

1 **Atlas of *Plasmodium falciparum* intraerythrocytic development using expansion microscopy**

2

3 Benjamin Liffner^{1*}, Ana Karla Cepeda Diaz^{2,3*}, James Blauwkamp¹, David Anaguano^{4,5}, Sonja Frölich⁶,
4 Vasant Muralidharan^{4,5}, Danny W. Wilson^{6,7,8}, Jeffrey Dvorin^{3,9}, Sabrina Absalon^{1#}

5

6 ¹Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN,
7 USA.

8 ²Biological and Biomedical Sciences, Harvard Medical School, Boston MA, USA.

9 ³Division of Infectious Diseases, Boston Children's Hospital, Boston MA, USA.

10 ⁴Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.

11 ⁵Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA,
12 USA.

13 ⁶Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide,
14 SA, Australia.

15 ⁷Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA, Australia.

16 ⁸Burnet Institute, 85 Commercial Road, Melbourne, VIC, Australia.

17 ⁹Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

18 *These authors contributed equally

19 # Corresponding author

20 E-mail: Sabsalon@iu.edu

21

22

23

ABSTRACT

24 Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but
25 study of these organisms using light microscopy is often hindered by their small size. Ultrastructural
26 expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample
27 ~4.5x. Here, we apply U-ExM to the human malaria parasite *Plasmodium falciparum* during the asexual
28 blood stage of its lifecycle to understand how this parasite is organized in three-dimensions. Using a
29 combination of dye-conjugated reagents and immunostaining, we have catalogued 13 different *P. falciparum*
30 structures or organelles across the intraerythrocytic development of this parasite and made multiple
31 observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its
32 associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the
33 rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while
34 nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar
35 plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo
36 sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis.
37 Collectively, this study represents the most detailed ultrastructural analysis of *P. falciparum* during its
38 intraerythrocytic development to date, and sheds light on multiple poorly understood aspects of its organelle
39 biogenesis and fundamental cell biology.

40

IMPACT STATEMENT

41 Using ultrastructure-expansion microscopy we explore the fundamental cell biology of malaria
42 parasites, providing new insights into processes including establishment of cell polarity and organelle fission.

43

44

45

46

47

48

INTRODUCTION

49 The human malaria parasite *Plasmodium falciparum* has a complex lifecycle that involves both
50 human and mosquito hosts. Of its many lifecycle stages, the asexual replication of *P. falciparum* inside
51 human red blood cells (RBCs) is responsible for the clinical symptoms of malaria. This asexual blood stage
52 starts when a merozoite invades a host RBC and transitions through several morphologies before forming
53 approximately 30 new daughter merozoites (Rudlaff, Kraemer, Marshman, & Dvorin, 2020) which egress
54 from their host cell and invade new RBCs (Figure 1a). Host RBCs are approximately 7-8 μm in diameter
55 (Kinnunen, Kauppila, Karmenyan, & Myllylä, 2011) and contain dozens of parasites, each with their own
56 sets of organelles and structures. The small size of *P. falciparum* and its organelles still poses a challenge to
57 the study of many facets of *P. falciparum* cell biology, especially when immunostaining is required.

58 Expansion microscopy is a set of sample preparation techniques that isotropically increase the
59 physical size of a microscopy sample (Wassie, Zhao, & Boyden, 2019). While many expansion microscopy
60 methods have been developed, ultrastructure expansion microscopy (U-ExM) (Gambarotto et al., 2019) was
61 the first used in *Plasmodium* and since has been used in *P. falciparum* and across multiple apicomplexan
62 parasites (Bertiaux et al., 2021; Dave, LaFavers, & Arrizabalaga, 2022; Liffner & Absalon, 2021; Oliveira
63 Souza, Jacobs, Back, Bradley, & Arrizabalaga, 2022; R. Rashpa & Brochet, 2022; Severo et al., 2022). U-
64 ExM results in the ~4.5 fold isotropic expansion of the sample and largely preserves its proteome, making it
65 compatible with antibody staining and many fluorescent dyes (Gambarotto et al., 2019). The increase in
66 physical sample size results in a dramatic increase in the ability to identify and distinguish different parasite
67 structures. Thus, some structures that could previously only be investigated using electron microscopy can
68 now be studied with the flexibility, scalability, and inexpensive nature of conventional light microscopy.

69 Application of U-ExM to *Plasmodium*, and other Apicomplexa, has already enhanced our
70 understanding of parasite cell biology tremendously, resulting in the identification of new parasite structures
71 and better characterization of the size and shape of others (Bertiaux et al., 2021; Liffner & Absalon, 2021;
72 Qian et al., 2022; R. Rashpa & Brochet, 2022; Simon et al., 2021; Tomasina et al., 2022; Tosetti et al., 2020).
73 Its significant impact on the field in such a short amount of time indicates U-ExM will be a technique
74 heavily used in both *Plasmodium* and Apicomplexa more broadly for the foreseeable future. Considering

75 this, we set out to image *P. falciparum* structures and organelles across the asexual blood stage of the
76 lifecycle to serve as a reference for the expanding number of U-ExM users who study Apicomplexa and to
77 uncover previously invisible aspects of the cell biology of *P. falciparum*.

78

79 RESULTS

80

81 **Ultrastructure Expansion Microscopy (U-ExM) reveals multiple parasite structures without the use of** 82 **antibodies.**

83 Dyes that are not antigen-specific are commonplace in light microscopy. N-hydroxysuccinimide (NHS)
84 esters conjugated to dyes are amino-reactive and can be used for fluorescent labelling of protein
85 density(Nanda & Lorsch, 2014). Similarly, BODIPY TR ceramide (BODIPY TRc) and other dye-
86 conjugated fatty acids are commonly used for labelling lipids(Marks, Bittman, & Pagano, 2008). Coupling
87 U-ExM with these dyes has already revealed parasite structures for which specific antibodies did not exist
88 (Bertiaux et al., 2021; Liffner & Absalon, 2021; Simon et al., 2021). While antibody-based labelling
89 provides high-specificity, this labelling lacks complexity and is limited to the specific protein or antigen that
90 is being targeted. The more general stains increase the number of parasite features or organelles we can
91 observe in the same sample without additional antibody markers. Therefore, these general stains allow for
92 low-specificity but high-complexity imaging. An example of this principle is the use of uranyl acetate in
93 electron microscopy to increase contrast by increasing the electron density of phosphate-rich structures in
94 the cell (Rudlaff et al., 2020). While NHS esters and uranyl acetate can bring out similar features in the cell,
95 they do not have the same reactivity and are therefore not equivalent stains. To better profile the subcellular
96 organization of *P. falciparum* during the asexual blood stages, we set out to determine what parasite
97 structures could, and could not, be visualised by U-ExM when using some of these dyes.

98 We, and others, have previously shown that combining BODIPY TRc and dye-conjugated NHS ester
99 with U-ExM allows visualisation of the parasite plasma membrane (PPM), parasitophorous vacuolar
100 membrane (PVM), nuclear envelope, rhoptries, endoplasmic reticulum, centriolar plaque, basal complex,

101 and apical polar rings (APRs) (Bertiaux et al., 2021; Liffner & Absalon, 2021; Simon et al., 2021). However,
102 many important organelles and parasite structures are either not identifiable using these stains or have yet to
103 be validated, including the mitochondrion, apicoplast, and cytostomes.

104 To identify and validate the location of as many parasite organelles and structures as possible, we
105 utilized U-ExM coupled with BODIPY TRc, Alexa Fluor 405-conjugated NHS ester (which we will refer to
106 as “NHS ester”), the nucleic acid (i.e., DNA) stain SYTOX Deep Red, and antibodies directed against 13
107 different subcellular targets (microtubules, centriolar plaque, basal complex, IMC, mitochondrion,
108 apicoplast, cytostome, rhoptry bulb, rhoptry neck, micronemes, cytoplasm, endoplasmic reticulum, and
109 Golgi). In this study all parasites were fixed in 4% paraformaldehyde (PFA), unless otherwise stated, and
110 anchored overnight at 37 °C before gelation, denaturation at 95 °C and expansion. Expanded gels were
111 measured, before shrinking in PBS, antibody staining, washing, re-expansion, and imaging (Figure 1b).
112 Parasites were harvested at multiple time points during the intraerythrocytic asexual stage and imaged using
113 Airyscan2 super-resolution microscopy, providing high-resolution three-dimensional imaging data (Figure
114 1c). A full summary of all target-specific stains used in this study can be found in Figure 1d.

115 The first protein we imaged was aldolase, a marker of the parasite cytoplasm (Figure 1 – Figure
116 Supplement 2). Aldolase staining was present in all asexual replication stages. During the ring stage, the
117 “ameboid” shape of the parasite is readily visualized, consistent with previous studies of this stage in time-
118 lapse microscopy of live parasites (Grüning et al., 2011) (Figure 1 – Figure Supplement 2). Regions within
119 the parasite where both aldolase and NHS ester staining were absent are consistent with the expected area of
120 the food vacuole. Typically, the food vacuole would be filled with hemozoin, however, this crystal likely
121 cannot expand and therefore leaves a large space inside the parasite that does not contain significant protein
122 density (Figure 1 – Figure Supplement 2).

123 **The centriolar plaque (CP), nuclear microtubule organizing center (MTOC) and microtubules.**

124 The first major transition during the blood stage of the lifecycle occurs when the parasites turn from
125 rings into trophozoites. Soon after this transition, the parasite will begin to replicate its DNA and undergo
126 mitosis followed by nuclear fission (Gerald, Mahajan, & Kumar, 2011). Mitosis is coordinated by
127 microtubules, which are in turn nucleated by structures called microtubule organizing centers (MTOCs)

128 (Sanchez & Feldman, 2017). *P. falciparum* has a structure known as the centriolar plaque (CP) that spans
129 the nuclear envelope, with intranuclear and cytoplasmic portions (Simon et al., 2021). In this study we will
130 refer to the intranuclear portion of the CP as the inner CP, and the cytoplasmic portion of the CP as the outer
131 CP. The inner CP acts as the nuclear MTOC that coordinates *P. falciparum* mitosis, while the function of the
132 outer CP is unknown in asexual blood-stage parasites. The most commonly used MTOC markers are the
133 centrins, which in *Plasmodium* comprise four proteins that localize to the outer CP and appear after
134 intranuclear microtubules have already formed (Simon et al., 2021). Given that an MTOC is required for
135 microtubule formation, this implies that an MTOC forms before centrin is visible. To investigate these
136 processes in more detail, we visualized the biogenesis and dynamics of the centriolar plaque and
137 microtubules during the trophozoite and schizont stages by pairing NHS ester, which we have recently
138 shown can stain both the inner and outer CP (Liffner & Absalon, 2021), with an anti-centrin antibody (Clone
139 20H5, raised against centrin from *Chlamydomonas*) (Figure 2a). This antibody likely recognizes centrin 3 in
140 *P. falciparum* (Mahajan et al., 2008), but a recent study suggests that all four *P. falciparum* centrins share an
141 outer CP localization (Voß, Klaus, Ganter, & Guizetti, 2022).

142 *Centriolar plaque biogenesis and disassembly*

143 Neither a recognizable centriolar plaque nor above-background centrin staining were observed in
144 ring-stage parasites (Figure 2b) (Simon et al., 2021). The inner CP first appeared in mononucleated
145 trophozoites but changed morphology as these parasites got closer to their first nuclear division. In the 23
146 mononucleated trophozoites we imaged, 52% of centriolar plaques lacked cytoplasmic extensions (Figure 2
147 – Figure Supplement 1a&b). These centriolar plaques contained only had the inner CP, lacking the outer CP
148 as observed by NHS ester (Figure 2a&b). All 12 of the trophozoites with an inner CP but no outer CP also
149 lacked centrin staining (Figure 2 – Figure Supplement 1c). This matches previous reports that centrin is
150 specifically associated with the outer CP (Simon et al., 2021). As expected, this early centriolar plaque
151 lacking the outer CP was capable of nucleating microtubules (Figure 2 – Figure Supplement 1a). The centrin
152 focus and outer CP became visible in mononucleated trophozoites after nucleation of the intranuclear
153 microtubules but prior to the first centriolar plaque duplication event of the first mitosis (Figure 2 – Figure
154 Supplement 1a), consistent with previous reports (Simon et al., 2021). The cytoplasmic extensions that form

155 the outer CP began at the nuclear membrane and ended at an NHS ester-dense focus located at the parasite
156 plasma membrane (PPM) (Figure 2b). This association between the outer CP and the PPM has previously
157 been observed in gametocytes and asexual blood stages (Li et al., 2022; Ravish Rashpa, Klages, Schvartz,
158 Pasquarello, & Brochet, 2023), but the temporal nature of this association during the asexual blood stages
159 remained uncharacterized. Our observation of the outer CP using NHS ester, discussed further below,
160 combined with the temporal pattern of outer CP-PPM association suggests that nuclei are physically
161 anchored to the PPM while parasites are undergoing mitosis.

162
163 For as long as parasites continue to undergo mitosis throughout schizogony, the outer CP remains in
164 contact with the PPM (Figure 2a). The outer CP appears as one or two elongated bundles, referenced
165 throughout this paper as ‘branches’, that stain densely with NHS ester. These branches showed one or two
166 centrin foci that largely matched branch number. That is, of the 139 single-branched outer CPs (outer CPs
167 with a single cytoplasmic extension branch) observed, all had a single centrin focus, and of the 30 double-
168 branched outer CPs observed, 92% had two centrin foci (Figure 2b; Figure 2 – Figure Supplement 1c). The
169 overwhelming coordination between number of cytoplasmic extension branches and number of centrin foci
170 suggests centrin duplication and duplication of the branches of the outer CP happens quickly and
171 simultaneously. The few cases when there is a mismatch between the number of cytoplasmic extensions and
172 centrin foci all occur in double-branched outer CPs and can be attributed to limitations in our ability to
173 resolve two centrin foci (Figure 2 – Figure Supplement 1c&d).

174 The relative abundance of nuclei with a single centriolar plaque, defined as a centriolar plaque not
175 forming a mitotic spindle, versus mitotic centriolar plaques, centriolar plaques anchored to a mitotic spindle,
176 varied throughout schizogony as did their branch numbers (Figure 2 – Figure Supplement 1). As we
177 previously observed that the inner CP forms first, we hypothesized that centriolar plaques start out without
178 an inner CP and then develop a single cytoplasmic extension and centrin focus which duplicate ahead of
179 centriolar plaque duplication and then segregate with each centriolar plaque during mitotic spindle formation
180 and karyokinesis (Figure 2b). This means that during the rapid mitotic events of schizogony that take place
181 at the 6-12 nuclei stage, single outer CPs with a single cytoplasmic extension are very rare. We observed

182 them in just 6% of 221 imaged centriolar plaques (Figure 2 – Figure Supplement 1b). Single outer CPs with
183 a single cytoplasmic extension were only abundant when the pace of nuclear replication was slow at the
184 early schizont stage (24% of 76 centriolar plaques imaged in cells with 2-5 nuclei) and the end of
185 segmentation (44% of 290 centriolar plaques imaged in segmenting parasites).

186 This observed pattern of duplication and segregation also suggests that double-branched outer CPs
187 with two centrin foci have committed to undergoing a new round of mitosis and that the duplication of
188 cytoplasmic extensions represents the first identifiable step in centriolar plaque duplication. In line with this
189 hypothesis, the most common centriolar plaque states in schizonts prior to segmentation are single centriolar
190 plaques with 2 cytoplasmic extensions (26% of centriolar plaques in cells with 2-5 nuclei, 52% in cells with
191 6-12 nuclei) which have committed to the next round of mitosis and mitotic centriolar plaques with one
192 extension each (42% of centriolar plaques in cells with 2-5 nuclei, 36% in cells with 6-12 nuclei) which are
193 finishing a round of mitosis. Interestingly, 8% of centriolar plaques observed in the 2-5 nuclei stage and 6%
194 in the 6-12 nuclei stage were mitotic and double-branched, suggesting the duplication of cytoplasmic
195 extensions, and commitment to the next round of mitosis, can happen before karyokinesis is completed
196 (Figure 2 – Figure Supplement 1e; Figure 2 – Figure Supplement 2).

197 Outer CP branch number reaches semi-synchrony at the beginning of segmentation as defined by the
198 first appearance of a basal complex by NHS ester. At this point, rather than seeing a variety of centriolar
199 plaque states and branch numbers, virtually all centriolar plaques in the same cell share the same mitotic
200 state and branch number. Most centriolar plaques are mitotic with a single cytoplasmic extension during
201 early segmentation and then appear as single centriolar plaque with a single extension during mid-
202 segmentation (Figure 2 – Figure Supplement 1b). By the time segmentation is completed, the centriolar
203 plaque is no longer visible by NHS ester, suggesting that it may disassemble after all mitotic events are
204 finished (Figure 2b; Figure 2 – Figure Supplement 1b). To ensure imaged parasites were fully segmented,
205 we arrested parasite development by adding the reversible protein kinase G inhibitor Compound 1 (C1)
206 (Collins et al., 2013; Gurnett et al., 2002; H. M. Taylor et al., 2010). This inhibitor arrests parasite
207 maturation after the completion of segmentation but before egress. When C1 is washed out, parasites egress
208 and invade normally, ensuring that observations made in C1-arrested parasites are physiologically relevant

209 and not a developmental artefact due to arrest. Of 159 nuclei imaged in 6 C1-arrested schizonts, none
210 showed the presence of a centriolar plaque.

211 *The apical polar rings, Golgi, and rhoptries are all segregated with the centriolar plaque.*

212 Given the cytoplasmic coordination of mitotic events and the physical tethering of the nucleus to the
213 PPM throughout schizogony, we investigated whether we could observe any coordination extending to the
214 apical organelles and other structures known to be present near the centriolar plaque at these stages. We
215 observed close association between the outer CP and the rhoptries, Golgi, basal complex, and an apical
216 density reminiscent of the APR.

217 The number of basal complex structures closely matched the number of outer CP extensions
218 throughout schizogony (156 observed cytoplasmic extensions, 153 observed basal complexes). The basal
219 complex, discussed in detail below, appears as a ring-like structure from early schizogony to the completion
220 of segmentation. No basal complex structures were observed in centriolar plaques without cytoplasmic
221 extensions. Of 82 single-branched outer CPs imaged, 81 (99%) showed a single basal complex structure. Of
222 37 double-branched outer CPs imaged, 33 (89%) showed two basal complex structures. As we observed
223 when imaging centrin foci, the few cases when there is a mismatch between the number of cytoplasmic
224 extensions and basal complex structures mostly occur in double-branched outer CPs. However, in this case,
225 the mismatch cannot be attributed to resolution and most likely reflects a transition state in basal complex
226 replication. CINCH stains the basal complex in a punctate pattern until early segmentation, allowing us to
227 visualize basal complex division events as gaps in the punctate staining (Figure 4b). The occasional presence
228 of two cytoplasmic extensions in the absence of these gaps suggests that basal complex division, when
229 visualized by breaks in CINCH staining, is less simultaneous with outer CP branch duplication than centrin
230 focus duplication.

231 Rhoptry biogenesis, discussed further below, was also closely tied to the number and position of the
232 outer CP. This association of one rhoptry per branch, however, is broken at the start of segmentation, when
233 205 of 211 imaged centriolar plaques (97%) had a rhoptry pair per outer CP branch. Further suggestive of
234 centriolar plaque-rhoptry interaction is the fact that the rhoptries were positioned immediately next to the

235 outer CP for as long as these were visible by NHS ester. While we had no APR protein marker, the
236 cytoplasmic extensions always ended in an NHS ester-dense focus at the plasma membrane. At the
237 beginning of segmentation, this focus obtained a morphology suggestive of the APR based on its ring shape,
238 position, and size. As described above, a small percentage of parasites commit to the next round of mitosis
239 before they finish segregating their genetic material. In these parasites, centriolar plaque-associated
240 organelles continued to match the number of cytoplasmic extensions. This gave rise to nuclei that were
241 anchored to four basal complexes, four single rhoptries, and four proto-APR densities in close proximity
242 (Figure 4 – Figure Supplement 1). This matches previous observations by three-dimensional electron
243 microscopy that a single nucleus can have 4 sets of apical buds (Rudlaff et al., 2020).

244 We also characterized the distribution of the Golgi and its location near the centriolar plaque and
245 apical organelles, this spatial correlation had been previously described by electron microscopy but has not
246 been thoroughly explored (Bannister, Hopkins, Fowler, Krishna, & Mitchell, 2000). The Golgi was
247 visualised using an antibody to ER lumen protein retaining receptor 2 (ERD2), a cis-Golgi marker expressed
248 throughout intraerythrocytic development (H. G. Elmendorf & K. Haldar, 1993) (Figure 2 – Figure
249 Supplement 2). Small regions of Golgi were visible at all development stages. In ring-stage parasites and
250 mononucleated trophozoites, one or two Golgi foci were observed near the nucleus but had no clear
251 proximity to the centriolar plaque. In all 5 imaged parasites with less than 2 nuclei and an outer CP, no Golgi
252 was observed near the inner CP. In parasites that had undergone the first round of mitosis and had an outer
253 CP, the Golgi was proximal to the extensions of the outer CP (Figure 2 – Figure Supplement 1b & 2) and
254 closely matched their number and presence. Specifically, 21 of 22 imaged parasites with visible outer CPs
255 had Golgi staining near each branch of their outer CP (Figure 2 – Figure Supplement 1b). While increased
256 Golgi-centriolar plaque proximity coincides with the appearance of the cytoplasmic extensions, the Golgi is
257 able to remain towards the apical end of the parasite after these tethers and the centriolar plaque are no
258 longer visible by NHS ester. However, at this point the Golgi loses its close proximity to the apical
259 organelles and is situated closer to the nucleus. In C1-arrested schizonts, each merozoite has a single Golgi
260 that remains at the apical end of the parasite, typically between the rhoptry bulb and the nucleus (Figure 2 –
261 Figure Supplement 2).

262 In contrast, we did not observe a centriolar plaque association in the distribution of the endoplasmic
263 reticulum (ER) (Figure 4 – Figure Supplement 2) within the parasite. The ER was visualised using an
264 antibody to Binding Immunoglobulin Protein (BIP), a constitutively expressed ER lumen protein (Kumar,
265 Koski, Harada, Aikawa, & Zheng, 1991). As expected, ER was detected at all stages of intraerythrocytic
266 development (Figure 4 – Figure Supplement 2). In ring-stage and mononucleated trophozoite-stage parasites,
267 the ER could be seen wrapping around the nucleus and forming recognizable cisternae. In multinucleated
268 parasites, the ER was too dense to observe cisternae, but large regions of the cell were occupied by the ER.
269 Following segmentation in C1-arrested schizonts, the ER was only observed contiguous with the nuclear
270 envelope.

271 Combining the observations that the centriolar plaque is physically tethered to the PPM through the
272 outer CP and that this anchoring is closely associated with organelles that will define the apical end of the
273 parasite (Golgi, rhoptries, basal complex, and apical polar rings), we suggest that this tethering by the outer
274 CP establishes apical-basal polarity in the parasite early in schizogony. Considering that rhoptries are
275 formed from Golgi-derived cargo (Ben Chaabene, Lentini, & Soldati-Favre, 2021; Counihan, Kalanon,
276 Coppel, & de Koning-Ward, 2013), it is unsurprising to find the Golgi forms part of this apical cluster of
277 organelles throughout schizogony. The confined space between nuclear envelope and PPM that these
278 organelles are packed into, for example, may allow each nucleus to provide rhoptry cargo locally to their
279 own rhoptries rather than to all rhoptries in the cell. The same principle could apply to other apical Golgi-
280 derived organelles. However, it remains unclear what role, if any, the outer CP plays in this association,
281 whether any organelles besides the nucleus are physically tethered by these extensions, and how these
282 clusters of organelles remain together during the rapid mitotic events constantly separating sister centriolar
283 plaques.

284 *Characterisation of intranuclear microtubules.*

285 *P. falciparum* asexual blood stages are known to have two classes of microtubules; intranuclear
286 microtubules that partake in mitosis (Liffner & Absalon, 2021; Simon et al., 2021), and subpellicular
287 microtubules (SPMTs) that are cytosolic and extend in a single spine from the apical end of merozoites
288 (Liffner & Absalon, 2021; Simon et al., 2021). Investigating microtubules with an anti- α -tubulin antibody,

289 we failed to detect microtubules in ring-stage parasites, consistent with previous observations (Figure 3 –
290 Figure Supplement 1) (Simon et al., 2021). Intranuclear microtubules were first visible in mononucleated
291 trophozoite-stage parasites and were present until early segmentation stages, with no intranuclear
292 microtubules visible by the end of segmentation (Figure 3a). Intranuclear microtubules arrange into three
293 distinct spindle structures: hemispindles, mitotic spindles, and interpolar spindles. Hemispindles are
294 microtubule structures coming from a single centriolar plaque that retract prior to centriolar plaque
295 duplication. Mitotic spindles appear following centriolar plaque duplication and separate sister chromatids
296 during mitosis. When the two centriolar plaques migrate away from each other, they remain connected by an
297 elongated microtubule structure called the interpolar spindle (or elongated spindle), which retracts prior to
298 nuclear fission (Liffner & Absalon, 2022; Machado, Klaus, Klaschka, Guizetti, & Ganter, 2022; Simon et al.,
299 2021). It has recently been shown that the interpolar spindle is short-lived relative to the hemispindle and
300 mitotic spindle (Machado et al., 2022; Simon et al., 2021). In this study, we observed 24 interpolar spindles,
301 which allowed us to perform the first detailed characterisation of this spindle type (Figure 3b).

302 Interpolar spindles have microtubule branches that connect the two distant centriolar plaques
303 (interpolar microtubules), and microtubule branches that do not connect the centriolar plaques (non-
304 interpolar microtubules). Each interpolar spindle contained an average of 12.5 (\pm 2.6 SD) total microtubules,
305 of which 1.3 (\pm 0.6 SD) were interpolar microtubules and 11.2 (\pm 2.8 SD) were non-interpolar microtubules
306 (Figure 3c). The average number of non-interpolar branches per inner CP was 5.6, which is similar to the
307 previously reported average number of branches in a hemispindle of 5 to 6 (Liffner & Absalon, 2021; Simon
308 et al., 2021). This suggests that only the interpolar microtubules retract during the interpolar spindle to
309 hemispindle transition. We measured interpolar microtubules in 3D, adjusting for expansion factor by
310 dividing the measured distance by 4.25, the median expansion factor observed in this study (Figure 1 –
311 Figure Supplement 1; Materials and Methods). All of the following measurements in this study are reported
312 in this expansion-corrected format. Interpolar microtubules ranged from \sim 1-5 μ m, with a mean length of 2.9
313 μ m (\pm 1.0 μ m SD) or 12.47 μ m before expansion factor correction (Figure 3d). In all cases, the centriolar
314 plaques connected by interpolar spindles were anchored to the plasma membrane by their cytoplasmic
315 extensions. The large variability in interpolar microtubule size and the continued tethering of the outer CPs

316 to the PPM suggest that interpolar microtubules push PPM-anchored centriolar plaques to opposite sides of
317 the cell without causing detachment from the PPM. It is unclear how parasites achieve this sliding effect or
318 how centriolar plaque-associated organelles are able to retain this association while centriolar plaques are
319 moved large distances.

320 *Subpellicular microtubule length and biogenesis.*

321 Subpellicular microtubules are nucleated in the cytoplasm and have long been observed in
322 merozoites (Aikawa 1967). SPMTs have been shown to be stabilised by polyglutamylation (Bertiaux et al.,
323 2021) and can be identified specifically using a combination of anti-tubulin and anti-PolyE antibodies
324 (Figure 3e). Using this approach, we characterised 86 SPMTs in 50 merozoites from C1-arrested schizonts.
325 These nascent merozoites had between 1 and 3 SPMTs, with an average of 1.7 (± 0.6 SD) (Figure 3f). Of 50
326 imaged merozoites, 48 had at least one SPMT that extended $>50\%$ of cell length from the apical polar ring
327 to the basal complex. This longest microtubule in a merozoite had an average length of 1.01 μm (± 0.24 μm
328 SD). In merozoites with more than one SPMT, the second and third microtubules were shorter than the first,
329 having an average length of 0.8 μm (± 0.21 μm SD). Given the large variation in SPMT size and observation
330 that, in segmenting schizonts, the basal end of the SPMTs was in contact with the basal complex throughout
331 segmentation, we hypothesise that most SPMTs measured in our C1-treated schizonts had partially
332 depolymerised. *P. falciparum* microtubules are known to rapidly depolymerise during fixation (Liffner &
333 Absalon, 2022; Simon et al., 2021). It is unclear, however, why this depolymerization was observed most
334 often in C1-arrested parasites. Thus, we cannot determine whether these shorter microtubules are a by-
335 product of drug-induced arrest or a biologically relevant native state that occurs at the end of segmentation.

336 Little is known about SPMT biogenesis during the asexual blood stage of *P. falciparum*, but it is
337 currently hypothesized that they are nucleated by the apical polar rings (Hanssen et al., 2013; Morrissette &
338 Sibley, 2002), as is the case in *Toxoplasma* (Morrissette & Sibley, 2002; Tran et al., 2010). Curiously,
339 TgCentrin 2 localizes to the apical polar ring of *Toxoplasma* tachyzoites (K. Hu, 2008), but no Centrin 2 has
340 been observed to localize to the apical polar rings of *P. falciparum*. Furthermore, it was recently shown that
341 the SPMTs of *P. falciparum* gametocytes, which lack an APR, are formed at the outer CP, in the space
342 between the nuclear envelope and PPM (Li et al., 2022). Leveraging our ability to specifically detect SPMTs

343 using PolyE, we investigated the possibility that merozoite SPMTs are also formed at the outer CP and
344 subsequently transferred onto the apical polar ring during segmentation. In schizonts where nuclei are
345 approaching or have completed their final mitosis (~15n), we observed small cytoplasmic microtubules that
346 stained strongly with PolyE appear in the area between the outer CP and PPM (Figure 3g). However, we did
347 not achieve a resolution that allowed us to distinguish individual APRs or to confidently pinpoint whether
348 the microtubules were nucleated at the APRs or the cytoplasmic extensions. Likely, higher resolution
349 imaging techniques are needed to resolve the site of SPMT nucleation in merozoites.

350

351 **Segmentation machinery (inner membrane complex and basal complex)**

352 Following replication of their genetic material during the trophozoite and early schizont stages,
353 parasites partition their nuclei and organelles into ~30 daughter merozoites from the common cytoplasm of a
354 schizont (Francia & Striepen, 2014). This form of cytokinesis, called segmentation, takes place in the final
355 hours of schizogony and culminates with the physical separation of each daughter cell and their egress from
356 the host RBC. The inner membrane complex (IMC) is a double lipid bilayer formed from flattened vesicles
357 that scaffolds the process of segmentation as well as anchors many proteins important for parasite shape and
358 motility (Harding & Meissner, 2014).

359 *The IMC cannot be distinguished from the plasma membrane by U-ExM*

360 The IMC forms *de novo* during segmentation starting at the apical end of the parasite, where the
361 outer CP is anchored to the plasma membrane (Figure 4 – Figure Supplement 1a) (Harding & Meissner,
362 2014). This can be observed using the IMC-anchored protein Glideosome associated protein 45 (GAP45),
363 which bridges the IMC and plasma membrane, as well as using BODIPY TRc, which shows increased
364 membrane staining in the area overlapping GAP45 (Jones, Kitson, & Rayner, 2006) (Figure 4 – Figure
365 Supplement 1a). As segmentation progresses, the IMC expands around the nucleus and associated organelles
366 until it envelops the daughter cell, leaving an opening at the apical end, where the apical polar ring is located,
367 and the basal end, where the basal complex resides (Figure 4 – Figure Supplement 3a). While the pellicle
368 was easily visualized as a whole, we were unable to distinguish the IMC membranes from the PPM (Figure
369 4 – Figure Supplement 3b&c). We stained parasites using the plasma membrane marker MSP1 and two

370 different IMC markers: GAP45, which lies between the IMC and PPM, and IMC1g, which is attached to the
371 cytoplasmic face of the IMC (M. J. Blackman, T. J. Scott-Finnigan, S. Shai, & A. A. Holder, 1994; Cepeda
372 Diaz, Rudlaff, Farringer, & Dvorin, 2023; Kono et al., 2012). In both cases we were unable to resolve the
373 IMC marker from MSP1 (Figure 4 – Figure Supplement 3b&c).

374 *Basal complex dynamics throughout segmentation*

375 The basal complex is an essential ring structure located at the basal end of the IMC (Morano &
376 Dvorin, 2021). It is hypothesized to act as a contractile ring that guides IMC biogenesis and mediates
377 abscission of newly formed merozoites by separating the IMC and plasma membrane from the residual body.
378 We used parasites where PfCINCH, a basal complex marker, was tagged with a spaghetti monster V5
379 (smV5) tag to follow basal complex development throughout schizogony (Figure 4a) (Rudlaff, Kraemer,
380 Streva, & Dvorin, 2019). CINCH is first visible at early schizogony (3-5 nuclei stage) as a small ring-like
381 structure surrounding an NHS ester-dense focus on the plasma membrane that is tethered to the centriolar
382 plaque (Figure 4b). Of 55 early schizont centriolar plaques imaged, 44 (80%) had matching numbers of
383 outer CP branches and basal complex structures. This suggests that as centriolar plaques divide, they each
384 inherit a CINCH ring that has been split by the duplication of the cytoplasmic tethers (Figure 4b). Early IMC
385 proteins have been described to form cramp-like structures like these prior to attaining their characteristic
386 ring structure later in schizogony (G. Hu et al., 2010; Kono et al., 2012). During the rapid nuclear divisions
387 of schizogony, 77% of the CINCH structures of mitotic centriolar plaques show a break in the ring (Figure 4
388 – Figure Supplement 1b). This break faces a sister basal complex with its own cytoplasmic extension
389 (Figure 4b and Figure 4 -Figure Supplement 1b). These observations suggest that, upon duplication of the
390 outer CP branches, the basal complex ring likely “breaks” into two semicircles which re-seal to form their
391 own ring prior to the next branch duplication (Figure 4b, Figure 4 - Figure Supplement 1b).

392 Once segmentation begins and the outer CP stops duplicating, CINCH forms a *bona fide* ring with
393 smooth borders (Figure 4). This matches previously reported behaviour of early IMC proteins and supports
394 our hypothesis that the cramp-like structures arise from IMC and basal complex division. At this point,
395 nuclei reach a point of semi-synchronicity. All 64 imaged centriolar plaques in early segmentation parasites
396 had duplicated and were forming a mitotic spindle. This event marks the last nuclear division the parasite

397 will undergo. Each of these centriolar plaques had a single uninterrupted basal complex ring (Figure 4b).
398 Thus, we cease to observe events where a single nucleus is attached to four basal complexes as centriolar
399 plaques have ceased committing to future rounds of mitosis. As the parasite undergoes segmentation, the
400 basal complex expands and starts moving in the basal direction. By the time the basal complex reaches its
401 maximum diameter, all nuclear divisions have been completed, each nucleus has a single centriolar plaque
402 and basal complex, and no mitotic spindles are visible (Figure 4). After this point, the basal complex
403 contracts and continues to move away from the apical end. By the time segmentation is completed, the basal
404 complex is an NHS ester dense ring that is smaller than the apical polar ring.

405 *NHS ester as a basal complex marker*

406 While the basal complex stains brightly with NHS ester at the end of segmentation (Figure 4), this
407 staining is not consistent throughout schizogony. NHS-ester staining of the basal complex is not visible or is
408 very faint during early schizogony. Once the basal complex attains its *bona fide* ring form during early
409 segmentation, it stains reliably, though faintly, with NHS ester. This staining intensifies after the basal
410 complex begins to contract. The denser staining observed during basal complex contraction could be due to
411 recruitment of more basal complex proteins at the midpoint of schizogony, an increase in protein density as
412 the ring area decreases during contraction, or both. Once the parasites finish segmentation, the basal
413 complex is at its brightest (Figure 4b). While NHS ester staining correlates with CINCH, it does not
414 perfectly overlap with it. CINCH consistently appears as a larger ring with a slight basal shift relative to
415 NHS ester after the basal complex reaches maximum diameter, an effect most visible at the end of
416 segmentation (Figure 4b). Since this shift is consistent with parasite anatomy regardless of parasite
417 orientation, it suggests it is not an imaging artifact. There is no primary antibody against CINCH at this
418 point, and so it is not possible to determine whether the lack of overlap with NHS ester is due to distance
419 between the smV5 tag and the main protein density of CINCH (CINCH is 230kDa). It is also possible that
420 this difference in localization reflects basal complex architecture similar to that previously observed in
421 *Toxoplasma gondii*, where the basal complex consists of multiple concentric rings (Anderson-White et al.,
422 2012; Engelberg, Bechtel, Michaud, Weerapana, & Gubbels, 2022; K. Hu, 2008; Roumégoous et al., 2022).

423

424 **Mitochondrion and apicoplast**

425 The apicoplast and mitochondrion undergo pronounced morphological changes during the *P.*
426 *falciparum* blood-stage lifecycle (van Dooren et al., 2005; van Dooren, Stimmmer, & McFadden, 2006). Both
427 are long, and often branching, organelles whose complex three-dimensional morphologies have only been
428 robustly studied using electron microscopy-based techniques(Rudlaff et al., 2020).

429 *Looped regions of the mitochondrion display low membrane potential.*

430 To visualize the mitochondria, we stained live parasites using Mitotracker Orange CMTMRos prior
431 to fixation and expansion (Figure 5 – Figure Supplement 1a). Mitotracker Orange CMTMRos accumulates
432 in live mitochondria, driven electrophoretically by membrane potential, and is retained after fixation(Elmore,
433 Nishimura, Qian, Herman, & Lemasters, 2004; Poot et al., 1996). When imaged at high resolution,
434 Mitotracker can be used to observe individual cristae in the mitochondria of mammalian cells(Wolf et al.,
435 2019). *Plasmodium* cristae morphology is different from that found in mammalian mitochondria; cristae are
436 thought to be bulbous or tubular rather than lamellar and are present in gametocytes but absent from asexual
437 blood-stage parasites(Evers et al., 2021; Evers et al., 2023). To our surprise, rather than showing continuous
438 staining of the mitochondria, Mitotracker staining of our expanded parasites revealed alternating regions of
439 bright and dim staining that formed Mitotracker-enriched pockets (Figure 5 – Figure Supplement 1b). These
440 clustered areas of Mitotracker staining were highly heterogeneous in size and pattern. Small staining
441 discontinuities like these are commonly observed in mammalian cells when using Mitotracker dyes due to
442 the heterogeneity of membrane potential from cristae to cristae as well as due to fixation artifacts. At this
443 point, we cannot determine whether the staining we observed represents a true biological phenomenon or an
444 artefact of this sample preparation approach. Our observed Mitotracker-enriched pockets could be an artifact
445 of PFA fixation, a product of local membrane depolarization, a consequence of heterogeneous dye retention,
446 or a product of irregular compartments of high membrane potential within the mitochondrion, to mention a
447 few possibilities. Further research is needed to conclusively pinpoint an explanation.

448 In addition to these small staining discontinuities, we observed large gaps in Mitotracker staining
449 within parasites at all stages of development. This included pre-segmentation parasites, where we would

450 expect a single continuous mitochondrion to be present (Figure 5 – Figure Supplement 1a). To our
451 knowledge, no membrane potential discontinuities or fixation artifacts of this size have been reported in
452 mammalian cells. So, as a secondary way to visualise the mitochondria and better characterize these staining
453 discontinuities, we generated a transgenic cell line with the putative ATP synthase F0 subunit-d (ATPd,
454 Pf3D7_0311800) tagged with a spaghetti monster HA tag(Viswanathan et al., 2015) (Figure 5 – Figure
455 Supplement 2). ATPd is a membrane-embedded proton channel that had not previously been localized to the
456 mitochondria in *P. falciparum* but was identified as a mitochondrial protein in a recent proteomics
457 study(Esveld et al., 2021; Evers et al., 2021). Furthermore, its *Toxoplasma* homologue has been shown to
458 localize to the mitochondria (Barylyuk et al., 2020; Sheiner et al., 2011). We confirmed that ATP synthase
459 subunit F0 localizes to *P. falciparum* mitochondria, as it largely co-localized with Mitotracker staining,
460 forming a border around it due to its membrane association (Figure 5 – Figure Supplement 1a). ATPd, like
461 Mitotracker, had a heterogenous distribution throughout the mitochondria, but it did not show the same large
462 gaps in staining. ATPd allowed us to better visualize regions of the mitochondria that appeared to fold onto
463 themselves and fuse with each other, as has been previously described (van Dooren et al., 2005). Thus,
464 Mitotracker and ATPd are both useful but imperfect markers for the mitochondria, with neither of them
465 showing a continuous, even distribution throughout the organelle.

466 Curiously, 25 of 26 imaged parasites showed Mitotracker discontinuities specifically in regions
467 where the ATPd signal formed looped structures (Figure 5b). These structures were defined as areas where
468 the mitochondria showed a turn or fold of ~180°. Of the 41 looped regions identified, 75% lacked
469 Mitotracker staining. This suggests that mitochondria looped regions in *P. falciparum* have some degree of
470 depolarization that prevents Mitotracker accumulation or that Mitotracker initially accumulates in these
471 regions but is not bound and retained. The biological significance of these areas, if any, is currently unclear.

472 *Growth of the apicoplast and mitochondrion*

473 To visualize the apicoplast, we utilized a previously established cell line that expresses GFP fused to
474 the apicoplast transit peptide of acyl carrier protein (ACP) (Florentin, Stephens, Brooks, Baptista, &
475 Muralidharan, 2020), which we will refer to as Apicoplast-GFP. This marker allowed for a relatively even
476 and continuous staining of the organelle. We quantified mitochondrion and apicoplast signal area using

477 ATPd-smHA and Apicoplast-GFP respectively as a proxy measurement of size (Figure 5c&6b). Tracking
478 this in parallel to parasite nucleus number allowed us to determine whether the growth of these organelles
479 occurred progressively with simultaneous rounds of mitosis and nuclear division. In mononucleated ring and
480 trophozoite parasites, both the mitochondria and the apicoplast are relatively small, having an average area
481 of $13.39 \mu\text{m}^2$ ($\pm 15.1 \mu\text{m}^2$ SD) and $4.81 \mu\text{m}^2$ ($\pm 2.62 \mu\text{m}^2$ SD) respectively in expanded parasites (Figure 5c
482 & 6b). As expected from live cell observations(van Dooren et al., 2005), both organelles show significant
483 growth and spread throughout the cell in multinucleated parasites, adopting an elongated and branching
484 morphology (Figure 5&6). Mitochondria grow almost exclusively during the first two rounds of nuclear
485 replication, achieving an average size of $87.9 \mu\text{m}^2$ ($\pm 15.9 \mu\text{m}^2$ SD) at the 2-5 nuclei stage. This size remains
486 relatively constant until segmentation, with the average mitochondria size right before the start of fission
487 being $99.6 \mu\text{m}^2$ ($\pm 37.4 \mu\text{m}^2$ SD) (Figure 5c). In contrast, the apicoplast continues to grow past the 2-5
488 nuclei stage, having an average size of $25.5 \mu\text{m}^2$ ($\pm 7.21 \mu\text{m}^2$ SD) at the 2-5 nuclei stage and $34.97 \mu\text{m}^2$ (\pm
489 $11.23 \mu\text{m}^2$ SD) in cells with >15 nuclei (Figure 6b). These data suggest that the mitochondrion and
490 apicoplast do not grow simultaneously with or as a response to nuclear replication during schizogony.
491 Rather, both organelles show the largest increase in size during the 1 to 2 nuclei transition and either plateau
492 in size, in the case of the mitochondria, or enter a second phase of slower growth that ends shortly before
493 segmentation, in the case of the apicoplast.

494 *Fission of the mitochondrion and apicoplast*

495 *P. falciparum* has a single, large, branching, mitochondrion and apicoplast throughout most of the
496 asexual blood stage (van Dooren et al., 2005; van Dooren et al., 2006; Verhoef, Meissner, & Kooij, 2021).
497 During segmentation, however, these organelles undergo fission such that each merozoite inherits an
498 individual apicoplast and mitochondrion (Rudlaff et al., 2020; van Dooren et al., 2005). While it has been
499 shown that apicoplast fission occurs before mitochondrial fission, it is unclear how fission occurs(Rudlaff et
500 al., 2020). A recent review (Verhoef et al., 2021) posed three possible mechanisms: synchronous fission
501 where the organelle simultaneously divides into all daughter parasites at once, outside-in fission where
502 fission occurs at the ends of the organelle, or branching point fission where a first fission event divides the
503 organelle into larger segments and a subsequent fission event leaves each merozoite with an individual

504 organelle (Verhoef et al., 2021). It also remains unclear how accurate segregation into daughter cells is
505 monitored. In *T. gondii*, the apicoplast associates with the centrosomes prior to undergoing fission. A similar
506 association between apicoplasts and centriolar plaques has been proposed in *Plasmodium* but still lacks
507 evidence due to the difficulty of observing the *Plasmodium* centriolar plaque in live cells (van Dooren et al.,
508 2005). The mitochondrion is not thought to associate with the centriolar plaque in *Toxoplasma* or
509 *Plasmodium* and its mechanism for ensuring accurate segregation remains unknown.

510 In the process of imaging the mitochondria and apicoplasts of segmenting parasites, we observed a
511 transient outer CP association prior to and during fission in both organelles. Just before the start of
512 segmentation, there is little association between the outer CP and apicoplast. Of 5 parasites imaged that
513 had >10 nuclei but had not yet started segmentation, 3 had no contact points between the outer CP and
514 apicoplast branches and the other 2 had <4 contact points. Once segmentation starts, all apicoplast branches
515 contact an outer CP each and remain in contact with the outer CP until the end of apicoplast fission and
516 centriolar plaque degradation (Figure 6c). In 11 imaged segmenting schizonts, all outer CPs showed contact
517 with an apicoplast branch each. This association starts in early segmentation, when a single branched
518 apicoplast connects all outer CPs. By the time the basal complex reaches maximum diameter and begins
519 contraction, we observe 7 parasites where all branches have completed fission and 2 parasites that had at
520 least one or more apicoplast segments still connecting multiple merozoites (Figure 6c). Mitochondria fission
521 follows a very similar pattern, but later in parasite development. Prior to the basal complex reaching
522 maximum diameter, we observe no significant connection between the outer CP and mitochondria. When
523 the basal complex entered its contraction phase, we observed 9 parasites where all outer CPs were in contact
524 with one branch of the mitochondria each (Figure 5 d&e). Only one of these 9 parasites had an intact pre-
525 fission mitochondrion, while the other 8 had undergone at least one fission event. Matching previous
526 descriptions of mitochondria and apicoplast segmentation, C1-arrested schizonts having completed
527 segmentation show elongated mitochondria (Figure 5a) and small, rounded apicoplasts (Figure 6a).

528 Both mitochondria and apicoplast fission showed neighbouring nascent merozoites that shared a
529 single branch of mitochondria or apicoplast passing through both of their basal complexes while others had
530 an individual mitochondrion or apicoplast which had already separated from the rest (Figure 5d&6c). This

531 suggests that fission does not occur synchronously (Figure 5d) and supports the model of branching point
532 fission. In other words, parasites seem to undergo a primary fission event that leaves only some merozoites
533 sharing stretches of the organelles and then a subsequent fission event leaves each merozoite with an
534 individual apicoplast and mitochondrion (Figure 5e). Unfortunately, BODIPY TRc does not distinctly stain
535 the membranes of the mitochondria and apicoplast. So, it is not possible for us to determine whether the
536 observed breaks in staining of our chosen organelle markers truly indicate a complete fission of the
537 mitochondria or apicoplast membranes. Thus, while suggestive of branching point fission, our data is not
538 sufficient to conclusively determine the sequence of fission events in these organelles. More research with
539 additional mitochondrial and apicoplast markers is needed to confirm the observations made in this study
540 and conclusively map out the growth and fission of these organelles.

541 *Characterisation of residual body mitochondria*

542 At the completion of segmentation, the parasite forms a structure known as the residual body, which
543 contains parasite material, such as the hemozoin crystal, that was not incorporated into merozoites during
544 segmentation(Rudlaff et al., 2020). The residual body is poorly understood in *Plasmodium*, but in
545 *Toxoplasma* it has been shown that a significant amount of the mitochondria, and not the apicoplast, is left
546 behind in the residual body following segmentation (Nishi, Hu, Murray, & Roos, 2008).

547 There is no well-characterized marker of the residual body in *Plasmodium*. So, for this study, we
548 defined the residual body as any area within the parasitophorous vacuole membrane but visibly external to
549 any merozoite in a C1-arrested schizont as determined by BODIPY TRc staining. We imaged 35 C1-arrested
550 schizonts and observed that 54% had mitochondrial staining inside the residual body (Figure 5d and Figure 5
551 – Figure Supplement 1c). To determine the proportion of total mitochondria that gets included in the
552 residual body, we quantified the fluorescence of both mitochondria in the residual body and mitochondria in
553 merozoites. Of the 19 parasites that showed mitochondria staining inside the residual body, the amount of
554 material ranged from 1% to 12% of the total mitochondrial staining in the parasite (Figure 5 – Figure
555 Supplement 1d). On average, the residual body had approximately 1.5x more mitochondrial staining than the
556 average merozoite (Figure 5 – Figure Supplement 1e). No significant apicoplast staining was ever observed
557 in the residual body, similarly to what has been reported for *Toxoplasma* (Nishi et al., 2008).

558 **Cystostomes**

559 During its intraerythrocytic development, *P. falciparum* engulfs host cell cytoplasm from which it
560 catabolizes haemoglobin as a source of amino acids (Francis, Sullivan, & Goldberg, 1997). The parasite is
561 separated from its host cell by the parasitophorous vacuole, and therefore the uptake of host-cell cytosol
562 requires invagination of both the PPM and PVM. The cytostome coordinates this endocytic process and is
563 comprised of two key regions: a protein-dense collar region, which forms the pore through which membrane
564 invagination will occur, and the membranous bulb region, which contains the RBC-derived cargo (Milani,
565 Schneider, & Taraschi, 2015; Xie, Ralph, & Tilley, 2020).

566 *NHS ester staining reveals pore-like structures at the parasite plasma membrane.*

567 Prior to this study, cytostomes were not immediately obvious by NHS ester staining given the large
568 number of features that were visible using this stain but pending validation. While observing the basal
569 complex of segmenting schizonts (Figure 4a), we noticed that merozoites contained a second NHS-ester-
570 dense ring (Figure 7a). The size and position of this NHS ester ring matched that of an endocytic micropore
571 recently identified in *Toxoplasma* tachyzoites (Koreny et al., 2022). In that study, the micropore was
572 identified using Kelch13 (K13) as a marker (Koreny et al., 2022). The *Plasmodium* equivalent to this K13
573 micropore is the cytostome, so to determine whether this NHS-ester-dense ring was indeed a cytostome, we
574 evaluated a parasite strain where the endogenous K13 was fused to GFP (Birnbaum et al., 2017).
575 Investigation using this parasite line revealed that the NHS-ester-dense ring also stained with K13,
576 suggesting that this structure is a cytostome (Figure 7b).

577 *PFA-glutaraldehyde fixation allows visualization of cytostome bulb*

578 The cytostome can be divided into two main components: the collar, a protein dense ring at the parasite
579 plasma membrane where K13 is located, and the bulb, a membrane invagination containing red blood cell
580 cytoplasm (Milani et al., 2015; Xie et al., 2020). While we could identify the cytostomal collar by K13
581 staining, these cytostomal collars were not attached to a membranous invagination. Fixation using 4% v/v
582 paraformaldehyde (PFA) is known to result in the permeabilization of the RBC membrane and loss of its
583 cytoplasmic contents (Tonkin et al., 2004). Topologically, the cytostome is contiguous with the RBC

584 cytoplasm and so we hypothesised that PFA fixation was resulting in the loss of cytostomal contents and
585 obscuring of the bulb. PFA-glutaraldehyde fixation has been shown to better preserve the RBC cytoplasm
586 (Tonkin et al., 2004). Comparing PFA only with PFA-glutaraldehyde fixed parasites, we could clearly
587 observe that the addition of glutaraldehyde preserves both the RBC membrane and RBC cytoplasmic
588 contents (Figure 7c). Further, while only cytostomal collars could be observed with PFA only fixation, large
589 membrane invaginations (cytostomal bulbs) were observed with PFA-glutaraldehyde fixation (Figure 7d).
590 Cytostomal bulbs were often much longer and more elaborate spreading through much of the parasite
591 (Video 1), but these images are visually complex and difficult to project so images displayed in Figure 7
592 show relatively smaller cytostomal bulbs. Collectively, this data supports the hypothesis that these NHS-
593 ester-dense rings are indeed cytostomes and that endocytosis can be studied using U-ExM, but PFA-
594 glutaraldehyde fixation is required to maintain cytostome bulb integrity.

595 We subsequently harvested K13-GFP parasites across the parasite lifecycle and imaged them following
596 either PFA only or PFA-glutaraldehyde fixation. K13-stained cytostomes were detected at all stages of the
597 parasite lifecycle (Figure 7e). Ring-stage parasites typically contained one or two cytostomes, which
598 increased in number during the trophozoite stage and schizogony (Figure 7e).

599 Single cytostomes appear in the area containing the IMC near the apical organelles at the same time as
600 the basal complex forms a complete ring. Cytostomes remain within the IMC area but change positions
601 within the nascent merozoite as segmentation progresses (Figure 4b, white asterisks). The majority of
602 merozoites in C1-arrested schizonts contained a single cytostome. This suggests that cytostomes are
603 incorporated into the IMC of merozoites and inherited early in segmentation. Clusters of cytostomes that had
604 not been incorporated into merozoites during segmentation were observed either adjacent to nascent
605 merozoites or as part of the residual body (Figure 7 – Figure Supplement 1 and Figure 4b, yellow asterisk).
606 It is currently unclear whether there are any functional differences between the cytostomes that are
607 incorporated into merozoites and those that are left behind.

608 *Non-canonical cytostome collar morphologies*

609 We noticed a number of different cytostome morphologies and organizational patterns (Figure 7 –
610 Figure Supplement 1). Cytostomes frequently clustered together and did not appear randomly distributed

611 across the PPM (Figure 7e). Some cytostomes would form what appeared to be higher order structures
612 where two or three distinct cytostomal collars appeared to be stacked end-on-end (Figure 7 – Figure
613 Supplement 1). Cytostomes have a relatively well defined and consistent size (Aikawa, 1971; Yang et al.,
614 2019), but occasionally we observed very large cytostomal collars that were approximately twice the
615 diameter of other cytostome collars in the same cell (Figure 7 – Figure Supplement 1). It is unclear what the
616 function of these higher order structures or large cytostomes is, if they represent biogenesis transition states,
617 or indeed if they're performing some specialized endocytosis.

618 **The rhoptries**

619 To invade host red blood cells, merozoites secrete proteins from specialized secretory organelles
620 known as the rhoptries and micronemes. While both the rhoptries and micronemes are well studied in the
621 context of *Plasmodium* biology, neither have been investigated in detail using expansion microscopy in
622 *Plasmodium*. We previously showed that fully formed rhoptries can be observed by NHS ester staining
623 alone (Liffner & Absalon, 2021), but did not investigate their biogenesis.

624 *Rhoptries can be observed from early in their biogenesis using NHS ester staining.*

625 Rhoptries consist of a neck and bulb region, with the tip of the neck being loaded into the apical polar
626 rings of merozoites. Despite both being formed from Golgi-derived cargo, the neck and bulb regions have
627 distinct proteomes (Counihan et al., 2013). We first tracked rhoptry bulb biogenesis across schizogony using
628 antibodies directed against the rhoptry bulb marker rhoptry associated protein 1 (RAP1).

629 Nascent rhoptries were detected early in schizogony, with RAP1 foci appearing adjacent to all branches
630 of the outer CP from parasites with 6-10 nuclei in a one-to-one ratio, as described above (Figure 8a and
631 Figure 8 -Figure Supplement 1b). These foci co-localized with NHS ester densities of the same size and
632 round shape, no elongated neck-like structures were visible by NHS ester (neck biogenesis described in
633 more detail below). This matches reports that rhoptry bulb biogenesis occurs first (Bannister et al., 2000;
634 Counihan et al., 2013), with neck biogenesis not occurring until segmentation. As early as the last mitotic
635 event during early segmentation, rhoptry bulbs were observed as pairs, with 88 of 93 (95%) centriolar
636 plaques observed forming a mitotic spindle being associated with two RAP1-positive NHS ester densities

637 per outer CP branch. Finally, in newly invaded ring-stage parasites, strong RAP1 staining was observed at
638 the PPM/PVM (Figure 8 -Figure Supplement 1a), supporting previously reported observations that secreted
639 RAP1 coats the merozoite during invasion (Riglar et al., 2011).

640 Our data not only suggests that rhoptry biogenesis occurs well before segmentation, when nuclei still
641 have several rounds of mitosis to complete, but also that rhoptries remain centriolar plaque-associated
642 during these mitotic events. Instances of this association with the centriolar plaque have been observed
643 before (Bannister et al., 2000; Rudlaff et al., 2020) but its mechanism remains unknown. To our knowledge,
644 this is the first in-depth documentation of a rhoptry-centriolar plaque association throughout schizogony in
645 *Plasmodium*.

646 *Rhoptry heterogeneity during early schizogony and segmentation.*

647 Rhoptries associated with the same centriolar plaque during early schizogony sometimes differ in
648 size (Figure 8 -Figure Supplement 1b). This is not surprising given the speed of mitotic events requires near-
649 constant biogenesis of new rhoptry bulbs. By the time segmentation is underway, instead of inheriting one
650 sister rhoptry in the final mitotic event of schizogony, each centriolar plaque will inherit a pair of rhoptries
651 each. At this point, the speed of these mitotic events slows and parasites reach a point of semi-synchrony. To
652 our surprise, this synchrony does not extend to rhoptry pairs; the two rhoptries inherited by segmenting
653 daughter cells remain different from each other. This heterogeneity in rhoptry pairs during early
654 segmentation has been documented before by electron microscopy (Bannister et al., 2000; Rudlaff et al.,
655 2020). Of 109 rhoptry pairs imaged in early segmentation schizonts undergoing their last miotic event
656 (where centriolar plaques were observed forming mitotic spindles), only 4% had two rhoptries of similar
657 size and density (Figure 8 -Figure Supplement 1d). We observed that 40% of these 109 rhoptry pairs had
658 different size but equal NHS ester density, 21% had the same size but different NHS ester density, and 35%
659 differed in both size and NHS ester density (Figure 8 -Figure Supplement 1e). As expected from previous
660 reports, this heterogeneity was lost after the completion of this last miotic event and rhoptry neck elongation.
661 Of 98 rhoptry pairs imaged in non-mitotic segmenting parasites, 76% had two rhoptries of similar size and
662 density (Figure 8 -Figure Supplement 1d). It is still unclear how the one-to-two rhoptry transition occurs and
663 whether rhoptry heterogeneity has a biological role in biogenesis and maturation of the organelles.

664 Overall, we present three main observations suggesting that rhoptry pairs undergo sequential *de novo*
665 biogenesis rather than dividing from a single precursor rhoptry. First, the tight correlation between rhoptry
666 and outer CP branch number suggests that either rhoptry division happens so fast that transition states are
667 not observable with these methods or that each rhoptry forms *de novo* and such transition states do not exist.
668 Second, the heterogeneity in rhoptry size throughout schizogony favors a model of *de novo* biogenesis given
669 that it would be unusual for a single rhoptry to divide into two rhoptries of different sizes. Lastly, well-
670 documented heterogeneity in rhoptry density suggests that, at least during early segmentation, rhoptries have
671 different compositions. Heterogeneity in rhoptry contents would be difficult to achieve so quickly after
672 biogenesis if they formed through fission of a precursor rhoptry. While constant *de novo* biogenesis could
673 explain why one rhoptry can appear smaller or less mature than the other (Bannister et al., 2000; Rudlaff et
674 al., 2020) it is currently unclear why heterogeneity in rhoptry density only appears during early
675 segmentation and not earlier. Thus, this model is not enough to explain all the variation in rhoptry size and
676 density observed throughout schizogony. Furthermore, a lot of unknowns remain about what exactly
677 governs rhoptry number during the rapid rounds of asynchronous nuclear division (Klaus et al., 2022), how
678 the transition to a rhoptry pair is signalled, and how many rounds of *de novo* rhoptry formation parasites
679 undergo.

680 *Rhoptry neck biogenesis and elongation*

681 In order to observe rhoptry neck biogenesis in more detail, we stained parasites against the rhoptry apical
682 membrane antigen (RAMA, a rhoptry bulb marker) and rhoptry neck protein 4 (RON4, a rhoptry neck
683 marker) (Richard et al., 2010; Topolska, Lidgett, Truman, Fujioka, & Coppel, 2004). RAMA is anchored to
684 the rhoptry bulb membrane and only stains the periphery of the rhoptry bulb as marked by NHS ester
685 (Figure 8b and Figure 8 - Figure Supplement 1c). RON4 is absent from the earliest rhoptry bulbs, appearing
686 as a focus within the rhoptry bulb shortly before early segmentation and before the rhoptry neck could be
687 distinguished from the bulb by NHS ester staining alone (Figure 8b). During early segmentation, when
688 rhoptry pairs first become visible, we observe an uneven distribution of RON4 within each pair. RON4
689 preferentially associates with one of the rhoptries, with the staining on the second rhoptry being fainter,
690 more diffuse, or even absent in some cases. Of 84 rhoptry pairs observed at this stage, 72 (86%) showed an

uneven distribution of RON4. To our surprise, when these rhoptry pairs were of different NHS ester densities, the larger share of RON4 associated with the less dense rhoptry (Figure 8b). Previous observations of rhoptry density differences by electron microscopy have been ascribed to differences in rhoptry age or maturity, with the denser rhoptry being more mature. So, finding RON4 to be more abundant in the less dense rhoptry suggests that either heterogenous RON4 accumulation cannot be explained by rhoptry age or that the less dense rhoptry is instead the older rhoptry. The RON4-positive rhoptry neck elongates during segmentation, attaining its characteristic shape by mid to late segmentation and becoming observable by both RON4 staining and NHS ester (Figure 8). At this point, nearly all rhoptry necks had an equal distribution of RON4 (of 76 rhoptry pairs observed at these stages, 72 (95%) had an equal distribution of RON4).

701 The micronemes

Previous studies have suggested that micronemes may be heterogeneous and that apical membrane antigen 1 (AMA1) and other micronemal markers such as erythrocyte binding antigen-175 (EBA175) reside in different subsets of micronemes (Absalon et al., 2018; Ebrahimzadeh et al., 2019; Healer, Crawford, Ralph, McFadden, & Cowman, 2002). We reasoned that individual micronemes may be visible using U-ExM and imaged parasites stained with AMA1 and EBA175 to observe their biogenesis and relative distribution. The first microneme marker to appear during schizogony was AMA1. Large puncta of AMA1 appear near the rhoptries when the basal complex is at its maximum diameter (Figure 9a). At this point, EBA175 is not yet detectable above background fluorescence. At the end of segmentation, we observe AMA1 has arranged itself into small, densely arranged puncta below the APR and around the rhoptry neck. We also observe EBA175 staining in puncta that are less densely arranged and have little co-localization with AMA1. EBA175 puncta are basal to the AMA1 puncta, being closer to the rhoptry bulb. They also form a cloud of larger diameter than the one formed by AMA1 such that, when viewed from above the APR, two concentric clouds are observed with the core being AMA1 positive and the periphery being EBA175 positive (Figure 9b&c). We could observe a punctate NHS-ester staining pattern at the apical end of merozoites (Figure 9b), which we reasoned could be micronemes. The AMA1 and EBA175 staining we observed in late-stage schizonts partially overlaps with this punctate NHS-ester pattern, suggesting that

718 NHS-ester punctae are micronemes (Figure 9c). However, many NHS-ester-positive foci did not stain with
719 either AMA1 or EBA175 despite being morphologically indistinguishable from those which did. This
720 suggests that NHS-ester stains more than just the micronemes and that some of these foci may be exonemes,
721 dense granules, or other apical vesicles. Alternatively, it is also possible that these additional NHS-ester-
722 positive foci represent micronemes that lack both AMA1 and EBA175.

Using the protease inhibitor E64, we arrested parasites “post-egress” such that AMA1 was translocated. E64 allows for normal daughter cell maturation but prevents RBC plasma membrane rupture once segmentation is complete (Hale et al., 2017). We observe that once AMA1 is translocated, the density of apical AMA1 decreases. EBA175, which does not translocate, increases in density, and moves apically, taking the space AMA1 occupied prior to translocation (Figure 9c&d). This is consistent with existing models of sequential microneme translocation and microneme fusion near the APR (Dubois & Soldati-Favre, 2019).

DISCUSSION

732 In this work, we apply U-ExM to the asexual blood stage of *Plasmodium falciparum* to provide new
733 insights into the role of the centriolar plaque in establishing apical-basal polarity and in coordinating
734 organelle segregation during schizogony. In the process, we demonstrate U-ExM can be used to study the
735 biogenesis and protein distribution of a variety of organelles and structures within the parasite. Globally, our
736 observations suggest that the centriolar plaque is involved in establishing apical-basal polarity within the
737 parasite and that this polarity is established early in schizogony.

738 We show that the branches of the outer CP appear to act as physical ‘tethers’, connecting the nucleus
739 to parasite plasma membrane (PPM). This creates a space between the PPM and nuclear envelope where we
740 observe multiple parasite structures and organelles including the Golgi, basal complex, rhoptries, and apical
741 polar rings. These structures and organelles remain centriolar plaque-associated despite the constant
742 movement and segregation of centriolar plaques during mitotic events. In other systems, MTOC or
743 centrosome positioning has been described as a source of cellular polarity, polarizing a cell by directing
744 cargo of secretory organelles to a defined area (Cowan & Hyman, 2004; de Anda et al., 2005; Huse, 2012).

745 While this has not been previously described in *Plasmodium*, this model fits well with our observation of the
746 Golgi being adjacent to the centriolar plaque throughout schizogony. This Golgi positioning could grant
747 local control over the biogenesis of rhoptries, micronemes, dense granules, and IMC, which are all at least
748 partially formed by Golgi-derived cargo (Counihan et al., 2013; Dubois & Soldati-Favre, 2019; Griffith,
749 Pearce, & Heaslip, 2022; Sloves et al., 2012). While the biogenesis of the apical polar rings seems to also be
750 coupled to the centriolar plaque, we do not yet know how they are nucleated or whether they are also
751 dependent on Golgi-derived cargo.

752 This study also shows centriolar plaque-coupled organelle segregation and biogenesis to an extent
753 never observed before. Specifically, we observe that the Golgi, rhoptries, and basal complex match the
754 branches of the outer CP in number throughout early schizogony and segregate with centriolar plaques
755 during the mitotic events of schizogony. As this study used fixed cells, we lack the temporal power to
756 precisely define the order of these events. Using known markers of parasite age, however, we describe
757 putative transition states that nascent rhoptries and basal complexes adopt when being segregated with
758 centriolar plaques. We put forward a model where outer CP-associated events occur before inner CP-
759 associated events. That is, the duplication of the outer CP and organelles precedes inner CP duplication and
760 the formation of a mitotic spindle such that this cytoplasmic duplication represents the first identifiable step
761 in the commitment of a nucleus to the next round of mitosis. Interestingly, nuclei can sometimes have
762 centriolar plaques forming a mitotic spindle that have already committed to the next round of mitosis by
763 duplicating their cytoplasmic cargo. That is, a mitotic nucleus can show four outer CP branches and sets of
764 apical organelles at the same time. While this supports our hypothesis that duplication of apical organelles
765 and the outer CP components happens upstream from intra-nuclear mitotic events, it does not tell us how
766 this relates to the genome copy number inside the nucleus. So, we cannot say whether DNA replication and
767 associated checkpoints occur upstream or downstream from the cytoplasmic events that seem to commit a
768 centriolar plaque to mitosis.

769 Lastly, we contribute important evidence toward hypotheses across several open questions regarding
770 organelle biogenesis and segregation in *Plasmodium*. We observe contacts between the outer CP and both
771 the mitochondria and apicoplast during fission that suggest a role for this structure in monitoring copy

772 number of these organelles. We also document sequential fission events in both the apicoplast and
773 mitochondria that are suggestive of branching point fission. Lastly, we see temporal and spatial localization
774 patterns of AMA1, EBA175, and RON4 that support theories of heterogeneity within the apical organelles.

775 U-ExM represents an affordable and adaptable sample preparation method that can be applied to any
776 microscope to produce images with far greater visible detail than conventional light microscopy platforms.
777 Applying this technique to the visualization of organelle biogenesis and segregation throughout schizogony
778 allowed us to observe these processes in the context of structures that could previously only be investigated
779 in detail using electron microscopy. The flexibility and scalability of this technique allowed us to image
780 more than 600 individual parasites at a variety of developmental stages, increasing the confidence of our
781 observations and giving them some temporal resolution. To our knowledge, this paper represents the most
782 comprehensive study of a single organism using U-ExM, with a total of 13 different subcellular structures
783 investigated.

784 Our inability to pinpoint the nucleation site of the SPMTs or resolve the plasma membrane from the
785 IMC highlights some of the limitations of U-ExM as applied in this work. The subpellicular network that
786 holds IMC1g and lines the cytoplasmic face of the IMC sits approximately 20 nm below the parasite surface,
787 where we would find MSP1(Kudryashev et al., 2012). Thus, the distance between IMC1g and MSP1 post-
788 expansion is around 90nm. This is below our imaging resolution with Airyscan2, and close to the maximum
789 resolution we could achieve through other super-resolution methods compatible with our current setup when
790 antibody effects are considered. Thus, some parasite structures remain beyond the resolution achieved in this
791 study. In order to resolve the IMC from the plasma membrane or resolve multiple apical polar rings using
792 light microscopy, we would need to employ single molecule localization microscopy or iterative expansion
793 microscopy(Louvel et al., 2022), which increases expansion factor to ~20x.

794 We also noticed some drawbacks and artifacts introduced by U-ExM. Most visually striking was that
795 the hemozoin crystal of the food vacuole does not expand (Coronado, Nadovich, & Spadafora, 2014), which
796 leaves a large space that lacks NHS ester staining in the center of the parasite. For nearly all antibodies used
797 in this study, significant off-target fluorescence was observed inside the food vacuole. Thus, U-ExM may
798 not be as useful for studying food vacuole biology. Occasionally, significant SYTOX (DNA stain)

799 fluorescence was observed at either the nuclear envelope or parasite plasma membrane. It is unclear if this
800 represents an expansion-induced artifact or a PFA-fixation artifact that is only now observable. Lastly, for
801 cells stained with Mitotracker, some non-specific background was observed that seemed to correlate with
802 protein density as observed by NHS-ester.

803 Malaria parasites have been extensively studied using electron microscopy to determine their
804 ultrastructure and live-cell microscopy to observe their most dynamic processes in real time. Much of what
805 we uncovered in this study involved dynamic processes that are too small to be resolved using conventional
806 live-cell microscopy. Specifically, we made important observations about *P. falciparum* organelle
807 biogenesis and the organization of *Plasmodium* cell division around the centriolar plaque. Rather than a
808 replacement for any existing microscopy techniques, we see U-ExM as a complement to the suite of
809 techniques available to study the cell biology of malaria parasites, which bridges some of the limitations of
810 electron microscopy and live-cell microscopy. As such, there are many parasite processes that are logical
811 candidates for investigation by U-ExM. Some of these have been highlighted in this paper, but others remain
812 completely unexplored. Merozoite invasion, for example, has been well-studied using a variety of
813 microscopy techniques (Geoghegan et al., 2021; Hanssen et al., 2013; Liffner et al., 2022; Riglar et al., 2011;
814 Weiss et al., 2015), but U-ExM would allow us to visualise how all the apical organelles associate with each
815 other and rearrange in three-dimensions across the established time-course (Weiss et al., 2015) of this
816 process. Another logical candidate for investigation by U-ExM is the rapid disassembly of the IMC and
817 other merozoite organelles immediately following invasion (Ferreira et al., 2021), a process where the
818 parasite undergoes rapid and dramatic morphological rearrangements that lie beyond the resolution of live-
819 cell microscopy.

820

821 MATERIALS AND METHODS

822 *Plasmodium falciparum* culture

823 Unless otherwise stated, all parasites in this study were 3D7-Cas9 (Rudlaff et al., 2019). For imaging
824 of the apicoplast, the previously generated ACP-transit-peptide-GFP cell line was used (Florentin et al.,

825 2020). For imaging of Kelch13, the previously generated 2xFKBP-GFP-K13 parasites were used (Birnbaum
826 et al., 2017). For imaging of the basal complex, the previously generated CINCH-smV5 cell line was used
827 (Rudlaff et al., 2019).

828 All parasites were cultured in O⁺ human red blood cells at 4% haematocrit in RPMI-1640 containing
829 25 mM HEPES, 50 mg/L hypoxanthine, 0.21% sodium bicarbonate, and 0.5% w/v Albumax II (Trager &
830 Jensen, 1976). All parasite cultures were incubated on a shaker at 37 °C in a gas mixture of 1% O₂, 5% CO₂,
831 and 94% N₂ as previously described. The smHA-tagged Pf3D7_0311800 (ATP Synthase F0 Subunit D) cell
832 line was maintained under selection of 5 nm WR99210. Apicoplast targeting signal-GFP line was
833 maintained under selection of x mm x. 2xFKBP-GFP-K13 parasites were maintained under selection of 0.9
834 μm DSM1.

835 Parasites were routinely synchronised using sorbitol lysis. Briefly, parasite cultures were
836 resuspended in 5% w/v D-sorbitol, resulting in the selective lysis of schizont-stage parasites (Lambros &
837 Vanderberg, 1979).

838 For samples where parasites were arrested as schizonts using either trans-Epoxysuccinyl-L-
839 leucylamido(4guanidino)butane (E64) (Salmon, Oksman, & Goldberg, 2001) or compound 1 (C1) (Helen M.
840 Taylor et al., 2010), late schizont-stage cultures were treated with either 10 μm E64 for ~3h or 5 μm C1 for
841 ~5 hours.

842 **Plasmid generation and transfection**

843 For imaging of the mitochondria, a cell line where ATP-Synthase F0 Subunit D (Pf3D7_0311800) had
844 a C-terminal spaghetti-monster HA tag was generated (Figure 5 – Figure Supplement 2). To create the
845 Pf3D7_0311800 smHA HDR plasmid, the 3D7_0311800 5' and 3' homology regions were PCR amplified
846 from 3D7 genomic DNA with oligonucleotides oJDD4893/oJDD4894 and oJDD4891/oJDD4892,
847 respectively. The two pieces were fused together using Sequence Overlap Extension PCR (SOE PCR) using
848 oJDD4891/oJDD4894 and the piece was digested with NotI/XhoI and ligated with T4 ligase to generate
849 pSAB55. To create the PF3D7_0311800 targeting guide RNA plasmid, oJDD4889/oJDD4890 were

850 annealed, phosphorylated, and ligated into BpiI-digested pRR216 to generate pSAB81. All oligonucleotide
851 sequences are shown in Table 1.

852 For transfection, 100 µg of pSAB55 plasmid was linearized with StuI and transfected into 3D7-Cas9,
853 along with 100 µg of pSAB81. A day following transfection, parasites were treated with 5 nm WR99210
854 until 13 days, when resistant parasites were detected.

855 **Ultrastructure expansion microscopy**

856 Ultrastructure expansion microscopy (U-ExM) was performed as previously described with minor
857 modification (Bertiaux et al., 2021; Gambarotto et al., 2019; Liffner & Absalon, 2021). 12 mm round
858 Coverslips (Fisher Cat. No. NC1129240) were treated with poly-D-lysine for 1 h at 37 °C, washed twice
859 with MilliQ water, and placed in the wells of a 12-well plate. Parasite cultures were set to 0.5% haematocrit,
860 and 1 mL of parasite culture was added to the well containing the coverslip and for 15 min at 37 °C. Culture
861 supernatants were removed, and cultures were fixed with 1 mL of 4% v/v paraformaldehyde (PFA) in
862 1xPBS for 15 min at 37 °C. For some experiments visualising cytostomes, cultures were instead fixed in 4%
863 v/v PFA + 0.01% v/v glutaraldehyde in 1xPBS. Following fixation, coverslips were washed three times with
864 37 °C PBS before being treated with 1 mL of 1.4 % v/v formaldehyde/2% v/v acrylamide (FA/AA) in PBS.
865 Samples were then incubated at 37 °C overnight.

866 Monomer solution (19% w/w sodium acrylate (Sigma Cat. No. 408220), 10% v/v acrylamide (Sigma
867 Cat. No. A4058, St. Louis, MO, USA), 0.1% v/v N,N'-methylenebisacrylamide (Sigma Cat. No. M1533) in
868 PBS) was typically made the night before gelation and stored at -20 °C overnight. Prior to gelation, FA/AA
869 solution was removed from coverslips, and they were washed once in PBS. For gelation, 5 µL of 10% v/v
870 tetraethylenediamine (TEMED; ThermoFisher Cat. No. 17919) and 5 µL of 10% w/v ammonium persulfate
871 (APS; ThermoFisher Cat. No. 17874) were added to 90 µL of monomer solution and briefly vortexed.
872 Subsequently, 35 µL was pipetted onto parafilm and coverslips were placed (cell side down) on top. Gels
873 were incubated at 37 °C for 30 minutes before being transferred to wells of a 6-well plate containing
874 denaturation buffer (200 mM sodium dodecyl sulphate (SDS), 200 mM NaCl, 50 mM Tris, pH 9). Gels were
875 incubated in denaturation buffer with shaking for 15 minutes, before separated gels were transferred to 1.5

876 mL tubes containing denaturation buffer. 1.5 mL tubes were incubated at 95 °C for 90 minutes. Following
877 denaturation, gels were transferred to 10 cm Petri dishes containing 25 mL of MilliQ water for the first
878 round of expansion and placed onto a shaker for 30 minutes three times, changing water in between. Gels
879 were subsequently shrunk with two 15-minute washes in 25 mL of 1x PBS, before being transferred to 6-
880 well plates for 30 minutes of blocking in 3% BSA-PBS at room temperature. After blocking, gels were
881 incubated with primary antibodies, diluted in 3%BSA-PBS, overnight. After primary antibody incubation,
882 gels were washed three times in 0.5% v/v PBS-Tween 20 for 10 minutes before incubation with secondary
883 antibodies diluted in 1x PBS for 2.5 hours. Following secondary antibody incubation, gels were again
884 washed three times in PBS-Tween 20, before being transferred back to 10 cm Petri dishes for re-expansion
885 with three 30-minute MilliQ water incubations.

886 Gels were either imaged immediately following re-expansion, or stored in 0.2% w/v propyl gallate in
887 MilliQ water until imaging. For gels stained with BODIPY TR Ceramide, the fully expanded gel was
888 incubated overnight at room temperature in 0.2% w/v propyl gallate (Acos Organics Cat No. 131581000)
889 solution containing BODIPY TR ceramide (2 µM final concentration).

890 For parasites stained with Mitotracker Orange CMTMRos (ThermoFisher, M7510), parasite cultures
891 were resuspended in incomplete media (RPMI-1640 containing 25 mM HEPES, 50 mg/L hypoxanthine, and
892 0.21% sodium bicarbonate) containing 300 nM Mitotracker Orange CMTMRos. Parasites cultures were then
893 stained with Mitotracker for 35 minutes while settling on Poly-D-lysine coated coverslips. From this point,
894 the expansion protocol was followed as described above, with the exception that all steps when possible
895 were carried out protecting the sample from light.

896 *Cryopreservation and thawing of gels.*

897 A proportion of gels imaged in this study were cryopreserved and subsequently thawed prior to
898 imaging (Louvel et al., 2022). Gels were frozen either unstained, following the first round of expansion, or
899 frozen stained, following the second round of expansion. To freeze, a portion of the expanded gel was
900 placed into a 6-well dish and washed three times with 50% glycerol in MilliQ water for 30 minutes. Fresh
901 glycerol was then added, and the gels were stored at -20 °C for future use. To thaw unstained gels, the
902 glycerol was replaced with MilliQ water and incubated at room temperature for 30 minutes. Gels were then

903 washed and shrunk with three 20-minute washes in 1x PBS at room temperature before proceeding with the
904 antibody staining process normally. Stained gels were thawed with three washes in MilliQ water for 30
905 minutes before proceeding with imaging as normal.

906 **Stains and antibodies**

907 A comprehensive list of all stains and antibodies used in this study, their working concentrations, and
908 source(s) can be found in Table 2.

909 **Image acquisition**

910 Immediately before imaging, a small slice of gel ~10mm x ~10mm was cut and mounted on an
911 imaging dish (35mm Cellvis coverslip bottomed dishes NC0409658 - FisherScientific) coated with Poly-D
912 lysine. The side of the gel containing sample is placed face down on the coverslip and a few drops of ddH₂O
913 are added after mounting to prevent gel shrinkage due to dehydration during imaging. All images presented
914 in this study were taken using either a Zeiss LSM800 AxioObserver with an Airyscan detector, or a Zeiss
915 LSM900 AxioObserver with an Airyscan 2 detector. Imaging on both microscopes was conducted using a
916 63x Plan-Apochromat objective lens with a numerical aperture of 1.4. All images were acquired as Z-stacks
917 that had an XY pixel size of 0.035 μm and a Z-slice size of 0.13 μm.

918 **Image analysis**

919 *Image processing and presentation*

920 All images were Airyscan processed using 3D processing at moderate filter strength on ZEN Blue
921 Version 3.1 (Zeiss, Oberkochen, Germany).

922 The majority of images presented in this study are presented as maximum intensity z-projections, but
923 those that contain BODIPY TR Ceramide are presented as average intensity projections for viewing and
924 interpretation purposes.

925 *3D rendering*

926 3D renderings of micronemal proteins AMA1 and EBA175 were produced using the 3D analysis
927 package on ZEN Blue version 3.5.

928 *Measurement of interpolar spindles and subpellicular microtubules*

929 All length measurements reported in this study were obtained using the “Measure 3D distance”
930 function of ZEN Blue Version 3.1. The length of Interpolar spindle microtubules and subpellicular
931 microtubules was determined as the 3D distance between the start and end points of continuously stained
932 stretches of anti-tubulin staining. Interpolar microtubules were defined as those whose staining appeared to
933 contact both centriolar plaques as defined by NHS ester, while non-interpolar microtubules were those that
934 did not meet these criteria. Subpellicular microtubules were only measured in C1-arrested schizonts that had
935 visibly completed segmentation based on the basal complex as visualised by NHS ester. Any microtubule
936 that did not appear connected to the apical polar ring, or extend towards the basal complex, was excluded
937 from the analysis. Cell diameter was defined as the greatest XY distance on any z-slice between two points
938 of the parasite as defined by NHS Ester staining. Merozoite length was defined as the 3D distance between
939 the center of the apical polar rings and basal complex as defined by NHS ester staining.

940 *Apicoplast and mitochondria area analysis*

941 All area measurements presented were obtained using the “Area” function on ZEN Blue Version 3.1.
942 Images were presented as a maximum intensity projection before free hand outlining the apicoplast or the
943 mitochondria in each image. The sum of all fragments was then calculated to find the total area of the
944 organelles per cell.

945 *Mitochondria residual body analysis*

946 In C1-arrested schizonts, the proportion of total mitochondria staining found in the residual body was
947 calculated as follows. Using ZEN Blue version 3.1, a maximum intensity projection of the entire cell was
948 generated and based on the NHS staining, the entire parasite was defined as the region of interest. Signal
949 intensity of the channel staining the mitochondria was calculated inside the full cell, which was defined as
950 total mitochondria fluorescence. Subsequently, the residual body was defined the area within the parasite
951 vacuole, but external to all merozoite plasma membranes, as based on BODIPY TR ceramide staining. A
952 second maximum intensity projection of this subsection of the schizont was made, the residual body was
953 defined as the region of interest and this signal intensity inside this region of interest was defined as residual
954 body mitochondria fluorescence.

955 To determine residual body mitochondria fluorescence (RB) as % total mitochondria fluorescence
956 (total), the following equation was used:

$$\left(\frac{RB \text{ fluorescence}}{\text{Total fluorescence}} \right) \times 100$$

957 In each of the parasites included in this analysis, the number of merozoites was defined as the
958 number of distinct nuclei as determined by SYTOX staining. To determine residual body mitochondria
959 fluorescence as % of one merozoite, the following equation was used:

$$\left(RB \text{ fluorescence} \div \left(\frac{\text{Total fluorescence} - RB \text{ fluorescence}}{\text{Number of merozoites}} \right) \right) \times 100$$

960 Cells where no mitochondria fluorescence was visible inside the residual body, while visible inside
961 merozoites, were defined as having no residual body mitochondria. An attempt was made to do a similar
962 analysis on apicoplast stained cells, but no visible apicoplast staining was ever observed in the residual body.

963 Statistical analysis

964 *Estimation of actual distance from expanded samples*

965 Expansion factors for 43 gels used in this study were determined as follows. Gels were assumed to
966 have an initial diameter of 12 mm, as they are formed on a 12 mm diameter coverslip. Gels were
967 subsequently measured following expansion to the nearest whole millimetre, and the expansion factor was
968 defined as the expanded gel diameter divided by the initial gel diameter (12 mm). Gels whose edges were
969 damaged or malformed, and therefore their diameters could not be actually measured, were excluded. Gels
970 in this study had a median expanded diameter of 51 mm, which corresponds to a median expansion factor of
971 4.25 (Figure 1 – Figure Supplement 1)

972 *Generation of graphs and statistical analysis*

973 All graphs presented in this study were generated using GraphPad PRISM 9. All error bars in this
974 study represent standard deviation. Differences between samples analysed by ANOVA was determined as
975 difference where the p-value was <0.05. For scatterplots, slopes were considered significantly non-zero
976 when the p-value was <0.05.

977 **Data accessibility**

978 Results in this study are underpinned by 647 3D Airyscan images of U-ExM parasites at multiple
979 lifecycle stages with multiple combinations of stains. All images are publicly available through the
980 following data repository: <https://doi.org/10.5061/dryad.9s4mw6mp4>.

981 **AUTHOR CONTRIBUTIONS**

982 **Benjamin Liffner:** Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing
983 - Original Draft, Writing - Review & Editing, Visualization.

984 **Ana Karla Cepeda Diaz:** Conceptualization, Methodology, Formal analysis, Investigation, Data curation,
985 Writing - Original Draft, Writing -Review & Editing, Visualization, Funding acquisition.

986 **James Blauwkamp:** Formal analysis, Investigation, Data curation, Writing – Original Draft.

987 **David Anaguano:** Investigation, Writing – Review & Editing.

988 **Sonja Frölich:** Methodology.

989 **Vasant Muralidharan:** Resources, Writing – Review & Editing.

990 **Danny W. Wilson:** Writing -Review & Editing.

991 **Jeffrey Dvorin:** Conceptualization, Resources, Writing –Review & Editing, Supervision, Project
992 Administration, Funding Acquisition.

993 **Sabrina Absalon:** Conceptualization, Methodology, Resources, Writing – Review & Editing, Supervision,
994 Project administration, Funding Acquisition.

995

996 **ACKNOWLEDGEMENTS**

997 We thank David Roos, Akhil Vaidya, and Rodolpho Ornitz Oliveira Souza for insightful discussions,
998 Vincent Louvel for U-ExM expertise and sharing the protocol for cryopreservation and thawing of gels, and
999 Taco Kooij, and Julie Verhoef for their help with MitoTracker experiments and critical reading of the

.000 manuscript. We thank Tobias Spielmann and Isabelle Henshall for generously sharing K13-GFP parasites,
.001 and insightful discussion. We thank Julian Rayner, Alan Cowman, Carole Long, BEI Resources (NIAID,
.002 NIH), and the European Malaria Reagent Repository for provision of antibodies. This work was supported
.003 by NIH R01 AI145941 (JDD) and F31 AI172110 (AKCD), and the American Heart Association
.004 23POST1011626 (BL).

.005 COMPETING INTERESTS

.006 The authors declare no competing interests.

.007 FIGURE LEGENDS

.008 **Figure 1: U-ExM workflow and summary of parasite structures imaged in this study.**

.009 **(a)** Diagram of asexual blood stage lifecycle of *P. falciparum*. **(b)** Ultrastructure expansion microscopy (U-
.010 ExM) workflow used in this study. PFA = paraformaldehyde, FA = formaldehyde, AA = acrylamide PG =
.011 propyl gallate. Snowflake indicates steps where gels were cryopreserved. **(c)** Comparison of brightfield and
.012 DAPI staining of unexpanded *P. falciparum* parasites (inset) with *P. falciparum* prepared by U-ExM,
.013 stained with NHS Ester (protein density; greyscale) and SYTOX Deep Red (DNA; cyan) and imaged using
.014 Airyscan microscopy. Images are maximum-intensity projections, number on image = Z-axis thickness of
.015 projection in μm . Scale bars = 2 μm . **(d)** Summary of all organelles, and their corresponding antibodies,
.016 imaged by U-ExM in this study.

.017 **Figure 2: Centriolar plaque (CP) biogenesis and dynamics.**

.018 3D7 parasites were prepared by U-ExM, stained with NHS ester (greyscale), BODIPY TRc (white), SYTOX
.019 (cyan) and anti-centrin (outer centriolar plaque (CP); magenta) antibodies and imaged using Airyscan
.020 microscopy.. **(a)** Images of whole parasites throughout asexual blood-stage development. **(b)** Whole parasite
.021 panel (left) followed by individual centriolar plaque or centriolar plaque pair zooms following our proposed
.022 timeline of events in centriolar plaque biogenesis, dynamics, and disassembly. Yellow line = cytoplasmic
.023 extensions, blue line = nuclear envelope, green line = parasite plasma membrane. Images are maximum-
.024 intensity projections, number on image = Z-axis thickness of projection in μm . White scale bars = 2 μm ,
.025 yellow scale bars = 500 nm.

.026 **Figure 3: Characterisation of intranuclear and subpellicular microtubules.**

.027 3D7 parasites were prepared by U-ExM, stained with NHS ester (greyscale), BODIPY TRc (white), SYTOX
.028 (cyan) and anti-tubulin (microtubules; magenta) antibodies, and imaged using Airyscan microscopy. **(a)**
.029 Images of whole parasites throughout asexual blood-stage development. **(b)** Nuclei in the process of
.030 dividing, with their centriolar plaques connected by an interpolar spindle. **(c)** The number and type of
.031 microtubule branches in interpolar spindles and **(d)** length of interpolar microtubules. **(e)** Subpellicular
.032 microtubules (SPMTs) stained with an anti-poly-glutamylated (PolyE; yellow) antibody. **(f)** Quantification
.033 of the number of SPMTs per merozoite from C1-treated schizonts. **(g)** SPMT biogenesis throughout
.034 segmentation. **(h)** Model for SPMT biogenesis. PPM = parasite plasma membrane, APRs = apical polar
.035 rings, BC = basal complex, CP = centriolar plaque. Images are maximum-intensity projections, number on
.036 image = Z-axis thickness of projection in μm . Scale bars = 2 μm .

.037 **Figure 4: Basal complex biogenesis and development throughout segmentation.**

.038 Parasites expressing an smV5-tagged copy of the basal complex marker CINCH were prepared by U-ExM,
.039 stained with NHS ester (greyscale), BODIPY TRc (white), SYTOX (cyan) and anti-V5 (basal complex;

.043 magenta) antibodies and imaged using Airyscan microscopy across segmentation. **(a)** Images of whole
.044 parasites throughout asexual blood-stage development. **(b)** Basal complex development during schizogony.
.045 The basal complex is formed around the PPM anchor of the outer CP. In nuclei whose outer CP has two
.046 branches, and will therefore undergo mitosis, the basal complex rings are duplicated. From early
.047 segmentation, the basal complex acquires a stable, expanding ring form. Cystostomes that will form part of
.048 merozoites are marked with a white asterisk, while those outside merozoites are marked with a yellow
.049 asterisk. Images are maximum-intensity projections, number on image = Z-axis thickness of projection in
.050 μm . Scale bars = 2 μm .

.051 **Figure 5: Growth and fission of the mitochondrion.**

.052 Parasites with an smHA-tagged copy of the ATP Synthase F0 Subunit D (ATPd, Pf3D7_0311800) as a
.053 mitochondrial marker were prepared by U-ExM, stained with NHS ester (greyscale), BODIPY TRc (white),
.054 SYTOX (cyan) and anti-HA (mitochondrion; magenta) antibodies and imaged using Airyscan microscopy.
.055 **(a)** Images of whole parasites throughout asexual blood-stage development. Maximum intensity projections
.056 of both a subsection of the cell (partial mito) and the full cell (full mito) are shown. **(b)** ATPd staining was
.057 compared against Mitotracker orange CMTMRos (yellow), which showed discontinuous staining in looped
.058 regions. **(c)** Area of the mitochondrion was quantified for parasites of varying nucleus number. 73 cells were
.059 counted across 4 biological replicates. $**** = p < 0.001$, $\text{ns} = p > 0.05$ by one-way ANOVA, error bars = SD.
.060 **(d)** Schizont with mitochondria that have undergone fission (yellow zoom), mitochondria that are shared
.061 between two nascent merozoites (black zoom), and mitochondria left outside merozoites in the forming
.062 residual body (grey). **(e)** During fission, mitochondria associate with the outer centriolar plaque (oCP).
.063 Images are maximum-intensity projections, number on image = Z-axis thickness of projection in μm . White
.064 scale bars = 2 μm , yellow scale bars = 500 nm.

.065 **Figure 6: Growth and fission of the apicoplast.**

.066 Parasites expressing GFP-conjugated to the apicoplast transit signal of ACP (ACP^{Ts-GFP}) were prepared by
.067 U-ExM, stained with NHS ester (greyscale), BODIPY TRc (white), SYTOX (cyan) and anti-GFP
.068 (apicoplast) (magenta) antibodies and using Airyscan microscopy. **(a)** Images of whole parasites throughout
.069 asexual blood-stage development. Maximum intensity projections of both a subsection of the cell (partial
.070 mito) and the full cell (full mito) are shown. **(b)** Area of the apicoplast was quantified for parasites of
.071 varying nucleus number. 70 cells were counted across 3 biological replicates. $**** = p < 0.001$, $* = p < 0.05$
.072 by one-way ANOVA, error bars = SD. **(c)** Representative images of the different stages of apicoplast
.073 fission. Images are maximum-intensity projections, number on image = Z-axis thickness of projection in
.074 μm . Asterisks represent centriolar plaques. Scale bars = 2 μm .

.075 **Figure 7: Cystostomes are observable by U-ExM throughout the asexual blood stage of the lifecycle.**

.076 **(a)** Parasites expressing an smV5-tagged copy of the basal complex marker CINCH, prepared by U-ExM,
.077 and stained with anti-V5, show NHS ester dense rings that are negative for this basal complex marker. **(b)**
.078 Parasites prepared by U-ExM where the cystostome marker Kelch13 was conjugated to GFP (K13-GFP) and
.079 stained with anti-GFP. Image shows colocalization between K13-GFP and the putative cystostome. NHS
.080 ester-dense ring. **(c)** Comparison between PFA-only and PFA-glutaraldehyde fixed U-ExM parasites,
.081 showing lysed (PFA only, orange) and intact (PFA-glutaraldehyde, magenta) RBC membranes. **(d)** In PFA
.082 only fixed parasites, only the cystostomal collar is preserved, while both the collar and bulb are preserved
.083 upon PFA-glutaraldehyde fixation. **(e)** K13-GFP parasites were either fixed in PFA only or PFA-
.084 glutaraldehyde, prepared by U-ExM, stained with NHS ester (greyscale), SYTOX (cyan) and anti-GFP
.085 (Cystostome) (magenta) antibodies and imaged using Airyscan microscopy across the asexual blood stage.
.086 Zoomed regions show cystostomes\ Images are maximum-intensity projections, number on image = Z-axis
.087 thickness of projection in μm . White scale bars = 2 μm . Yellow scale bars = 500 nm.

.088

.089 **Figure 8: Rhoptries undergo biogenesis near the centriolar plaque and are segregated during nuclear
.090 division.**

.091 3D7 parasites were prepared by U-ExM, stained with NHS ester (greyscale), BODIPY TRc (white), SYTOX
.092 (cyan) and an anti-rhoptry antibodies and imaged using Airyscan microscopy. **(a)** Images of whole parasites

.093 throughout schizogony stained using an anti-RAP1 (rhoptry bulb; magenta)- antibody. **(b)** Zoom into
.094 rhoptry pairs of 3D7 parasites that were prepared for U-ExM and stained with NHS Ester (greyscale) along
.095 with antibodies against RAMA (rhoptry bulb; magenta) and RON4 (rhoptry neck; yellow) to assess rhoptry
.096 neck biogenesis. We observed that the rhoptry neck begins as a single focus inside each rhoptry. Rhoptries
.097 then get duplicated and segregated alongside the centriolar plaque. During the final mitosis, the rhoptry neck
.098 begins to elongate and the rhoptries separate from centriolar plaque. Images are maximum-intensity
.099 projections, number on image = Z-axis thickness of projection in μm . Scale bars = 2 μm .

.100 **Figure 9: Micronemal proteins AMA1 and EBA175 reside in separate micronemes.**

.101 3D7 parasites were prepared by U-ExM, stained with NHS ester (greyscale), SYTOX (cyan) and antibodies
.102 against the micronemal markers AMA1 (magenta) and EBA-175 (yellow), and imaged using Airyscan
.103 microscopy in segmenting schizonts. **(a)** Images of whole parasites throughout schizogony. In schizonts still
.104 undergoing segmentation, AMA1 localized to the apical end while EBA175 was not detected. In late
.105 schizonts, both EBA175 and AMA1 were present in the micronemes. In E64-arrested schizonts, AMA1 was
.106 translocated to the merozoite surface while EBA175 remained micronemal. 3D rendering **(b)** and zooms **(c)**
.107 of merozoites with either micronemal or translocated AMA1. Foci of AMA1 and EBA175 do not routinely
.108 colocalize with each other. Images are maximum-intensity projections, number on image = Z-axis thickness
.109 of projection in μm . White scale bars = 2 μm , RGB scale bars for 3D rendering = 1 μm .

.110
.111 **Figure 10: Summary of organelle organization and fission during schizogony.**

.112 **(a) Apical organelle biogenesis:** Biogenesis of the rhoptries, Golgi, basal complex, and apical polar rings
.113 occur at outer centriolar plaque (CP), between the nuclear envelope and parasite plasma membrane.
.114 Duplication and segregation of these organelles appears to be tied to centriolar plaque duplication and
.115 segregation following nuclear division. **Mid-segmentation merozoite:** The rhoptry neck is distinguishable
.116 from the bulb, and AMA1-positive micronemes are present at the apical end of the forming merozoite. Each
.117 merozoite has inherited a cytostome. Subpellicular microtubules stretch the entire distance from the apical
.118 polar rings and the basal complex. The apicoplast has attached to the outer CP and begun fission. **Mature**
.119 **merozoite:** The parasite has completed segmentation, and each merozoite contains a full suite of organelles.
.120 The centriolar plaque is no longer visible, and EBA175-positive micronemes are both visible and separate
.121 from AMA1-positive micronemes. **(b)** Model for fission of the mitochondrion and apicoplast. Prior to
.122 fission, both the apicoplast and mitochondrion branch throughout the parasite cytoplasm, before associating
.123 with the outer CP of each forming merozoite. For the apicoplast, this occurs during the final mitosis, but not
.124 until late in segmentation for the mitochondrion. Following outer CP association, the apicoplast and
.125 mitochondrion undergo a first fission event, which leaves an apicoplast and mitochondrion shared between
.126 forming merozoite pairs. Subsequently both organelles undergo a second fission event, leaving each forming
.127 merozoite with a single apicoplast and mitochondrion.

.128 FIGURE SUPPLEMENT LEGENDS

.129 **Figure 1 – Figure Supplement 1: Size of gels imaged in this study.**

.130 **(a)** 42 of the expanded gels in this study were measured post-expansion to **(b)** calculate their expansion
.131 factor. The median gel length was 51 mm, which corresponds to a 4.25x expansion factor, and so for 'actual'
.132 measurements, values were divided by 4.25.

.133 **Figure 1 – Figure Supplement 2: Cytoplasm staining during intraerythrocytic development.**

.134 3D7 parasites were prepared by U-ExM, stained with NHS Ester (greyscale), BODIPY TRc (white),
.135 SYTOX (cyan) and anti-aldolase (cytoplasm; magenta) antibodies and imaged by Airyscan microscopy
.136 across the asexual blood-stage. Yellow line indicates likely position of food vacuole lacking hemozoin
.137 crystal. Images are maximum-intensity projections, number on image = Z-depth in μm of projection. Scale
.138 bars = 2 μm .

.139 **Figure 2 – Figure Supplement 1: Characterisation of outer centriolar plaque branches.**

.140 **(a)** Mononucleated 3D7 parasites were prepared by U-ExM, stained with NHS Ester (greyscale), anti-centrin
.141 (outer centriolar plaque (CP), magenta) and anti-tubulin (microtubules, yellow) antibodies and imaged by
.142 Airyscan microscopy. Nuclei form the first hemispindle before centrin is observed, and associate with the
.143 parasite plasma membrane (PPM) following visualisation of centrin. **(b)** Quantification of the number of
.144 cytoplasmic extensions (branches) per outer CP in parasites of varying age. Individual centriolar plaques
.145 from mitotic spindles were assessed separately. **(c)** Quantification of the co-occurrence of outer CP branch
.146 number with centrin foci. **(d)** In the 8% of 2 cytoplasmic extension outer CPs that had only a single centrin
.147 focus, these were likely non-resolvable at the image resolution. **(e)** Parasites that had started mitosis were
.148 stained with NHS Ester and Golgi marker ERD2 (magenta). Golgi was seen associating with centriolar
.149 plaques and appeared to duplicate with the formation of the mitotic spindle. Images are maximum-intensity
.150 projections, number on image = Z-depth in μm of projection. Scale bars = 2 μm .

.151 **Figure 2 – Figure Supplement 2: Golgi staining during intraerythrocytic development.**

.152 3D7 parasites were prepared by U-ExM, stained with NHS Ester (greyscale), BODIPY TRc (white),
.153 SYTOX (cyan) and anti-ERD2 (Golgi; magenta) antibodies and imaged by Airyscan microscopy across the
.154 asexual blood-stage. Images are maximum-intensity projections, number on image = Z-depth in μm of
.155 projection. White scale bars = 2 μm , yellow scale bars = 500 nm. 4x Zooms show Golgi-centriolar plaque
.156 interaction.

.157 **Figure 3 – Figure Supplement 1: Staining of microtubules, centriolar plaque, mitochondrion and**
.158 **apicoplast in rings or early trophozoite stages.**

.159 The focus of this study was parasites undergoing schizogony, but multiple ring-stage parasites and
.160 mononucleated trophozoites were also imaged. For microtubules and centrin, 3D7 parasites were prepared
.161 by U-ExM, stained with NHS Ester (greyscale), BODIPY TRc (white), SYTOX (cyan) and either anti-
.162 tubulin (microtubules) or anti-centrin (outer centriolar plaque) (magenta) antibodies and imaged using
.163 Airyscan microscopy. For the mitochondrion, ATP synthase F0 subunit D^{smHA} parasites were stained as
.164 described for microtubules and centriolar plaque except with anti-HA (mitochondrion) antibodies. For the
.165 apicoplast, parasites expressing a GFP-tagged copy of the apicoplast targeting signal of acyl carrier protein
.166 were stained as described previously except with anti-GFP (apicoplast) antibodies. Images are maximum-
.167 intensity projections, number on image = Z-depth in μm of projection. Scale bars = 2 μm .

.168 **Figure 4 – Figure Supplement 1: Basal complex biogenesis in mitotic nuclei.**

.169 **(a)** Parasites expressing an smV5-tagged copy of the basal complex marker CINCH were prepared by U-
.170 ExM, stained with NHS Ester (greyscale), and anti-V5 (basal complex; magenta) antibodies and imaged by
.171 Airyscan microscopy across segmentation. All nuclei shown in Figure 4b, which describes basal complex
.172 biogenesis, had a single centriolar plaque. This figure shows comparable images of nuclei that have

.173 duplicated their centriolar plaque and have a visible mitotic spindle. **(b)** Maximum intensity projection and
.174 3D rendering during basal complex biogenesis showing semicircles of CINCH staining around the centriolar
.175 plaque. Images are maximum-intensity projections, number on image = Z-depth in μm of projection. Scale
.176 bars = 2 μm .

.177 **Figure 4 – Figure Supplement 2: Endoplasmic reticulum staining during intraerythrocytic**
.178 **development.**

.179 3D7 parasites were prepared by U-ExM, stained with NHS Ester (greyscale), BODIPY TRc (white),
.180 SYTOX (cyan) and anti-BIP (Endoplasmic reticulum; magenta) antibodies and imaged by Airyscan
.181 microscopy across the asexual blood-stage. Images are maximum-intensity projections, number on image =
.182 Z-depth in μm of projection. Scale bars = 2 μm .

.183 **Figure 4 – Figure Supplement 3: Inner membrane complex progression through segmentation.**

.184 **(a)** 3D7 parasites were prepared by U-ExM, stained with NHS Ester (greyscale), BODIPY TRc (white),
.185 SYTOX (cyan) and anti-GAP45 (IMC) (magenta) antibodies and imaged using Airyscan microscopy across
.186 segmentation. 3D7 parasites were stained with NHS ester, SYTOX, anti-MSP1 (parasite plasma membrane)
.187 and either anti-GAP45 **(b)** or anti-IMC1g **(c)** antibodies. GAP45 resides in the IMC luminal space, while
.188 IMC1g resides on the cytosolic side of the IMC. Neither GAP45 or IMC1g could be reliably distinguished
.189 from MSP1. Images are maximum-intensity projections, number on image = Z-depth in μm of projection.
.190 Scale bars = 2 μm .

.191 **Figure 5 – Figure Supplement 1: Comparison of MitoTracker with ATPd staining, and residual body**
.192 **mitochondria quantification.**

.193 **(a)** Parasites with an smHA-tagged copy of the ATP Synthase F0 Subunit D (Pf3D7_0311800), a
.194 mitochondrial marker, were prepared by U-ExM, stained with NHS Ester (greyscale), BODIPY TRc
.195 (white), SYTOX (cyan), Mitotracker (mitochondrion; yellow) and anti-HA (mitochondrion; magenta)
.196 antibodies and imaged Airyscan microscopy across the asexual blood-stage. Maximum intensity projections
.197 that showed NHS-Ester, BODIPY and SYTOX of discernible structures often did not give a good indication
.198 of mitochondria shape. To address this, projections of both a subsection of the cell (part) and the full cell
.199 (full) are shown. **(b)** MitoTracker staining showed numerous punctae along the mitochondrion. **(c)** The
.200 percentage of C1-arrested schizonts where mitochondria staining was observed in the residual body (RB)
.201 was quantified. This fluorescence was then compared against the total mitochondria fluorescence **(d)** and the
.202 mean mitochondria fluorescence of one merozoite within that schizont **(e)**. Images are maximum-intensity
.203 projections, number on image = Z-depth in μm of projection. Scale bars = 2 μm .

.204 **Figure 5 – Figure Supplement 2: Generation of ATPd (Pf3D7_0311800) smHA parasites.**

.205 **(a)** To generate an smHA-tagged copy of ATPd (Pf3D7_0311800), 3D7 Cas9 parasites were transfected
.206 with a plasmid that contained a 3' homology region to ATPd, followed by a C-terminal smHA-tag. **(b)**
.207 Integration of smHA tag into the ATPd locus was confirmed by PCR.

.208 **Figure 7 – Figure Supplement 1: Observed cytostome morphologies.**

.209 Parasites expressing a GFP-tagged copy of the cytostome marker Kelch13 (K13-GFP) were prepared for U-
.210 ExM, stained with NHS Ester (greyscale) and anti-GFP (cytostome; magenta) antibodies and imaged using

.211 Airyscan microscopy. ‘Double’ cytostomes where two collars appeared to be stacked on top of each other,
.212 and cytostomes approximately twice the diameter of other cytostomes were occasionally observed.
.213 Additionally, in almost all segmenting schizonts, multiple cytostomes were observed that were not
.214 incorporated into the forming merozoites. Images are maximum-intensity projections, number on image =
.215 Z-depth in μm of projection. Black scale bar = $2 \mu\text{m}$, yellow scale bars = 500 nm.

.216 **Figure 8 – Figure Supplement 1: Rhoptry biogenesis during schizogony.**

.217 **(a)** The rhoptry marker RAP1 was observed coating the outside of a recently invaded ring-stage parasite. **(b)**
.218 Different combinations of rhoptries and plaques observed while imaging parasites undergoing schizogony.
.219 **(c)** Representative image of E64-arrested schizont stained with NHS Ester (greyscale), the rhoptry bulb
.220 marker RAMA (magenta) and the rhoptry neck marker RON4 (yellow). **(d)** In early-segmentation schizonts
.221 that were either undergoing their final mitosis, or had completed their final mitosis (post-mitosis), the degree
.222 of heterogeneity between rhoptry pairs was quantified. Rhoptry pairs that showed visible differences in
.223 either size or NHS ester staining density were considered heterogeneous. **(e)** Breakdown of rhoptries using
.224 different classifications of heterogeneity. Images are maximum-intensity projections, number on image = Z-
.225 depth in μm of projection. Scale bars = $2 \mu\text{m}$.

.226

TABLES

Oligo/gBlock Name	Sequence (5' → 3')
oJDD44	TGGGGTGATGATAAAATGAAAG
oJDD56	ACACTTATGCTCCGGCTCGTATGTTGTG
oJDD4889	TATTGTCAAATCGTTACCTCTATG
oJDD4890	AAACCATAGAGGTAACGATTGAC
oJDD4891	TAGgcggccgcGGTCCTACACCAATAATATCA
oJDD4892	GTCTGATTCTTCCCATCaggcctccggaccgcggGGTCCCTTCATTGTAGACTTTTATTATTGAAC
oJDD4893	GTCTACAATGAAGGGACCccgcgtccggaaaggcctGATGGGAAGAATCAGACAAATGGT
oJDD4894	GATctcgagcAGcGGcAAtGAcTTcACgAATTCTTATTCTTGCATTCCT
oSAB257	CGGACCGAGAATTATGTCCATTACGTC
oSAB471	TGGTATTAATGGATGAAGACACACA
oSAB472	GTAATGGAATAGCTTATATATGTACCTTCAT
oSAB473	TATGTGATCCATACATACCTGTTCAGAC

.227 **Table 1: Oligonucleotides for cloning and integration PCR.**

.228

.229

.230

.231

.232

.233

.234

.235

.236

.237

Primary Antibodies	Ab species	Antibody source (cat. Number)	Ab conc.	Reference
anti-alpha tubulin (Clone B-5-1-2)	Mouse (IgG1)	ThermoFisher (32-2500)	1:500	
anti-centrin (Clone 20H5)	Mouse (IgG2a)	Sigma-Aldrich (04-1624)	1:200	
anti-Hscentrin1	Rabbit	ThermoFisher (PA5-29986)	1:500	
anti-polyE (IN105)	Rabbit	Adipogen (AG-25B-0030-C050)	1:500	
anti-ERD2 (MRA-1)	Rabbit	BEI Resources MR4	1:2000	(H.G. Elmendorf & K. Halder, 1993)
anti-HA (3F10)	Rat	Roche (12158167001)	1:50	
anti-GFP	Rabbit	OriGene (TP401)	1:2000	
anti-RAP1 (2.29)	Mouse	European Malaria Reagent Repository	1:500	(Hall et al., 1983)
anti-RON4	Mouse	Gift from Alan Cowman	1:100	
anti-RAMA	Rabbit	Gift from Ross Coppel	1:200	(Topolska et al., 2004)
anti-AMA1	Rabbit	Gift from Carole Long	1:500	
anti-EBA175 (3D7)	Mouse	Gift from Alan Cowman	1:500	(Sim et al., 2011)
anti-Aldolase	rabbit	Abcam (ab207494)	1:2000	
anti-Histone H3	rabbit	Abcam (ab1791)	1:1000	
anti-BIP	rabbit	Generated by Dvorin Lab	1:2000	
anti-GAP45	Rabbit	Gift from Julian Rayner	1:2000	(Jones, Cottingham, & Rayner, 2009)
anti-IMC1g	Rabbit	Generated by Dvorin Lab	1:1000	(Cepeda Diaz et al., 2023)
anti-MSP1 (1E1)	Rabbit	Gift from Anthony Holder	1:250	(M J Blackman, T J Scott-Finnigan, S Shai, & A A Holder, 1994)
anti-Haemoglobin	Rabbit	ThermoFisher (PA5-102943)	1:1000	

.238

Secondary antibodies	Antibody species	Antibody source	Antibody concentration
anti-mouse IgG Alexa Fluor 488	Goat	ThermoFisher (A28175)	1:500
anti-mouse IgG Alexa Fluor 555	Goat	ThermoFisher (A21428)	1:500
anti-rabbit IgG Alexa Fluor 488	Goat	ThermoFisher (A11034)	1:500
anti-rabbit IgG Alexa fluor 555	Goat	ThermoFisher (A21428)	1:500
anti-rat IgG Alexa fluor 488	Goat	ThermoFisher (A11006)	1:500
anti-mouse IgG2a Alexa fluor 488	Goat	ThermoFisher (A21131)	1:500
anti-mouse IgG1 Alexa fluor 594	Goat	ThermoFisher (A21125)	1:500

.239

Stains	Stain source (Cat. No)	Stain concentration
--------	------------------------	---------------------

NHS Ester Alexa fluor 405	ThermoFisher (A30000)	1:250 (8 µM in DMSO)
BODIPY TR-Ceramide	ThermoFisher (D7549)	1:500 (2 µM)
SYTOX Deep Red	ThermoFisher (S11381)	1:1000 (1 µM) in DMSO

.240 **Table 2: Summary of all antibodies and stains used in this study.**

.241

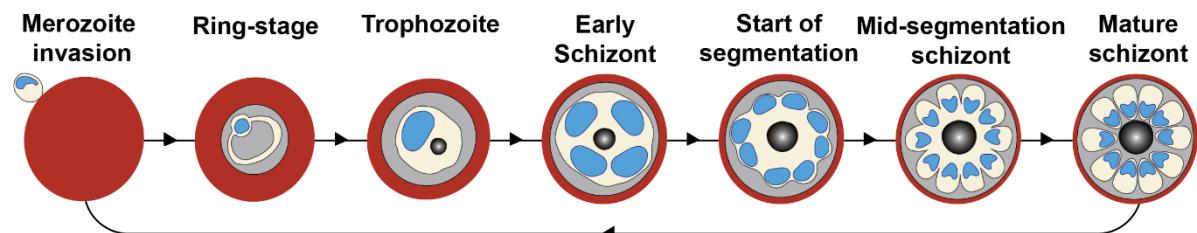
.242

.243

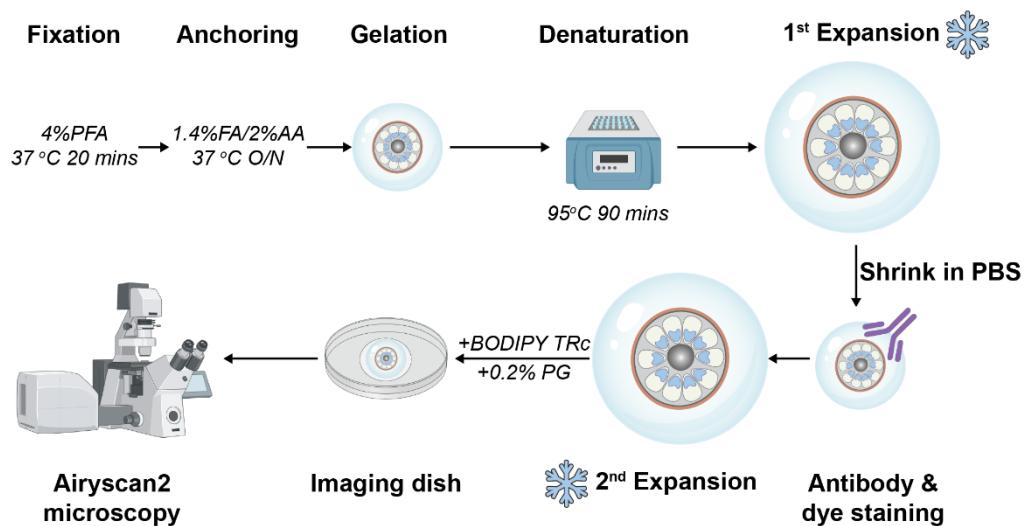
REFERENCES

- .244 Absalon, S., Blomqvist, K., Rudlaff, R. M., DeLano, T. J., Pollastri, M. P., & Dvorin, J. D. (2018). Calcium-
.245 Dependent Protein Kinase 5 Is Required for Release of Egress-Specific Organelles in *Plasmodium*
.246 *falciparum*. *mBio*, 9(1). doi:10.1128/mBio.00130-18
- .247 Aikawa , M. (1967). Ultrastructure of the pellicular complex of *Plasmodium fallax*. *Journal of Cell Biology*,
.248 35(1), 103-113. doi:10.1083/jcb.35.1.103
- .249 Aikawa, M. (1971). *Plasmodium*: the fine structure of malarial parasites. *Exp Parasitol*, 30(2), 284-320.
.250 doi:10.1016/0014-4894(71)90094-4
- .251 Anderson-White, B., Beck, J. R., Chen, C.-T., Meissner, M., Bradley, P. J., & Gubbels, M.-J. (2012).
.252 Chapter One - Cytoskeleton Assembly in *Toxoplasma gondii* Cell Division. In K. W. Jeon (Ed.),
.253 *International Review of Cell and Molecular Biology* (Vol. 298, pp. 1-31): Academic Press.
- .254 Bannister, L. H., Hopkins, J. M., Fowler, R. E., Krishna, S., & Mitchell, G. H. (2000). Ultrastructure of
.255 rhoptry development in *Plasmodium falciparum* erythrocytic schizonts. *Parasitology*, 121 (Pt 3),
.256 273-287. doi:10.1017/s0031182099006320
- .257 Barylyuk, K., Koreny, L., Ke, H., Butterworth, S., Crook, O. M., Lassadi, I., . . . Waller, R. F. (2020). A
.258 Comprehensive Subcellular Atlas of the *Toxoplasma* Proteome via hyperLOPIT Provides Spatial
.259 Context for Protein Functions. *Cell Host & Microbe*, 28(5), 752-766.e759.
.260 doi:<https://doi.org/10.1016/j.chom.2020.09.011>
- .261 Ben Chaabene, R., Lentini, G., & Soldati-Favre, D. (2021). Biogenesis and discharge of the rhoptries: Key
.262 organelles for entry and hijack of host cells by the Apicomplexa. *Molecular Microbiology*, 115(3),
.263 453-465. doi:<https://doi.org/10.1111/mmi.14674>
- .264 Bertiaux, E., Balestra, A. C., Bourdonville, L., Louvel, V., Maco, B., Soldati-Favre, D., . . . Hamel, V.
.265 (2021). Expansion microscopy provides new insights into the cytoskeleton of malaria parasites
.266 including the conservation of a conoid. *PLoS Biol*, 19(3), e3001020.
.267 doi:10.1371/journal.pbio.3001020
- .268 Birnbaum, J., Flemming, S., Reichard, N., Soares, A. B., Mesén-Ramírez, P., Jonscher, E., . . . Spielmann, T.
.269 (2017). A genetic system to study *Plasmodium falciparum* protein function. *Nature Methods*, 14(4),
.270 450-456. doi:10.1038/nmeth.4223
- .271 Blackman, M. J., Scott-Finnigan, T. J., Shai, S., & Holder, A. A. (1994). Antibodies inhibit the protease-
.272 mediated processing of a malaria merozoite surface protein. *Journal of Experimental Medicine*,
.273 180(1), 389-393. doi:10.1084/jem.180.1.389
- .274 Blackman, M. J., Scott-Finnigan, T. J., Shai, S., & Holder, A. A. (1994). Antibodies inhibit the protease-
.275 mediated processing of a malaria merozoite surface protein. *J Exp Med*, 180(1), 389-393.
.276 doi:10.1084/jem.180.1.389
- .277 Collins, C. R., Hackett, F., Strath, M., Penzo, M., Withers-Martinez, C., Baker, D. A., & Blackman, M. J.
.278 (2013). Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory
.279 organelle discharge and egress. *PLoS Pathog*, 9(5), e1003344. doi:10.1371/journal.ppat.1003344
- .280 Coronado, L. M., Nadovich, C. T., & Spadafora, C. (2014). Malarial hemozoin: from target to tool. *Biochim
.281 Biophys Acta*, 1840(6), 2032-2041. doi:10.1016/j.bbagen.2014.02.009
- .282 Counihan, N. A., Kalanon, M., Coppel, R. L., & de Koning-Ward, T. F. (2013). *Plasmodium* rhoptry
.283 proteins: why order is important. *Trends in Parasitology*, 29(5), 228-236.
.284 doi:10.1016/j.pt.2013.03.003

- .285 Cowan, C. R., & Hyman, A. A. (2004). Centrosomes direct cell polarity independently of microtubule
.286 assembly in *C. elegans* embryos. *Nature*, 431(7004), 92-96. doi:10.1038/nature02825
.287 Dave, N., LaFavers, K., & Arrizabalaga, G. (2022). The Dually Localized EF-Hand Domain-Containing
.288 Protein TgEFP1 Regulates the Lytic Cycle of *Toxoplasma gondii*. *Cells*, 11(10).
.289 doi:10.3390/cells11101709
.290 de Anda, F. C., Pollarolo, G., Da Silva, J. S., Camoletto, P. G., Feiguin, F., & Dotti, C. G. (2005).
.291 Centrosome localization determines neuronal polarity. *Nature*, 436(7051), 704-708.
.292 doi:10.1038/nature03811
.293 Cepeda Diaz, A. K., Rudlaff, R. M., Farringer, M., & Dvorin, J. D. (2023). Essential function of alveolin
.294 *PfIMC1g* in the *Plasmodium falciparum* asexual blood stage. *mBio*, e01507-01523.
.295 doi:doi:10.1128/mbio.01507-23
.296 Dubois, D. J., & Soldati-Favre, D. (2019). Biogenesis and secretion of micronemes in *Toxoplasma gondii*.
.297 *Cellular Microbiology*, 21(5), e13018. doi:<https://doi.org/10.1111/cmi.13018>
.298 Ebrahimzadeh, Z., Mukherjee, A., Crochetière, M.-È., Sergerie, A., Amiar, S., Thompson, L. A., . . .
.299 Richard, D. (2019). A pan-apicomplexan phosphoinositide-binding protein acts in malarial
.300 microneme exocytosis. *EMBO reports*, 20(6), e47102. doi:<https://doi.org/10.15252/embr.201847102>
.301 Elmendorf, H. G., & Haldar, K. (1993). Identification and localization of ERD2 in the malaria parasite
.302 *Plasmodium falciparum*: separation from sites of sphingomyelin synthesis and implications for
.303 organization of the Golgi. *Embo j*, 12(12), 4763-4773. doi:10.1002/j.1460-2075.1993.tb06165.x
.304 Elmendorf, H. G., & Haldar, K. (1993). Identification and localization of ERD2 in the malaria parasite
.305 *Plasmodium falciparum*: separation from sites of sphingomyelin synthesis and implications for
.306 organization of the Golgi. *The EMBO Journal*, 12(12), 4763-4773.
.307 doi:<https://doi.org/10.1002/j.1460-2075.1993.tb06165.x>
.308 Elmore, S. P., Nishimura, Y., Qian, T., Herman, B., & Lemasters, J. J. (2004). Discrimination of depolarized
.309 from polarized mitochondria by confocal fluorescence resonance energy transfer. *Arch Biochem
.310 Biophys*, 422(2), 145-152. doi:10.1016/j.abb.2003.12.031
.311 Engelberg, K., Bechtel, T., Michaud, C., Weerapana, E., & Gubbels, M.-J. (2022). Proteomic
.312 characterization of the *Toxoplasma gondii* cytokinesis machinery portrays an expanded hierarchy of
.313 its assembly and function. *Nature Communications*, 13(1), 4644. doi:10.1038/s41467-022-32151-0
.314 Esveld, S. L. v., Meerstein-Kessel, L., Boshoven, C., Baaij, J. F., Barylyuk, K., Coolen, J. P. M., . . . Huynen,
.315 M. A. (2021). A Prioritized and Validated Resource of Mitochondrial Proteins in *Plasmodium*
.316 Identifies Unique Biology. *mSphere*, 6(5), e00614-00621. doi:doi:10.1128/mSphere.00614-21
.317 Evers, F., Cabrera-Orefice, A., Elurbe, D. M., Kea-te Lindert, M., Boltryk, S. D., Voss, T. S., . . . Kooij, T.
.318 W. A. (2021). Composition and stage dynamics of mitochondrial complexes in *Plasmodium
.319 falciparum*. *Nature Communications*, 12(1), 3820. doi:10.1038/s41467-021-23919-x
.320 Evers, F., Roverts, R., Boshoven, C., Kea-te Lindert, M., Sinden, R. E., Akiva, A., & Kooij, T. W. A. (2023).
.321 Comparative 3D ultrastructure of *Plasmodium falciparum* gametocytes. *bioRxiv*,
.322 2023.2003.2010.531920. doi:10.1101/2023.03.10.531920
.323 Ferreira, J. L., Heincke, D., Wicher, J. S., Liffner, B., Wilson, D. W., & Gilberger, T.-W. (2021). The
.324 Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite.
.325 *Frontiers in Cellular and Infection Microbiology*, 10. doi:10.3389/fcimb.2020.611801
.326 Florentin, A., Stephens, D. R., Brooks, C. F., Baptista, R. P., & Muralidharan, V. (2020). Plastid biogenesis
.327 in malaria parasites requires the interactions and catalytic activity of the Clp proteolytic system.
.328 *Proceedings of the National Academy of Sciences*, 117(24), 13719-13729.
.329 doi:doi:10.1073/pnas.1919501117
.330 Francia, M. E., & Striepen, B. (2014). Cell division in apicomplexan parasites. *Nature Reviews
.331 Microbiology*, 12(2), 125-136. doi:10.1038/nrmicro3184
.332 Francis, S. E., Sullivan, D. J., Jr., & Goldberg, D. E. (1997). Hemoglobin metabolism in the malaria parasite
.333 *Plasmodium falciparum*. *Annu Rev Microbiol*, 51, 97-123. doi:10.1146/annurev.micro.51.1.97
.334 Gambarotto, D., Zwettler, F. U., Le Guennec, M., Schmidt-Cernohorska, M., Fortun, D., Borgers, S., . . .
.335 Guichard, P. (2019). Imaging cellular ultrastructures using expansion microscopy (U-ExM). *Nature
.336 Methods*, 16(1), 71-74. doi:10.1038/s41592-018-0238-1
.337 Geoghegan, N. D., Evelyn, C., Whitehead, L. W., Pasternak, M., McDonald, P., Triglia, T., . . . Rogers, K. L.
.338 (2021). 4D analysis of malaria parasite invasion offers insights into erythrocyte membrane

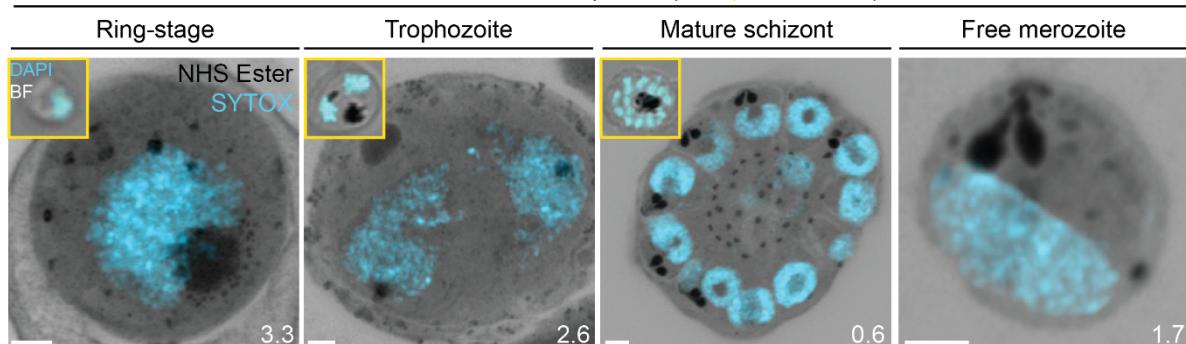

- .339 remodeling and parasitophorous vacuole formation. *Nature Communications*, 12(1), 3620.
.340 doi:10.1038/s41467-021-23626-7
- .341 Gerald, N., Mahajan, B., & Kumar, S. (2011). Mitosis in the human malaria parasite *Plasmodium falciparum*.
.342 *Eukaryot Cell*, 10(4), 474-482. doi:10.1128/ec.00314-10
- .343 Griffith, M. B., Pearce, C. S., & Heaslip, A. T. (2022). Dense granule biogenesis, secretion, and function in
.344 *Toxoplasma gondii*. *J Eukaryot Microbiol*, 69(6), e12904. doi:10.1111/jeu.12904
- .345 Grüning, C., Heiber, A., Kruse, F., Ungefahr, J., Gilberger, T. W., & Spielmann, T. (2011). Development
.346 and host cell modifications of *Plasmodium falciparum* blood stages in four dimensions. *Nat Commun*,
.347 2, 165. doi:10.1038/ncomms1169
- .348 Gurnett, A. M., Liberator, P. A., Dulski, P. M., Salowe, S. P., Donald, R. G., Anderson, J. W., . . . Schmatz,
.349 D. M. (2002). Purification and molecular characterization of cGMP-dependent protein kinase from
.350 Apicomplexan parasites. A novel chemotherapeutic target. *J Biol Chem*, 277(18), 15913-15922.
.351 doi:10.1074/jbc.M108393200
- .352 Hale, V. L., Watermeyer, J. M., Hackett, F., Vizcay-Barrena, G., van Ooij, C., Thomas, J. A., . . . Saibil, H.
.353 R. (2017). Parasitophorous vacuole poration precedes its rupture and rapid host erythrocyte
.354 cytoskeleton collapse in *Plasmodium falciparum* egress. *Proceedings of the National Academy of
.355 Sciences*, 114(13), 3439-3444. doi:doi:10.1073/pnas.1619441114
- .356 Hall, R., McBride, J., Morgan, G., Tait, A., Zolg, J. W., Walliker, D., & Scaife, J. (1983). Antigens of the
.357 erythrocytes stages of the human malaria parasite *Plasmodium falciparum* detected by monoclonal
.358 antibodies. *Mol Biochem Parasitol*, 7(3), 247-265. doi:10.1016/0166-6851(83)90025-7
- .359 Hanssen, E., Dekiwadia, C., Riglar, D. T., Rug, M., Lemgruber, L., Cowman, A. F., . . . Ralph, S. A. (2013).
.360 Electron tomography of *Plasmodium falciparum* merozoites reveals core cellular events that
.361 underpin erythrocyte invasion. *Cellular Microbiology*, 15(9), 1457-1472.
.362 doi:<https://doi.org/10.1111/cmi.12132>
- .363 Harding, C. R., & Meissner, M. (2014). The inner membrane complex through development of *Toxoplasma*
.364 *gondii* and *Plasmodium*. *Cellular Microbiology*, 16(5), 632-641.
.365 doi:<https://doi.org/10.1111/cmi.12285>
- .366 Healer, J., Crawford, S., Ralph, S., McFadden, G., & Cowman, A. F. (2002). Independent Translocation of
.367 Two Micronemal Proteins in Developing *Plasmodium falciparum* Merozoites. *Infection and*
.368 *Immunity*, 70(10), 5751-5758. doi:doi:10.1128/IAI.70.10.5751-5758.2002
- .369 Hu, G., Cabrera, A., Kono, M., Mok, S., Chaal, B. K., Haase, S., . . . Bozdech, Z. (2010). Transcriptional
.370 profiling of growth perturbations of the human malaria parasite *Plasmodium falciparum*. *Nature*
.371 *Biotechnology*, 28(1), 91-98. doi:10.1038/nbt.1597
- .372 Hu, K. (2008). Organizational Changes of the Daughter Basal Complex during the Parasite Replication of
.373 *Toxoplasma gondii*. *PLOS Pathogens*, 4(1), e10. doi:10.1371/journal.ppat.0040010
- .374 Huse, M. (2012). Microtubule-organizing center polarity and the immunological synapse: protein kinase C
.375 and beyond. *Frontiers in Immunology*, 3. doi:10.3389/fimmu.2012.00235
- .376 Jones, M. L., Cottingham, C., & Rayner, J. C. (2009). Effects of calcium signaling on *Plasmodium*
.377 *falciparum* erythrocyte invasion and post-translational modification of gliding-associated protein 45
.378 (PfGAP45). *Molecular and Biochemical Parasitology*, 168(1), 55-62.
.379 doi:<https://doi.org/10.1016/j.molbiopara.2009.06.007>
- .380 Jones, M. L., Kitson, E. L., & Rayner, J. C. (2006). *Plasmodium falciparum* erythrocyte invasion: A
.381 conserved myosin associated complex. *Molecular and Biochemical Parasitology*, 147(1), 74-84.
.382 doi:<https://doi.org/10.1016/j.molbiopara.2006.01.009>
- .383 Kinnunen, M., Kauppila, A., Karmenyan, A., & Myllylä, R. (2011). Effect of the size and shape of a red
.384 blood cell on elastic light scattering properties at the single-cell level. *Biomed Opt Express*, 2(7),
.385 1803-1814. doi:10.1364/boe.2.001803
- .386 Klaus, S., Binder, P., Kim, J., Machado, M., Funaya, C., Schaaf, V., . . . Ganter, M. (2022). Asynchronous
.387 nuclear cycles in multinucleated *Plasmodium falciparum* facilitate rapid proliferation. *Science*
.388 *Advances*, 8(13), eabj5362. doi:doi:10.1126/sciadv.abj5362
- .389 Kono, M., Herrmann, S., Loughran, N. B., Cabrera, A., Engelberg, K., Lehmann, C., . . . Gilberger, T. W.
.390 (2012). Evolution and Architecture of the Inner Membrane Complex in Asexual and Sexual Stages
.391 of the Malaria Parasite. *Molecular Biology and Evolution*, 29(9), 2113-2132.
.392 doi:10.1093/molbev/mss081

- .393 Koreny, L., Mercado-Saavedra, B. N., Klinger, C. M., Barylyuk, K., Butterworth, S., Hirst, J., . . . Waller, R.
.394 F. (2022). Stable and ancient endocytic structures navigate the complex pellicle of apicomplexan
.395 parasites. *bioRxiv*, 2022.2006.2002.494549. doi:10.1101/2022.06.02.494549
- .396 Kudryashev, M., Münter, S., Lemgruber, L., Montagna, G., Stahlberg, H., Matuschewski, K., . . .
.397 Frischknecht, F. (2012). Structural basis for chirality and directional motility of *Plasmodium*
.398 sporozoites. *Cell Microbiol*, 14(11), 1757-1768. doi:10.1111/j.1462-5822.2012.01836.x
- .399 Kumar, N., Koski, G., Harada, M., Aikawa, M., & Zheng, H. (1991). Induction and localization of
.400 *Plasmodium falciparum* stress proteins related to the heat shock protein 70 family. *Molecular and*
.401 *Biochemical Parasitology*, 48(1), 47-58. doi:[https://doi.org/10.1016/0166-6851\(91\)90163-Z](https://doi.org/10.1016/0166-6851(91)90163-Z)
- .402 Lambros, C., & Vanderberg, J. P. (1979). Synchronization of *Plasmodium falciparum* erythrocytic stages in
.403 culture. *J Parasitol*, 65(3), 418-420.
- .404 Li, J., Shami, G. J., Cho, E., Liu, B., Hanssen, E., Dixon, M. W. A., & Tilley, L. (2022). Repurposing the
.405 mitotic machinery to drive cellular elongation and chromatin reorganisation in *Plasmodium*
.406 *falciparum* gametocytes. *Nature Communications*, 13(1), 5054. doi:10.1038/s41467-022-32579-4
- .407 Liffner, B., & Absalon, S. (2021). Expansion Microscopy Reveals *Plasmodium falciparum* Blood-Stage
.408 Parasites Undergo Anaphase with A Chromatin Bridge in the Absence of Mini-Chromosome
.409 Maintenance Complex Binding Protein. *Microorganisms*, 9(11), 2306. Retrieved from
.410 <https://www.mdpi.com/2076-2607/9/11/2306>
- .411 Liffner, B., & Absalon, S. (2022). Hand-in-hand advances in microscopy and *Plasmodium* nuclear biology.
.412 *Trends in Parasitology*, 38(6), 421-423. doi:<https://doi.org/10.1016/j.pt.2022.03.007>
- .413 Liffner, B., Balbin, J. M., Shami, G. J., Siddiqui, G., Strauss, J., Frölich, S., . . . Wilson, D. W. (2022). Cell
.414 biological analysis reveals an essential role for *Pfcerli2* in erythrocyte invasion by malaria parasites.
.415 *Communications Biology*, 5(1), 121. doi:10.1038/s42003-022-03020-9
- .416 Louvel, V., Haase, R., Mercey, O., Laporte, M. H., Soldati-Favre, D., Hamel, V., & Guichard, P. (2022).
.417 Nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy (iU-ExM).
.418 *bioRxiv*, 2022.2011.2014.516383. doi:10.1101/2022.11.14.516383
- .419 Machado, M., Klaus, S., Klaschka, D., Guizetti, J., & Ganter, M. (2022). *Plasmodium falciparum* CRK4
.420 links early mitotic events to the onset of S-phase during schizogony. *bioRxiv*,
.421 2022.2008.2031.505163. doi:10.1101/2022.08.31.505163
- .422 Mahajan, B., Selvapandian, A., Gerald, N. J., Majam, V., Zheng, H., Wickramarachchi, T., . . . Kumar, S.
.423 (2008). Centrins, Cell Cycle Regulation Proteins in Human Malaria Parasite *Plasmodium falciparum*.
.424 *Journal of Biological Chemistry*, 283(46), 31871-31883.
.425 doi:<https://doi.org/10.1074/jbc.M800028200>
- .426 Marks, D. L., Bittman, R., & Pagano, R. E. (2008). Use of Bodipy-labeled sphingolipid and cholesterol
.427 analogs to examine membrane microdomains in cells. *Histochem Cell Biol*, 130(5), 819-832.
.428 doi:10.1007/s00418-008-0509-5
- .429 Milani, K. J., Schneider, T. G., & Taraschi, T. F. (2015). Defining the morphology and mechanism of the
.430 hemoglobin transport pathway in *Plasmodium falciparum*-infected erythrocytes. *Eukaryot Cell*,
.431 14(4), 415-426. doi:10.1128/ec.00267-14
- .432 Morano, A. A., & Dvorin, J. D. (2021). The Ringleaders: Understanding the Apicomplexan Basal Complex
.433 Through Comparison to Established Contractile Ring Systems. *Frontiers in Cellular and Infection*
.434 *Microbiology*, 11. doi:10.3389/fcimb.2021.656976
- .435 Morissette, N. S., & Sibley, L. D. (2002). Cytoskeleton of Apicomplexan Parasites. *Microbiology and*
.436 *Molecular Biology Reviews*, 66(1), 21-38. doi:doi:10.1128/MMBR.66.1.21-38.2002
- .437 Nanda, J. S., & Lorsch, J. R. (2014). Labeling a protein with fluorophores using NHS ester derivitization.
.438 *Methods Enzymol*, 536, 87-94. doi:10.1016/b978-0-12-420070-8.00008-8
- .439 Nishi, M., Hu, K., Murray, J. M., & Roos, D. S. (2008). Organellar dynamics during the cell cycle of
.440 *Toxoplasma gondii*. *Journal of Cell Science*, 121(9), 1559-1568. doi:10.1242/jcs.021089
- .441 Oliveira Souza, R. O., Jacobs, K. N., Back, P. S., Bradley, P. J., & Arrizabalaga, G. (2022). IMC10 and
.442 LMF1 mediate mitochondrial morphology through mitochondrion-pellicle contact sites in
.443 *Toxoplasma gondii*. *J Cell Sci*, 135(22). doi:10.1242/jcs.260083
- .444 Poot, M., Zhang, Y. Z., Krämer, J. A., Wells, K. S., Jones, L. J., Hanzel, D. K., . . . Haugland, R. P. (1996).
.445 Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. *J*
.446 *Histochem Cytochem*, 44(12), 1363-1372. doi:10.1177/44.12.8985128


- 447 Qian, P., Wang, X., Guan, C., Fang, X., Cai, M., Zhong, C.-q., . . . Yuan, J. (2022). Apical anchorage and
448 stabilization of subpellicular microtubules by apical polar ring ensures *Plasmodium* ookinete
449 infection in mosquito. *Nature Communications*, 13(1), 7465. doi:10.1038/s41467-022-35270-w
- 450 Rashpa, R., & Brochet, M. (2022). Expansion microscopy of *Plasmodium* gametocytes reveals the
451 molecular architecture of a bipartite microtubule organisation centre coordinating mitosis with
452 axoneme assembly. *PLoS Pathog*, 18(1), e1010223. doi:10.1371/journal.ppat.1010223
- 453 Rashpa, R., Klages, N., Schwart, D., Pasquarello, C., & Brochet, M. (2023). The Skp1-Cullin1-FBXO1
454 complex is a pleiotropic regulator required for the formation of gametes and motile forms in
455 *Plasmodium berghei*. *Nature Communications*, 14(1), 1312. doi:10.1038/s41467-023-36999-8
- 456 Richard, D., MacRaild, C. A., Riglar, D. T., Chan, J.-A., Foley, M., Baum, J., . . . Cowman, A. F. (2010).
457 Interaction between *Plasmodium falciparum* Apical Membrane Antigen 1 and the Rhopty Neck
458 Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites.
459 *Journal of Biological Chemistry*, 285(19), 14815-14822.
460 doi:<https://doi.org/10.1074/jbc.M109.080770>
- 461 Riglar, D. T., Richard, D., Wilson, D. W., Boyle, M. J., Dekiwadia, C., Turnbull, L., . . . Baum, J. (2011).
462 Super-Resolution Dissection of Coordinated Events during Malaria Parasite Invasion of the Human
463 Erythrocyte. *Cell Host & Microbe*, 9(1), 9-20. doi:10.1016/j.chom.2010.12.003
- 464 Roumégous, C., Abou Hammoud, A., Fuster, D., Dupuy, J.-W., Blancard, C., Salin, B., . . . Frénal, K.
465 (2022). Identification of new components of the basal pole of *Toxoplasma gondii* provides novel
466 insights into its molecular organization and functions. *Frontiers in Cellular and Infection
467 Microbiology*, 12. doi:10.3389/fcimb.2022.1010038
- 468 Rudlaff, R. M., Kraemer, S., Marshman, J., & Dvorin, J. D. (2020). Three-dimensional ultrastructure of
469 *Plasmodium falciparum* throughout cytokinesis. *PLOS Pathogens*, 16(6), e1008587.
470 doi:10.1371/journal.ppat.1008587
- 471 Rudlaff, R. M., Kraemer, S., Streva, V. A., & Dvorin, J. D. (2019). An essential contractile ring protein
472 controls cell division in *Plasmodium falciparum*. *Nature Communications*, 10(1), 2181.
473 doi:10.1038/s41467-019-10214-z
- 474 Salmon, B. L., Oksman, A., & Goldberg, D. E. (2001). Malaria parasite exit from the host erythrocyte: a
475 two-step process requiring extraerythrocytic proteolysis. *Proceedings of the National Academy of
476 Sciences*, 98(1), 271-276.
- 477 Sanchez, A. D., & Feldman, J. L. (2017). Microtubule-organizing centers: from the centrosome to non-
478 centrosomal sites. *Curr Opin Cell Biol*, 44, 93-101. doi:10.1016/j.ceb.2016.09.003
- 479 Severo, V., Souza, R., Vitorino, F., Cunha, J., Ávila, A., Arrizabalaga, G., & Nardelli, S. (2022). Previously
480 Unidentified Histone H1-Like Protein Is Involved in Cell Division and Ribosome Biosynthesis in
481 *Toxoplasma gondii*. *mSphere*, 7(6), e0040322. doi:10.1128/msphere.00403-22
- 482 Sheiner, L., Demerly, J. L., Poulsen, N., Beatty, W. L., Lucas, O., Behnke, M. S., . . . Striepen, B. (2011). A
483 Systematic Screen to Discover and Analyze Apicoplast Proteins Identifies a Conserved and Essential
484 Protein Import Factor. *PLOS Pathogens*, 7(12), e1002392. doi:10.1371/journal.ppat.1002392
- 485 Sim, B. K. L., Narum, D. L., Chattopadhyay, R., Ahumada, A., Haynes, J. D., Fuhrmann, S. R., . . . Hoffman,
486 S. L. (2011). Delineation of Stage Specific Expression of *Plasmodium falciparum* EBA-175 by
487 Biologically Functional Region II Monoclonal Antibodies. *PLOS ONE*, 6(4), e18393.
488 doi:10.1371/journal.pone.0018393
- 489 Simon, C. S., Funaya, C., Bauer, J., Voß, Y., Machado, M., Penning, A., . . . Guizetti, J. (2021). An
490 extended DNA-free intranuclear compartment organizes centrosome microtubules in malaria
491 parasites. *Life Science Alliance*, 4(11), e202101199. doi:10.26508/lsa.202101199
- 492 Sloves, P.-J., Delhaye, S., Mouveaux, T., Werkmeister, E., Slomianny, C., Hovasse, A., . . . Tomavo, S.
493 (2012). *Toxoplasma* Sortilin-like Receptor Regulates Protein Transport and Is Essential for Apical
494 Secretory Organelle Biogenesis and Host Infection. *Cell Host & Microbe*, 11(5), 515-527.
495 doi:10.1016/j.chom.2012.03.006
- 496 Taylor, H. M., McRobert, L., Grainger, M., Sicard, A., Dluzewski, A. R., Hopp, C. S., . . . Baker, D. A.
497 (2010). The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage
498 schizogony. *Eukaryot Cell*, 9(1), 37-45. doi:10.1128/ec.00186-09

- .499 Taylor, H. M., McRobert, L., Grainger, M., Sicard, A., Dluzewski, A. R., Hopp, C. S., . . . Baker, D. A.
.500 (2010). The Malaria Parasite Cyclic GMP-Dependent Protein Kinase Plays a Central Role in Blood-
.501 Stage Schizogony. *Eukaryotic Cell*, 9(1), 37-45. doi:doi:10.1128/EC.00186-09
- .502 Tomasina, R., Gonzalez, F. C., Martins-Duarte, É. S., Bastin, P., Gissot, M., & Francia, M. E. (2022).
.503 Separate To Operate: the Centriole-Free Inner Core of the Centrosome Regulates the Assembly of
.504 the Intranuclear Spindle in *Toxoplasma gondii*. *mBio*, 13(5), e01859-01822.
.505 doi:doi:10.1128/mbio.01859-22
- .506 Tonkin, C. J., van Dooren, G. G., Spurck, T. P., Struck, N. S., Good, R. T., Handman, E., . . . McFadden, G.
.507 I. (2004). Localization of organellar proteins in *Plasmodium falciparum* using a novel set of
.508 transfection vectors and a new immunofluorescence fixation method. *Molecular and Biochemical
.509 Parasitology*, 137(1), 13-21. doi:<https://doi.org/10.1016/j.molbiopara.2004.05.009>
- .510 Topolska, A. E., Lidgett, A., Truman, D., Fujioka, H., & Coppel, R. L. (2004). Characterization of a
.511 membrane-associated rhoptry protein of *Plasmodium falciparum*. *J Biol Chem*, 279(6), 4648-4656.
.512 doi:10.1074/jbc.M307859200
- .513 Tosetti, N., Dos Santos Pacheco, N., Bertiaux, E., Maco, B., Bourdonville, L., Hamel, V., . . . Soldati-Favre,
.514 D. (2020). Essential function of the alveolin network in the subpellicular microtubules and conoid
.515 assembly in *Toxoplasma gondii*. *eLife*, 9, e56635. doi:10.7554/eLife.56635
- .516 Trager, W., & Jensen, J. B. (1976). Human malaria parasites in continuous culture. *Science*, 193(4254), 673-
.517 675. doi:10.1126/science.781840
- .518 Tran, J. Q., de Leon, J. C., Li, C., Huynh, M. H., Beatty, W., & Morrisette, N. S. (2010). RNG1 is a late
.519 marker of the apical polar ring in *Toxoplasma gondii*. *Cytoskeleton (Hoboken)*, 67(9), 586-598.
.520 doi:10.1002/cm.20469
- .521 van Dooren, G. G., Marti, M., Tonkin, C. J., Stimmller, L. M., Cowman, A. F., & McFadden, G. I. (2005).
.522 Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life
.523 cycle of *Plasmodium falciparum*. *Molecular Microbiology*, 57(2), 405-419.
.524 doi:<https://doi.org/10.1111/j.1365-2958.2005.04699.x>
- .525 van Dooren, G. G., Stimmller, L. M., & McFadden, G. I. (2006). Metabolic maps and functions of the
.526 *Plasmodium* mitochondrion. *FEMS Microbiology Reviews*, 30(4), 596-630. doi:10.1111/j.1574-
.527 6976.2006.00027.x
- .528 Verhoef, J. M. J., Meissner, M., & Kooij, T. W. A. (2021). Organelle Dynamics in Apicomplexan Parasites.
.529 *mBio*, 12(4), e0140921. doi:10.1128/mBio.01409-21
- .530 Viswanathan, S., Williams, M. E., Bloss, E. B., Stasevich, T. J., Speer, C. M., Nern, A., . . . Looger, L. L.
.531 (2015). High-performance probes for light and electron microscopy. *Nature Methods*, 12(6), 568-576.
.532 doi:10.1038/nmeth.3365
- .533 Voß, Y., Klaus, S., Ganter, M., & Guizetti, J. (2022). Ca^{2+} -inducible phase separation of centrins in
.534 proliferating malaria parasites. *bioRxiv*, 2022.2007.2026.501452. doi:10.1101/2022.07.26.501452
- .535 Wassie, A. T., Zhao, Y., & Boyden, E. S. (2019). Expansion microscopy: principles and uses in biological
.536 research. *Nature Methods*, 16(1), 33-41. doi:10.1038/s41592-018-0219-4
- .537 Weiss, G. E., Gilson, P. R., Taechalertpaisarn, T., Tham, W.-H., de Jong, N. W. M., Harvey, K. L., . . .
.538 Crabb, B. S. (2015). Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand
.539 Interactions during *Plasmodium falciparum* Invasion of Erythrocytes. *PLOS Pathogens*, 11(2),
.540 e1004670. doi:10.1371/journal.ppat.1004670
- .541 Wolf, D. M., Segawa, M., Kondadi, A. K., Anand, R., Bailey, S. T., Reichert, A. S., . . . Shirihai, O. S.
.542 (2019). Individual cristae within the same mitochondrion display different membrane potentials and
.543 are functionally independent. *The EMBO Journal*, 38(22), e101056.
.544 doi:<https://doi.org/10.15252/embj.2018101056>
- .545 Xie, S. C., Ralph, S. A., & Tilley, L. (2020). K13, the Cytostome, and Artemisinin Resistance. *Trends in
.546 Parasitology*, 36(6), 533-544. doi:10.1016/j.pt.2020.03.006
- .547 Yang, T., Yeoh, L. M., Tutor, M. V., Dixon, M. W., McMillan, P. J., Xie, S. C., . . . Cobbold, S. A. (2019).
.548 Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning
.549 Artemisinin Resistance. *Cell Reports*, 29(9), 2917-2928.e2915.
.550 doi:<https://doi.org/10.1016/j.celrep.2019.10.095>

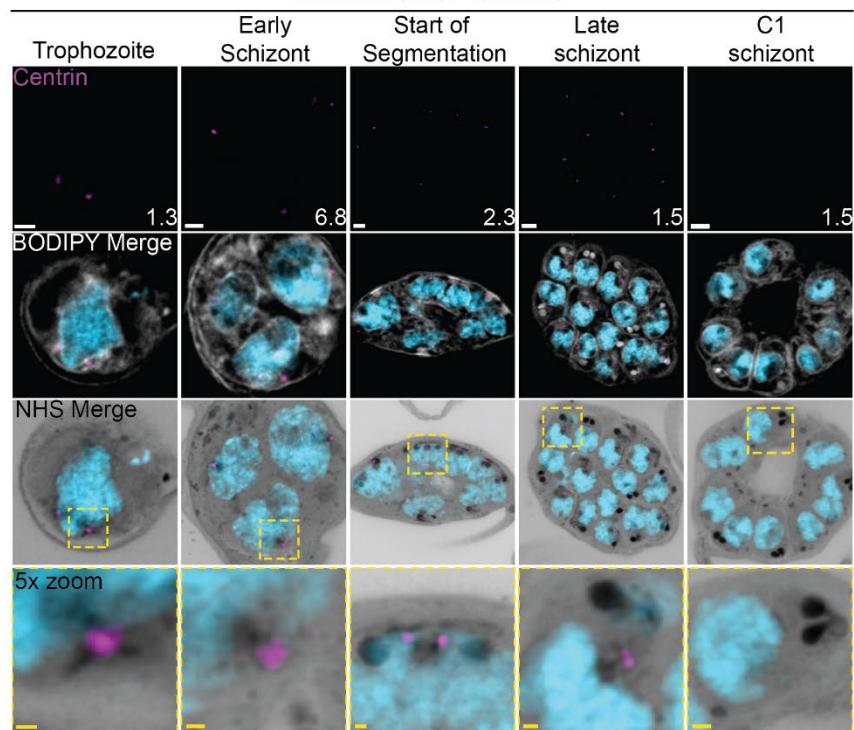
a



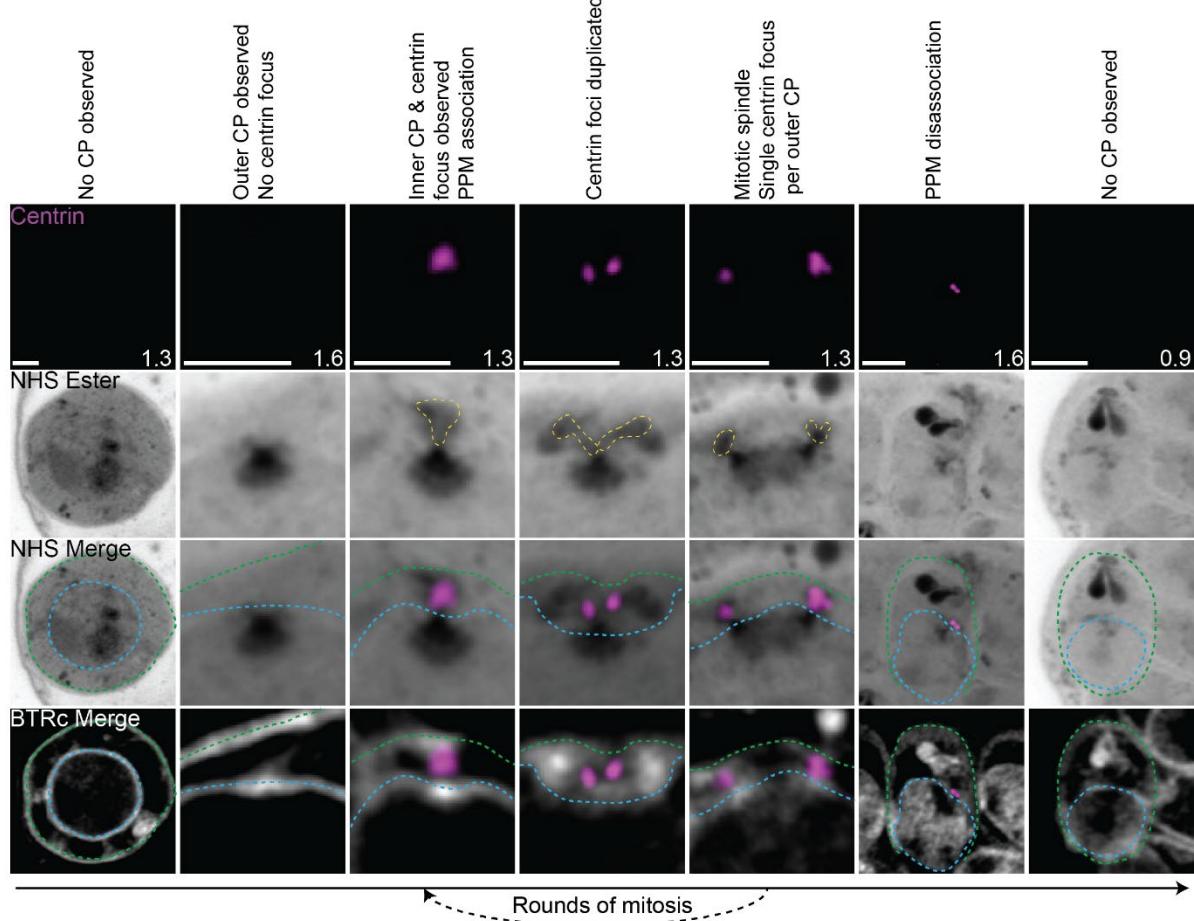
b

c

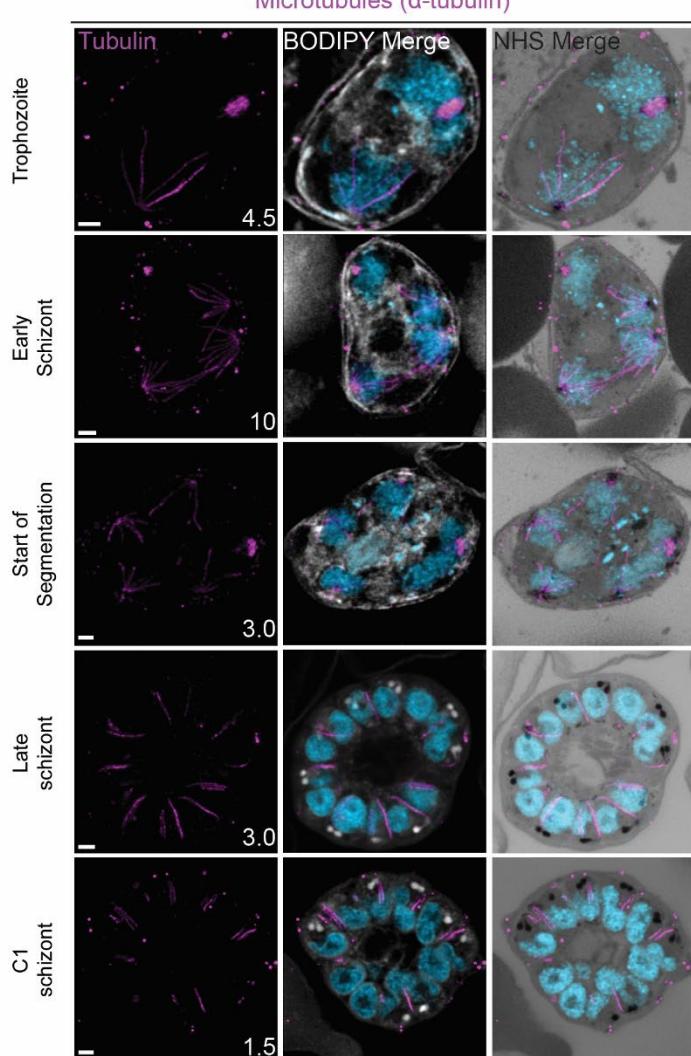
U-ExM *Plasmodium falciparum* (unexpanded inset)

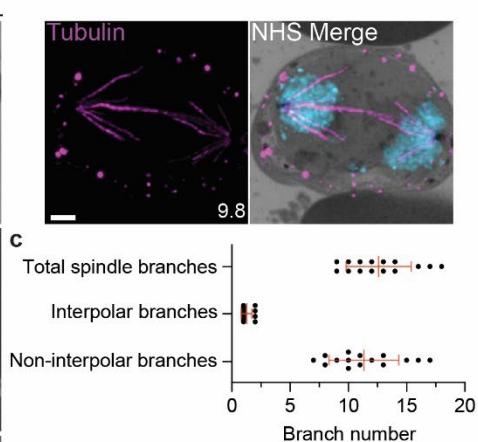


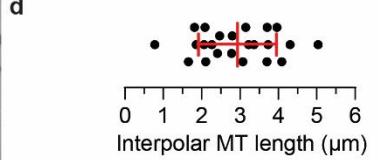
d

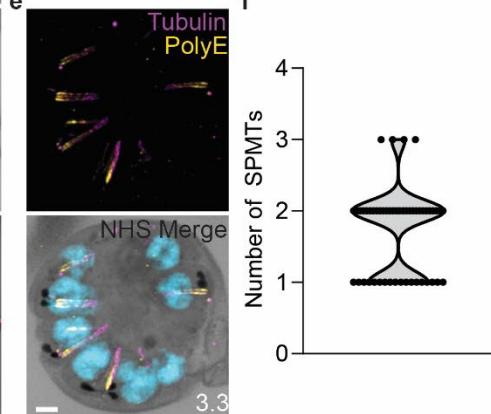

Organelles (and markers) imaged in this study

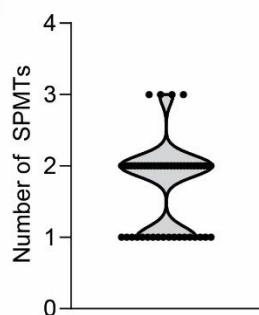
Centriolar plaque (Centrin)	Microtubules (Tubulin)	Basal Complex (CINCH)	Mitochondrion (ATPd/MitoTracker)
Apicoplast (ACP ^{TS} -GFP)	Cystosomes (K13 ^{GFP})	Rhoptry neck (RON4)	Rhoptry bulb (RAP1/RAMA)
Micronemes (AMA1/EBA175)	Cytoplasm (Aldolase)	Endoplasmic reticulum (BIP)	Golgi (ERD2)
Inner membrane complex (GAP45/IMC1g)			

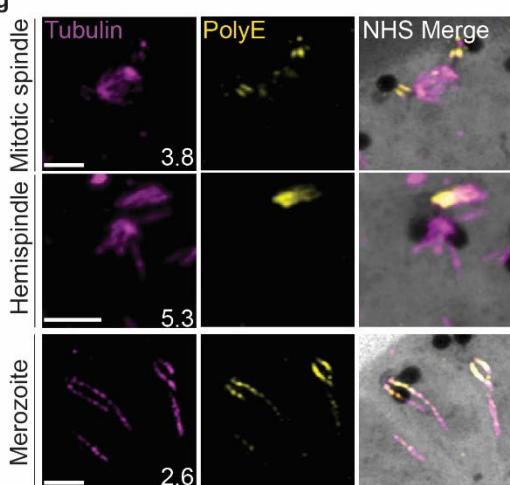

a

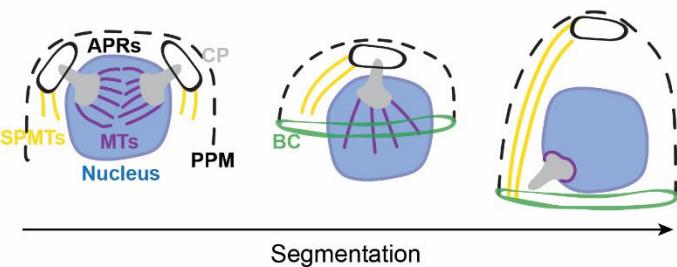

b

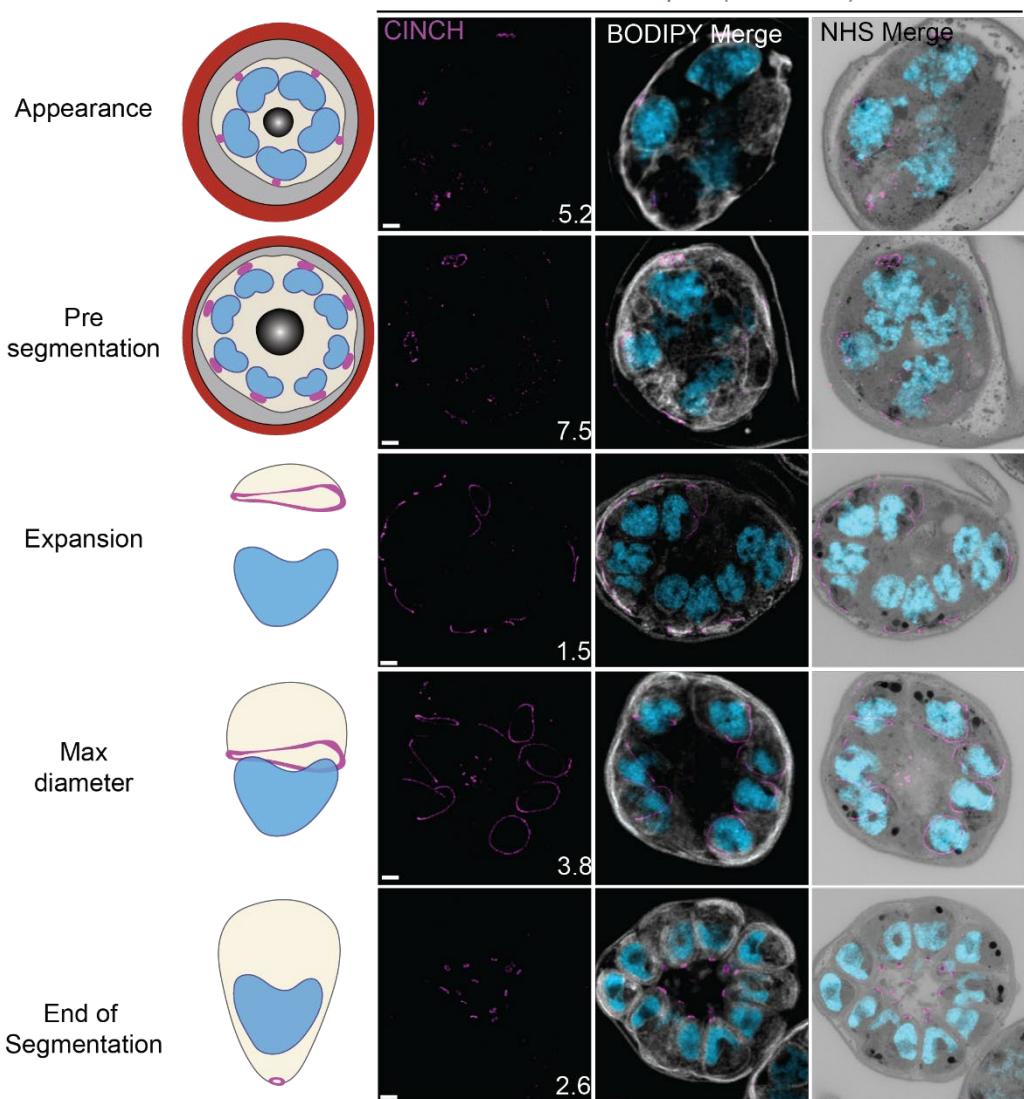

a

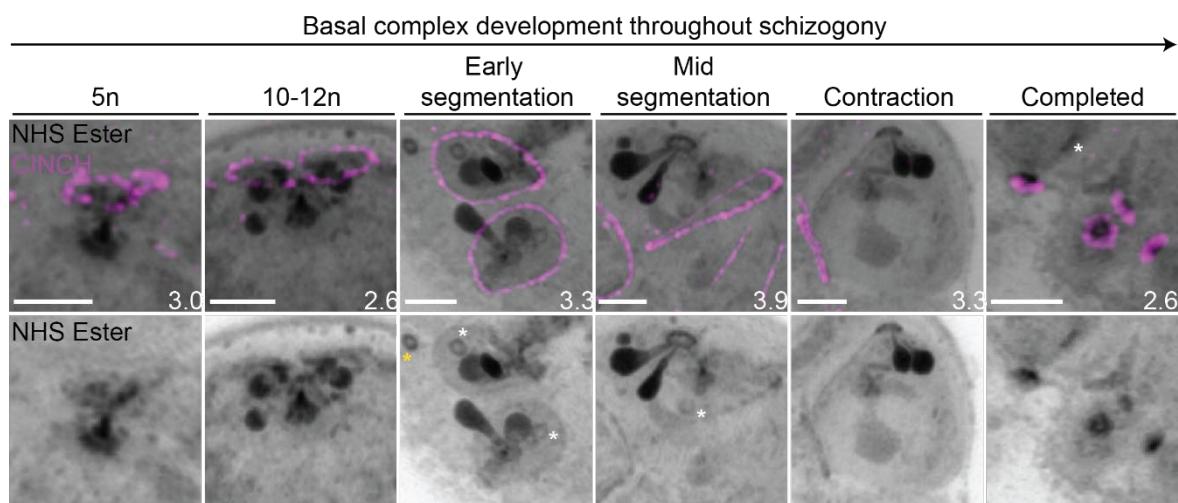

c

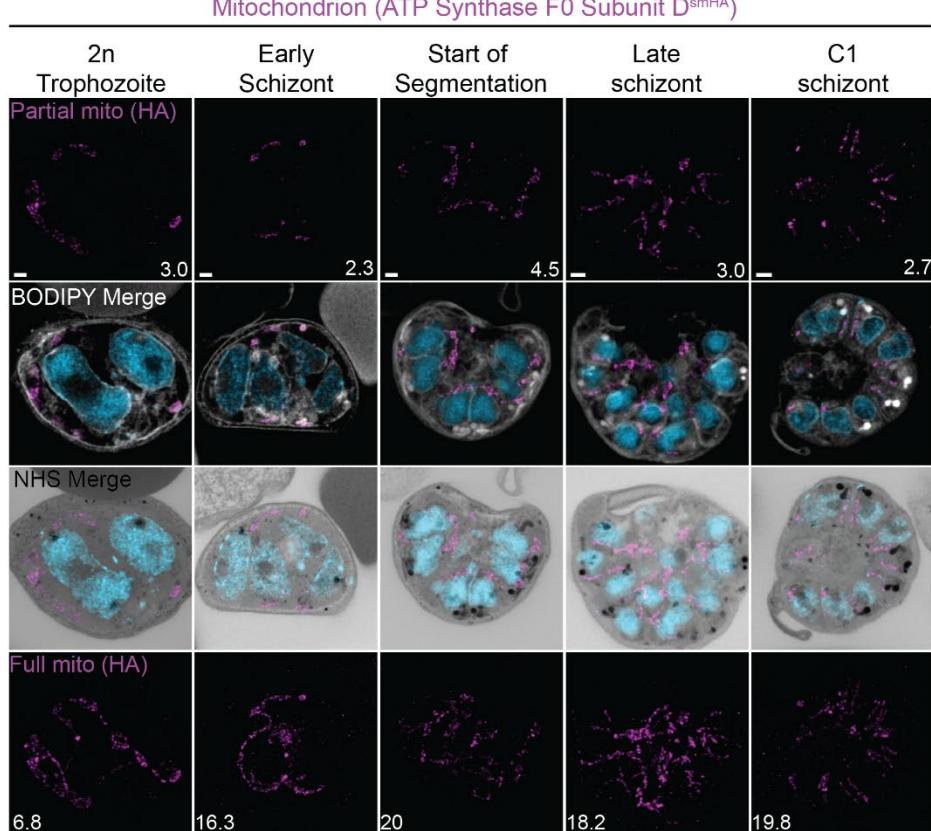

d

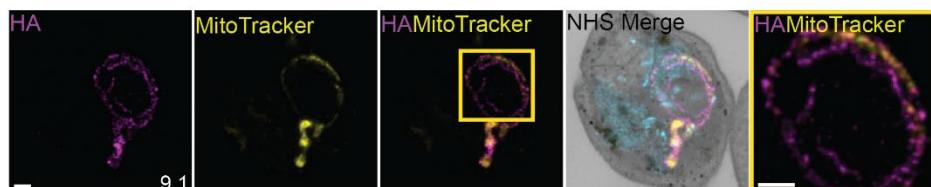

e

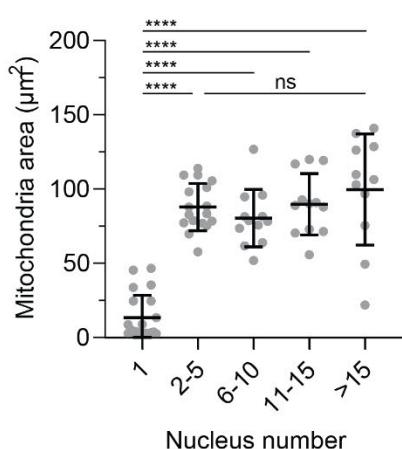

f

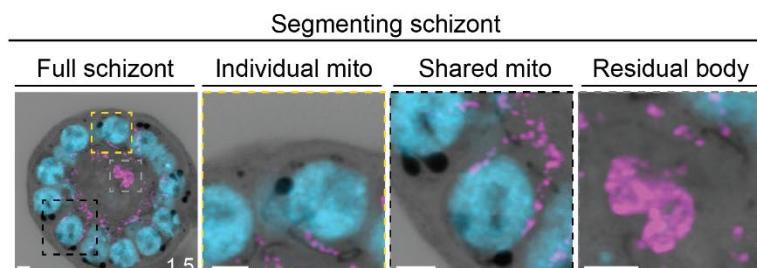

g

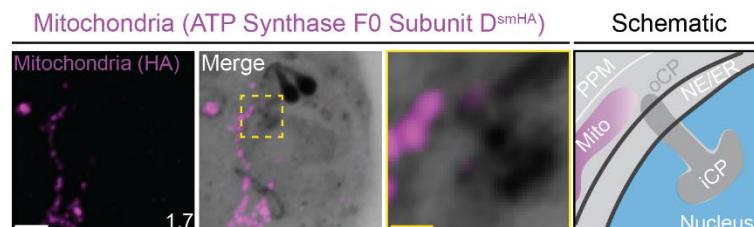

h

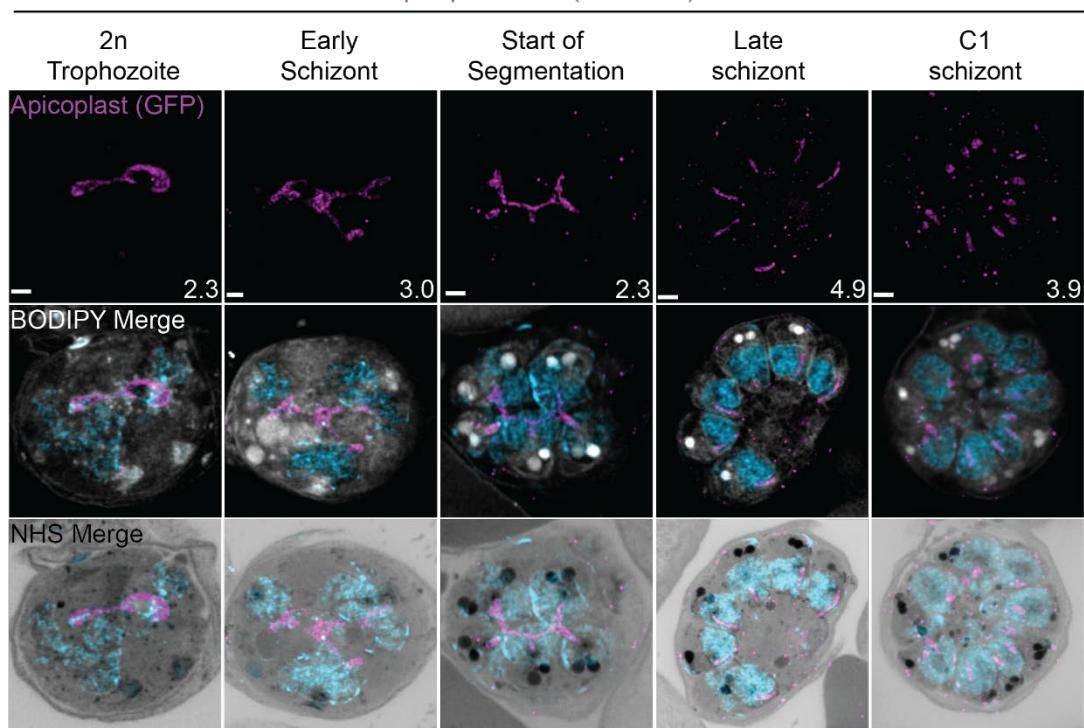

a

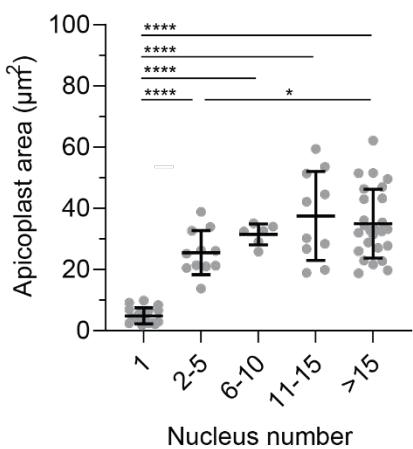

b

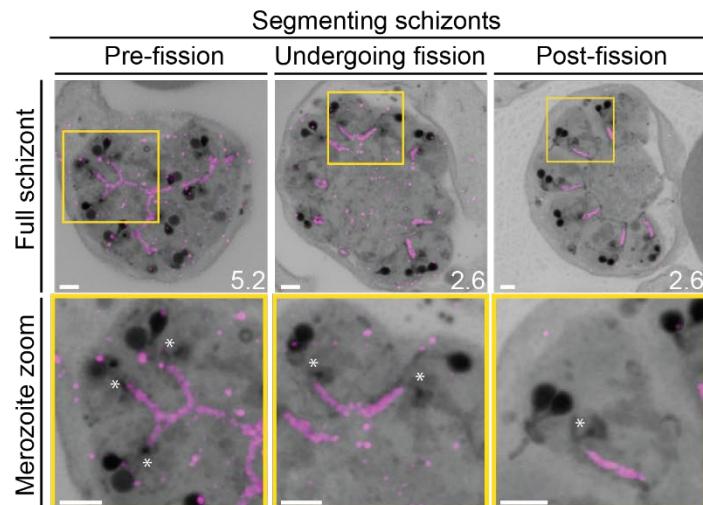

a

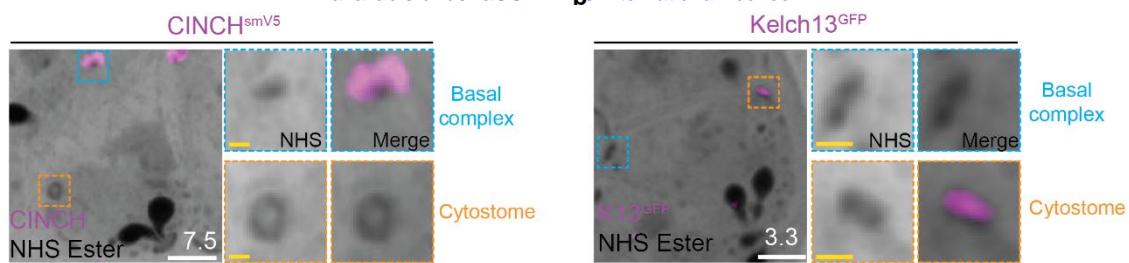

b

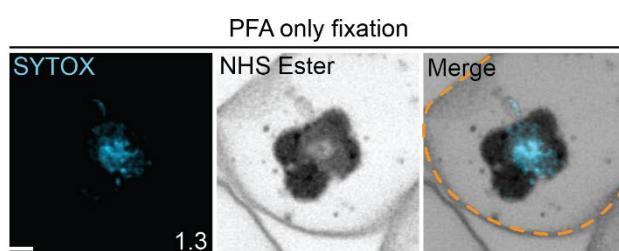

c

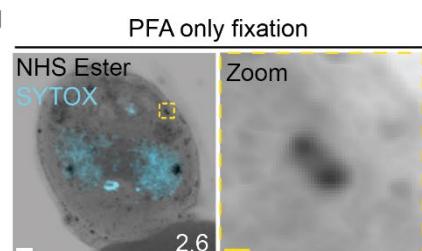

d

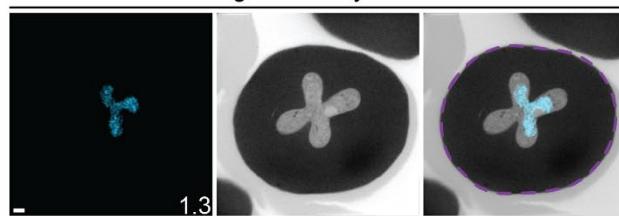

e

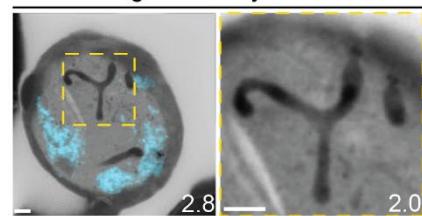

a

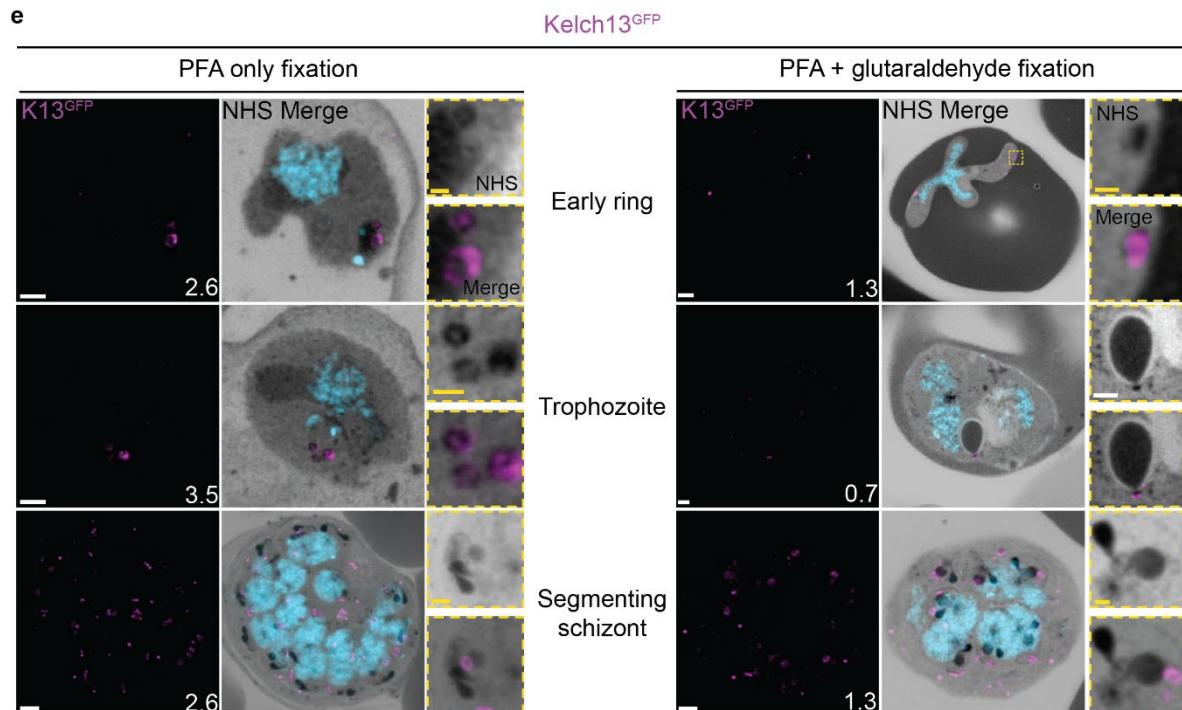

b

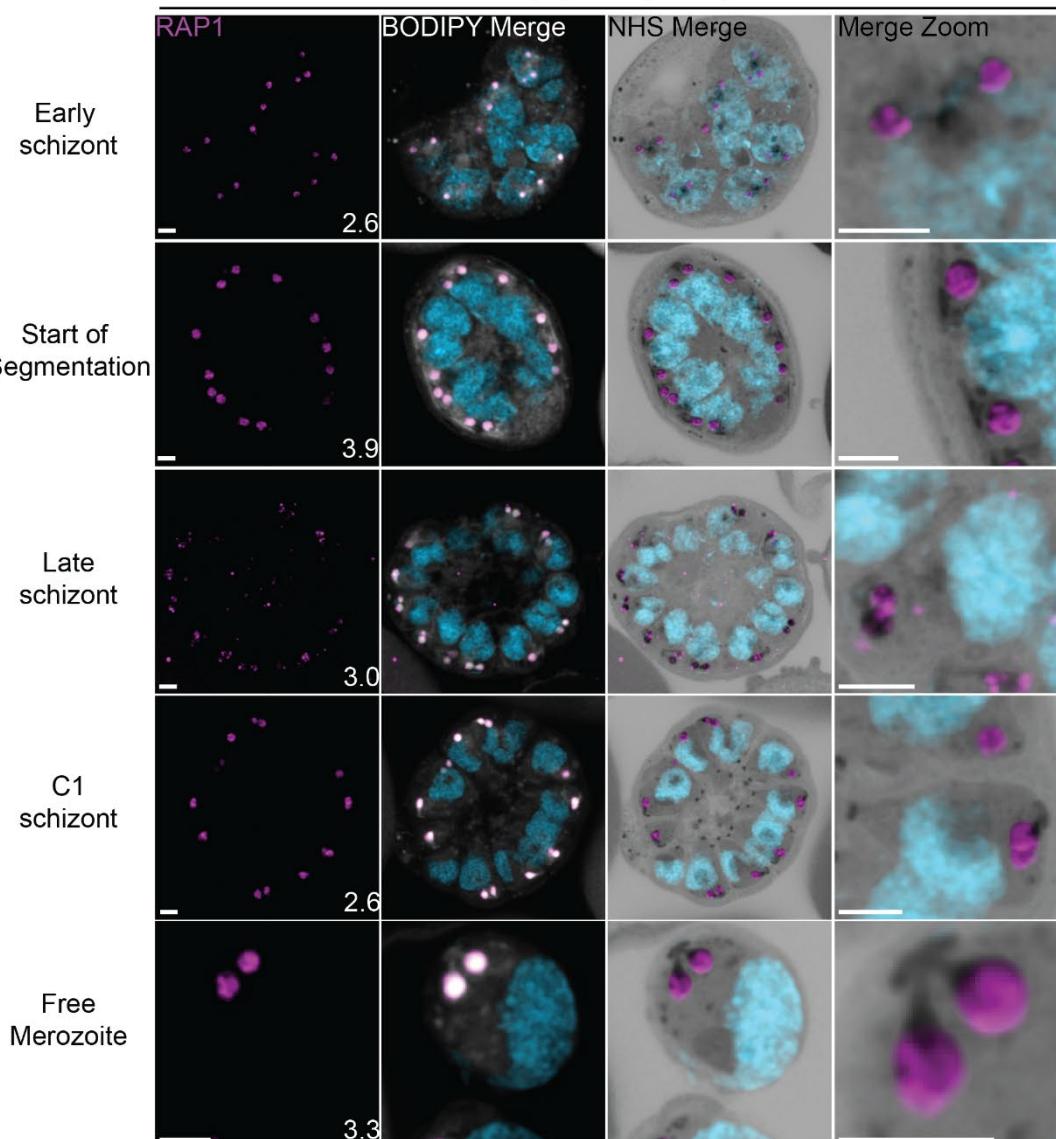

c

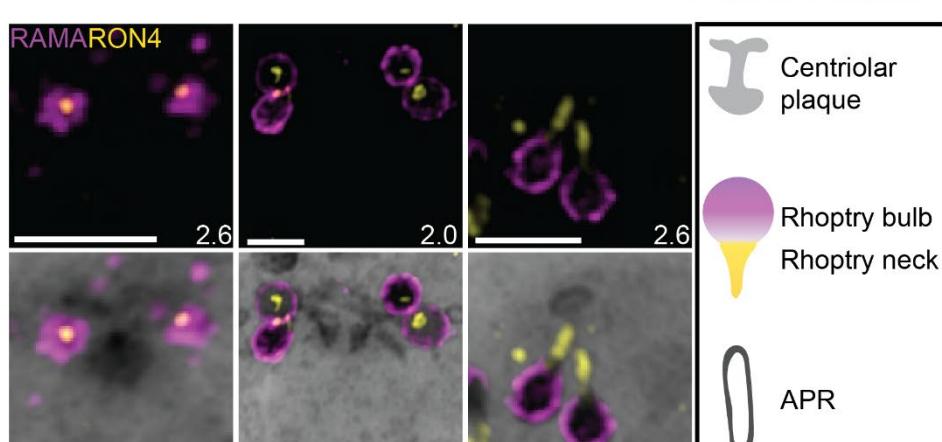

a

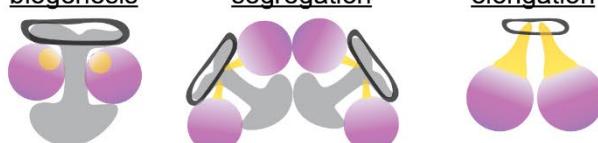

c

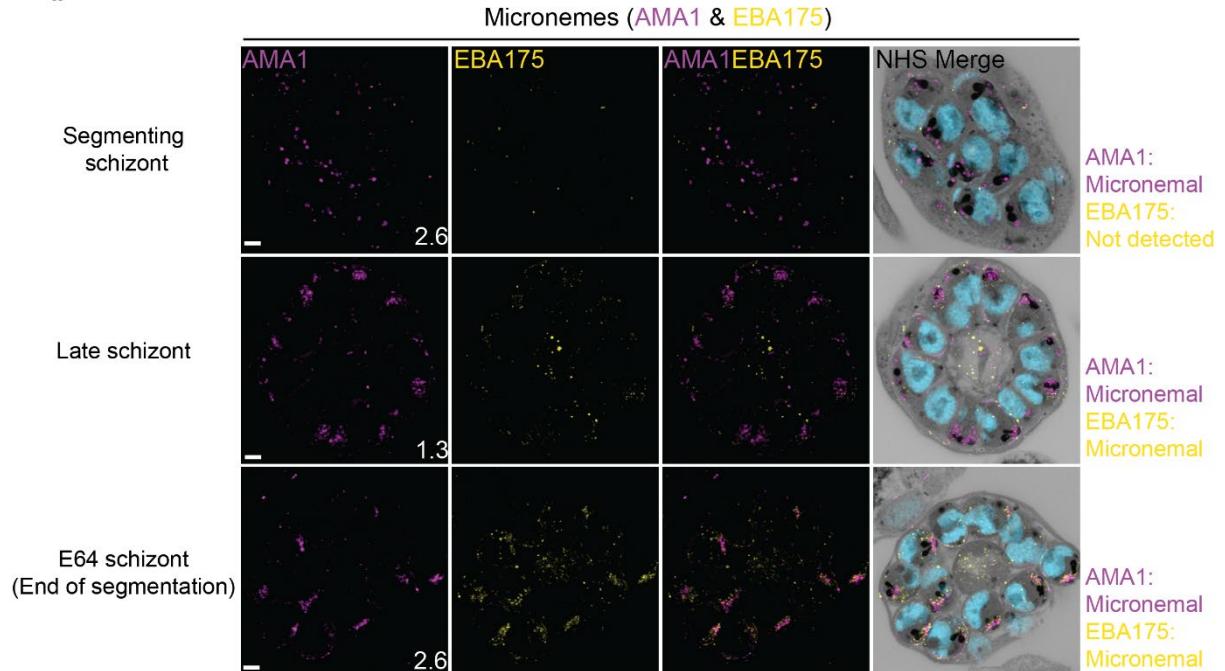

d

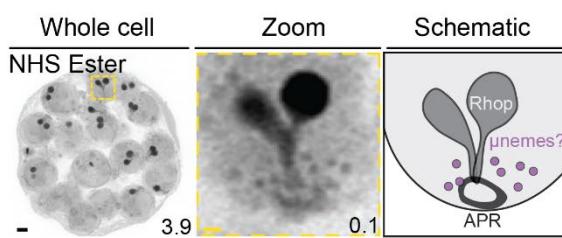

PFA only fixation

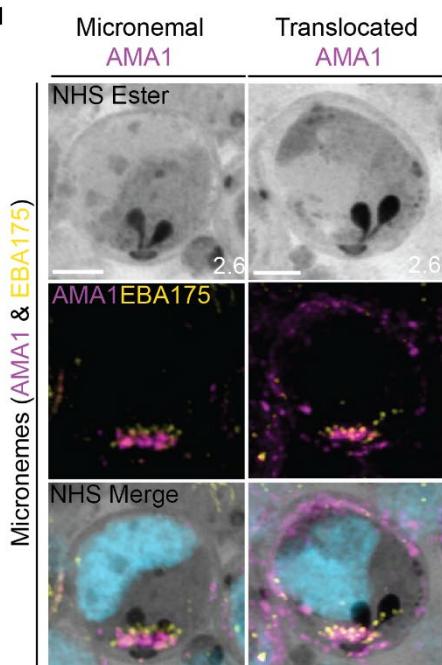

PFA only fixation

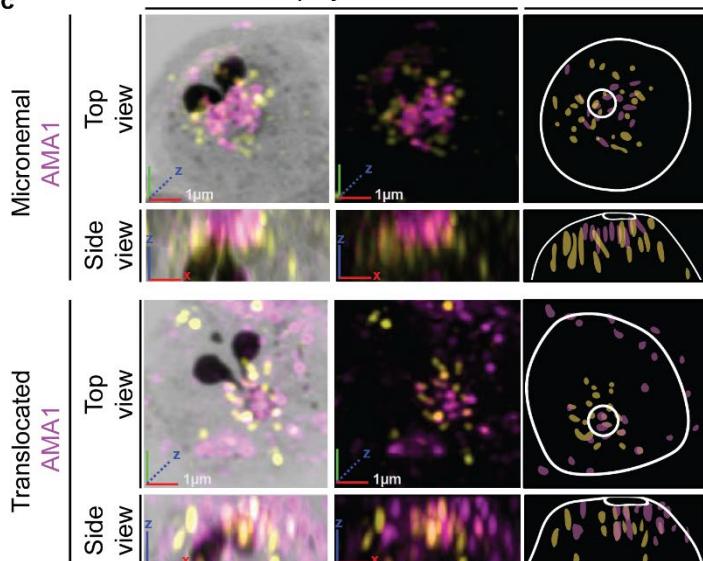

e

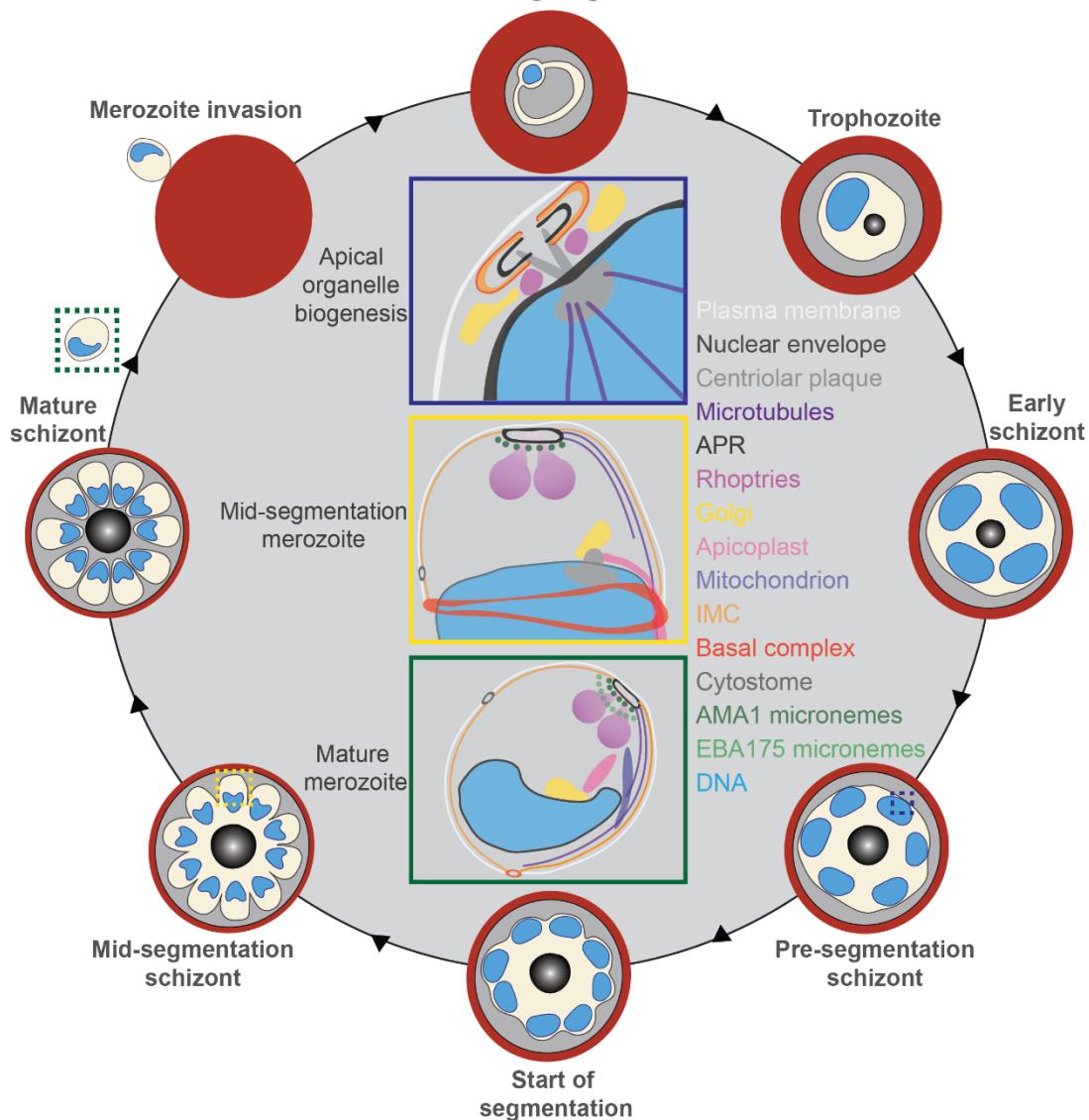

a

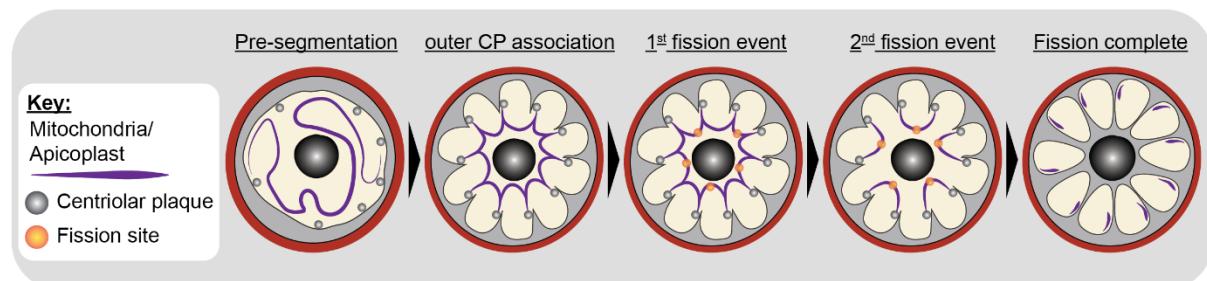

b


Rhopty neck biogenesis Rhopty pair segregation Rhopty neck elongation


a


b


d


c

a

b

