences, we find that the alternate variant disrupts the MA1522.1 motif of the MAZ
352 (Figure 4D).
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353 In another case, we explored a more complicated eQTL case found in a heterozygous
354 state in both donors, chr22_32474782_C_T _b38, in Figure 5. This variant occurs in the
355 promoter region of FBXO7 (Figure 5A), an F-Box protein with a suggested role in
356 Parkinson’s Disease (Joseph et al. 2018; Conedera et al. 2016; Burchell et al. 2013). We
357 found that Hi-C data from iCell GlutaNeurons (Rogers et al. 2023) supports this locus
358 interacting with several distal regions (Figure 5A). This variant was found in an eQTL for
359 FBXO7 expression in eight tissues with slope values from 0.2 to .45. We found that our
360 RNA-allele bias data also supports the alternate allele having a higher expression (Figure
361 5B, left), and that several TFs in each donor also prefer the alternate allele (Figure 5B,
362 right). Interestingly, this variant is also found to be associated in GTEx with a tissue-
363 dependent change of expression of the SYN3 gene, a neuronal phosphoprotein that
364 associates with the surface of synaptic vesicles. We had limited ability to detect such
365 changes, with only a single heterozygous RNA-biased variant in Donor 2 in phase with
366 the eQTL variant, but found a strong preference for expression of the SYN3 reference
367 allele. The fact that this variant occurs in a known CTCF binding motif (MA0139.1) (Figure
368 5C) and shows TF-allele bias for cohesion factors (Figure 5B, right) suggests some
369 measure of distal action for this variant consistent with CTCF’s known roles (Splinter et
370 al. 2006). We also observed several other phased variants were present in our donors in
371 thisregion, each for the FBXO7 gene. We explored allele-biased binding at these variants
372 and highlight our findings in Table 3. Of note, several of these variants show no bias for
373 any of our tested transcription factors or histone marks. This suggests that allele-biased
374  binding may be a method of fine-mapping eQTLs when data are available.
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Figure 5. Allele-biased binding allows for fine-mapping of eQTL variants. A. Genomic track showing
the region surrounding the GTEx eQTL chr22_32474782_C_T_b38, found in heterozygous form in
both donors. Green genes represent presence on the reverse strand, blue genes represent
presence on the forward strand. Asterisk denotes the position of the eQTL. Tick marks denote
heterozygous variants in the same phase as our heterozygous eQTL. Loops from Hi-C data in iCell
GlutaNeurons are shown above the gene tracks, noting 3D interactions. B. Left: Barplots depicting
the fraction of reads supporting the strand of the reference (blue) or alternate (red) strand with
regard to the eQTL for donor 1 and donor 2 for each of the FBXO7 or SYN3 gene. Right: Barplots
depicting the fraction of reads mapping to the reference or alternate allele of the eQTL for
significantly biased cohesion factors in donor 1 and donor 2. C. Sequence of DNA surrounding the
eQTL in A for the reference (top) and alternate (bottom) alleles, with the eQTL variant highlighted
in red. Between them is displayed the CTCF motif MA0139.1 found in JASPAR, highlighting the

variant site.
375
GTEXx Variant Donor 1 | Donor 2 | Donor 1 | Donor 2
Presence Presence Significant Significant
ChIP-seq ChIP-seq

chr22 32470947 T _C b38 Yes Yes None None
chr22_32471256_A T_b38 No Yes NA None
chr22_32471173_G_C_b38 Yes Yes None None
chr22_32471541_G_A_b38 Yes Yes None None
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chr22 32473024 _C T b38 Yes Yes None None

chr22_32473508_G_T _b38 Yes Yes CTCF CTCF

chr22 32474674 _C T b38 Yes Yes None POL2, ATF7,

H3K9AC

chr22_ 32474782 _C T b38* Yes Yes CTCF, CTCF,
H3K27AC, H3K4MES3,
NEUROD!1, POL2,
NR2F2, RAD21,
RAD21, SOX8, SP1,
ASH2L, ATF7,
CC2D1A, H3K9AC,
H3K9AC, ZBTB7B
NONO,
TRIM28

chr22 32474819 C T b38* | No Yes NA

Table 3. For variants found in GTEx which were in-phase with the focal variant,

chr22_32474782_C_T_b38 (marked with *, explored in Figure 5), we show whether or not the

variant was present in each of the two donors, as well as note any TF with significant allele-biased

binding for that variant. We note that chr22_32474819_C_T_b38 (marked with **) was found within

100bp of the focal eQTL in donor 2, and so was analyzed in conjunction with the focal eQTL (see

methods).

Discussion

Here, we present an analysis of allele-biased binding across 93 transcription factors,
identifying thousands of variants that show biased binding. We identified a threshold for
reproducibility that provides confidence to our calls both within a single donor and across
multiple donors, controlling for a wide variety of biological and technical variables. By
linking to allele-biased expression of nearby genes, we also relate variation that impacts
TF binding directly to effects on gene regulation .
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384 We found that TF-biased variants are prevalent in distal and proximal enhancer regions
385 as well as in promoter regions. This highlights that these variants occur in regions known
386 to play major roles in gene expression. This, combined with the many cases of allele-
387 biased binding within eQTLs, shows a potential mechanism of eQTLs, and may lead to
388 insights of disease mechanisms (Musunuru et al. 2010). Because a majority (>80%) of
389 the allele-biased variants fall outside of called peaks for the biased TFs, this also stresses
390 the importance of TF binding outside of peaks that have measurable impact, as noted in
391 previous studies (Lun and Smyth 2016; Hiatt et al. 2023).

392  We found that rare variation (MAF < 0.1%) is enriched, relative to common variation, for
393 TF-binding impacts (Figure 3B), suggesting that there was purifying selection against
394 such variation in general. For common variants that do impact binding, neither the
395 ancestral nor derived alleles tend to be favored (Supplemental Figure 7). In contrast,
396 among rare variants (MAF < 0.1%), there is a bias in favor of common alleles over rare
397 alleles, whether the common allele is derived or ancestral. This suggests that new
398 mutations more often disrupt, rather than enhance, TF binding. Still, the fact that TF-
399 variant bias can sometimes prefer the novel allele even in rare variants is consistent with
400 models of de novo motif formation and gene birth (Behrens and Vingron 2010; Schidtterer
401 2015; Carvunis et al. 2012; Ilyengar and Bornberg-Bauer 2023; Ruiz-Orera et al. 2015;
402 Papadopoulos et al. 2021), which have suggested that few changes need to be made to
403 a given sequence to form a novel TF motif, and that this formation plays a crucial role in
404  sampling of transcriptional regulatory space. This is emphasized by the fact that we
405 observe a small subset of derived alleles that have become common in the population
406 (DAF>=0.999), and are favored by TFs (Supplemental Figure 7).

407  As has been previously observed (Abramov et al. 2021), in cases of TF-biased variants,
408 there is a general preference for a given TF to favor the allele with a stronger presence
409 of its motif, and TF read-depth measurements confirm a correlation between the degree
410 of motif disruption and total read-depth for variants within motifs (Figure 3D). Beyond
411 demonstrating the general nature of this phenomenon, it can be combined with known
412 eQTLs in our dataset to facilitate fine-mapping and mechanistic hypothesis generation.
413  For example, we highlight a case of a variant in an eQTL that displays allele biased
414  binding in our dataset and specifically disrupts a motif for that TF (Figure 5), affecting
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415 regulation of a gene that is relevant to neurodegenerative and neuropsychiatric traits. The
416 results from this analysis yielded TF-biased variation linked to 9,748 GTEx eQTLs,
417  providing a rich resource for future fine-mapping efforts.

418 We also found that many sites of allele-biased binding represent coordinated multi-factor
419 effects. For example, 48.1% of sites that associate with altered binding of one TF
420 influence binding of one or more additional TFs (Supplemental Tables 1-2). Similarly,
421  approximately half of variants with TF-binding bias also have altered histone marks and
422  POLZ2 binding, consistent with the expected relationships between TF binding and general
423  recruitment of transcriptional machinery. Finally, we found that approximately 30% of TF-
424  allele-biased variants in our data impacted cohesion complex members (Supplemental
425 Figure 9). This suggests that genetic variants which alter three-dimensional genome

426 interactions are a major contributor to gene expression variation in the population.

427  Overall, our study provides a resource of allele-biased variants that are experimentally
428 validated to impact TF binding in a biologically relevant context. These results will further
429  our understanding of how alteration in DNA sequence translates to changes in biological

430 function, particularly in relation to analyses of gene regulation in the human brain.

431
432 Methods

433  Whole Genome Sequencing and variant calling

434  We extracted high molecular weight DNA from approximately 20 mg cortex tissue from
435 each donor using the MagAttract HMW DNA kit (Qiagen 67563). We prepared linked
436 read libraries using the Chromium Genome Reagent Kit v2 following the protocol provided
437 by 10x Genomics. We processed sequence reads using the longranger software suite
438 from 10x Genomics. We identified variants by aligning to a 10x Genomics-provided,
439 longranger-enabled hg38 reference (version 2.1.0) using longranger wgs v2.2.2. We
440 called variants using GATK 3.8-1-0-gf15c1c3ef via the —vcmode gatk option in the
441  longranger wgs workflow (Loupe et al. 2023).

442

443  Genome Construction
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444 We constructed graph genomes using the vg toolkit version 1.20, available at
445  https://github.com/vgteam/vg (Garrison et al. 2018). The “construct” command was used

446  with the hg38 genome and all phased variants which passed quality metrics. We then
447  pruned the graph using the “prune” command with default parameters. We produced the
448 gbwt index using the “index” command with default parameters, and the gcsa index was
449 created using the parameters: -X 3 -Z 4000 -p -k 11.

450 We also constructed linear FASTA sequences for comparisons of linear and graph
451 genome reference allele bias. We identified variants which were within 1 full read length
452 (100 bp) of one another, and on the same phase. We identified regions based on such
453  nearby, in-phase variants, and constructed a fasta file containing, for each such region,
454  one entry for either haplotype. In these haplotypes, 78.6% of regions contain only a single

455  variant, while 96.2% had no more than 2 variants.
456
457  RNA-seq

458 We performed RNA-seq for each of the nine brain regions as outlined in Loupe et al.
459  2023.

460
461  ChlP-seq experiments

462 We peformed ChlIP-seq experiments with 93 TFs and five histone marks in nine distinct
463  brain regions, for a total of 1,028 experiments. Full methods for production of ChlP-seq
464  reads are presented in (Loupe et al. 2023).

465
466  Peak Calling

467 We called peaks according to the ENCODE Consortium’s standard pipeline, using
468 experiments from donors as replicates, as described in (Loupe et al. 2023).

469

470 Read Mapping and processing
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471  For traditional read mapping, we used bowtie2 (Langmead and Salzberg 2012) with
472  default settings to map to the human hg38 genome.

473  For graph genome mapping, we used the vg map command with arguments -A -K -M 3.
474  The vg surject command was used to create sam and bam file formats for determining
475 allele bias. The samtools package (Danecek et al. 2021) was used for sorting and filtering
476 by quality. Picard was used for filtering duplicates.

477  Once reads were mapped and filtered, we identified and separated out only those reads
478 that overlapped with a heterozygous variant using custom R code. In brief, for a read
479 mapped to a heterozygous region, we determined the minimum string distance, i.e.
480 greatest sequence similarity, between the read and each of the two haplotypes, and
481  assigned the read to the haplotype that was most similar to the read’s sequence. In cases
482  where the minimum string distance between the two haplotypes was equal, we assigned
483  half a read to each sequence, leading to a more conservative binomial test for allelic bias.

484
485  [dentification of Allele Bias

486 For a given ChlP-seq or RNA-seq dataset, after mapping, we identified those
487  heterozygous regions with at least six total reads (the minimum number of reads for a
488 binomial test to be nominally significant at p<=0.05 if all reads map to a single haplotype).
489  After assigning a number of reads to each haplotype, we performed a two-sided binomial

490 test for each haplotype for each ChiP-seq dataset.

491  After assessing the consistency of allelic biases across brain regions and donors, we
492 summed the number of reads assigned to each haplotype for a given TF across all tested
493  Dbrain regions within a single donor, and a two-sided binomial test was performed for each
494  haplotype for each TF with at least six reads when combined across tissue samples, the
495  minimum number of reads required for a significant binomial test p-value at a 0.05 cutoff.
496 For some analyses, we restricted to cases of at least 11 reads total, the minimum number
497  of reads required for a significant binomial test p-value at a 0.001 cutoff. In all analyses,

498 we removed variants that showed apparent allele bias in control input DNA for the
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499 summed dataset in the respective donor. These variants are included in Supplemental
500 Tables 1 and 2.

501
502 VEP Annotations and Derived Allele Frequency

503 We annotated vcf files using the following command:

504

505 vep -i 5397-JL-0002_phased_variants.vcf.gz --config vep108.ini --vcf -0 5397-JL-0002_annotated.vcf.gz

506

507 The config file is provided in the Supplemental_Code.zip file as vep108.ini. VEP engine
508 and cache version 108 (McLaren et al. 2016) was used with a GRCH38 fasta file. We
509 used amerged transcript set of Ensemble (Cunningham et al. 2022) and RefSeq (O’Leary
510 etal. 2016). Custom annotations were Gnomad (Chen et al. 2022) allele frequency using
511 v 3.1.1, Bravo topmed allele frequency freeze 8 (Taliun et al. 2021), GRCh38 GERP
512  scores (as distributed with CADD v1.6), and CADD v1.6 scores (Rentzsch et al. 2019).

513  We treated each variant in the haplotype separately in the rare cases where a single
514  haplotype region contained multiple variants with different Derived Allele Frequencies and
515 that haplotype region showed TF binding bias,.

516
517 GTEx Data and identification of RNA allele bias

518 We downloaded GTEx variants on June 30th, 2023 from
519 https://storage.googleapis.com/gtex analysis v8/single tissue qtl data/GTEx Analysis
520 v8 eQTL.tar

521 For a given eQTL variant in our data, we determined whether or not there was a phased
522  heterozygous variant within the appropriate gene body in our data, as this was necessary
523 for physically linking the TF-allelic bias to RNA allelic bias. In such cases, we determined
524  the variant in the gene body which was on the same allele as each of the two haplotypes
525 of the heterozygous variant in the GTEx dataset. We calculated significant bias as
526  discussed above, and we calculated effect size as:

26
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alternate allele reads + 1

27 RNA bias = —log (reference allele reads + 1

528
529 GREAT Gene Ontology Analysis

530 We performed GREAT analysis wusing the rGREAT (v2.1.8) package
531 (https://www.bioconductor.org/packages/release/bioc/html/rGREAT.html) (Gu and

532 Hubschmann 2023). We associated genomic ranges with genes using the basal plus
533 extension method (5kb upstream, 1kb downstream, 500kb max extension). We calculated
534  enrichment for GO Biological Process terms within GREAT with background regions set
535 asthe union of all ChlP-seq peaks with heterozygous variation that did not show evidence

536 of allele-biased binding.
537
538  Data Analysis

539 We performed data analysis using R version and 4.1.0 (2010), as noted in appropriate

540  scripts.
541
542  cCRE catalog

543 We downloaded the V4 cCRE human dataset from the ENCODE Portal under accession
544 ENCSRB800VNX.

545
546 Data Access

547 Al code used for these analyses is available via GitHub at
548  https://github.com/bmoyers/BrainTE _Allele Biased Binding, and is also supplied as

549  Supplemental_Code.zip. These data and the accompanying analyses will serve as a
550 resource to understand genome regulation in psychiatric diseases and are publicly
551 available through the PsychENCODE Consortium and available for download at the
552  following link: https://doi.org/10.7303/syn4921369.
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