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 2 

Summary 19 

Transcription Factors (TFs) influence gene expression by facilitating or disrupting the 20 

formation of transcription initiation machinery at particular genomic loci. Because genomic 21 

localization of TFs is in part driven by TF recognition of DNA sequence, variation in TF 22 

binding sites can disrupt TF-DNA associations and affect gene regulation. To identify 23 

variants that impact TF binding in human brain tissues, we quantified allele bias for 93 24 

TFs analyzed with ChIP-seq experiments of multiple structural brain regions from two 25 

donors. Using graph genomes constructed from phased genomic sequence data, we 26 

compared ChIP-seq signal between alleles at heterozygous variants within each tissue 27 

sample from each donor. Comparison of results from different brain regions within donors 28 

and the same regions between donors provided measures of allele bias reproducibility. 29 

We identified thousands of DNA variants that show reproducible bias in ChIP-seq for at 30 

least one TF. We found that alleles that are rarer in the general population were more 31 

likely than common alleles to exhibit large biases, and more frequently led to reduced TF 32 

binding. Combining ChIP-seq with RNA-seq, we identified TF-allele interaction biases 33 

with RNA bias in a phased allele linked to 6,709 eQTL variants identified in GTEx data, 34 

3,309 of which were found in neural contexts. Our results provide insights into the effects 35 

of both common and rare variation on gene regulation in the brain. These findings can 36 

facilitate mechanistic understanding of cis-regulatory variation associated with biological 37 

traits, including disease. 38 

 39 

Introduction 40 

Gene expression changes occur in essentially every biological process, including the 41 

development of diseases (Emilsson et al. 2008; Lee and Young 2013) such as 42 

neurodegenerative (Bonham et al. 2019, 2022; Zhao 2023) and psychiatric conditions 43 

(Clifton et al. 2019; Mimmack et al. 2002; Huang et al. 2020). Transcription factors (TFs) 44 

and their association with DNA are crucial determinants of gene expression, so identifying 45 

factors that influence the association between TFs and DNA is key to understanding 46 

variation in gene expression. A wide variety of tools have been developed to identify and 47 

catalogue DNA sequence motifs to which TFs preferentially bind (Bailey et al. 2015; 48 
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Ghandi et al. 2016; Castro-Mondragon et al. 2022). While informative, these approaches 49 

are limited by the fact that a motif9s presence is neither necessary nor sufficient for TF 50 

association (Dror et al. 2015), so the impact of DNA sequence changes on motifs is of 51 

limited utility.  52 

An alternative approach is to leverage natural genetic diversity across and within humans, 53 

specifically heterozygous variants, and assay TF binding behavior. Tools have been 54 

developed to identify differential binding across multiple experiments to identify changes 55 

in TF binding (Lun and Smyth 2016), but these are complicated by technical and biological 56 

variation. Complicating this issue further is that reference allele bias is a known obstacle 57 

in mapping sequence reads, and this can inflate the false discovery rate in studies of 58 

allelic effects (Degner et al. 2009; Stevenson et al. 2013; Rozowsky et al. 2011; Smith et 59 

al. 2013; Hach et al. 2014). The use of graph structures to represent personalized 60 

genomes or pangenomes (Li et al. 2020; Paten et al. 2017) can reduce reference allele 61 

bias (Garrison et al. 2018; Martiniano et al. 2020; Chen et al. 2021). 62 

A recent study probed allele-specific binding across hundreds of cell types with 63 

corrections for reference allele bias and aneuploid regions (Abramov et al. 2021). The 64 

majority of these datasets were derived from cancer cell lines, limiting their applicability 65 

to non-diseased human tissue, or in contexts relevant for specific disease states. Another 66 

recent study highlighted the viability of a similar approach in human tissue samples by 67 

identifying allele-specific loci with 15 assays in 4 human donors across 30 tissues, 68 

including ChIP-seq assays of histone marks and several TFs, including the CCCTC-69 

binding factor CTCF (Rozowsky et al. 2023). This study found relationships between 70 

allele-specificity of ChIP-seq and gene expression, including identifying GTEx eQTLs that 71 

were allele-specific and those that were not.  This highlights the value of identifying allele-72 

biased binding among transcription factors for understanding gene regulation. 73 

Here, we greatly expand upon previous work by performing allele-biased binding analysis 74 

for 1,004 (Loupe et al. 2023) TF-ChIP-seq datasets, spanning 93 distinct TFs, RNA 75 

polymerase II (POLR2), and 5 histone marks in tissue samples from 9 anatomically 76 

defined brain regions in multiple donors. We used the vg toolkit to assemble personalized 77 

genomes to overcome reference allele bias and demonstrated that this approach 78 
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improves the calling of allele-biased binding. We explored dynamics of allele frequency 79 

in the population with allele bias and the relationship between allele-biased binding and 80 

disruption of TF binding motifs.  We determined the effects on gene expression by using 81 

RNA-seq reads to assess eQTLs in these donors, allowing a mechanistic exploration of 82 

eQTL data. Finally, we highlight interesting examples of allele-biased binding identified in 83 

our datasets. 84 

 85 

Results 86 

Graph Genomes improve read mapping and reduce reference allele bias 87 

To study the impact of genetic variation on TF binding, we first performed linked-read 88 

sequencing (10x Genomics) to generate phased genomes and call variants for two 89 

donors (Figure 1A; see Methods). We built personalized graph genomes that use the vg 90 

toolkit (Garrison et al. 2018), as it has been shown that it can reduce problems of 91 

reference allele bias and has previously been used for detection of missing signal in 92 

histones (Groza et al. 2020) and the detection of allele-biased TF footprints (Ouyang and 93 

Boyle 2022). To measure the effectiveness of this approach on our datasets, we initially 94 

mapped a pilot set of 20 ChIP-seq datasets, 10 in each of the two donors, using both 95 

conventional mapping to the hg38 linear reference via bowtie2 and personalized graph-96 

genome mapping via vg. We observed an average increase in read mapping of 1.24% of 97 

the total read pool when using personalized graph genomes (Table 1). Despite this small 98 

change in overall mapping, the use of graph genomes greatly reduced the degree of 99 

reference allele bias for variants identified as significantly biased using the two 100 

approaches (Figure 1B). Because rare alternate alleles tend to be deleterious and may 101 

show increased preference for the reference allele, we restricted to cases of MAF>0.05 102 

for this analysis. Using hg38, we identified 21,207 cases of significant TF-allele bias at 103 

the nominal p<=0.05 level (binomial test), 76.9% of which favor the reference allele, 104 

compared to 17,823 cases of significant TF-allele bias using a graph genome, with 52.8% 105 

favoring the reference allele. The reference bias trend was also observed, though 106 

reduced, when considering all variants, including those with MAF<=0.05 with bias 107 

(Supplemental Figure 1), as well as variants with at least six mapped reads whether or 108 
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not there was a nominally significant bias (Supplemental Figure 2). Thus, graph genome 109 

alignments tend to reduce reference-alignment artifact contributions to observed allelic 110 

biases.  111 

 

Figure 1. Personalized graph genomes improve read mapping for detection of allele-biased binding. 

A. Workflow for detection of allele biased binding.  Whole Genome Sequencing and ChIP-seq of 93 

TFs, POLR2, and 5 histone marks were performed in post-mortem brain samples from 2 donors. 

ChIP-seq reads were mapped to personalized graph genomes to identify allele bias and were 

compared within and across donors. B. Personalized genomes reduce problems of reference allele 

bias, increasing confidence in allele-biased binding detection. Density plots are shown for the 

reference allele frequency (x-axis) of significant (p<=0.05, binomial test) allele bias when using 
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bowtie aligned to the linear reference (red) compared to using the vg toolkit aligned to a personalized 

graph genome (blue). Allele bias is more balanced between the reference and alternate for 

personalized graph genomes. C. There is significant disagreement in the number and identity of 

variants found preferring the reference and alternate alleles between methods. Heatmap showing 

the number of TF-biased allele interactions found nonsignificant, significant for reference, and 

significant for alternate by bowtie and vg. 

 112 

 Percent of reads Mapped 

 Donor 1 Donor 2 

 Linear Graph Linear Graph 

Control 99.48 99.95 99.47 99.95 

BCL11A, DLPFC 86.88 91.61 90.69 93.23 

CREB1, CB 98.54 99.37 98.65 98.24 

CTCF, OL 94.99 96.97 94.72 96.15 

CTCF, SG 96.24 97.70 96.30 96.86 

MEF2A, DLPFC 97.21 98.47 96.83 97.22 

RAD21, ANCG 96.64 98.04 97.62 97.60 

RAD21, HC 95.80 97.46 96.77 96.97 

SP1, AMY 94.35 96.49 93.37 95.15 

TBR1, DLPFC 96.41 97.93 96.65 96.91 

Table 1. Percentage of reads mapped generally increases using personalized genomes compared 

to linear genomes.  For 20 ChIP-seq datasets, the percentage of reads which were mapped to the 

reference genome when using a linear genome (Linear) or a personalized graph genome (Graph) 

for donor 1 (left) and donor 2 (right). In most cases, vg maps a larger percentage of reads. 

 113 

To determine how specific variants were classified by each method, we next created a 114 

heatmap of the number of variants classified as significant or nonsignificant with each 115 
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mapping method (Figure 1C), and which of the alleles4reference or alternate4they 116 

preferred. We found that, for TF-allele interactions identified as significant in both 117 

methods, the direction of effect is well-conserved between the two methods. However, 118 

we found 4,402 variants that were significant only when we used a graph-based 119 

approach, and 8,508 variants that were significant only when we used a linear reference. 120 

For these variants, we note that bowtie29s mapping produces a strong preference for 121 

predicting the reference allele as the preferred allele, with 7,961 of the 8,508 hg38-122 

specific allele biased events favoring the reference. In contrast, vg shows a more 123 

balanced distribution of variants favoring the reference and alternate alleles (55.2% 124 

favoring reference). This is consistent with the problems of reference allele bias seen in 125 

Figure 1B. In addition, when the two methods disagree in their classification of a variant, 126 

vg tends to have a higher read depth at the location (Supplemental Figure 3), suggesting 127 

that improved mapping of reads with variants results in a change in the apparent 128 

significance of the variant. Together, these findings suggest that use of personalized 129 

genomes substantially improves both specificity and sensitivity for detection of TF-allele 130 

bias.  131 

 132 

Allele-biased binding is consistent across donors and tissues 133 

We subsequently measured TF allelic bias using only the graph genome approach, 134 

applying it to ChIP-seq data from 93 TFs, RNA Polymerase (POLR2A), and five histone 135 

marks in up to nine anatomically defined regions of the brain across two donors, for a 136 

total of 1,004 ChIP-seq datasets (Loupe et al. 2023). We used vg to map these ChIP-seq 137 

datasets and calculate allele bias for each dataset in each haplotype. We initially identified 138 

all allele bias at a nominal p-value <= 0.05 (binomial test). At that threshold, we found that 139 

of the nearly two million regions with heterozygous DNA sequence variation in each 140 

donor, roughly 7.5% were significantly biased for at least one ChIP-seq dataset (Table 141 

2); as expected, this largely reflects the fact that TF binding occurs at only a small fraction 142 

(7-10%) of genomic loci (Loupe et al. 2023). We note that, while 266,448 variants are 143 

heterozygous in both donors (13.8%-14.1% of all heterozygous sites in each donor), only 144 

5,954 heterozygous variants that showed significant bias in either donor are significantly 145 
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biased in both donors (4.1-4.2%). This points to a 3-fold depletion of shared TF-biased 146 

variation between our two donors, suggesting that selection reduces the frequency of 147 

such variation in the population (p<=2.2 x 10-16, binomial test). 148 

 Donor 1 Donor 2 Shared 

(Significant in 

Both Donors) 

Variant regions 3,032,858 3,074,271 809,297 

Heterozygous 

regions 

1,894,277 1,932,258 266,488 

Significantly Biased 

(p<=0.05) 

139,234 144,952 28,751 (5,862; 

20.4%) 

Significantly Biased 

(p<=0.001) 

4,328 3,876 486 (142; 29.2%) 

Significantly Biased 

when summed 

across tissues 

(p<=0.001) 

7,828 9,570 1,195 (377; 31.5%) 

Table 2. The number of variants found significant in each donor individual, as well as the shared 

set of variants.  When parentheses are present, the number outside of the parentheses denotes the 

number of variants found significant in at least one of the two donors, while the number inside the 

parentheses shows the number which were significant in both donors. Percentages denote the 

percent of this intersect (within parentheses) compared to the union (outside of the parentheses). 

 149 

We next assessed reproducibility. Given that we performed experiments in tissues from 150 

multiple brain regions within each donor and two donors for each, we assessed 151 

consistency of results both on the same region between the two donors and between 152 

different regions within the same donor. Each comparison type captures a different 153 

mixture of technical and biological factors. Cross-donor/within-region differences may be 154 

due to either experimental errors or genuine between-donor differences, while cross-155 
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region/within-donor differences may be due to experimental errors or genuine region-level 156 

differences.  157 

We first assessed between-donor reproducibility of the effects of shared variants by 158 

determining whether or not the variant was consistent in its effect direction between the 159 

two donors. For each shared variant (i.e., both donors are heterozygous) that was 160 

significant in at least one donor for a given TF in a given region, we determined the 161 

number of reads mapping to each allele in both donors (restricting to cases with at least 162 

six total reads mapped) and determined whether or not the same allele is favored in both 163 

donors. We measured effect direction reproducibility as 100% minus twice the percentage 164 

of inconsistent effect direction observations, as half of all random comparisons would by 165 

chance appear to be consistent (i.e., if 10% of comparisons exhibit inconsistent effect 166 

directions, the inferred reproducibility rate is 80%). We then assessed reproducibility 167 

across a range of nominal bias p-value thresholds (Figure 2A). We found that at a p-168 

value cutoff of 0.05, just under 60% of variant effects on TF binding are inferred to be 169 

reproducible across donors, but that at a cutoff of 0.001 that increases to more than 85% 170 

of the variants. 171 
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Figure 2. Reproducibility and concordance of TF-allele bias within and between donors. 

A. Between-donor reproducibility. The fraction of TF-allele bias cases which were 

reproducible in the comparable TF-allele interaction in the same tissue across donors 

(y-axis) as a function of the minimum p-value cutoff used for significance (x-axis). 

Reproducibility was defined as 1 3 2*(Percent of inconsistent directional effects 

identified). B. Within-donor reproducibility. The fraction of TF-allele bias cases which 

were reproducible when comparing the same TF-allele interaction across different 

tissue contexts within the same donor. Reproducibility was defined as in 2A.  C. 

Correlation of -log(p-value) of effects of a variant across tissues, for variants with a 

pvalue of <=0.001 in at least one tissue for factors with ChIP-seq datasets in all 9 

tissues.  Bottom shows dot-plots of variant effects.  Top shows correlation coefficients 

(Pearson) between each tissue.  Diagonal line notes each tissue.  Abbreviations 

denote: dorsolateral prefrontal cortex (DLPFC), frontal pole (FP), occipital lobe (OL), 

cerebellum (CB), anterior cingulate (AnCg), subgenual cingulate (SCg), dorsomedial 

prefrontal cortex (DMPFC), amygdala (Amy), and hippocampus (HC). 
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 172 

We also explored within-donor reproducibility between regions. This analysis yielded far 173 

more comparisons, as all heterozygous variants are shared across all regions within the 174 

same donor, and each TF could be compared across up to nine brain regions, resulting 175 

in up to 36 total comparisons for each variant9s impact on TF binding. We therefore 176 

assessed within-donor reproducibility in the following way. We determined all variants that 177 

impacted a TF9s binding in at least one brain region. We then looked in each brain region 178 

where data were available for that TF with at least six total mapped reads and counted 179 

the number of reads mapping to each allele. We then determined reproducibility as 180 

described above, at each p-value cutoff. We found that at a p-value cutoff of 0.05, 181 

reproducibility is only marginal at >30%, but that a p-value cutoff of 0.001 between-region 182 

reproducibility was more than 80% (Figure 2B). 183 

Based on these observations, we restricted further analyses of significant variants to 184 

those with a nominal p-value <= 0.001 for a reproducibility rate of >80% unless otherwise 185 

noted. This metric confidently identifies allele-biased TF-DNA interactions both within and 186 

across donors. A summary of the number of variants impacting TF binding at this cutoff 187 

is included in Table 2.  188 

Because within-donor reproducibility was high, we assessed the overall correlation across 189 

brain regions simultaneously for TF-DNA interactions. The ChIP-seq datasets we 190 

analyzed fall into two categories, four large brain regions (cerebellum, dorsolateral 191 

prefrontal cortex, occipital lobe and frontal pole), which provided enough material to do 192 

ChIP-seq on 93 TFs, and five smaller brain regions, which provided enough material for 193 

only 16 TF ChIP-seq maps. For each pairwise comparison of brain regions, we 194 

determined the correlation of the -log10(pvalue) for each TF-DNA biased interaction we 195 

identified (Figure 2C). We note that correlations between tissues range between 0.70 196 

and 0.91 (Pearson9s correlation coefficient) when using TFs with ChIP-seq data (n=16) in 197 

all nine brain regions, and 0.81-0.91 when using a larger number of TFs (n=93) limited to 198 

four brain regions (Supplemental Figure 4). The cerebellum showed good but 199 

comparatively lower correlation with other tissues. This is expected, as the cerebellum 200 

has markedly different cellular makeup than other brain regions (Andersen et al. 1992; 201 
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Loupe et al. 2023). Overall, this analysis shows a strong quantitative correlation for TF-202 

variant bias across multiple regions of the brain.  203 

Because variants have strong reproducibility across and within donors and have high 204 

correlation in their effect size of impact upon TF association within donors, we combined 205 

reads across all brain regions for each variant for a given ChIP-seq target for other 206 

downstream analyses (Table 2). Given the extra statistical power from combining reads, 207 

we observed a 2-fold increase in the identified TF-biased variants at p<=0.001: 7,828 TF-208 

biased variants (0.41%) in Donor 1 and  9,570 (0.50%) in Donor 2 (at p<=0.001). Among 209 

these variants, we asked how many showed corroborating bias in POLR2A or any of the 210 

histone datasets, which would not be predicted to be directly altered by variants, but are 211 

likely to reflect altered gene regulation at that variant. We identified those variants that 212 

were also biased for at least one histone mark or POLR2A, and found that approximately 213 

half are biased for at least one of these datasets (4,271 in donor 1 and 4,734 in donor 2). 214 

We found that, for such variants, more TFs are generally biased for the variant 215 

(Supplemental Figure 5), and that the significance of TF bias increases (Supplemental 216 

Figure 6).  217 

Supplemental Tables 1 and 2 show all nominally significant (p<=0.05) heterozygous 218 

regions for any ChIP-seq target or input DNA in each donor based upon summed reads 219 

across brain regions as well as relevant information about each variant. Hereafter, we 220 

consider only those variants that impact TF binding, independent of POL2RA or histone 221 

effects, at p<=0.001. 222 

 223 

Allele Bias is prevalent in functional regions important for neuronal differentiation 224 

We next explored the genomic properties of the 17,309 unique variants that impact TF 225 

binding using candidate Cis-Regulatory Elements (cCREs) from the ENCODE 226 

Consortium (Luo et al. 2020), which marks elements such as promoters and enhancers. 227 

We classified each heterozygous region, TF ChIP-seq peak, and allele-biased variant into 228 

cCRE categories (Figure 3A). Not surprisingly, we found that ChIP-seq peaks 229 

overwhelmingly lie within cCRE regions, while the majority of heterozygous variation falls 230 

outside of cCRE regions. However, most cases (73.3%) of TF-allele bias fall within or 231 
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near cCREs, despite requiring only a minimum of 11 reads total across all experiments 232 

to potentially be found as significantly biased at p<=0.001 for a given variant. Despite 233 

being overwhelmingly within cCREs, 83.2% of allele-biased variants are not in a called 234 

peak for that TF.  235 

 

Figure 3. Genetic and genomic properties of variants displaying TF-allele bias. A. Stacked barplots 

showing the fraction of regions which have overlap with a particular cCRE type for all variant 

haplotypes (first from top), all TF peaks (second from top), haplotypes found significant for at least 

one TF (second from bottom), and haplotypes found significant in at least one TF while also 

overlapping with a TF peak (bottom) (y-axis). Cumulative fraction is shown on the x-axis. Barplots 

are colored by cCRE type as PLS (promoter-like signal): red, pELS (proximal enhancer-like signal) 

orange, dELS (distal enhancer-like signal) yellow, CA-CTCF (chromatin-accessible CTCF signal) 

pink, CA-TF (chromatin-accessible, TF signal) blue, TF (TF signal) blue-green, CA (chromatin-
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accessible) green, and with non-cCRE regions plotted in grey.  B. Variants which are either very 

rare or very common in the population show highly significant allele bias. For varying ranges of 

derived allele frequency (x-axis), we show the fraction of significant variants which were found at or 

below a given significance threashold (y-axis). C. For very low-frequency derived alleles, a volcano-

like plot is shown which relates the ChIP-seq preference for the ancestral allele (x-axis, log(ancestral 

ChIP-seq reads+1 / derived ChIP-seq reads+1) and the significance (y-axis, -log10(pvalue) as 

determined by a binomial test) for each significantly-biased variant. Points are colored by their 

derived allele frequency, with rarer derived alleles being black and more common, up to DAF=0.001, 

being plotted in yellow. For very rare alleles, there is a stronger preference for the ancestral allele, 

and the significance of bias is higher.  D. For variants which weaken or strengthen a JASPAR motif 

(i.e. a motif was found in each sequence, but the score changed) for one of our assays TFs, the 

difference in FIMO score between the ancestral and derived allele (y-axis) versus the 

log(ancestralReads/derivedReads) for the relevant TF. Spearman9s Rho = 0.658, p<=2. X 10-16. 

 236 

Restricting to only those cases of allele-biased binding within peaks, we found that, 237 

relative to global peak locations, allele-biased binding is 1.8-fold enriched for PLS regions 238 

(p<=2.2 x 10-16, binomial test). We also found that a substantial number of biased variants 239 

occur in dELS and pELS regions, consistent with noted trends in the evolution of variability 240 

in enhancer function over evolutionary time (Rebeiz and Tsiantis 2017; Lynch et al. 2015; 241 

Emera et al. 2016). 242 

To explore the function of these regions, we performed GO analysis using GREAT 243 

(McLean et al. 2010; Gu and Hübschmann 2023), using allele-biased regions as our 244 

regions of interest and all peak regions minus allele-biased regions as controls 245 

(Supplemental Table 3). We note that the top 10 enriched terms (sorted by adjusted 246 

hypergeometric p-value) are largely involved in neural development, organismal 247 

development, and cell communication.  248 

 249 

Very rare variants are more likely to disrupt TF-DNA associations 250 

Because allele-biased regions are found near neural and developmental genes, 251 

suggesting a functional outcome on cellular and developmental phenotypes, we explored 252 

how common these variants are in population databases. We hypothesized that any 253 
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derived allele which significantly altered the expression of a key neural or developmental 254 

gene would experience natural selection during human evolution. We identified ancestral 255 

alleles via comparative genomics among apes using Ensembl (Cunningham et al. 2022) 256 

and used gnomAD (Chen et al. 2022) to identify current allele frequency in the human 257 

population. We then binned TF-biased variants by derived allele frequency and noted the 258 

fraction in each bin with a given allele bias p-value (Figure 3B). We found that, for rare 259 

variation in the population (extreme right and left derived allele frequency bins), bias tends 260 

to be more significant than for common variation (middle bins). However, we note that 261 

there are relatively few allele-biased variants that are rare in the population but for which 262 

the derived allele is more common (e.g., 41 variants with DAF >0.999, vs 719 with DAF 263 

< 0.001). 264 

To further analyze effects of the ancestral and derived alleles among rare variants, we 265 

selected the TF-biased variants with derived allele frequency (DAF) of 0.001 or lower (791 266 

variants) and determined the number of reads that map to the ancestral and derived 267 

alleles (Figure 3C). We found a strong preference for the ancestral allele both in the 268 

number of cases supporting it (70.2% support ancestral versus 29.8% derived), and 269 

degree of bias significance (Figure 3C). When restricting to variants with very high DAF 270 

(>=0.999) (41 variants), we observed the opposite bias (33.7% support ancestral, 66.3% 271 

support derived), (Supplementary Figure 7). Among variation with DAF between 0.001 272 

and 0.999 (i.e., sites at which both alleles are frequently observed in the human 273 

population, 24,818 variants), there is much reduced ancestral versus derived bias (56.2% 274 

vs 43.8%, Supplemental Figure 8).  This suggests that common alleles are 275 

approximately equally likely to increase or decrease TF-DNA associations, whereas rare 276 

alleles are more likely to specifically disrupt TF-DNA association, while a smaller fraction 277 

appear to lead to new TF-DNA associations.  278 

To evaluate the mechanism of allele-biased variation on TF-binding, we identified motifs 279 

that are disrupted by a heterozygous variant using human motifs for relevant TFs in the 280 

JASPAR database (Castro-Mondragon et al. 2022), and the fimo function of the meme 281 

(Bailey et al. 2015) suite. We first checked, for each TF, each biased variant and asked 282 

what percentage of the time the motif for that TF was significantly disrupted from 283 

consensus. We found a wide range for this metric, with 0-44% of the biased loci showing 284 
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disrupted motifs. This likely reflects each TF9s motif strength. For example, the zinc finger 285 

factor CTCF, which has a long 14 bp consensus motif with many highly conserved bases, 286 

had its motif disrupted at 44% of the loci showing bias for that factor. By comparison, 287 

MAZ, which has a 7 bp motif with no strongly conserved nucleotides, had a disrupted 288 

motif in only 9.5% of TF-biased loci (Supplemental Figure 9, Supplemental Table 4). 289 

We next identified cases where a motif9s score changed between the two alleles and 290 

determined whether the derived or ancestral allele had a higher score, and the number 291 

of reads mapping to each allele. We found that allelic disruption of a motif is moderately 292 

correlated (Spearman9s Rho = 0.658) with TF ChIP-seq reads mapped (Figure 3D). This 293 

is also true of variants that entirely remove or create a motif, defined as finding a fimo hit 294 

in one allele and none at all in the other (Supplemental Figure 10) (Spearman9s Rho = 295 

0.494).  296 

Because we observed these trends in enrichment and in motif modifications, we then 297 

determined whether or not there was evidence for enrichment or depletion of sites with 298 

TF-biased variation being under purifying selection throughout mammalian evolution. We 299 

used the Genomic Evolutionary Rate Profiling (GERP) (Davydov et al. 2010) metric and 300 

identified those variants with GERP>4, a commonly-used cutoff for selective constraint 301 

(Schubert et al. 2014; Marsden et al. 2016). For each TF, we identified all variant locations 302 

with at least 11 reads mapped (minimum number of reads for binomial significance of 303 

0.001), and determined the number of variants with GERP>4 and with GERP<4 for 304 

variants that were significant and for those that were non-significant. (Supplemental 305 

Figure 11). We find that, while most TFs have an apparent depletion of biased variants 306 

under selective constraint, none are significantly depleted (Chi-squared test).  307 

 308 

Allele-biased binding offers insight into eQTL mechanisms  309 

Because TFs regulate the expression of RNA, we explored the relationship between 310 

allele-biased binding and the GTEx (GTEx Consortium 2020) database of expression 311 

quantitative trait loci (eQTLs) (Nica and Dermitzakis 2013). We found that 51.98% of all 312 

significant GTEx variants were present in at least one of our donors in either a 313 

heterozygous or homozygous state.  We found 1,142,111 variants in a heterozygous state 314 
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in Donor 1, and 1,123,497 in Donor 2, a necessary condition for detecting allele-biased 315 

binding of TFs. Of these variants, we found significant TF-allele bias in 7,459 variants in 316 

Donor 1 and 7,975 in Donor 2 for a total of 14,419 unique variants. We found that the 317 

involvement of allele-bias for individual TFs in GTEx eQTLs is similar to the genome at 318 

large (Supplemental Figures 9 and 12). 319 

We next explored RNA-seq allele bias by mapping total RNA-seq reads to personalized 320 

genomes, determining the number of reads preferring each allele, summing across 321 

tissues, and identifying variants with a bias p-value <= 0.001. Using a model of known 322 

genes in the hg38 build (Bioconductor Core Team 2017), we determined which of these 323 

cases of allele bias overlapped with known genes.  In Donor 1, 80.86% (5,850 of 7,191 324 

total) of allele-biased RNA reads occurred in known gene models, and 81.35% (5,774 of 325 

7,141 total) in Donor 2. We detected allele-biased expression in 10.16% of gene bodies 326 

in Donor 1 and 11.32% in Donor 2, consistent with estimates of the fraction of genes with 327 

allele-biased expression in earlier studies (Gimelbrant et al. 2007; Kravitz et al. 2023). 328 

We next identified variants in eQTLs that displayed both TF-allele bias as well as in-phase 329 

allele-biased RNA expression within the appropriate gene body as noted in GTEx. We 330 

found 6,709 GTEx variants that existed in a heterozygous state in one or both of our 331 

donors and with both a ChIP-seq allele bias and an in-phase heterozygous variant in the 332 

appropriate gene body with an RNA-seq allele bias. Because eQTLs can be tissue-333 

specific (Mizuno and Okada 2019), we restricted to GTEx variants with annotations in 334 

neural tissue for further investigation. We found 3,309 of these variants were identified in 335 

the brain or neural tissue by GTEx. For each of these 3,309 variants, we identified the 336 

predicted slope of the variant for a given gene as well as the degree and direction of 337 

observed RNA-seq allele bias in our reads. We found a modest, but highly significant, 338 

correlation of 0.43 (Spearman9s Rho, p<=2.2 x 10-16) (Figure 4A). This suggests a 339 

mechanistic link between allele-biased TF binding and RNA expression, consistent with 340 

the general function of TFs, that at least partially explains population-wide genetically-341 

determined expression variation. 342 
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Figure 4. Allele-biased binding is consistent with and offers insight to the mechanisms of GTEx 

eQTLs. A. For GTEx eQTLs found in a neural context present in our data with significantly-biased 

ChIP-seq signal and phased significantly-biased RNA-seq reads in the appropriate genic region, a 

violin plot showing the distribution of log(RNA bias) (y-axis) versus the binned GTEx eQTL slope (x-

axis).  Spearman9s Rho 0.43, p<=2.2 x 10-16. B. Genomic track for the RPS14 gene showing the 

location of the GTEx eQTL chr5_150449748_G_A_b38 in the promoter.  Green genes represent 

presence on the reverse strand, blue genes represent presence on the forward strand. Asterisk 

denotes the position of the eQTL. Tick marks denote heterozygous variants in the same phase as 

our heterozygous eQTL.  C. Stacked barplots showing the fraction  of reads supporting the reference 

or alternate strand (y-axis) of the eQTL for RNA (left) or ChIP-seq reads for biased TFs (right). D. 

Sequence of DNA surrounding the eQTL in B for the reference (top) and alternate (bottom) alleles, 

with the eQTL variant highlighted in red. Between them is displayed the MAZ motif MA1522.1 found 

in JASPAR, highlighting the alternate allele9s destruction of the canonical motif.  

 343 

We highlight a simple case found in Donor 2, chr5_150449748_G_A_b38, in Figure 4B-344 

D. The variant occurs near the TSS of the RPS14 gene (Figure 4B), which encodes a 345 

ribosomal protein. This eQTL was found to be significant in 10 tissue contexts in GTEx, 346 

with slope values from -0.27 to -0.11, meaning that the alternate allele decreases 347 

expression relative to the reference allele. We found that RNA expression in our dataset 348 

is biased in the expected direction (Figure 4C, left), and that there is TF-allele bias over 349 

the variant for the MAZ transcription factor (Figure 4C, right). Comparing the two 350 

sequences, we find that the alternate variant disrupts the MA1522.1 motif of the MAZ 351 

(Figure 4D). 352 
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In another case, we explored a more complicated eQTL case found in a heterozygous 353 

state in both donors, chr22_32474782_C_T_b38, in Figure 5. This variant occurs in the 354 

promoter region of FBXO7 (Figure 5A), an F-Box protein with a suggested role in 355 

Parkinson9s Disease (Joseph et al. 2018; Conedera et al. 2016; Burchell et al. 2013). We 356 

found that Hi-C data from iCell GlutaNeurons (Rogers et al. 2023) supports this locus 357 

interacting with several distal regions (Figure 5A). This variant was found in an eQTL for 358 

FBXO7 expression in eight tissues with slope values from 0.2 to .45. We found that our 359 

RNA-allele bias data also supports the alternate allele having a higher expression (Figure 360 

5B, left), and that several TFs in each donor also prefer the alternate allele (Figure 5B, 361 

right). Interestingly, this variant is also found to be associated in GTEx with a tissue-362 

dependent change of expression of the SYN3 gene, a neuronal phosphoprotein that 363 

associates with the surface of synaptic vesicles. We had limited ability to detect such 364 

changes, with only a single heterozygous RNA-biased variant in Donor 2 in phase with 365 

the eQTL variant, but found a strong preference for expression of the SYN3 reference 366 

allele. The fact that this variant occurs in a known CTCF binding motif (MA0139.1) (Figure 367 

5C) and shows TF-allele bias for cohesion factors (Figure 5B, right) suggests some 368 

measure of distal action for this variant consistent with CTCF9s known roles (Splinter et 369 

al. 2006). We also observed several other phased variants were present in our donors in 370 

this region, each for the FBXO7 gene. We explored allele-biased binding at  these variants 371 

and highlight our findings in Table 3. Of note, several of these variants show no bias for 372 

any of our tested transcription factors or histone marks. This suggests that allele-biased 373 

binding may be a method of fine-mapping eQTLs when data are available. 374 
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Figure 5. Allele-biased binding allows for fine-mapping of eQTL variants. A. Genomic track showing 

the region surrounding the GTEx eQTL chr22_32474782_C_T_b38, found in heterozygous form in 

both donors. Green genes represent presence on the reverse strand, blue genes represent 

presence on the forward strand. Asterisk denotes the position of the eQTL. Tick marks denote 

heterozygous variants in the same phase as our heterozygous eQTL. Loops from Hi-C data in iCell 

GlutaNeurons are shown above the gene tracks, noting 3D interactions.  B. Left: Barplots depicting 

the fraction of reads supporting the strand of the reference (blue) or alternate (red) strand with 

regard to the eQTL for donor 1 and donor 2 for each of the FBXO7 or SYN3 gene. Right: Barplots 

depicting the fraction of reads mapping to the reference or alternate allele of the eQTL for 

significantly biased cohesion factors in donor 1 and donor 2. C. Sequence of DNA surrounding the 

eQTL in A for the reference (top) and alternate (bottom) alleles, with the eQTL variant highlighted 

in red. Between them is displayed the CTCF motif MA0139.1  found in JASPAR, highlighting the 

variant site.  

 375 

GTEx Variant Donor 1 

Presence 

Donor 2 

Presence 

Donor 1 

Significant 

ChIP-seq 

Donor 2 

Significant 

ChIP-seq 

chr22_32470947_T_C_b38 Yes Yes None None 

chr22_32471256_A_T_b38 No Yes NA None 

chr22_32471173_G_C_b38 Yes Yes None None 

chr22_32471541_G_A_b38 Yes Yes None None 
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chr22_32473024_C_T_b38 Yes Yes None None 

chr22_32473508_G_T_b38 Yes Yes CTCF CTCF 

chr22_32474674_C_T_b38 Yes Yes None POL2, ATF7, 

H3K9AC 

chr22_32474782_C_T_b38* Yes Yes CTCF, 

H3K27AC, 

NEUROD1, 

NR2F2, 

RAD21, 

ASH2L, 

CC2D1A, 

H3K9AC, 

NONO, 

TRIM28 

CTCF, 

H3K4ME3, 

POL2, 

RAD21, 

SOX8, SP1, 

ATF7, 

H3K9AC, 

ZBTB7B 

 

chr22_32474819_C_T_b38** No Yes NA  

Table 3. For variants found in GTEx which were in-phase with the focal variant, 

chr22_32474782_C_T_b38 (marked with *, explored in Figure 5), we show whether or not the 

variant was present in each of the two donors, as well as note any TF with significant allele-biased 

binding for that variant. We note that  chr22_32474819_C_T_b38 (marked with **) was found within 

100bp of the focal eQTL in donor 2, and so was analyzed in conjunction with the focal eQTL (see 

methods). 

 376 

Discussion 377 

Here, we present an analysis of allele-biased binding across 93 transcription factors, 378 

identifying thousands of variants that show biased binding. We identified a threshold for 379 

reproducibility that provides confidence to our calls both within a single donor and across 380 

multiple donors, controlling for a wide variety of biological and technical variables. By 381 

linking to allele-biased expression of nearby genes, we also relate variation that impacts 382 

TF binding  directly to effects on gene regulation . 383 
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We found that TF-biased variants are prevalent in distal and proximal enhancer regions 384 

as well as  in promoter regions. This highlights that these variants occur in regions known 385 

to play major roles in gene expression. This, combined with the many cases of allele-386 

biased binding within eQTLs, shows a potential mechanism of eQTLs, and may lead to 387 

insights of disease mechanisms (Musunuru et al. 2010). Because a majority (>80%) of 388 

the allele-biased variants fall outside of called peaks for the biased TFs, this also stresses 389 

the importance of TF binding outside of peaks that have measurable impact, as noted in 390 

previous studies (Lun and Smyth 2016; Hiatt et al. 2023). 391 

We found that rare variation (MAF < 0.1%) is enriched, relative to common variation, for 392 

TF-binding impacts (Figure 3B), suggesting that there was purifying selection against 393 

such variation in general. For common variants that do impact binding, neither the 394 

ancestral nor derived alleles tend to be favored (Supplemental Figure 7). In contrast, 395 

among rare variants (MAF < 0.1%), there is a bias in favor of common alleles over rare 396 

alleles, whether the common allele is derived or ancestral. This suggests that new 397 

mutations more often disrupt, rather than enhance, TF binding. Still, the fact that TF-398 

variant bias can sometimes prefer the novel allele even in rare variants is consistent with 399 

models of de novo motif formation and gene birth (Behrens and Vingron 2010; Schlötterer 400 

2015; Carvunis et al. 2012; Iyengar and Bornberg-Bauer 2023; Ruiz-Orera et al. 2015; 401 

Papadopoulos et al. 2021), which have suggested that few changes need to be made to 402 

a given sequence to form a novel TF motif, and that this formation plays a crucial role in 403 

sampling of transcriptional regulatory space. This is emphasized by the fact that we 404 

observe a small subset of derived alleles that have become common in the population 405 

(DAF>=0.999), and are favored by TFs (Supplemental Figure 7). 406 

As has been previously observed (Abramov et al. 2021), in cases of TF-biased variants, 407 

there is a general preference for a given TF to favor the allele with a stronger presence 408 

of its motif, and TF read-depth measurements confirm a correlation between the degree 409 

of motif disruption and total read-depth for variants within motifs (Figure 3D). Beyond 410 

demonstrating the general nature of this phenomenon, it can be combined with known 411 

eQTLs in our dataset to facilitate fine-mapping and mechanistic hypothesis generation. 412 

For example, we highlight a case of a variant in an eQTL that displays allele biased 413 

binding in our dataset and specifically disrupts a motif for that TF (Figure 5), affecting 414 
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regulation of a gene that is relevant to neurodegenerative and neuropsychiatric traits. The 415 

results from this analysis yielded TF-biased variation linked to 9,748 GTEx eQTLs, 416 

providing a rich resource for future fine-mapping efforts.  417 

We also found that many sites of allele-biased binding represent coordinated multi-factor 418 

effects. For example, 48.1% of sites that associate with altered binding of one TF 419 

influence binding of one or more additional TFs (Supplemental Tables 1-2). Similarly, 420 

approximately half of variants with TF-binding bias also have altered histone marks and 421 

POL2 binding, consistent with the expected relationships between TF binding and general 422 

recruitment of transcriptional machinery. Finally, we found that approximately 30% of TF-423 

allele-biased variants in our data impacted cohesion complex members (Supplemental 424 

Figure 9). This suggests that genetic variants which alter three-dimensional genome 425 

interactions are a major contributor to gene expression variation in the population.  426 

Overall, our study provides a resource of allele-biased variants that are experimentally 427 

validated to impact TF binding in a biologically relevant context. These results will further 428 

our understanding of how alteration in DNA sequence translates to changes in biological 429 

function, particularly in relation to analyses of gene regulation in the human brain. 430 

 431 

Methods 432 

Whole Genome Sequencing and variant calling 433 

We extracted high molecular weight DNA from approximately 20 mg cortex tissue from 434 

each donor using the MagAttract HMW DNA kit (Qiagen 67563). We prepared  linked 435 

read libraries using the Chromium Genome Reagent Kit v2 following the protocol provided 436 

by 10x Genomics. We processed sequence reads using the longranger software suite 437 

from 10x Genomics. We identified variants by aligning to a 10x Genomics-provided, 438 

longranger-enabled hg38 reference (version 2.1.0) using longranger wgs v2.2.2. We 439 

called variants using GATK 3.8-1-0-gf15c1c3ef via the 3vcmode gatk option in the 440 

longranger wgs workflow (Loupe et al. 2023). 441 

 442 

Genome Construction 443 
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We constructed graph genomes using the vg toolkit version 1.20, available at 444 

https://github.com/vgteam/vg (Garrison et al. 2018). The <construct= command was used 445 

with the hg38 genome and all phased variants which passed quality metrics. We then 446 

pruned the graph using the <prune= command with default parameters. We produced the 447 

gbwt index using the <index= command with default parameters, and the gcsa index was 448 

created using the parameters: -X 3 -Z 4000 -p -k 11.  449 

We also constructed linear FASTA sequences for comparisons of linear and graph 450 

genome reference allele bias. We identified variants which were within 1 full read length 451 

(100 bp) of one another, and on the same phase. We identified regions based on such 452 

nearby, in-phase variants, and constructed a fasta file containing, for each such region, 453 

one entry for either haplotype. In these haplotypes, 78.6% of regions contain only a single 454 

variant, while 96.2% had no more than 2 variants. 455 

 456 

RNA-seq 457 

We performed RNA-seq for each of the nine brain regions as outlined in Loupe et al. 458 

2023.  459 

 460 

ChIP-seq experiments 461 

We peformed ChIP-seq experiments with 93 TFs and five histone marks in nine distinct 462 

brain regions, for a total of 1,028 experiments. Full methods for production of ChIP-seq 463 

reads are presented in (Loupe et al. 2023).  464 

 465 

Peak Calling 466 

We called peaks according to the ENCODE Consortium9s standard pipeline, using 467 

experiments from donors as replicates, as described in (Loupe et al. 2023). 468 

 469 

Read Mapping and processing 470 
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For traditional read mapping, we used bowtie2 (Langmead and Salzberg 2012) with 471 

default settings to map to the human hg38 genome. 472 

For graph genome mapping, we used the vg map command with arguments -A -K -M 3. 473 

The vg surject command was used to create sam and bam file formats for determining 474 

allele bias. The samtools package (Danecek et al. 2021) was used for sorting and filtering 475 

by quality. Picard was used for filtering duplicates. 476 

Once reads were mapped and filtered, we identified and separated out only those reads 477 

that overlapped with a heterozygous variant using custom R code. In brief, for a read 478 

mapped to a heterozygous region, we determined the minimum string distance, i.e. 479 

greatest sequence similarity, between the read and each of the two haplotypes, and 480 

assigned the read to the haplotype that was most similar to the read9s sequence.  In cases 481 

where the minimum string distance between the two haplotypes was equal, we assigned 482 

half a read to each sequence, leading to a more conservative binomial test for allelic bias. 483 

 484 

Identification of Allele Bias 485 

For a given ChIP-seq or RNA-seq dataset, after mapping, we identified those 486 

heterozygous regions with at least six total reads (the minimum number of reads for a 487 

binomial test to be nominally significant at p<=0.05 if all reads map to a single haplotype). 488 

After assigning a number of reads to each haplotype, we performed a two-sided binomial 489 

test for each haplotype for each ChIP-seq dataset.  490 

After assessing the consistency of allelic biases across brain regions and donors, we 491 

summed the number of reads assigned to each haplotype for a given TF across all tested 492 

brain regions within a single donor, and a two-sided binomial test was performed for each 493 

haplotype for each TF with at least six reads when combined across tissue samples, the 494 

minimum number of reads required for a significant binomial test p-value at a 0.05 cutoff. 495 

For some analyses, we restricted to cases of at least 11 reads total, the minimum number 496 

of reads required for a significant binomial test p-value at a 0.001 cutoff. In all analyses, 497 

we removed variants that showed apparent allele bias in control input DNA for the 498 
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summed dataset in the respective donor. These variants are included in Supplemental 499 

Tables 1 and 2. 500 

 501 

VEP Annotations and Derived Allele Frequency 502 

We annotated vcf files using the following command:  503 

 504 

vep -i 5397-JL-0002_phased_variants.vcf.gz --config vep108.ini --vcf -o 5397-JL-0002_annotated.vcf.gz 505 

 506 

The config file is provided in the Supplemental_Code.zip file as vep108.ini. VEP engine 507 

and cache version 108 (McLaren et al. 2016) was used with a GRCH38 fasta file. We 508 

used a merged transcript set of Ensemble (Cunningham et al. 2022) and RefSeq (O9Leary 509 

et al. 2016). Custom annotations were Gnomad (Chen et al. 2022) allele frequency using 510 

v 3.1.1, Bravo topmed allele frequency freeze 8 (Taliun et al. 2021), GRCh38 GERP 511 

scores (as distributed with CADD v1.6), and CADD v1.6 scores (Rentzsch et al. 2019). 512 

We treated each variant in the haplotype separately in the rare cases where a single 513 

haplotype region contained multiple variants with different Derived Allele Frequencies and 514 

that haplotype region showed TF binding bias,.  515 

 516 

GTEx Data and identification of RNA allele bias 517 

We downloaded GTEx variants on June 30th, 2023 from 518 

https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis519 

_v8_eQTL.tar  520 

For a given eQTL variant in our data, we determined whether or not there was a phased  521 

heterozygous variant within the appropriate gene body in our data, as this was necessary 522 

for physically linking the TF-allelic bias to RNA allelic bias. In such cases, we determined 523 

the variant in the gene body which was on the same allele as each of the two haplotypes 524 

of the heterozygous variant in the GTEx dataset. We calculated significant bias as 525 

discussed above, and we calculated effect size as: 526 
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���	���� = 2log	(
���������	������	����� + 1

���������	������	����� + 1
) 527 

 528 

GREAT Gene Ontology Analysis 529 

We performed GREAT analysis using the rGREAT (v2.1.8) package 530 

(https://www.bioconductor.org/packages/release/bioc/html/rGREAT.html) (Gu and 531 

Hübschmann 2023). We associated genomic ranges with genes using the basal plus 532 

extension method (5kb upstream, 1kb downstream, 500kb max extension). We calculated 533 

enrichment for GO Biological Process terms within GREAT with background regions set 534 

as the union of all ChIP-seq peaks with heterozygous variation that did not show evidence 535 

of allele-biased binding. 536 

 537 

Data Analysis 538 

We performed data analysis using R version and 4.1.0 (2010), as noted in appropriate 539 

scripts. 540 

 541 

cCRE catalog 542 

We downloaded the V4 cCRE human dataset from the ENCODE Portal under accession 543 

ENCSR800VNX. 544 

 545 

Data Access 546 

All code used for these analyses is available via GitHub at 547 

https://github.com/bmoyers/BrainTF_Allele_Biased_Binding, and is also supplied as 548 

Supplemental_Code.zip. These data and the accompanying analyses will serve as a 549 

resource to understand genome regulation in psychiatric diseases and are publicly 550 

available through the PsychENCODE Consortium and available for download at the 551 

following link: https://doi.org/10.7303/syn4921369. 552 
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