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Abstract 16 

In Pang et al. (2023)1, we identified a close link between the geometry and function of the 17 

human brain by showing that:  (1) eigenmodes derived from cortical geometry parsimoniously 18 

reconstruct activity patterns recorded with functional magnetic resonance imaging (fMRI); (2) 19 

task-evoked cortical activity results from excitations of brain-wide modes with long 20 

wavelengths; (3) wave dynamics, constrained by geometry and distance-dependent 21 

connectivity, can account for diverse aspects of spontaneous and evoked brain activity; and (4) 22 

geometry and function are strongly coupled in the subcortex. Faskowitz et al. (2023)2 raise 23 

concerns about the framing of our paper and the specificity of the eigenmode reconstructions 24 

in result (1). Here, we address these concerns and show how specificity is established by using 25 

appropriate benchmarks. 26 

 27 

Main text 28 

Faskowitz et al.9s2 critique of our paper9s framing is that it <can be perceived= as a <winner-29 

takes-all& comparison between brain shape and structural connectivity=. This misperception 30 

evidently arises from quotes taken out of context and an oversight of the fundamental 31 

relationship between geometry and connectivity underlying our approach, as defined formally 32 

in Supplementary Information S8 of the original paper1. In brief, the use of cortical eigenmodes 33 

to model cortical activity rests irrevocably upon a form of distance-dependent connectivity that 34 

has been consistently identified in human and non-human data alike3,4. In Supplementary 35 

Information S1 of this response, we revisit the pertinent details with additional explanatory 36 

notes and also clarify how our approach is readily reconciled with lesion studies, as queried by 37 

Faskowitz et al. 38 

 39 

Faskowitz et al.2 also critique the specificity of our geometric eigenmode reconstructions with 40 

respect to two proposed criteria. Their first criterion is that geometric eigenmodes <should 41 

perform poorly in explaining randomly oriented activity patterns, uncoupled form the 42 

underlying cortical anatomy=. To generate such patterns, the authors use the popular spin test5, 43 

which projects an empirical activation map to a sphere, randomly rotates the map, and then 44 

projects the rotated map back onto the cortex (Fig. 1a). The authors show that geometric 45 
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eigenmodes reconstruct empirical maps of 255 participants from the Human Connectome 46 

Project (HCP) and their associated spun versions with comparable accuracy, leading them to 47 

conclude that cortical geometry does not constrain function. 48 

 49 

This conclusion follows from an incorrect application of the spin test, which was developed 50 

for inference on pairwise spatial correlations between different maps5, not for assessing the 51 

relationship of a map with its underlying geometric (or connectomic) support. Projecting data 52 

to a sphere distorts cortical geometry, such that the cortical eigenmodes approach spherical 53 

harmonics in their degenerate limit (see Fig. 1b). In other words, the specific orientations of 54 

the original modes and their distinct eigenvalues, which encode cortical geometry, are absent 55 

in the spherical space, rendering the modes interchangeable and rotationally invariant with 56 

respect to the activity map. This invariance means that rotating a map in the spherical projection 57 

simply redistributes the power (i.e., coefficient weights) of modes within their eigengroups (see 58 

Figs. 1c3e and Supplementary Information S2 for details), while approximately conserving the 59 

total power of each group (Fig. 1f) and the spatial autocorrelation of the map. Since 60 

reconstruction accuracy is determined by the power observed over a given wavelength range, 61 

and modes within eigengroups have approximately similar spatial wavelengths, the spin test 62 

on the sphere will, by construction, approximately preserve the exact property33reconstruction 63 

accuracy33that should be annulled. The spin test is therefore inappropriate for inference on 64 

reconstruction accuracy. Note also that the additional null model used by Faskowitz et al.2 65 

(Moran spectral randomization) has previously been shown to yield an insufficiently deep 66 

randomization of the data6 (see Supplementary Information S3 for details). 67 

 68 

 69 

Figure 1. The spin test is inappropriate for inference on geometric reconstructions. (a) The spin test 70 

projects an empirical activation map to a sphere, spins or rotates the map, and then projects the spun map 71 

back onto the cortex. Spinning alters the map9s orientation while preserving its spatial topography. (b) The 72 

spherical projection distorts cortical geometry, which can be appreciated by observing how the eigenvalues 73 

of the cortical geometric eigenmodes change by progressively transitioning from the folded cortex (degree 74 

of folding = 1) to a sphere and back to the folded cortex. This panel shows these changes for the first three 75 
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eigengroups comprising the first 15 non-constant modes, as previously shown in ref. 7. In the folded brain, 76 

the modes have distinct eigenvalues because the orientations of the modes are <locked in= by cortical 77 

geometry, as shown previously7 (see also Fig. S3a). As the degree of cortical folding approaches zero (i.e., 78 

the cortex becomes a sphere), the eigenvalues within groups converge to their degenerate limit. In this limit, 79 

the modes have no preferred orientation and are rotationally-invariant, such that they become 80 

interchangeable. Hence, projection back onto the folded brain obtains modes that do not match the original 81 

cortical modes (i.e., the colour of each line from top-to-bottom within groups differs from the left to right 82 

extremes of cortical folding). (c,d) Spinning an activation map on a sphere trivially redistributes the power 83 

(i.e., coefficient weights of the reconstruction model) across modes within each group. Panel c shows the 84 

power of modes in the first eigengroup for the empirical map in panel a. Panel d shows the redistribution of 85 

power for the example spun map in panel a. (e,f) While this redistribution decorrelates the coefficient weights 86 

of specific modes for the empirical and spun maps within each group (approximately zero average correlation 87 

in panel e), the total power of each group, which drives the reconstruction accuracy, is approximately 88 

preserved within a comparable wavelength range (panel f; see Supplementary Information S2). Hence, the 89 

spin test changes the specific coefficient weight of each mode but preserves the overall reconstruction 90 

accuracy of the model. Panel e shows the mean correlation between mode-specific power within each group, 91 

obtained for the empirical map in panel a and 1000 surrogate maps. The markers represent the mean and the 92 

error bars are the standard deviation. Panel f shows the mean total power for each eigengroup, obtained by 93 

summing the power within each group and two adjacent groups (to account for leakage between 94 

neighbouring groups), for the empirical in panel a and 1000 surrogate maps. The markers represent the mean 95 

and the error bars are the standard deviation. (g) A parametric null model6 can be used to generate appropriate 96 

surrogate maps that destroy the spatial topography of the empirical map while preserving low-level spatial 97 

autocorrelation. (h) The accuracy of the geometric eigenmodes in reconstructing the 7 key HCP task-contrast 98 

maps is clearly superior to their accuracy in reconstructing the SA-preserving surrogates, thus demonstrating 99 

the specificity of the geometric eigenmode model. Panel b is adapted from ref. 7 with permission. 100 

 101 

Proper evaluation of model specificity requires a null benchmark that preserves local, first-102 

order spatial autocorrelations and annuls the spatial topography of the empirical activation map, 103 

which captures the influence of geometry on activity. Figures 1g3h show that surrogate maps 104 

derived from a parametric null model that satisfies these requirements are reconstructed with 105 

lower accuracy than the empirical data (see also Supplementary Information S4 and Figs. S13106 

S2). Thus, the first specificity criterion proposed by Faskowitz et al.2 is fulfilled when 107 

appropriate inferential methods are used. 108 

 109 

The second specificity criterion proposed by Faskowitz et al.2 is that eigenmodes derived from 110 

<non-brain-like shapes= should be <less accurate descriptors of cortical activity=. Faskowitz et 111 

al.2 claim that this criterion is not met because eigenmodes derived from a sphere or a bulbous 112 

surface show similar reconstruction accuracy to cortical modes. This analysis simply 113 

demonstrates a direct consequence of the coarse-scale geometric similarities between the cortex 114 

and a sphere, which have been extensively and formally characterized in prior work8. 115 

Specifically, ref. 8 showed that cortical geometry at large spatial scales (which contains most 116 

of the spectral energy of fMRI activation maps; see Fig. 3 in ref. 1) can be approximated 117 

analytically as a first-order perturbation of spherical geometry, where the perturbations 118 

describe the symmetry-breaking effect of cortical folding. As a result, cortical eigenmodes can 119 

be expressed as linear combinations of appropriately rotated spherical harmonics8 (Figs. 2a3b 120 

and Supplementary Information S5). This geometric similarity is why we used spherical 121 

approximations to estimate cortical eigenmode wavelengths in our own work (see Eq. (3) in 122 

ref. 1). In other words, at coarse scales relevant for fMRI, the <non-brain like shapes= used by 123 

Faskowitz et al.2 are indeed brain-like, and their comparison merely shows that modes obtained 124 

from objects with similar geometries reconstruct activity with similar accuracy. 125 

 126 

In Figs. 2c3e, we show that eigenmodes derived from objects with clearly <non-brain-like= 127 

coarse-scale geometries (i.e., shapes with ridges, sharp peaks, and asymmetries) yield poorer 128 
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reconstruction accuracies than the eigenmodes of the cortex (see Supplementary Information 129 

S5 for details). We thus fulfill Faskowitz et al.9s2 second specificity criterion when using 130 

appropriate benchmarks. 131 

 132 

We further emphasize that the similar performance of sphere-like and cortical modes does not 133 

imply that cortical geometry is unrelated to function. A drumhead and a pancake have similar 134 

geometries and one could plausibly reconstruct the vibrational patterns of the drum using the 135 

geometric modes of the pancake. Nonetheless, the drumhead9s vibrations are still constrained 136 

by its geometry33the geometric features of a system will influence its dynamics even if those 137 

features are shared with other objects. For this reason, comparisons with arbitrary geometric 138 

models offer limited insights. As stated in ref. 1, our goal was to identify a parsimonious basis 139 

set of physically constrained eigenmodes, not an arbitrary basis set that is optimal in some 140 

purely statistical sense. Alternative phenomenological (i.e., non-physiological) basis sets may 141 

reconstruct fMRI data at equivalent accuracy but they do not shed light on the anatomical 142 

constraints or generative processes that give rise to brain activity9. Geometric eigenmodes are 143 

derived from a physical property of the brain and are formally related to dynamics through 144 

neural field theory10312, which has explained a diverse array of neurophysiological findings 145 

over several decades (see for example refs. 13315). Such physically principled basis sets should 146 

always be prioritized because they offer privileged insights into generative mechanisms. Their 147 

specificity is therefore optimally established with respect to other physiologically-plausible 148 

basis sets, as already demonstrated in our original analysis1.  149 

 150 
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 151 

Figure 2. Benchmarking geometric eigenmodes against the eigenmodes of non-brain-like objects. (a,b) 152 

Absolute spatial correlation, |r|, between every pair of cortical and spherical modes before (panel a) and after 153 

(panel b) rotation of the latter. The white boxes represent the eigengroups. The top panels show the highest 154 

|r| value obtained for each cortical mode, taking into account order flips in each group. The anisotropies of 155 

cortical geometry fix the nodal lines of the cortical modes into specific orientations (Fig. S3a). However, 156 

spherical modes within each group are degenerate with arbitrary orientations (Figs. 1b and S3b3c) and do 157 

not have a one-to-one mapping with the cortical modes, resulting in lower correlations in panel a. After 158 

rotating the spherical modes in panel b, the correlations with cortical modes are higher for the first 6 groups, 159 

which account for ~70% of the reconstruction accuracy of geometric eigenmodes (see Fig. 1d of ref. 1). Thus, 160 

as previously shown8, low-order cortical modes can be approximated in terms of spherical modes, allowing 161 

them to have comparable reconstruction accuracies and explaining the effect shown by Faskowitz et al.2. (c) 162 

We more appropriately benchmark the specificity of the geometric eigenmodes against the eigenmodes of 163 

three non-brain-like objects (see Supplementary Information S5 for details). This panel shows the surface 164 

meshes of these objects (armadillo, horse, and dragon) and their eigenmodes. (d) Normalized eigenvalue 165 

spectra of the three objects, cortex, and sphere. Note that more similar objects will have more similar spectra. 166 

The cortex and spherical modes have more similar spectra compared to the other objects. Moreover, the 167 

spectra of the three non-brain objects increase more steeply due to their jagged protrusions (e.g., legs, tails, 168 

spikes), which cause high-frequency geometric fluctuations (see also Fig. S4). (e) The accuracy of the 169 

cortical geometric eigenmodes in reconstructing the 7 key HCP task-contrast maps is higher than those of 170 

the 3 non-brain objects, thus demonstrating the specificity of the geometric eigenmode model. 171 
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 172 

In summary, in Pang et al. (2023)1, we used multiple lines of converging evidence to show that 173 

cortical geometry, distance-dependent connectivity, and wave dynamics are sufficient to 174 

explain diverse patterns of brain activity evident in electrophysiological and fMRI data1. 175 

Faskowitz et al.2 question one line of evidence, asking whether eigenmode-based 176 

reconstructions show sufficient specificity. Here, we show that the authors9 proposed 177 

specificity criteria are met when appropriate benchmarks are used. We further caution against 178 

interpretations of our work based on a simplistic dichotomy between geometry and 179 

connectivity. The relevance of geometry for function comes from an explicit biophysical model 180 

of neuronal dynamics, which assumes a specific form of distance-dependent connectivity that 181 

dominates empirical connectome data3,4 (see Supplementary Information S1). While this 182 

exponential distance-dependence effect does not capture all aspects of brain connectivity, our 183 

findings1 indicate that it is sufficient to parsimoniously explain diverse dynamical phenomena 184 

measured with classical fMRI paradigms. 185 

 186 
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Data availability 221 

Raw and pre-processed HCP data can be accessed at https://db.humanconnectome.org/. All 222 

source data to generate the results of the manuscript are openly available at 223 

https://github.com/NSBLab/BrainEigenmodes and https://osf.io/xczmp/. 224 

 225 

Code availability 226 

Computer codes to analyse results and reproduce the figures of the manuscript are openly 227 

available at https://github.com/NSBLab/BrainEigenmodes. 228 
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