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Abstract

In Pang et al. (2023)!, we identified a close link between the geometry and function of the
human brain by showing that: (1) eigenmodes derived from cortical geometry parsimoniously
reconstruct activity patterns recorded with functional magnetic resonance imaging (fMRI); (2)
task-evoked cortical activity results from excitations of brain-wide modes with long
wavelengths; (3) wave dynamics, constrained by geometry and distance-dependent
connectivity, can account for diverse aspects of spontaneous and evoked brain activity; and (4)
geometry and function are strongly coupled in the subcortex. Faskowitz et al. (2023)? raise
concerns about the framing of our paper and the specificity of the eigenmode reconstructions
in result (1). Here, we address these concerns and show how specificity is established by using
appropriate benchmarks.

Main text

Faskowitz et al.’s? critique of our paper’s framing is that it “can be perceived” as a “winner-
takes-all... comparison between brain shape and structural connectivity”. This misperception
evidently arises from quotes taken out of context and an oversight of the fundamental
relationship between geometry and connectivity underlying our approach, as defined formally
in Supplementary Information S8 of the original paper!. In brief, the use of cortical eigenmodes
to model cortical activity rests irrevocably upon a form of distance-dependent connectivity that
has been consistently identified in human and non-human data alike**. In Supplementary
Information S1 of this response, we revisit the pertinent details with additional explanatory
notes and also clarify how our approach is readily reconciled with lesion studies, as queried by
Faskowitz et al.

Faskowitz et al.? also critique the specificity of our geometric eigenmode reconstructions with
respect to two proposed criteria. Their first criterion is that geometric eigenmodes “should
perform poorly in explaining randomly oriented activity patterns, uncoupled form the
underlying cortical anatomy”. To generate such patterns, the authors use the popular spin test>,
which projects an empirical activation map to a sphere, randomly rotates the map, and then
projects the rotated map back onto the cortex (Fig. la). The authors show that geometric
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eigenmodes reconstruct empirical maps of 255 participants from the Human Connectome
Project (HCP) and their associated spun versions with comparable accuracy, leading them to
conclude that cortical geometry does not constrain function.

This conclusion follows from an incorrect application of the spin test, which was developed
for inference on pairwise spatial correlations between different maps®, not for assessing the
relationship of a map with its underlying geometric (or connectomic) support. Projecting data
to a sphere distorts cortical geometry, such that the cortical eigenmodes approach spherical
harmonics in their degenerate limit (see Fig. 1b). In other words, the specific orientations of
the original modes and their distinct eigenvalues, which encode cortical geometry, are absent
in the spherical space, rendering the modes interchangeable and rotationally invariant with
respect to the activity map. This invariance means that rotating a map in the spherical projection
simply redistributes the power (i.¢., coefficient weights) of modes within their eigengroups (see
Figs. 1c—e and Supplementary Information S2 for details), while approximately conserving the
total power of each group (Fig. 1f) and the spatial autocorrelation of the map. Since
reconstruction accuracy is determined by the power observed over a given wavelength range,
and modes within eigengroups have approximately similar spatial wavelengths, the spin test
on the sphere will, by construction, approximately preserve the exact property—reconstruction
accuracy—that should be annulled. The spin test is therefore inappropriate for inference on
reconstruction accuracy. Note also that the additional null model used by Faskowitz et al.?
(Moran spectral randomization) has previously been shown to yield an insufficiently deep
randomization of the data® (see Supplementary Information S3 for details).
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Figure 1. The spin test is inappropriate for inference on geometric reconstructions. (a) The spin test
projects an empirical activation map to a sphere, spins or rotates the map, and then projects the spun map
back onto the cortex. Spinning alters the map’s orientation while preserving its spatial topography. (b) The
spherical projection distorts cortical geometry, which can be appreciated by observing how the eigenvalues
of the cortical geometric eigenmodes change by progressively transitioning from the folded cortex (degree
of folding = 1) to a sphere and back to the folded cortex. This panel shows these changes for the first three
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76  eigengroups comprising the first 15 non-constant modes, as previously shown in ref. ”. In the folded brain,
77  the modes have distinct eigenvalues because the orientations of the modes are “locked in” by cortical
78  geometry, as shown previously’ (see also Fig. S3a). As the degree of cortical folding approaches zero (i.e.,
79  the cortex becomes a sphere), the eigenvalues within groups converge to their degenerate limit. In this limit,
80 the modes have no preferred orientation and are rotationally-invariant, such that they become
81  interchangeable. Hence, projection back onto the folded brain obtains modes that do not match the original
82  cortical modes (i.e., the colour of each line from top-to-bottom within groups differs from the left to right
83  extremes of cortical folding). (¢,d) Spinning an activation map on a sphere trivially redistributes the power
84  (i.e., coefficient weights of the reconstruction model) across modes within each group. Panel ¢ shows the
85  power of modes in the first eigengroup for the empirical map in panel a. Panel d shows the redistribution of
86  power for the example spun map in panel a. (e,f) While this redistribution decorrelates the coefficient weights
87  ofspecific modes for the empirical and spun maps within each group (approximately zero average correlation
88  in panel e), the total power of each group, which drives the reconstruction accuracy, is approximately
89  preserved within a comparable wavelength range (panel f; see Supplementary Information S2). Hence, the
90  spin test changes the specific coefficient weight of each mode but preserves the overall reconstruction
91  accuracy of the model. Panel e shows the mean correlation between mode-specific power within each group,
92  obtained for the empirical map in panel a and 1000 surrogate maps. The markers represent the mean and the
93  error bars are the standard deviation. Panel f shows the mean total power for each eigengroup, obtained by
94  summing the power within each group and two adjacent groups (to account for leakage between
95  neighbouring groups), for the empirical in panel a and 1000 surrogate maps. The markers represent the mean
96  and the error bars are the standard deviation. (g) A parametric null model® can be used to generate appropriate
97  surrogate maps that destroy the spatial topography of the empirical map while preserving low-level spatial
98  autocorrelation. (h) The accuracy of the geometric eigenmodes in reconstructing the 7 key HCP task-contrast
99  maps s clearly superior to their accuracy in reconstructing the SA-preserving surrogates, thus demonstrating
100 the specificity of the geometric eigenmode model. Panel b is adapted from ref. 7 with permission.
101
102  Proper evaluation of model specificity requires a null benchmark that preserves local, first-
103  order spatial autocorrelations and annuls the spatial topography of the empirical activation map,
104  which captures the influence of geometry on activity. Figures 1g—h show that surrogate maps
105  derived from a parametric null model that satisfies these requirements are reconstructed with
106  lower accuracy than the empirical data (see also Supplementary Information S4 and Figs. S1—
107  S2). Thus, the first specificity criterion proposed by Faskowitz et al.? is fulfilled when
108  appropriate inferential methods are used.
109
110  The second specificity criterion proposed by Faskowitz et al.? is that eigenmodes derived from
111  “non-brain-like shapes” should be “less accurate descriptors of cortical activity”. Faskowitz et
112 al.? claim that this criterion is not met because eigenmodes derived from a sphere or a bulbous
113 surface show similar reconstruction accuracy to cortical modes. This analysis simply
114  demonstrates a direct consequence of the coarse-scale geometric similarities between the cortex
115 and a sphere, which have been extensively and formally characterized in prior work®.
116  Specifically, ref. ® showed that cortical geometry at large spatial scales (which contains most
117  of the spectral energy of fMRI activation maps; see Fig. 3 in ref. ') can be approximated
118 analytically as a first-order perturbation of spherical geometry, where the perturbations
119  describe the symmetry-breaking effect of cortical folding. As a result, cortical eigenmodes can
120  be expressed as linear combinations of appropriately rotated spherical harmonics® (Figs. 2a-b
121  and Supplementary Information S5). This geometric similarity is why we used spherical
122 approximations to estimate cortical eigenmode wavelengths in our own work (see Eq. (3) in
123 ref. ). In other words, at coarse scales relevant for fMRI, the “non-brain like shapes” used by
124  Faskowitz et al.? are indeed brain-like, and their comparison merely shows that modes obtained
125  from objects with similar geometries reconstruct activity with similar accuracy.
126
127  In Figs. 2c—e, we show that eigenmodes derived from objects with clearly “non-brain-like”
128  coarse-scale geometries (i.e., shapes with ridges, sharp peaks, and asymmetries) yield poorer
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129  reconstruction accuracies than the eigenmodes of the cortex (see Supplementary Information
130 S5 for details). We thus fulfill Faskowitz et al.’s? second specificity criterion when using
131  appropriate benchmarks.

132

133 We further emphasize that the similar performance of sphere-like and cortical modes does not
134  imply that cortical geometry is unrelated to function. A drumhead and a pancake have similar
135  geometries and one could plausibly reconstruct the vibrational patterns of the drum using the
136  geometric modes of the pancake. Nonetheless, the drumhead’s vibrations are still constrained
137 by its geometry—the geometric features of a system will influence its dynamics even if those
138  features are shared with other objects. For this reason, comparisons with arbitrary geometric
139  models offer limited insights. As stated in ref. !, our goal was to identify a parsimonious basis
140  set of physically constrained eigenmodes, not an arbitrary basis set that is optimal in some
141  purely statistical sense. Alternative phenomenological (i.e., non-physiological) basis sets may
142  reconstruct fMRI data at equivalent accuracy but they do not shed light on the anatomical
143  constraints or generative processes that give rise to brain activity’. Geometric eigenmodes are
144  derived from a physical property of the brain and are formally related to dynamics through
145  neural field theory!®'?, which has explained a diverse array of neurophysiological findings
146  over several decades (see for example refs. '3-1%). Such physically principled basis sets should
147  always be prioritized because they offer privileged insights into generative mechanisms. Their
148  specificity is therefore optimally established with respect to other physiologically-plausible
149  basis sets, as already demonstrated in our original analysis'.

150
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152  Figure 2. Benchmarking geometric eigenmodes against the eigenmodes of non-brain-like objects. (a,b)
153  Absolute spatial correlation, |r|, between every pair of cortical and spherical modes before (panel a) and after
154 (panel b) rotation of the latter. The white boxes represent the eigengroups. The top panels show the highest
155 |7| value obtained for each cortical mode, taking into account order flips in each group. The anisotropies of
156  cortical geometry fix the nodal lines of the cortical modes into specific orientations (Fig. S3a). However,
157  spherical modes within each group are degenerate with arbitrary orientations (Figs. 1b and S3b—c) and do
158  not have a one-to-one mapping with the cortical modes, resulting in lower correlations in panel a. After
159  rotating the spherical modes in panel b, the correlations with cortical modes are higher for the first 6 groups,
160  which account for ~70% of the reconstruction accuracy of geometric eigenmodes (see Fig. 1d of ref. !). Thus,
161  as previously shown®, low-order cortical modes can be approximated in terms of spherical modes, allowing
162  them to have comparable reconstruction accuracies and explaining the effect shown by Faskowitz et al.”. (c)
163  We more appropriately benchmark the specificity of the geometric eigenmodes against the eigenmodes of
164  three non-brain-like objects (see Supplementary Information S5 for details). This panel shows the surface
165  meshes of these objects (armadillo, horse, and dragon) and their eigenmodes. (d) Normalized eigenvalue
166  spectra of the three objects, cortex, and sphere. Note that more similar objects will have more similar spectra.
167  The cortex and spherical modes have more similar spectra compared to the other objects. Moreover, the
168  spectra of the three non-brain objects increase more steeply due to their jagged protrusions (e.g., legs, tails,
169  spikes), which cause high-frequency geometric fluctuations (see also Fig. S4). (e) The accuracy of the
170  cortical geometric eigenmodes in reconstructing the 7 key HCP task-contrast maps is higher than those of
171  the 3 non-brain objects, thus demonstrating the specificity of the geometric eigenmode model.
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172

173  In summary, in Pang et al. (2023)!, we used multiple lines of converging evidence to show that
174  cortical geometry, distance-dependent connectivity, and wave dynamics are sufficient to
175  explain diverse patterns of brain activity evident in electrophysiological and fMRI data'.
176  Faskowitz et al.? question one line of evidence, asking whether eigenmode-based
177  reconstructions show sufficient specificity. Here, we show that the authors’ proposed
178  specificity criteria are met when appropriate benchmarks are used. We further caution against
179 interpretations of our work based on a simplistic dichotomy between geometry and
180  connectivity. The relevance of geometry for function comes from an explicit biophysical model
181  of neuronal dynamics, which assumes a specific form of distance-dependent connectivity that
182  dominates empirical connectome data®* (see Supplementary Information S1). While this
183  exponential distance-dependence effect does not capture all aspects of brain connectivity, our
184  findings' indicate that it is sufficient to parsimoniously explain diverse dynamical phenomena
185  measured with classical fMRI paradigms.

186
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221  Data availability

222 Raw and pre-processed HCP data can be accessed at https://db.humanconnectome.org/. All
223  source data to generate the results of the manuscript are openly available at
224 https://github.com/NSBLab/BrainEigenmodes and https://osf.io/xczmp/.
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226  Code availability

227  Computer codes to analyse results and reproduce the figures of the manuscript are openly
228  available at https://github.com/NSBLab/BrainEigenmodes.
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