

1 **Reply to: Commentary on Pang et al. (2023) Nature**

2 James C. Pang^{1*}, Kevin M. Aquino^{2,3}, Marianne Oldehinkel⁴, Peter A. Robinson², Ben D.
3 Fulcher², Michael Breakspear^{5,6}, Alex Fornito¹

4 ¹The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and
5 Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia

6 ²School of Physics, University of Sydney, Camperdown, New South Wales, Australia

7 ³BrainKey Inc., San Francisco, California, USA

8 ⁴Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre,
9 Nijmegen, the Netherlands

10 ⁵School of Psychological Sciences, College of Engineering, Science and the Environment,
11 University of Newcastle, Callaghan, New South Wales, Australia

12 ⁶School of Medicine and Public Health, College of Health, Medicine and Wellbeing,
13 University of Newcastle, Callaghan, New South Wales, Australia

14 *Corresponding author. Email: james.pang1@monash.edu

15 **Abstract**

16 In Pang et al. (2023)¹, we identified a close link between the geometry and function of the
17 human brain by showing that: (1) eigenmodes derived from cortical geometry parsimoniously
18 reconstruct activity patterns recorded with functional magnetic resonance imaging (fMRI); (2)
19 task-evoked cortical activity results from excitations of brain-wide modes with long
20 wavelengths; (3) wave dynamics, constrained by geometry and distance-dependent
21 connectivity, can account for diverse aspects of spontaneous and evoked brain activity; and (4)
22 geometry and function are strongly coupled in the subcortex. Faskowitz et al. (2023)² raise
23 concerns about the framing of our paper and the specificity of the eigenmode reconstructions
24 in result (1). Here, we address these concerns and show how specificity is established by using
25 appropriate benchmarks.

26 **Main text**

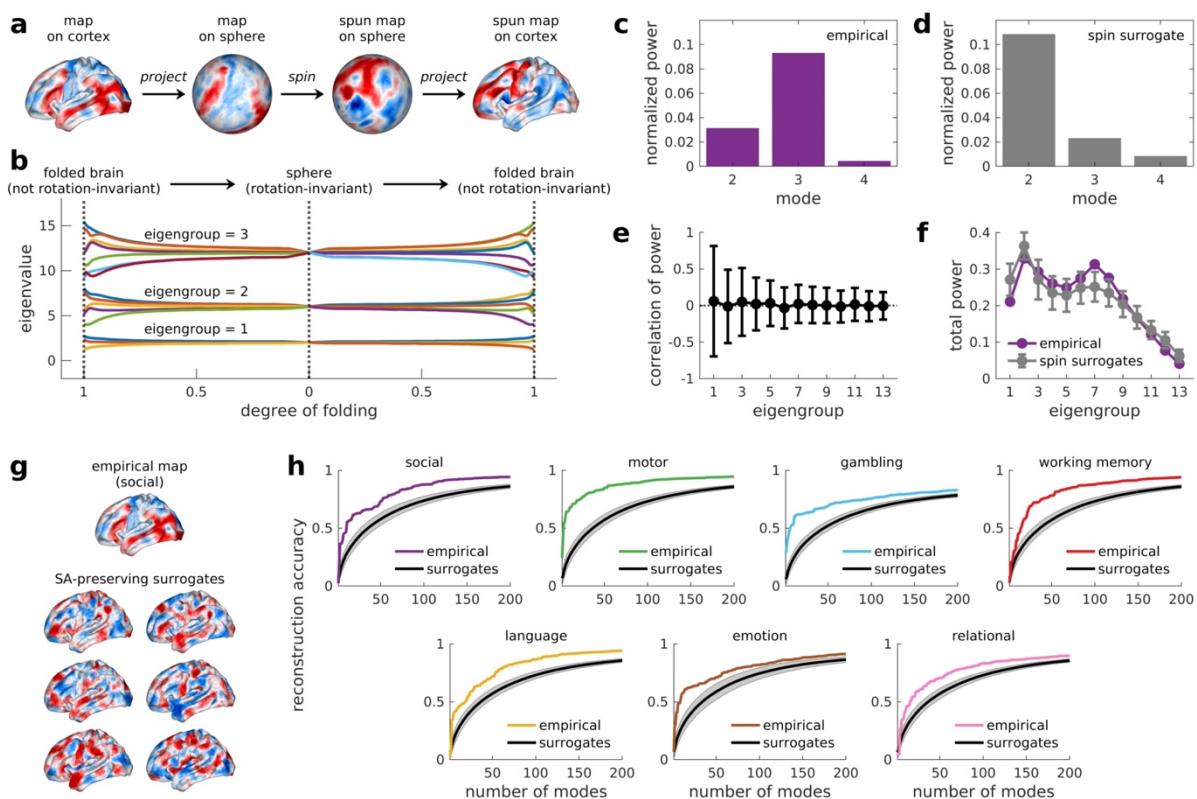
27 Faskowitz et al.'s² critique of our paper's framing is that it "can be perceived" as a "winner-
28 takes-all... comparison between brain shape and structural connectivity". This misperception
29 evidently arises from quotes taken out of context and an oversight of the fundamental
30 relationship between geometry and connectivity underlying our approach, as defined formally
31 in Supplementary Information S8 of the original paper¹. In brief, the use of cortical eigenmodes
32 to model cortical activity rests irrevocably upon a form of distance-dependent connectivity that
33 has been consistently identified in human and non-human data alike^{3,4}. In Supplementary
34 Information S1 of this response, we revisit the pertinent details with additional explanatory
35 notes and also clarify how our approach is readily reconciled with lesion studies, as queried by
36 Faskowitz et al.

37 Faskowitz et al.² also critique the specificity of our geometric eigenmode reconstructions with
38 respect to two proposed criteria. Their first criterion is that geometric eigenmodes "should
39 perform poorly in explaining randomly oriented activity patterns, uncoupled from the
40 underlying cortical anatomy". To generate such patterns, the authors use the popular spin test⁵,
41 which projects an empirical activation map to a sphere, randomly rotates the map, and then
42 projects the rotated map back onto the cortex (Fig. 1a). The authors show that geometric
43 eigenmodes "should" perform poorly in explaining such patterns, as measured by the spin test.
44 However, this is not a valid test of the geometric eigenmodes' specificity, as the spin test is not
45 designed to test the geometric eigenmodes' specificity. The spin test is a test of the geometric
46 eigenmodes' ability to explain the underlying cortical anatomy, not the geometric eigenmodes' specificity.

46 eigenmodes reconstruct empirical maps of 255 participants from the Human Connectome
47 Project (HCP) and their associated spun versions with comparable accuracy, leading them to
48 conclude that cortical geometry does not constrain function.

49
50 This conclusion follows from an incorrect application of the spin test, which was developed
51 for inference on pairwise spatial correlations between different maps⁵, not for assessing the
52 relationship of a map with its underlying geometric (or connectomic) support. Projecting data
53 to a sphere distorts cortical geometry, such that the cortical eigenmodes approach spherical
54 harmonics in their degenerate limit (see Fig. 1b). In other words, the specific orientations of
55 the original modes and their distinct eigenvalues, which encode cortical geometry, are absent
56 in the spherical space, rendering the modes interchangeable and rotationally invariant with
57 respect to the activity map. This invariance means that rotating a map in the spherical projection
58 simply redistributes the power (i.e., coefficient weights) of modes within their eigengroups (see
59 Figs. 1c–e and Supplementary Information S2 for details), while approximately conserving the
60 total power of each group (Fig. 1f) and the spatial autocorrelation of the map. Since
61 reconstruction accuracy is determined by the power observed over a given wavelength range,
62 and modes within eigengroups have approximately similar spatial wavelengths, the spin test
63 on the sphere will, by construction, approximately preserve the exact property—reconstruction
64 accuracy—that should be annulled. The spin test is therefore inappropriate for inference on
65 reconstruction accuracy. Note also that the additional null model used by Faskowitz et al.²
66 (Moran spectral randomization) has previously been shown to yield an insufficiently deep
67 randomization of the data⁶ (see Supplementary Information S3 for details).

68



69
70 **Figure 1. The spin test is inappropriate for inference on geometric reconstructions.** (a) The spin test
71 projects an empirical activation map to a sphere, spins or rotates the map, and then projects the spun map
72 back onto the cortex. Spinning alters the map's orientation while preserving its spatial topography. (b) The
73 spherical projection distorts cortical geometry, which can be appreciated by observing how the eigenvalues
74 of the cortical geometric eigenmodes change by progressively transitioning from the folded cortex (degree
75 of folding = 1) to a sphere and back to the folded cortex. This panel shows these changes for the first three

76 eigengroups comprising the first 15 non-constant modes, as previously shown in ref. ⁷. In the folded brain,
77 the modes have distinct eigenvalues because the orientations of the modes are “locked in” by cortical
78 geometry, as shown previously⁷ (see also Fig. S3a). As the degree of cortical folding approaches zero (i.e.,
79 the cortex becomes a sphere), the eigenvalues within groups converge to their degenerate limit. In this limit,
80 the modes have no preferred orientation and are rotationally-invariant, such that they become
81 interchangeable. Hence, projection back onto the folded brain obtains modes that do not match the original
82 cortical modes (i.e., the colour of each line from top-to-bottom within groups differs from the left to right
83 extremes of cortical folding). **(c,d)** Spinning an activation map on a sphere trivially redistributes the power
84 (i.e., coefficient weights of the reconstruction model) across modes within each group. Panel **c** shows the
85 power of modes in the first eigengroup for the empirical map in panel **a**. Panel **d** shows the redistribution of
86 power for the example spun map in panel **a**. **(e,f)** While this redistribution decorrelates the coefficient weights
87 of specific modes for the empirical and spun maps within each group (approximately zero average correlation
88 in panel **e**), the total power of each group, which drives the reconstruction accuracy, is approximately
89 preserved within a comparable wavelength range (panel **f**; see Supplementary Information S2). Hence, the
90 spin test changes the specific coefficient weight of each mode but preserves the overall reconstruction
91 accuracy of the model. Panel **e** shows the mean correlation between mode-specific power within each group,
92 obtained for the empirical map in panel **a** and 1000 surrogate maps. The markers represent the mean and the
93 error bars are the standard deviation. Panel **f** shows the mean total power for each eigengroup, obtained by
94 summing the power within each group and two adjacent groups (to account for leakage between
95 neighbouring groups), for the empirical in panel **a** and 1000 surrogate maps. The markers represent the mean
96 and the error bars are the standard deviation. **(g)** A parametric null model⁶ can be used to generate appropriate
97 surrogate maps that destroy the spatial topography of the empirical map while preserving low-level spatial
98 autocorrelation. **(h)** The accuracy of the geometric eigenmodes in reconstructing the 7 key HCP task-contrast
99 maps is clearly superior to their accuracy in reconstructing the SA-preserving surrogates, thus demonstrating
100 the specificity of the geometric eigenmode model. Panel **b** is adapted from ref. ⁷ with permission.

101 Proper evaluation of model specificity requires a null benchmark that preserves local, first-
102 order spatial autocorrelations and annuls the spatial topography of the empirical activation map,
103 which captures the influence of geometry on activity. Figures 1g–h show that surrogate maps
104 derived from a parametric null model that satisfies these requirements are reconstructed with
105 lower accuracy than the empirical data (see also Supplementary Information S4 and Figs. S1–
106 S2). Thus, the first specificity criterion proposed by Faskowitz et al.² is fulfilled when
107 appropriate inferential methods are used.

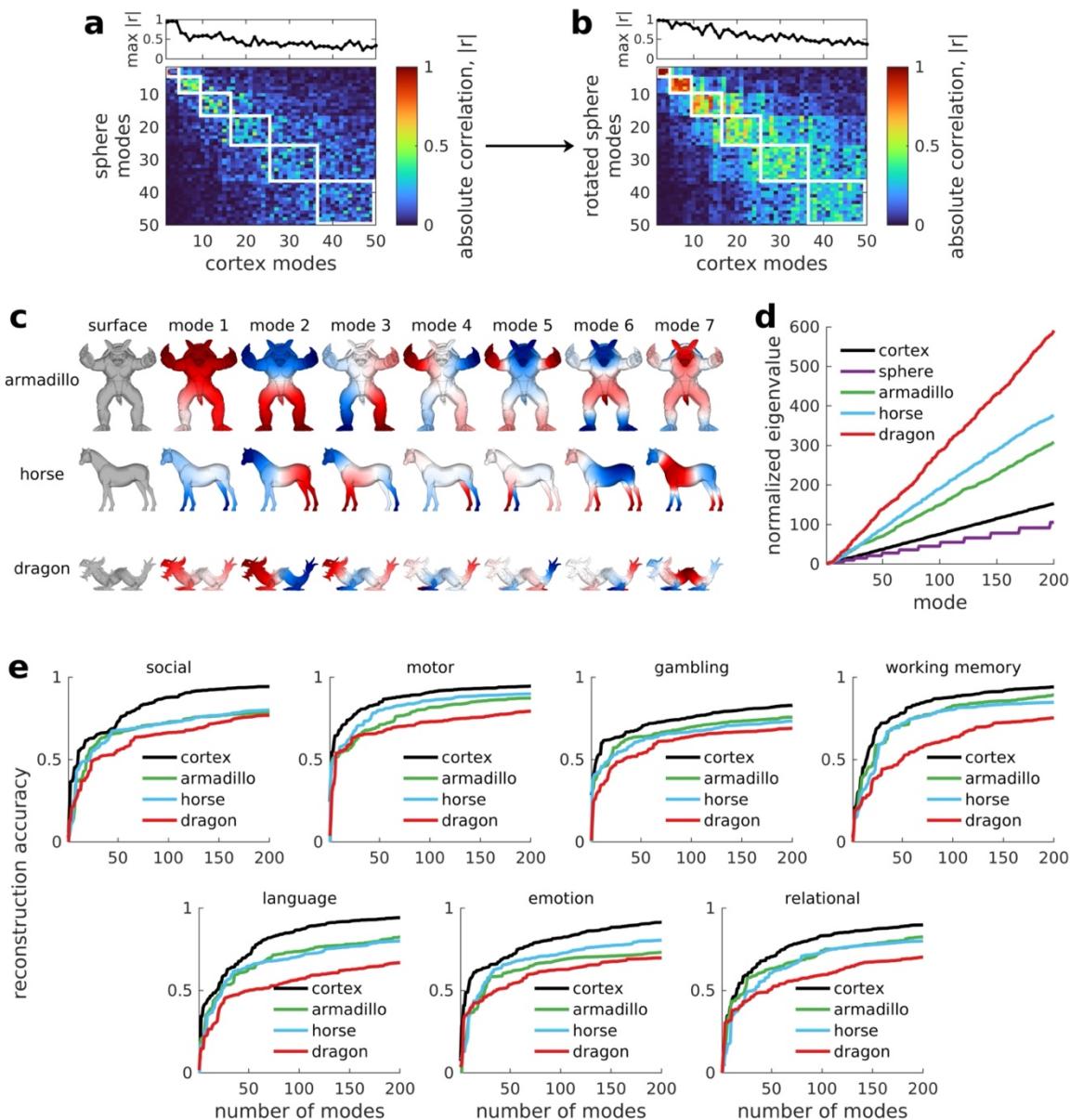
108 The second specificity criterion proposed by Faskowitz et al.² is that eigenmodes derived from
109 “non-brain-like shapes” should be “less accurate descriptors of cortical activity”. Faskowitz et
110 al.² claim that this criterion is not met because eigenmodes derived from a sphere or a bulbous
111 surface show similar reconstruction accuracy to cortical modes. This analysis simply
112 demonstrates a direct consequence of the coarse-scale geometric similarities between the cortex
113 and a sphere, which have been extensively and formally characterized in prior work⁸.
114 Specifically, ref. ⁸ showed that cortical geometry at large spatial scales (which contains most
115 of the spectral energy of fMRI activation maps; see Fig. 3 in ref. ¹) can be approximated
116 analytically as a first-order perturbation of spherical geometry, where the perturbations
117 describe the symmetry-breaking effect of cortical folding. As a result, cortical eigenmodes can
118 be expressed as linear combinations of appropriately rotated spherical harmonics⁸ (Figs. 2a–b
119 and Supplementary Information S5). This geometric similarity is why we used spherical
120 approximations to estimate cortical eigenmode wavelengths in our own work (see Eq. (3) in
121 ref. ¹). In other words, at coarse scales relevant for fMRI, the “non-brain like shapes” used by
122 Faskowitz et al.² are indeed brain-like, and their comparison merely shows that modes obtained
123 from objects with similar geometries reconstruct activity with similar accuracy.

124 In Figs. 2c–e, we show that eigenmodes derived from objects with clearly “non-brain-like”
125 coarse-scale geometries (i.e., shapes with ridges, sharp peaks, and asymmetries) yield poorer

129 reconstruction accuracies than the eigenmodes of the cortex (see Supplementary Information
130 S5 for details). We thus fulfill Faskowitz et al.'s² second specificity criterion when using
131 appropriate benchmarks.

132
133 We further emphasize that the similar performance of sphere-like and cortical modes does not
134 imply that cortical geometry is unrelated to function. A drumhead and a pancake have similar
135 geometries and one could plausibly reconstruct the vibrational patterns of the drum using the
136 geometric modes of the pancake. Nonetheless, the drumhead's vibrations are still constrained
137 by its geometry—the geometric features of a system will influence its dynamics even if those
138 features are shared with other objects. For this reason, comparisons with arbitrary geometric
139 models offer limited insights. As stated in ref. ¹, our goal was to identify a parsimonious basis
140 set of physically constrained eigenmodes, not an arbitrary basis set that is optimal in some
141 purely statistical sense. Alternative phenomenological (i.e., non-physiological) basis sets may
142 reconstruct fMRI data at equivalent accuracy but they do not shed light on the anatomical
143 constraints or generative processes that give rise to brain activity⁹. Geometric eigenmodes are
144 derived from a physical property of the brain and are formally related to dynamics through
145 neural field theory¹⁰⁻¹², which has explained a diverse array of neurophysiological findings
146 over several decades (see for example refs. ¹³⁻¹⁵). Such physically principled basis sets should
147 always be prioritized because they offer privileged insights into generative mechanisms. Their
148 specificity is therefore optimally established with respect to other physiologically-plausible
149 basis sets, as already demonstrated in our original analysis¹.

150



151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

Figure 2. Benchmarking geometric eigenmodes against the eigenmodes of non-brain-like objects. (a,b) Absolute spatial correlation, $|r|$, between every pair of cortical and spherical modes before (panel a) and after (panel b) rotation of the latter. The white boxes represent the eigengroups. The top panels show the highest $|r|$ value obtained for each cortical mode, taking into account order flips in each group. The anisotropies of cortical geometry fix the nodal lines of the cortical modes into specific orientations (Fig. S3a). However, spherical modes within each group are degenerate with arbitrary orientations (Figs. 1b and S3b–c) and do not have a one-to-one mapping with the cortical modes, resulting in lower correlations in panel a. After rotating the spherical modes in panel b, the correlations with cortical modes are higher for the first 6 groups, which account for ~70% of the reconstruction accuracy of geometric eigenmodes (see Fig. 1d of ref.¹). Thus, as previously shown⁸, low-order cortical modes can be approximated in terms of spherical modes, allowing them to have comparable reconstruction accuracies and explaining the effect shown by Faskowitz et al.². (c) We more appropriately benchmark the specificity of the geometric eigenmodes against the eigenmodes of three non-brain-like objects (see Supplementary Information S5 for details). This panel shows the surface meshes of these objects (armadillo, horse, and dragon) and their eigenmodes. (d) Normalized eigenvalue spectra of the three objects, cortex, and sphere. Note that more similar objects will have more similar spectra. The cortex and spherical modes have more similar spectra compared to the other objects. Moreover, the spectra of the three non-brain objects increase more steeply due to their jagged protrusions (e.g., legs, tails, spikes), which cause high-frequency geometric fluctuations (see also Fig. S4). (e) The accuracy of the cortical geometric eigenmodes in reconstructing the 7 key HCP task-contrast maps is higher than those of the 3 non-brain objects, thus demonstrating the specificity of the geometric eigenmode model.

172

173 In summary, in Pang et al. (2023)¹, we used multiple lines of converging evidence to show that
174 cortical geometry, distance-dependent connectivity, and wave dynamics are sufficient to
175 explain diverse patterns of brain activity evident in electrophysiological and fMRI data¹.
176 Faskowitz et al.² question one line of evidence, asking whether eigenmode-based
177 reconstructions show sufficient specificity. Here, we show that the authors' proposed
178 specificity criteria are met when appropriate benchmarks are used. We further caution against
179 interpretations of our work based on a simplistic dichotomy between geometry and
180 connectivity. The relevance of geometry for function comes from an explicit biophysical model
181 of neuronal dynamics, which assumes a specific form of distance-dependent connectivity that
182 dominates empirical connectome data^{3,4} (see Supplementary Information S1). While this
183 exponential distance-dependence effect does not capture all aspects of brain connectivity, our
184 findings¹ indicate that it is sufficient to parsimoniously explain diverse dynamical phenomena
185 measured with classical fMRI paradigms.

186

187 References

- 188 1. Pang, J. C. *et al.* Geometric constraints on human brain function. *Nature* **618**, 566–574
189 (2023).
- 190 2. Faskowitz, J. *et al.* Commentary on Pang et al. (2023) *Nature*. 2023.07.20.549785 Preprint
191 at <https://doi.org/10.1101/2023.07.20.549785> (2023).
- 192 3. Markov, N. T. *et al.* Cortical High-Density Counterstream Architectures. *Science* **342**,
193 1238406 (2013).
- 194 4. Roberts, J. A. *et al.* The contribution of geometry to the human connectome. *NeuroImage*
195 **124**, 379–393 (2016).
- 196 5. Alexander-Bloch, A. F. *et al.* On testing for spatial correspondence between maps of
197 human brain structure and function. *NeuroImage* **178**, 540–551 (2018).
- 198 6. Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. Generative modeling of
199 brain maps with spatial autocorrelation. *NeuroImage* **220**, 117038 (2020).
- 200 7. Robinson, P. A. *et al.* Eigenmodes of brain activity: Neural field theory predictions and
201 comparison with experiment. *NeuroImage* **142**, 79–98 (2016).
- 202 8. Gabay, N. C. & Robinson, P. A. Cortical geometry as a determinant of brain activity
203 eigenmodes: Neural field analysis. *Physical Review E* **96**, (2017).
- 204 9. Shinn, M. Phantom oscillations in principal component analysis. 2023.06.20.545619
205 Preprint at <https://doi.org/10.1101/2023.06.20.545619> (2023).
- 206 10. Wright, J. J. & Liley, D. T. J. Simulation of electrocortical waves. *Biological
207 Cybernetics* **72**, 347–356 (1995).
- 208 11. Jirsa, V. & Haken, H. Field Theory of Electromagnetic Brain Activity. *Physical
209 Review Letters* **77**, 960–963 (1996).
- 210 12. Robinson, P. A., Rennie, C. J. & Wright, J. J. Propagation and stability of waves of
211 electrical activity in the cerebral cortex. *Physical Review E* **56**, 826–840 (1997).
- 212 13. Robinson, P. A. *et al.* Prediction of electroencephalographic spectra from
213 neurophysiology. *Physical Review E* **63**, 021903 (2001).
- 214 14. Abeyseuriya, R. G., Rennie, C. J. & Robinson, P. A. Physiologically based arousal state
215 estimation and dynamics. *Journal of Neuroscience Methods* **253**, 55–69 (2015).
- 216 15. Gabay, N. C., Babaie-Janvier, T. & Robinson, P. A. Dynamics of cortical activity
217 eigenmodes including standing, traveling, and rotating waves. *Phys. Rev. E* **98**, 042413
218 (2018).

219

220

221 **Data availability**

222 Raw and pre-processed HCP data can be accessed at <https://db.humanconnectome.org/>. All
223 source data to generate the results of the manuscript are openly available at
224 <https://github.com/NSBLab/BrainEigenmodes> and <https://osf.io/xczmp/>.

225

226 **Code availability**

227 Computer codes to analyse results and reproduce the figures of the manuscript are openly
228 available at <https://github.com/NSBLab/BrainEigenmodes>.

229

230 **Acknowledgements**

231 HCP data were provided by the Human Connectome Project, Wu-Minn Consortium (Principal
232 Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH
233 Institutes and Centers that support the NIH Blueprint for Neuroscience Research, and by the
234 McDonnell Center for Systems Neuroscience at Washington University. This work was
235 supported by the MASSIVE HPC facility (www.massive.org.au), Sylvia and Charles Viertel
236 Foundation grant 2017042 to A.F., National Health and Medical Research Council grants
237 1197431 and 1146292 to A.F., Australian Research Council grant DP200103509 to A.F.,
238 Australian Research Council Laureate Fellowship FL220100184 to A.F., National Health and
239 Medical Research Council grant 2008612 to M.B., Australian Research Council Laureate
240 Fellowship FL140100025 to P.A.R., and Australian Research Council Center of Excellence
241 CE140100007 to P.A.R.

242

243 **Author contributions**

244 J.C.P., M.B., and A.F. designed the methodology. J.C.P. and A.F. performed the investigation
245 and administered the project. J.C.P. developed the visualizations. A.F. acquired funding and
246 supervised the project. J.C.P. and A.F. wrote the original draft. All authors reviewed and edited
247 the final manuscript.

248

249 **Competing interests**

250 K.M.A. is the Scientific Director and a shareholder of BrainKey Inc., a medical image analysis
251 software company. The other authors declare no competing interests.