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ABSTRACT 

Transcription factor dynamics is fundamental to determine the activation of accurate transcriptional 

programs and yet is heterogeneous at single-cell level. The source of this dynamic variability is not 

completely understood. Here we focus on the nuclear factor �B (NF-�B), whose dynamics have been 

reported to cover a wide spectrum ranging from oscillatory to non-oscillatory. We show that clonal 

populations of immortalized fibroblasts derived from a single mouse embryo (that can hence be 

considered quasi-identical) display robustly distinct dynamics upon tumor necrosis ɑ (TNF-ɑ) stimulation. 
Combining transcriptomics, data-constrained mathematical modelling, and mRNA interference we show 

that small differences in the expression of genes belonging to the NF-�B regulatory circuit are predictive 

of the distinct responses to inflammatory stimuli observed among the clones. We propose that this 

transcriptional fine-tuning can be a general mechanism to produce cell subpopulations with distinct 

dynamic responses to stimuli within homogeneous cell populations.   
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INTRODUCTION 

 

Cells are able to provide precise transcriptionally-mediated responses to the complex mixture of external 

and internal stimuli to which they are subjected (Milo and Phillips, 2015). In this context, a key role is 

played by transcription factors (TFs), proteins that are <activated= upon stimuli and selectively trigger the 
expression of target genes coding for proteins required for an adequate response. The activation of 

several TFs is primarily mediated by their nuclear accumulation and  is tightly regulated by other players 

within their genetic regulatory circuit, whose design contributes to providing a specific transcriptional 

output given a certain input (Alon, 2007). The nuclear accumulation of TFs is dynamic and can be 

oscillatory, as shown first for circadian rhythms in response to the day/night cycle (Patke et al., 2020) and 

the cell cycle  (Ferrell et al., 2011); oscillations were then discovered for a wide variety of TFs (Levine et 

al., 2013). The emerging view is that such dynamics is not merely a by-product of the regulatory 

mechanisms of the TFs, but that it has a functional role in gene expression (Purvis and Lahav, 2013) and 

impacts a wide array of cellular process, e.g. determining cell fate (as for p53, (Purvis et al., 2012)), the 

response to mechanical cues (as for YAP/TAZ, (Franklin et al., 2020)) or the speed of the segmentation 

clock during embryo development (as for Hes7, (Matsuda et al., 2020)).  Of note, single cell measures 

show consistently a high degree of heterogeneity in TF dynamics within a population, which yet is 

compatible with the TFs’ ability to provide an accurate  transcriptional output given an input (Selimkhanov 

et al., 2014).    

 

The NF-�B system is a paradigmatic example of the dynamic nature of TF activation. NF-�B is a family of 

dimeric TFs that plays a central role in innate and adaptive immune responses (Hayden and Ghosh, 2008; 

Natoli and Ostuni, 2019); dimers including the monomer p65 have the strongest transcription activating 

potential (Schmitz and Baeuerle, 1991) and are involved in the canonical pathway (we’ll refer to such 
dimers as NF-�B in what follows).  NF-�B is kept in the cytosol bound by its inhibitors I�B, which are 

degraded upon external inflammatory stimuli such as the cytokine Tumor Necrosis Factor alpha (TNF-ɑ) 
and are themselves NF-�B transcriptional targets (A.Hoffmann et al., 2002).  It was immediately evident 

and subsequently confirmed by live cell imaging  that this system of negative feedbacks could lead to 

oscillations in the nuclear concentration of NF-�B upon stimulation in single cells (Nelson et al., 2004; 

Sung et al., 2009; Tay et al., 2010; Zambrano et al., 2014a). NF-�B nuclear localization dynamics (in short, 

NF-�B dynamics) have the potential to discriminate between ligand dose (Zhang et al., 2017a)  and type 

(Adelaja et al., 2021; Martin et al., 2020) and determines target gene expression (Ashall et al., 2009; Lee 

et al., 2014; Sung et al., 2009; Tay et al., 2010) in a functionally relevant way (Zambrano et al., 2016).  

However, terming such dynamics <oscillatory= is somewhat simplistic: a salient feature of all these studies 
is that the dynamics can be qualitatively quite different between cell types, ranging from sustained 

oscillations with a period of 1.5 hours for 3T3 cells (Kellogg and Tay, 2015), damped oscillations for mouse 

embryonic fibroblasts (Zambrano et al., 2016),  persistent nuclear localization for RAW or 3T3 cells upon 

LPS (Lee et al., 2009; Sung et al., 2014) and non-oscillatory for HeLa cells (Lee et al., 2014). Even within a 

population of cells of the same type individual cells display dynamical heterogeneity and qualitatively 

different dynamics, with cells that oscillate and cells that do not (Nelson et al., 2004; Zambrano et al., 

2014a). The origin of these differences is far from being clear and yet can have important functional 

consequences, for example in the cell’s life-death decisions (Lee et al., 2016) and in its epigenetic state 
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(Cheng et al., 2021).  Understanding the origin of such differences can shed light on how the NF-�B system 

uses dynamics to produce a desired output given a certain input, and more in general on the mechanisms 

by which cells within a population produce distinct TF dynamic responses to stimuli.  

 

Here, we focused on immortalized GFP-NF-�B mouse fibroblasts (MEFs) derived from a single embryo. 

These cells can be considered <quasi-identical=: they share the same genome derived from a single 
individual, albeit with sparse variations accumulated during in vitro cultivation and immortalization. Yet, 

in these cells qualitatively and quantitatively different dynamics can be observed (De Lorenzi et al., 2009; 

Sung et al., 2009; Zambrano et al., 2014a, 2016). To determine the origin of such dynamical variations, we 

isolated several clones and we found that each of them has distinct and clonally heritable NF-�B dynamics 

upon TNF-ɑ. We focused on three archetypical clones with persistent, oscillatory, and weak responses, 

respectively. Transcriptomic analysis and mathematical modelling show that small but significant 

differences in the expression level of key mediators of NF-�B activation are predictive of the strength of 

the response upon TNF-ɑ as defined by the maximum and/or the area under the curve of the nuclear 
localization. Likewise, differences in expression levels of the components of the IL-1Ā signaling pathway 

predict the distinct NF-�B activation of the clones upon IL-1Ā stimulation. Furthermore, differences in the 

expression of the system’s negative feedbacks predict the differences in the decay of the activation, i.e., 

the sharpness of the response. Indeed, interfering with the expression of the repressor I�Bɑ can make 
cells switch from a sharp response to a more persistent nuclear localization dynamics.  

 

Taken together, our results show that small differences in the expression levels of the genes of the NF-�B 

regulatory circuit can produce distinct responses in cells of the same type derived from the same 

organism. This mechanism explains how multicellular organisms can produce diverse cell types with 

selective and specialized NF-�B-mediated response to inflammatory stimuli.   
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RESULTS  

 

1. Clonal populations of fibroblasts derived from a single embryo display distinct NF-�B dynamics 

upon TNF-ɑ 

Whereas different dynamics have been reported in different cell types, we decided to focus on quasi-

identical cells: immortalized mouse embryonic fibroblasts (MEFs in what follows) derived from a single 

homozygous GFP-p65 knock-in embryo (see (De Lorenzi et al., 2009) and Methods). We challenged our 

GFP-p65 MEF cell population with 10 ng/ml tumor necrosis factor alpha (TNF-ɑ) and quantified the nuclear 
to cytosolic intensity of NF-�B (NCI) using our established method of live cell imaging ((Zambrano et al., 

2014a, 2016), and Methods). As previously reported  (De Lorenzi et al., 2009; Sung et al., 2009; Zambrano 

et al., 2014a, 2016) the response of these MEFs upon TNF-ɑ is heterogeneous (Figure 1A and Movie S1). 

Most cells display oscillatory peaks of nuclear localization while others display a non-oscillatory dynamics 

(Figure 1B), a kind of dynamics also referred to as <persistent activation= and similar to the one reported 
for macrophages (Cheng et al., 2021; Sung et al., 2014) and fibroblasts (Lee et al., 2009) upon 

lipopolysaccharide (LPS) stimulation. We can indeed analyze NF-�B dynamics of hundreds of cells (see 

Methods and Figure S1A) and plot them to form a <dynamic heatmap= (Figure 1C), which captures the 

dynamics across the cell population (Figure 1C).  

 

Starting from our original population of MEFs (that we refer to as the <pool= in what follows) we generated 
17 clonal populations following standard procedures (Figure 1D and Methods). Eight clonal population 

were imaged upon stimulation with 10 ng/ml TNF-ɑ. We found that NF-�B dynamics of each clonal 

population upon TNF-ɑ was markedly different, even if a certain degree of intra-clonal heterogeneity was 

observed (Figure 1E). To have an unbiased confirmation of this observation, we utilized an unsupervised 

stochastic clustering approach (see Methods), which grouped NF-�B dynamic profiles according to their 

shapes into 8 different clusters (Figure S1B). We then calculated the probability for two profiles to cluster 

together (Figure S1C and S1D); the result of many realizations of this stochastic procedure indicates that 

NF-�B dynamic profiles of cells of the same clone are significantly more likely to cluster together than with 

profiles of cells of other clones (Figure 1F).  An entropy-based clustering degree parameter based on these 

probabilities gives significantly higher value when the profiles are assigned to the proper clonal population 

than when they are randomly mixed and then stochastically clustered (see Methods and Figure 1G), 

further indicating that NF-�B profiles within a clonal population are similar. 

 

In sum, we can isolate clones from a population of MEFs derived from a single embryo that have distinct 

dynamical behaviors already observed in the original cell population.  
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Figure 1. Clonal populations derived from an initial population of MEFs have distinct dynamics upon 

TNF-ɑ. A. Representative images of the heterogeneous response to 10 ng/ml TNF-ɑ of our initial 
population of MEFs. B. NF-�B dynamic profiles of four randomly selected cells from our population. C. The 

heatmap represents the NF-�B dynamics of hundreds of cells sorted by their maximum NCI value. D. Single 

cell cloning strategy of our initial population of MEFs (referred to as <pool=). Clones were expanded and 
used for live cell imaging. E. Dynamic heatmaps of eight clones isolated from our population (Clones B, R 

and G are highlighted). F. The color-coded plot shows co-clustering probability of NF-�B dynamic profiles 

between different clones based on an unsupervised k-means clustering. G. Distribution of the values of 

an entropy-like disorder parameter calculated for each realization of the stochastic clustering for the 

original dataset versus a randomized one. The distributions do not overlap in 500 realizations of the 

stochastic clustering for the original and the randomized datasets, p<2·10-3. 
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2. NF-�B dynamics and oscillatory behavior of cells is different between clones yet 

heterogeneous within clonal populations 

We then chose 3 clones with archetypical dynamics reminiscent of those observed in the literature and in 

cells in our original MEF population (Figure 1B): a clone with more persistent nuclear localization of NF-�B (clone B, blue), one with a first well-defined sharp peak (clone R, red) (in other words, a nuclear 

localization that decreases fast (Zambrano et al., 2020)) and  a clone characterized by a low activation of 

NF-�B (clone G, green) (Figure 1E).  

 

Clonal populations R, G, and B showed clearly distinct NF-�B dynamics even by direct inspection of their 

time-lapses (Figure 2A and Movie S2-S4). The average NF-�B activation profiles (Figure 2B) show how NF-�B response is stronger for clone B than for clone R, and for clone R than for clone G (order relation 

B>R>G). Such differences were strikingly robust across replicated experiments (examples of replicates 

shown in Figure S2A) and were conserved also for higher TNF-ɑ doses (100 ng/ml) (Figure S2B). 

Importantly, these differences were also conserved after many cell divisions and culture passages, even if 

the average response to TNF-ɑ was weaker for all clones after 8 weeks in culture (Figure S2C).  

 

We then investigated cell-to-cell heterogeneity within single clones. The dynamic variability calculated 

through the coefficient of variation showed that the clones have less variability than the pool, as expected 

(Figure S2D). Next,  we focused on classic quantifiers of NF-�B response, such as the height of the first 

peak, its timing and the area under the curve (AUC) (Tay et al., 2010; Zambrano et al., 2014a). We found 

that the values of such quantifiers are heterogeneous among cells of the same clone, although the 

differences are statistically significant between the clones and remarkably similar across replicates (Figure 

2C and Figure S2E). The first peak of activation is typically higher for cells of clone B than for cells of clone 

R, which in turn have much higher peaks than cells of clone G (Figure 2C), so the B>R>G relation is 

preserved at single cell level. Interestingly, clone G has the lower peak value in spite of having the higher 

basal levels of nuclear NF-�B (Figure S2F), so the resulting fold change of nuclear NF-�B  upon TNF-ɑ, a 
key factor for gene expression (Lee et al., 2014), is also different across the clonal populations. The timing 

of the first peak is equally prompt within our experimental resolution in clones B and R, but slightly slower 

in clone G (Figure 2C). The larger differences though are observed in the area under the curve (Figure 2C), 

which is much higher for clone B than for clone R, and is again the lowest for clone G. This captures well 

our observation that clone B has a more persistent NF-�B nuclear localization dynamics, while clone R 

displays a sharper response. We did also verify that all the differences above hold true when considering 

the absolute intensity of the nuclear signal (Figure S2G) instead of the nuclear to cytosolic intensity of NF-�B, and also when we manually segmented the cells’ nuclei (Figure S2H). 

 

The differences between clonal populations could be related to intrinsic or extrinsic factors such as cell 

cycle, which has been already shown to modulate the response to TNF-ɑ  (Ankers et al., 2016). Thus, we 

compared the cell cycle distributions of our populations (see Methods, Figure S2I and Table S1). Clone B 

and Clone G have very similar distributions, but they display the clearest differences in the dynamics of 

NF-�B response, suggesting that the cell cycle has a limited impact on their inter-clonal dynamic 

differences. Clones B and R are slightly more different, so we applied a computational correction for the 
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differences in the population fractions in each cell cycle phase (see Methods and Figure S2J); even so, the 

differences in the dynamic responses were maintained (Figure S2J).  

 

Our single cell data does also provide us an interesting perspective on whether NF-�B signaling dynamics 

can be considered oscillating or not, a topic that has been subjected to discussion (Barken et al., 2005; 

Kellogg and Tay, 2015; Nelson et al., 2004; Zambrano et al., 2016). Oscillations are characterized by the 

presence of multiple peaks in the NF-�B dynamic profiles. We calculated the fraction of cells with 1, 2 or 

3 oscillatory peaks within each clonal population upon treatment with 10 ng/ml for 4 hours (Figure 2D) or 

longer (Figure S2K). We find that each clone contains a different fraction of cells that do not oscillate; 

however, there are also variable cell fractions in each clonal population that have two or more peaks and 

can be considered <oscillatory=. The period of the oscillations, computed as inter-peak timing, is 

heterogenous but slightly higher for clone B (Figure 2E). Consistently with the dynamic heterogeneity 

found in each cell population, we find variability in the peak value ratios (Figure 2F) which is again 

maintained in experimental replicates (Figure S2L). Our data then show that being <oscillatory= is 
somehow a <fuzzy= phenotype and even clones derived from a population of quasi-identical cells can be 

considered oscillatory to different degrees. This compares with the qualitatively different dynamics 

observed for different cell types, that can go from cells that can oscillate in a sustained fashion for 20 

hours and more (Kellogg and Tay, 2015) to those that oscillate in a more damped way with fewer 

oscillatory peaks (Zambrano et al., 2016) or do not oscillate at all (Lee et al., 2014).  

 

Overall, our data shows how clonal populations of MEFs derived from the same mouse embryo have 

distinct dynamical features at population level both in their early response to TNF-ɑ and in the subsequent 
dynamics, which is oscillatory to a different degree within each population. Yet, the dynamics is still 

considerably heterogeneous at single-cell level within each clonal population.  
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Figure 2. Clones B, R and G have distinct responses to TNF-ɑ and are oscillatory to different degrees.     
A. Representative images from our time-lapse movies for clones B, R and G upon 10 ng/ml TNF-ɑ 
stimulation. B. NF-�B dynamic response of the clones to TNF-ɑ as assessed by the average NCI. C. The 

boxplots show the dynamical features of the response to TNF-ɑ: NCI value of the first peak, timing of the 
first peak and area under the curve (AUC) in each population. D. Frequency of the number of the 

oscillatory peaks observed for each population in 4 hours. E. Periods of the oscillations computed as the 

inter-peak timing for each population.  F. Ratios of the oscillatory peak values for each clonal population. 

In all panels *p<10-2, ** p<10-3, *** p<10-4, multiple comparisons through Kruskal-Wallis.   
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3. Clonal populations have distinct transcriptional programs and control of target gene 

expression upon TNF-ɑ  
To further investigate to what extent our clonal populations are different, we next performed RNA-

sequencing. Our clones display quantitative differences in their average NF-�B dynamic response already 

after 1 hour TNF-ɑ stimulation (Figure 2B). Therefore, we performed RNA-sequencing after 1 hour (Figure 

3A). To gain statistical power, we generated 5 replicates per condition (see Methods). All replicates were 

of good quality with more than 10000 genes with CPM>1 (see Methods and Figure S3A). An established 

reads mapping procedure  (see Methods) confirms a frequency of single base substitution among clones 

compatible with the somatic mutation frequency  (see Figure S3B and (Milholland et al., 2017)), as 

expected   for  cells derived from the same embryo.  

 

We then performed a PCA of our samples’ transcriptomes (see Methods) and found that samples from 

different clones do cluster in different groups (Figure 3B). Such neat clustering is also preserved in 

additional dimensions and few dimensions are required to explain most of the variability (Figure S3C). Of 

note, the apparent transcriptional divergence between our clones is small: when we performed our PCA 

including also public transcriptomic data from other tissues (see Methods), the samples from our 

populations cluster very closely together and far from the outgroup sample (Figure S3D). We then looked 

at genes differentially expressed between clones that were untreated, which are in principle the most 

informative from the point of view of the cell’s identity.  The categories enriched (see Methods) are 

related to morphogenesis of different organs/tissues: epithelium, renal system, and skeletal system, to 

cite a few (Figure 3C). This suggests that our clonal MEF populations conserve characteristics of the 

primary MEFs that were presumably already committed to different tissues or anatomical compartments. 

 

We next decided to focus on how NF-�B controls gene expression in the three clonal populations. First, 

we focused on 462 genes that we previously established as differentially expressed upon TNF-ɑ 
stimulation (Zambrano et al., 2016). Interestingly, using this gene set the PCA now clusters samples both 

by treatment and by the population of origin (see Figure 3D and Methods). This also applies when 

considering additional PCA dimensions, while again few dimensions are required to explain the global 

transcriptomic variability (Figure S3E).  

 

We then had a closer look at the differentially expressed genes upon TNF-ɑ in each clonal population 

through volcano plots (see Figure 3E, Figure S3F and Methods). Interestingly, the number of up-regulated 

genes correlates well with the strength of the NF-�B response and satisfies the same order relation B>R>G 

(Figure 2B). When performing gene set enrichment of up-regulated genes, the recurrent categories 

included TNF-ɑ response and innate immune responses as expected (see Methods and Figure S3G), but 

with different degrees of overlap with the different categories, suggesting (along the lines of our PCA for 

NF-�B target genes) that the clones activate also slightly different transcriptional programs upon TNF-ɑ.  
 

Our results show that the clones differ mostly for developmental identity, and that they differentially 

express targets of NF-�B. The strength of the NF-�B response is a key determinant –but not the only one– 

of NF-�B target gene expression levels upon TNF-ɑ stimulation. 
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Figure 3. Clones B, R and G have distinct transcriptional programs. A. Scheme of the RNA-sequencing 

performed: cells treated 1 hour with 10 ng/ml TNF-ɑ or untreated (UT).  B. PCA of the UT and TNF-ɑ 
samples of our clones B, R, G, and the pool, considering all genes. C.  Gene ontology analysis of the 

differentially expressed genes between the clonal populations. D. PCA considering only NF-�B targets. E. 

Volcano plots of gene expression upon TNF-ɑ for clone B, R and G (each dot is a single gene); p-values 

assessed through Student’s t-test. F. Hierarchical clustering of the genes from the <TNF-ɑ NF-�B signaling 

pathway (Mus musculus)= list from Wikipathways. 
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4. Differences in the transcriptional levels of proteins involved in NF-�B activation are predictive 

of the early response to inflammatory stimuli  

Since the clearest phenotypic difference among our clonal populations is the different dynamic response 

to TNF-ɑ we focused on the genes involved in NF-�B regulation (as opposed to genes that are NF-�B 

targets). The wikipathways database provides a list of hundreds of genes (see Methods) involved in TNF-

ɑ signaling. Of note, mutation calling did not highlight any differences in the mRNA sequences of these 

genes (see Methods). We then performed transcriptomic analysis on this group of genes (see Methods). 

The transcriptomic data cluster nicely across clones and treatments. Interestingly, unsupervised 

hierarchical clustering (Figure 3F) identifies three groups of genes: one more highly expressed in clone G, 

a second more highly expressed in clone B, and a third more highly expressed in clone R. The most 

common situation for any gene is to be more expressed in clone G (Figure S3H); this is not the case when 

we consider differentially expressed NF-�B targets, which are typically more highly expressed in clone B 

as expected from its strongest NF-�B dynamical response (Figure S3I).  

 

The nuclear localization of NF-�B upon TNF-ɑ is positively regulated by a variety of proteins including 
receptors, signal transducers and kinases (Hayden and Ghosh, 2008). We combined online databases (see 

Methods) and the literature (DeFelice et al., 2019; Hayden and Ghosh, 2008; Lee et al., 2016) to create a 

list (see Figure 4A and Methods) of the genes involved in NF-�B activation (a subset of the list  from the 

wikipathways database) and we labeled it as <TNF-ɑ to NF-�B=. We hypothesized that the expression level 
of genes in the <TNF-ɑ to NF-�B= list would positively affect the strength of NF-�B response in our clonal 

populations. Although the proportionality between transcript and protein amounts is not perfect nor 

constant (Schwanhäusser et al., 2011), for each gene we expect the proportionality to be very similar in 

each of our clonal populations. Indeed, the levels of expression of p65 (RelA) correlate well with the 

protein amount (computed as fluorescent signal intensity) across the clones (Figure S4A).  

 

We focused on the basal expression levels of <TNF-ɑ to NF-�B= genes in untreated samples. Their relative 
variation of the expression levels of these genes is moderate among clones, and only in exceptional cases 

goes beyond 0.5 or 1.5 times the average expression of each gene (Figure 4A). In our list, the average 

relative expression values of the list (see Methods) follow the order relation B>R>G. The absolute 

differences might seem small, so we evaluated the statistical probability of getting the B>R>G order 

relation with these differences of average relative expression or larger. We created 20000 random gene 

lists with the same size and similar expression levels (see Methods and Figure S4B) and found that the p-

value of getting B>R>G order and size of differences is smaller than 0.005. We conclude that clone B has 

statistically significant highest basal expression of genes in the <TNF-ɑ to NF-�B= list, which correlates with 
its strongest NF-�B response to TNF-ɑ. Notably, this must be contrasted with our observation that in 

general clone G (rather than clone B) has more genes with higher expression values (Figure 3F and S3H). 

 

Since this approach correctly predicted the correlation between strength of the response and expression 

levels of the genes involved in TNF-ɑ signal transduction, we asked if it could also predict the relative 

clonal differences in the response to a different inflammatory stimulus. We focused on IL-1Ā, a cytokine 

that is known to activate NF-�B through a pathway only partially overlapping with that of TNF-ɑ, and 
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characterized by its own regulatory mechanisms and dynamical features (DeFelice et al., 2019; Martin et 

al., 2020). We elaborated a list of <IL-1Ā to NF-�B= genes that are as well positive regulators of the NF-�B 

response upon IL-1Ā, including new genes such as Ilr1r1, the gene encoding the IL-1Ā receptor, and 

MyD88 (Figure 4B). In this list, we found again different levels of expression that typically do not exceed 

2-fold (Figure 4B). Interestingly, in this case the order relation of the average expression was different: 

B>G>R. By reproducing the bootstrapping analysis used before, we find that the order relation B>G>R and 

the size of the differences are infrequent in random gene lists with similar features, with p<0.015 (see 

Methods and Figure S4C). We then performed live cell imaging of the clones upon 100 ng/ml IL-1Ā. All 

clones respond, and in particular now G has a stronger response to IL-1Ā than to TNF-ɑ (Movies S5 and 

S6 and Figure 4C); notably, the average NF-�B response reflects the order relation B>G>R (Figure 4D), as 

predicted. Differences are also clear when considering single-cell data (Figure 4E, S4D), where we can see 

now that clone G cells display overall a stronger response than clone R cells. However, clone B is the one 

with a higher response and a much higher AUC. Finally, upon IL-1Ā we find that the cells’ oscillatory 
phenotype is different relative to TNF-ɑ: more cells of clone G have at least two peaks (Figure 4F) and an 

oscillatory period at T=1.5h, similar to clone R (Figure 4G). Clone B remains the one with a less oscillatory 

phenotype (Figure 4F), suggesting that this behavior might be related with downstream regulators of NF-�B activity, an idea that we explore next. As with TNF-ɑ, oscillations are also heterogeneous across the 
clones (Figure S4E). 

 

Taken together, our data shows that the expression levels of genes coding for proteins in two different 

signaling cascades upstream of NF-�B predict which cells respond more or less intensely to which 

inflammatory stimulus.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.07.471485doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?0W5Tr2
https://www.zotero.org/google-docs/?0W5Tr2
https://doi.org/10.1101/2021.12.07.471485
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Kizilirmak et al., 2021                                                                                                                                   14 

 

Figure 4. Differences in expression of genes involved in NF-�B activation correlate with NF-�B response 

to TNF-ɑ and IL-1Ā. A. Relative expression levels (normalized in each gene by the average expression 

across clones) of genes of the <TNF-ɑ to NF-�B= list encoding for proteins involved in NF-�B activation 

upon TNF-ɑ (left) and average expression levels for each gene (right). The average relative expression of 
each clonal population and their order relation is shown on top.  B. Same as in A but for genes of the <IL-

1Ā to NF-�B= list, coding for proteins involved in NF-�B activation upon IL-1Ā. C. Dynamic heatmap of the 

responses of clone B, R and G to 100 ng/ml IL-1Ā. D. Average NF-�B response for the three clones upon 

IL-1Ā stimulation. E. The boxplots show the dynamical features of the response to IL-1Ā:  value of the first 

peak, timing, and area under the curve (AUC). F. Fraction of the cells having 1, 2 or 3 oscillatory peaks on 

each of the populations considered upon IL-1Ā. G. Periods of the oscillations computed as the inter-peak 

timing for each population. *p<10-2, ** p<10-3, *** p<10-4, multiple comparisons through Kruskal-Wallis. 
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5. Differences in the expression levels of the negative feedbacks underpin distinct NF-�B 

dynamics in quasi-identical cells 

Beyond differences within the first 30 minutes, our clonal populations also show differences at later time 

points, with clone R having a sharper NF-�B response as compared to clone B, i.e. its NF-�B nuclear 

localization decays faster (Zambrano et al., 2020). We investigated if transcriptomic data could also shed 

light on the origin of these differences. It is well established that NF-�B nuclear localization dynamics is 

tightly regulated by a system of negative feedbacks such as the inhibitors I�Bɑ, I�BĀ and I�B� that keep 

NF-�B in the cytosol (A.Hoffmann et al., 2002; Paszek et al., 2010) and the protein A20 that interferes with 

stimulus-mediated  I�B degradation  (Ashall et al., 2009; Son et al., 2021); all of them are under the 

transcriptional control of NF-�B (Figure 5A). We then elaborated a list of <NF-�B negative feedbacks=. 
They are all expressed upon TNF-ɑ activation after 1 hour (Figure 5B); these are genes that respond 

relatively quickly, as we could observe previously (Zambrano et al., 2016) (Figure S5B). Indeed, we found 

differences in the expression levels of <NF-�B negative feedbacks= genes across the clones, albeit 
moderate (Figure 5B). Average relative expression levels are in the order R>B>G with numerical values 

leading to p<0.002 (see Methods and Figure S5A). This correlates with a sharpest response of the clone R 

as compared to clone B (the expression levels of the negative feedbacks are lower for clone G, which is 

the least responding one). Indeed, the expression levels for I�Bɑ (Nfkbia) and I�B� (Nfkbie) are higher in 

clone R with respect to clone B (Figure S5C). RT-qPCR also confirms mRNA levels of negative feedbacks 

differ between clones (Figure S5D). 

 

The negative feedback loops of the NF-�B system have been extensively modelled (A.Hoffmann et al., 

2002; Nelson et al., 2004; Paszek et al., 2010) and thus mathematical modelling could provide us further 

insights on whether transcriptional differences in the <NF-�B negative feedbacks= are enough to explain 
the differences observed in the sharpness of the NF-�B response  (details provided in Methods).  Thus, 

we built a new extended mathematical model that includes I�BĀ and I�B� in addition to I�Bɑ and A20 
feedbacks present in our previous model (Zambrano et al., 2016) (see Methods). The new model contains 

our original set of parameters (Zambrano et al., 2016) and the selection of new parameters for the 

additional feedbacks is constrained in such a way as to reproduce the relative expression levels of the 

feedbacks in clone R (see Methods). We took the clone R parameter set and modified it (see Methods) to 

obtain a new parameter set for clone B, so that the relation between the expression of the inhibitors 

between both clones are preserved (see Methods). We also varied the levels of NF-�B according to the 

experimentally observed levels of expression (Figure S4A and Methods). Interestingly, these small 

differences already lead to a change in the dynamics from sharp in the simulation of R to persistent in that 

of B, qualitatively similar to the one observed experimentally (Figure 5C).  

 

Since our modelling result could be due to our particular selection of parameters, we performed 

simulations for randomly generated parameter sets (see Figure 5D and Methods). Random parameter 

sets for clone R and clone B are generated so they satisfy the constraints described in the previous 

paragraph (the ratios of the relative expression of the inhibitors within and between the clones match the 

experimentally observed ones in the resulting simulations Figures 5E and 5F). In doing so, for most of the 

random parameter sets we recapitulate our experimental observations: moderate differences in the 
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timing and the first peak of the response (Figure 5G), whereas there is a more drastic decrease of the 

sharpness for clone B, as revealed by the AUC (Figure 5G). This mirrors the sharper NF-�B nuclear 

localization dynamics that we found experimentally for clone R relative to B (see e.g., Figure 2C). Thus, 

mathematical modelling shows how the moderate transcriptional differences observed, combined, can 

have a clear impact in the dynamics and might be the key driver of the differences observed. 

 

To confirm the role of small transcriptional differences on the dynamics emerging from our bioinformatic 

and modelling analysis, we set out to experimentally test the effect of modulating the NF-�B repressor 

levels in the dynamic response to TNF-ɑ. We focused on the key inhibitor I�Bɑ, whose absence gives rise 
to a non-oscillatory phenotype (A.Hoffmann et al., 2002; Cheng et al., 2021). To modulate the mRNA levels 

of I�Bɑ we took advantage of antisense oligonucleotide (ASO) technology (see Methods). The single-

stranded synthetic nucleic acid analogs (2’-deoxy-2’-fluoro-β-d-arabino nucleic acid, FANA) were designed 

to be self-delivered to the cells and to be fully complementary to the mRNA of interest. They induce mRNA 

cleavage by RNAseH to reduce the synthesis of the encoded protein (see Methods and Figure 5A). We 

pre-treated for 24 hours clones R and B with different concentrations of the ASO, whose internalization 

was visible (Figure S5E), and this led to a moderate but significant decrease on the mRNA levels of I�Bɑ 
(Figure S5F). We indeed observed that, upon TNF-ɑ, the response of both clone B (Figure 5H, top panels) 

and clone R (Figure 5H, bottom panels) was characterized by a more persistent NF-�B nuclear localization, 

indicating that partial transcriptional disruption of the I�Bɑ negative feedback is enough to produce a 
qualitative change in the dynamics (Movies S7 and S8). This was also the case when pre-treating our MEFs 

pool with ASOs (Figure S5G). A more detailed quantification of the dynamics shows that the maximum 

value of the NF-�B response does not change much in ASO-treated cells (Figure 5I). However, the area 

under the curve upon TNF-ɑ increases for both clones, and in particular for clone R, so that the AUC of 

clone R is much more similar to that of clone B. This trend is reproducible in replicates (Figures S5H, S5I). 

 

Overall, we have shown how the expression levels of the negative feedbacks correlate with the differences 

of NF-�B dynamics observed across our clones, and especially with the observed sharp versus persistent 

NF-�B response. Our experiment-driven simulations also indicate that NF-�B negative feedbacks are key 

determinants of the distinct dynamics observed in our clonal populations. Finally, our experiments with 

ASOs show how even a mild targeted modulation of the expression of I�Bɑ can distinctly alter the 
dynamics of clone R to resemble that of clone B, and therefore to reprogram it from a sharp (and 

oscillatory) NF-�B activation to a persistent response.  
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Figure 5. Differences in expression levels of NF-�B negative feedbacks can reproduce the observed 

dynamical differences between clones. A. Scheme of the NF-�B genetic circuit with main negative 

feedback regulators. B. (Left) Relative expression levels (normalized by the average expression across 

clonal populations) of genes of the <NF-�B negative feedbacks= list upon TNF-ɑ and (right) average 
expression levels for each gene. The list includes those in panel A. The order relation of the average 

relative expression levels is shown on top. C. Transcriptionally constrained numerical simulation of clone 

R (red line) and clone B (blue line). D. Example of numerical simulations of randomly generated 

parameters of clone B and clone R where the experimental ratios of expression of the transcripts are kept 

constant and equal to those experimentally observed. E. The ratios between the levels of expression of 

the inhibitors within the simulated clone R are preserved and F. the ratios between values observed in 

clone B and clone R are preserved too. Each dot corresponds to simulations of a parameter set randomly 

generated and satisfying our constraints. G. Ratios between values observed for constrained simulations 

of clone B and clone R for the timing and value of the first peak and area under the curve.  H. 

Representative dynamic heatmaps of clone B (top) and clone R (bottom) upon TNF-ɑ for both untreated 
and ASO-treated cells. I. Quantification of the maximum response for untreated and ASO-treated cells 

upon TNF-ɑ.  J. Quantification of the AUC for untreated and ASO-treated cells upon TNF-ɑ, *p<10-2, ** 

p<10-3, *** p<10-4, multiple comparisons through Kruskal-Wallis.   
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DISCUSSION  

A population of MEFs with heterogeneous NF-�B dynamics is composed by sub-populations of quasi-

identical cells with distinct dynamics.  Single-cell imaging studies of NF-�B dynamics have shown that there 

is a high degree of heterogeneity within  cell populations (Lee et al., 2014; Nelson et al., 2004; Paszek et 

al., 2010; Sung et al., 2009; Tay et al., 2010; Zhang et al., 2017a). Our work, performed on a very 

homogenous cell population of mouse embryonic fibroblasts immortalized by serial passages and derived 

from a single embryo, indicates that NF-�B dynamic heterogeneity might be due in part to the coexistence 

of subpopulations of quasi-identical cells that do respond distinctly to the stimuli.  Extrinsic factors such 

as the cell cycle phase have been shown to affect NF-�B dynamics (Ankers et al., 2016) but we cannot 

attribute inter-clonal differences to differences in the cell cycle. Instead, we show here that the expression 

levels of genes coding for elements of the NF-�B regulatory circuit can explain the clonal differences, 

suggesting that they are a key determinant of the dynamical heterogeneity observed in the original 

population.   

 

Transcriptomics is predictive of the clonal response to stimuli. The link between NF-�B dynamics and 

transcription is typically analyzed in one direction: how does NF-�B nuclear localization dynamics drive 

gene expression? (Lane et al., 2017; Lee et al., 2014; Tay et al., 2010; Zambrano et al., 2016). Here we 

consider the same question in the other direction: how can transcriptomic differences affect dynamics? 

We developed a computational framework based on the average expression levels of key genes coding 

for regulatory elements upstream of NF-�B, which explains differences in the strength of the response of 

clones to TNF-ɑ. The same framework predicts clonal differences in the response to IL-1Ā.  The expression 

level of these genes coding for upstream positive regulators could indeed determine the amount of IKK 

complex formed upon both stimuli, which has been recently shown to correlate with  NF-�B activation 

(Cruz et al., 2021).  We also show here how the expression levels of the components of the negative 

feedback of NF-�B predict whether the NF-�B response will be sharp or persistent. The prediction is 

supported by mathematical modelling and experimental data showing that a moderate reduction in I�Bɑ 
level induced by antisense oligonucleotides can lead to relatively large differences in the NF-�B dynamics. 

Knock-out of I�Bɑ gene Nfkbia has been shown to induce a change from oscillatory to sustained dynamics 

(Cheng et al., 2021), our work shows how a finer tuning of the feedback expression can produce analogous 

changes in NF-�B dynamics.  

 

Part of the success of our approach is probably due to the biological homogeneity of the clones, which 

derive from cells of the same type that come from a single embryo. We assume that transcriptional levels 

are informative of protein levels; while this is not necessarily true, every deviation from the assumption 

will be identical in each clone. We hypothesize that a similar transcriptional approach could be used to 

predict the relative difference in the dynamic response of other TFs  in subpopulations within other 

relatively homogeneous cell populations, as for example in cells derived from the same tissue or in clones 

within a tumor mass (Greaves and Maley, 2012) that might respond differently to therapy (Paek et al., 

2016). 

 

NF-�B oscillatory phenotype is fuzzy.  NF-�B nuclear localization dynamics in single living cells was 

observed for the first time more than 15 years ago (Nelson et al., 2004) and since then its oscillatory 
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nature was subject to discussion (Barken et al., 2005; Nelson et al., 2005). More recently, we argued that 

NF-�B displays damped oscillations (Zambrano et al., 2016) as compared to the sustained oscillations 

reported by others (Kellogg and Tay, 2015). Our present work shows that classification of NF-�B dynamics 

is not necessarily binary. Within a population of quasi-identical cells, we can find sub-populations of cells 

that are more and less prone to oscillate. For circadian oscillators as well it was found that clonal 

populations have different oscillatory features (Li et al., 2020).  For our cells, we show that this largely 

depends on the expression level of genes belonging to the NF-�B regulatory circuit. We previously 

proposed that oscillations are a way to provide opportunity windows for decision (Zambrano et al., 2016), 

and this work shows such windows can be diverse across cell subpopulations, which can contribute to 

population robustness in response to stimuli (Paszek et al., 2010). On the other hand, our work sheds light 

on the origin of the dynamic variability reported in the literature: if small transcriptional differences can 

affect the dynamics of NF-�B, it is not surprising that different cell types have completely different 

oscillatory phenotypes. 

 

Stimulus specificity in the NF-�B response is clone-dependent.  The increasing availability of single-cell data 

on NF-�B dynamics has shown that it is possible for cells to discriminate between stimulus type (Adelaja 

et al., 2021; Cheng et al., 2021; Martin et al., 2020), dose (Tay et al., 2010; Zambrano et al., 2014a; Zhang 

et al., 2017a) and dynamic profile (Ashall et al., 2009; Lee et al., 2016; Zambrano et al., 2016). Here, we 

find that two MEF clones from the same embryo, clone G and clone B, do respond differently to two 

different stimuli: clone G responds strongly to IL-1Ā, while clone B responds strongly to both TNF-ɑ and 
IL-1Ā. On the other hand, clone R produces a sharper and more oscillatory NF-�B response than clone B. 

This indicates that stimulus specificity in NF-�B dynamics is clone-dependent and, all the more so, that it 

will vary among cell types within the same organism.  A recent study shows that a synthetic version of the 

NF-�B circuit ectopically expressed in yeast (Zhang et al., 2017b) displays different types of dynamics and 

responses by manipulation of the key kinetic parameters. Furthermore, since immortalized MEFs maintain 

certain characteristics of primary MEFs (Beg and Baltimore, 1996; Gapuzan et al., 2005), our work suggests 

that a similar fine-tuning can take place naturally in primary mammalian cells. 

 

Origin of the transcriptional differences across clones. We show that the dynamical differences observed 

between clones are robust and persist over time and cell culturing. Persistent transcriptional differences 

can be due to sequence variants in the control elements of the genes, especially in enhancers (Natoli and 

Ostuni, 2019), or in epigenetic changes in DNA methylation or chromatin accessibility of the same control 

elements. Our RNA-sequence based bioinformatic analysis did not detect any variant among clones in the 

mRNA sequence of genes involved in the NF-�B response. We inferred from it a substitution rate in the 

genome of the clones in the order of 5·10-7 per base pair, which would translate to <100 substitutions per 

haploid genome. This substitution rate is consistent with somatic variability of cells from the same 

organism (Amand et al., 2016; Milholland et al., 2017). However, our analysis cannot detect other genetic 

changes, such as sequence changes in the regulatory regions or copy number variations. This genetic 

variability could contribute to the small (although robust) differences in gene expression reported here.  

The other possibility is epigenomic variation between different cells. We find that the most visible 

difference in the transcriptomics of the different clonal populations is related to developmental programs, 

which indeed involve epigenetic variations. Whether expression of different developmental programs 
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within different cells of the same population can give rise to the difference in response dynamics of NF-�B and other TFs remains to be proved, but we speculate that this is at least likely. 

 

Cell to cell differences within clones. We find that the NF-�B dynamic response of the cells within each 

clonal population is still heterogeneous.  We speculate that this cell-to-cell variability can have a purely 

stochastic component related to the probabilistic nature of the activation of gene transcription. Indeed, 

we recently found experimentally that even highly transcribed genes under the control of NF-�B like the 

one encoding for I�Bɑ are transcribed stochastically (Zambrano et al., 2020). Thus, the same cell might be 

oscillatory or not at different times, depending on how recently it had a burst of I�Bɑ transcription and 
translation. Future studies will be needed to connect the transcriptional history of each single cell with its 

NF-�B dynamics.  

 

In sum, our work shows that part of the NF-�B dynamic heterogeneity observed within a relatively 

homogenous population of cells can be due to the co-existence of cell subpopulations with distinct 

dynamics, which correlates with robust although small differences in the expression levels of genes 

belonging to the regulatory circuit. However, some heterogeneity remains between cells of the same 

clone, suggesting that ephemeral variations of transcript levels follow transcriptional bursts in individual 

cells. We speculate that analogous mechanisms might also diversify the dynamic response of other TFs to 

external cues.  
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METHODS 

 

Cell line and cell culture.  GFP-p65 knock-in mouse embryonic fibroblasts (MEFs) were kindly provided by 

M.Pasparakis. MEFs  were derived from a single embryo of homozygous knock-in GFP-p65 expressing 

mouse using standard protocols (De Lorenzi et al., 2009) and immortalized by serial passaging also known 

as the 3T3 method and typically involves 20-30 passages (Amand et al., 2016). The cells were cultured in 

phenol-red free DMEM supplemented with 10% FCS, 50 mM b-mercaptoethanol, 1x L-glutamine, 1x 

pen/strep, 1x sodium pyruvate and 1x non-essential amino acids. MEFs were subcultured every 2-3 days 

before they reached 100% confluency and kept at 37°C and 5% CO2.  

 

Generation of the clonal populations by single cell cloning.  MEFs were harvested by 1x Trypsin solution 

and counted. Final concentration of 5 cells/ml was achieved by serial dilutions and 100 μl of the cell 

suspension per well were pipetted to a 96-well plate. The plate was screened for single colonies and 

selected colonies were then expanded. 

 

Cell treatments. Where indicated the cells were stimulated with the final concentration of 10 ng/ml of 

recombinant human TNF-ɑ protein (R&D Systems) or 100ng/ml of recombinant human interleukin 1 beta 

(IL-1Ā, PeproTech). 

 

Live cell imaging. Live cell imaging of GFP-p65 knock-in MEFs was performed as in (Zambrano et al., 2016). 

We used a Leica TCS SP5 confocal microscope with an incubation system where cells were stably 

maintained at 37°C in 5% CO2. Time-lapse images were acquired at 6 min intervals for up to 10 hr. We 
used a low magnification objective (20x, 0.5 NA) and an open pinhole (Airy 3), ensuring that the image 

depth (10.7 µm) contains the thickness of the whole cell so that images capture the total cell fluorescence. 

GFP-p65 is imaged with the 488 nm Argon laser (GFP channel) while Hoechst 33342 stained nuclei are 

imaged with the low energy 405 nm UV diode laser at 5% of its maximum intensity (HOE channel). The 

staining was performed at room temperature for 10-15 minutes using NucBlue™ Live ReadyProbes™ 
Reagent, ThermoFischer), 1:100 v/v and incubated 10-15 min at RT, which we showed previously does not 

interfere with the response to TNF-ɑ (Zambrano et al., 2016). Images were acquired as 16 bit, 1024×1024, 

TIFF files. Experiment replicates were performed on different days. In each experiment we typically 

imaged more than one clone in different wells of an 8-well labtek.  

 

Automated quantification of NF-�B dynamics in single living cells. To quantify NF-�B nuclear localization 

dynamics in living cells, we follow our previously described procedure of normalizing the average nuclear 

signal intensity by the average cytosolic fluorescence intensity (Zambrano et al., 2016) to obtain the 

nuclear to cytosolic intensity (NCI), also used by others (Kellogg and Tay, 2015; Paszek et al., 2010). We 

improved our custom-made routines that run on MATLAB R2015 and are available upon request.  In short, 

nuclei are segmented based on the intensity of the HOE channel, and nuclear masks are used to compute 

the nuclear average NF-�B intensity in each cell. In order to estimate the average cytoplasmic NF-�B 

intensity, first the background was computed by taking a square area centered on the cell nucleus, dividing 

it in tiles and using the one with the smallest average intensity in the GFP channel. After this, pixels 

belonging to the cytoplasm are those with intensity above the background on a ring around each nucleus 
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of width 0.5 times the nuclear radius. Tracking of cells between frames is performed through an optimized 

algorithm based on the Hungarian linker method (Careccia, 2019). Cells are discarded upon abrupt 

changes of the nuclear and/or cytosolic areas, indicative of erroneous tracking or cell death or mitosis.   

 

Stochastic clustering of the NF-�B dynamic profiles. We performed an unsupervised clustering of NF-�B 

dynamic profiles from cells of the 8 clones using the k-means algorithm (k=8) based on the Euclidean 

distance between profiles (MATLAB). In each realization we randomly picked 50 profiles from each clonal 

population.  The profiles are clustered then in 8 groups (Figure S1B), and we compute the number of cells 

from each clonal population in each cluster (Figure S1C). In each realization we compute pik , representing 

the fraction of trajectories of clone k that are present in the cluster where the clone i has a higher number 

of clustered profiles. For k=i, it represents the fraction of cells of the clone i in the cluster where it is more 

represented. The result for a single realization is shown in Figure S1D. For each realization we computed 

the disorder parameter defined as þ = 2 ∑   ÿ,Ā pij log pij and compared with the same result when the 

dynamic profiles are randomly assigned to the eight clonal populations and then clustered stochastically. 

We followed this procedure 500 times and the disorder parameter was always higher for cells randomly 

assigned to clonal populations, indicating further that NF-�B dynamic profiles are clustered according to 

a certain pattern strongly related with the clonal population of origin.  

 

Analysis of NF-�B dynamics. To extract the dynamic features of the NCI time series we followed the same 

procedure as in (Zambrano et al., 2014a, 2016). In short, NCI series are smoothed, and peaks are detected 

using standard MATLAB functions (smooth and pkfnd, respectively) and those with a prominence θ>0.15 
are considered real peaks. This value is well beyond the prominence of noisy peaks found in this type of 

datasets (Zambrano et al., 2016) and provides a reasonably good compromise between the need to ignore 

noise peaks and the need to detect small peaks of valuable dynamical information (e.g. if a cell is oscillating 

or not).  The timing of the peak was determined considering the maximum value. Instead, the area under 

the curve is calculated as the integral in the time interval considered of NCI(t).  

 

Cell cycle analysis. Cell cycle analysis was done as described in (Brambilla et al., 2020):  MEFs were 

harvested and fixed with cold 70% ethanol and kept overnight at -20°C. Cells were then washed once with 

5% FBS/PBS and stained with PBS containing 10 µg/ml propidium iodide and 10 µg/ml RNAse A for 1 hour 

at room temperature. Samples were then read at a cytometer using a 488 nm laser. 

 

Cell cycle computational correction: An artificial dataset of NCI time series of clone R were generated: the 

top 25% of the population was assumed to be the S-phase high responders (Ankers et al., 2016) and their 

percentage was increased to 43% by neglecting the corresponding fraction of the less responding cells.  

The resulting dataset has a higher value than the original but still a lower value of the AUC than clone B 

(Figure S2J) which makes it unlikely that cell cycle is the key driver of this inter-clonal difference, as for 

the differences between B and G detailed in the text.  

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.07.471485doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?KAShfj
https://www.zotero.org/google-docs/?h9OG26
https://www.zotero.org/google-docs/?MaAtlB
https://www.zotero.org/google-docs/?qt78cT
https://www.zotero.org/google-docs/?FRkZgv
https://doi.org/10.1101/2021.12.07.471485
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Kizilirmak et al., 2021                                                                                                                                   23 

RNA isolation and real time PCR. 1.5x105 MEFs were plated on a 6-well plate a day before the extraction. 

Total RNA was isolated using the NucleoSpin RNA II kit (Macherey-Nagel). The amount of RNA was 

determined using a NanoDrop spectrophotometer (Thermo Fisher Scientific) and 1 μg was then reverse 

transcribed using SuperScript IV Reverse Transcriptase (Thermo Fisher Scientific). qPCR was performed 

using LightCycler 480 SYBR Green I Master (Roche). The expression of I�Ba and A20 were checked using 

following primers: 

I�Ba forward: 5’ CTTGGCTGTGATCACCAACCAG 3’ 
I�Ba reverse: 5’ CGAAACCAGGTCAGGATTCTGC 3’ 
A20 forward: 5’ ACAGAGCAGGGACAAGCAAGTG 3’ 
A20 reverse: 5’ GTTTAGGGGGCTCTTCAGGC 3’ 
 

RNA sequencing and Bioinformatic analysis. Libraries for Illumina NGS were prepared as described in 

(Brambilla et al., 2020). After trimming the adapter sequences (cutadapt, 

https://cutadapt.readthedocs.io) reads were mapped to mouse genome (mm10) using hisat2 

(http://daehwankimlab.github.io/hisat2/) using parameters  <-p 20 -5 5=. 
Read counting was performed using featureCounts from the Subread Package and features displaying less 

than 10 reads were filtered out. Differential expression analysis was performed using DESeq2 

(https://bioconductor.org/packages/release/bioc/html/DESeq2.html) with the following design formula 

<=~ 1 + clone + treatment + clone:treatment=. 
Principal component analysis (PCA) was performed using MATLAB, keeping only genes for which RPKM>1 

in at least five samples. Additional RNA-seq samples from several mouse tissues were retrieved from the 

ENCODE Database (https://www.encodeproject.org).  Volcano plots were generated using MATLAB and 

p-values derived from the t-test statistics. Gene ontology was performed using the <clusterProfiler= R 
package (https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html). Heatmap and 

Hierarchical clustering was performed using the <Pheatmap= R package. 
Genes annotated in the mouse TNF-signalling were retrieved from WikiPathway 

(https://www.wikipathways.org/index.php/Pathway:WP246)  

 

Estimation of the genetic differences between clonal populations. The SNP calling step was performed 

using the GATK 3.6 toolkit (McKenna et al., 2010)  in order to split splice junction reads, to recalibrate 

quality scores and to call variants. To minimize false positive variants the GATK Variant filtration tool was 

used using the following parameters: 

<--filterExpression QD < 5.0 --filterExpression DP < 10 --filterExpression ReadPosRankSum < -8.0 --

filterExpression MQRankSum < -12.5 --filterExpression MQ < 40.0 --filterExpression FS > 60.0=. Nucleotide 
positions with heterozygosity scores < 0.10 were excluded as previously described (Adetunji et al., 2019).  

We called SNPs with different levels of confidence based on three different coverage cut-offs (5x, 10x, 

20x) and then we calculated the number of unique SNPs for each clone. We find that our clones differ in 

a range of 200-400 nucleotides (Figure S3B, Table S2) which, once divided by the length of the genome at 

the specific coverage cut-off, provided us a <mutation rate= of approximately 5·10-7 per base pair (Figure 

S3B). Interestingly, this is of the order of magnitude of the somatic mutation rate found between somatic 

cells from the same mouse (Milholland et al., 2017)  indicating how the frequency of SNPs for our clones 

correspond to <somatic differences= that can be found between cells of the same organism. Of note, our 
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cells come from the same embryo and immortalization by serial passages requires a few dozen cell 

replications (Amand et al., 2016; Todaro and Green, 1963). Moreover, no mutations on NF-�B-related 

genes of the wikipathways database were identified.  

 

Frequency of order relations for genes involved in the NF-�B pathway.  We define the relative expression 

level of a gene in one of the clonal populations as its expression level divided by the average expression 

level across the clones B, R and G. By definition, for a given gene, the sum of their relative expression 

levels in clones R, G and B is always 3. For a given gene list we can calculate the relative expression value 

of each gene and then calculate the average value of the relative expression value of the gene list for each 

population and denote it as <R>, <G> and <B> respectively. It is easy to see that their sum has also to be 

equal to 3: 

 <R> + <G> + <B>=3   

Hence, the average relative expression of two of the populations determine the value of the third. For a 

given gene list we can plot the average relative expression in just two dimensions, which for the sake of 

this paper we take as <R> and <B> (Figures S4B, S4C, S5A). Hence the average relative expression levels 

can be projected in the <R>-<B> plane.   Choosing the average relative expression allows us to have a 

vision of the ensemble without giving a weight according to the average expression level of each gene. 

This appears reasonable since the proportionality between mRNA and protein might vary between genes.  

 

There are six possible order relations between <R>, <G> and <B>, as for any three numbers. Hence average 

relative expression levels can adopt six different order relations. Each order relation determines a region 

in the 3-coordinate space <R> <G> <B>, each two regions are separated by a plane which intersects with 

the <R>-<B> plane giving a straight line. Hence, the <R>-<B> plane is divided in 6 sections that determine 

the 6 possible order relations between <R>, <G> and <B> (Figures S4B, S4C, S5A).  

 

Here we calculate the average relative expression levels in three different gene lists:  

 

TNF-ɑ to NF-�B: Tnfrsf1a, Tab2, Tab1, Traf2, Chuk, Tradd, Ikbkg, Ripk1, Ikbkb, Map3k7, Map3k3,  

Traf5, Fadd. 

IL-1Ā to NF-�B: Tab2, Tab1, Myd88, Il1r1, Chuk, Ikbkg, Irak1, Ikbkb, Traf6, Map3k7, Irak4, Irak2, Il1rap, 

Irak3 

NF-�B negative feedback: Nfkbia, Tnfaip3, Nfkbie, Nfkbib, Cyld. 

 

To assign a statistical significance to the order relations and the average relative expression values, we 

sampled across our RNA-seq data to find random gene sets with expression levels within the limits of 

those of the dataset considered (with values between the minimum and the maximum value of the gene 

set considered) and compute the probability of different average relative expression levels projected in 

the <R>-<B> plane (see Figures S4B  for genes of the <TNF-ɑ to NF-�B=  list , S4C for genes of the <IL-1Ā to 

NF-�B= list and  S5A for genes of the <NF-�B negative feedbacks= list). In each of them we also plot as a 

red dot the average relative expression values of the dataset considered, which of course falls in the 

section of the <R>-<B> plane that corresponds to the order relation obtained (Figures S4B, S4C, S5A).  
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Mathematical model of NF-�B signaling. Elaborating on previous models (Zambrano et al., 2014b, 2016)  

 where the negative feedbacks were provided by the inhibitor I�Bɑ and the A20 protein, we developed a 

more complete model in which the additional negative feedbacks specified in Figure 5A are taken into 

account.  

 

In this new model, the amount of free nuclear NF-�B, �, depends on its continuous association-

dissociation with the three I�B inhibitor proteins, whose amount we represent as�ÿ with ÿ = {ÿ, Ā, Ā}. They 

can indeed form the complex (cytosolic) forms (�: �ÿ) for ÿ = {ÿ, Ā, Ā}. The equilibrium between forms is 

also dependent on the presence of the kinase IKK complex whose amount we denote as �. This means 

that:  

 ���� = ∑ 2ā�,ÿ� · �ÿ + ā�,ÿ · (�: �ÿ) + �ÿ,ÿ · (�: �ÿ) + ��,ÿ · � · (�: �ÿ) 
ÿ=ÿ,Ā,�  

 

Where ā�,ÿ  and ā�,ÿ are the association and dissociation constants, respectively, while ��,ÿ is the 

degradation rate of the complex due to the presence of the kinase complex and �ÿ,ÿ accounts for the 

spontaneous degradation of the complex.  For each of the complex (ÿ = {ÿ, Ā, Ā})  we have that:  

 �(�: �ÿ)�� = +ā�,ÿ� · �ÿ 2 ā�,ÿ · (�: �ÿ) 2 �ÿ,ÿ · (�: �ÿ) 2 ��,ÿ · � · (�: �ÿ) 

 

For the inhibitors, beyond the association and dissociation processes of the complex, the evolution will 

depend also on the translation rate ā�,ÿ of the available mRNA of each of the three inhibitors, that we 

denote as ýÿ, and on the inhibitors own degradation rate ��,ÿ and the kinase-dependent degradation rate ���,ÿ :  
 ��ÿ�� = 2ā�,ÿ� · �ÿ + ā�,ÿ · (�: �ÿ) 2 ���,ÿ · � · �ÿ + ā�,ÿ · ýÿ 2 ��,ÿ · �ÿ 
 

The amount of the kinase complex �  is regulated by the amount of the protein A20, that we denote �, 

through a hill function of parameters �0 and �, and will also depend on the degradation rate of the kinase 

complex �� and the presence (þ = 1) or absence (þ = 0) of the external inflammatory signal and on the 

constant  �0 

 ���� = þ · �0(1 + ( ��0)ÿ) 2 �� · � 

 

The amount of A20 depends on the translation rate āā,ý of the available mRNA, that we denote as ýý, and 

on the degradation rate �ý so:  
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���� = āā,ý · ýý 2 �A · A 

 

The mRNA expression level of each repressor is encoded by the following equations: 

 �ýĀ�� = āĀ�Ā 2 ÿĀýĀ  ��Ā�� = āĀÿ,�� · (2 2 �Ā) 2 āĀ��,Ā�Ā  

 

Where Ā = {ÿ, Ā, Ā, �}; � is the index representing A20. �Ā(�) represents the gene activity status for each 

of the negative feedbacks considered (number of <on= alleles) and ýĀ(�) the mRNA levels. Concerning the 

parameters, ÿĀ  is the degradation rate of the mRNA considered, āĀ is the transcription rate, and āĀÿ,Ā and āĀ��,Ā are the gene activation-inactivation rate for each of them.  The starting parameters, largely based 

on those provided in (Zambrano et al., 2016) but further constrained by our experiments (see below) are 

provided in Table S3. 

 

Integrating transcriptomics in mathematical modelling. In Figure 5 we perform numerical simulations of 

NF-�B dynamics in clone B and clone R by generating random parameter sets so a) the ratios of the 

expression of the different I�B inhibitors within clones and b) the ratios of the expression of the expression 

of inhibitors between clones match the experimentally observed values. To do so, we proceed as follows.  

To assess the role of transcriptional differences we generate random sets of parameters that are varied 

up to 2-fold their original values, but we constrain them in such a way that the ratios of the expression of 

the inhibitors both within and between clones are preserved and match the experimentally observed 

ones. For the sake of simplicity and following what has been done by others (A.Hoffmann et al., 2002; 

Nelson et al., 2004), we assume that the parameters related with the gene activation do not vary between 

the genes encoding for the inhibitors. This implies that the RNA expression essentially depends only on 

the production and degradation rates of RNA āÿ and ÿÿ . To further simplify things, we assume that the 

kinetics of mRNA degradation is similar between genes, so we keep ÿÿ  constant for all the negative 

feedbacks. Hence, in our simulations, to make the ratios between the expression inhibitors within a clone 

match the ratios observed experimentally, we just need to tune the parameters  āÿ , i.e., the RNA 

production rate. For example, to generate a parameter set in such a way that in simulations the ratio 

between inhibitors expression values match the experimentally observed value �ÿ,Ā , we randomly select 

the parameters  āÿ and ÿÿ  and then impose that: āĀ = āÿÿÿ,Ā keeping ÿĀ =ÿÿ . 
Of note, this approach allows us to produce exactly the ratios of the inhibitors observed experimentally 

within a clone, as shown for example in Figure 5E. Similarly, to generate parameter sets  for clone B and 

R where the relation expression levels of a given inhibitor satisfy the experimentally observed relation �ÿ,þ �Ā � , we generate a random value for the transcription rate āÿ,� for clone R and impose that the 

transcription rate for clone B  āÿ,þ must be given by  
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�ÿ,þ �Ā � = āÿ,þāÿ,� 

In particular, by generating randomly ā�,�  and considering the relations �ÿ,Ā and �ÿ,�for the amount of 

inhibitor transcript observed for each clone, with the experimentally determined relations �ÿ,þ �Ā � ,  ��,þ �Ā � , �Ā,þ �Ā � of inhibitor values between clones, we then impose transcription rates so the relations 

within (Figure 5E)  and between clones (Figure 5F)  are satisfied in the simulations performed in the 

randomly generated parameter sets. Of note, we also impose that the amount of p65 (NF-�B) for clone B 

must be close to 1.4-fold that of clone R (Figure S4A). Of note, this approach is not exact, and it only gives 

ratios between clones that are close to the imposed ones, but still we find that for most of the randomly 

generated parameters such differences are enough to produce differences in dynamics compatible with 

those experimentally observed.  

 

Downmodulation of I�Ba using antisense oligonucleotides. The antisense oligos to target the Nfkbia gene 

were designed by Aum Biotech, LLC (Philadelphia, PA, USA). Four custom antisense oligos in the final 

concentration of 5 μM were used to treat MEFs for 24 hours to reduce the expression of I�Bɑ. 
 

Statistical analysis. For all the statistical analysis not detailed above: non-parametric Kruskal-Wallis (for 

multiple comparisons) and Student’s t-test were used as described in the figure captions. The threshold 

of significance was set to p=0.05. 
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