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Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of
worldwide deaths, respectively, due largely to broad increased risk for disease and
injury’ . These substances are used across the globe, yet genome-wide association
studies have focused largely on individuals of European ancestries’®. Here we
leveraged global genetic diversity across 3.4 million individuals from four major
clines of global ancestry (approximately 21% non-European) to power the discovery
and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform

function of these loci via ancestry-aware transcriptome-wide association studies,

and to evaluate the genetic architecture and predictive power of polygenic risk within
and across populations. We found that increases in sample size and genetic diversity
improved locusidentification and fine-mapping resolution, and that a large majority
ofthe 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across
ancestry dimensions. However, polygenic risk scores developed in one ancestry
performed poorly in others, highlighting the continued need to increase sample sizes
of diverse ancestries to realize any potential benefit of polygenic prediction.

We developed a multi-ancestry meta-regression method to meta-
analyse ancestrally diverse genome-wide association study (GWAS)
summary statistics from 60 cohorts with 3,383,199 individuals (Sup-
plementary Table 1; see Supplementary Fig. 1 for an overview of the
project), representing major clines of recent human ancestry (Fig. 1a).
The meta-analytic method used here uses meta-regression to account
for per study axes of genetic ancestry variation combined with a
random effect to capture further unexplained heterogeneity in the
effect of agivengenetic variant. Although ancestry hereis continuous,
we also performed secondary analyses of continental groups reflect-
ing four ancestry clines, including individuals of African (AFR; maxi-
mum n =119,589) and American (AMR; n =286,026) recently admixed
ancestries primarily from the United States; individuals of East Asian
ancestries (EAS; n=296,438) primarily from the United States, People’s
Republic of China and Japan; and individuals of European ancestries
(EUR; n=2,669,029) from the United States, Europe and Australia (see
Extended DataFig.1and Supplementary Note). Smoking phenotypes
were selected to represent different stages of tobacco use and addic-
tion, including initiation, the onset of regular use, amount smoked
and cessation. Measures of onsetincluded whether anindividual ever
smoked regularly (smoking initiation (Smklnit); n =3,383,199) and
the age at which the individual began smoking regularly (AgeSmk;
n=728,826). Amount smoked among current and former regular smok-
erswas measured as cigarettes smoked per day (CigDay; n = 784,353).
Smoking cessation (SmkCes; n =1,400,535) contrasted current versus
former smokers. Alcohol use was widely available across most studies,
measured as drinks per week (DrnkWk; n=2,965,643).

Multi-ancestry meta-analysis

Using our multi-ancestry meta-analysis, we identified 2,143 associated
loci across all phenotypes (sentinel variant P<5 x 107°), with 3,823 inde-
pendently associated variants (Extended Data Fig. 2, Supplementary

Tables 2 and 3 and Supplementary Figs. 2 and 3). Of these, 1,346 loci
and 2,486 independent variants were associated with Smklnit,
33 loci (39 variants) with AgeSmk, 140 loci (243 variants) with CigDay,
128 loci (206 variants) with SmkCes and 496 loci (849 variants) with
DrnkWk. Approximately 64% (n =1,364) of loci were phenotype-specific,
five loci were associated with all four smoking phenotypes but not with
DrnkWK, and five loci were associated with all five phenotypes. All sen-
tinel variants withinidentified loci had high posterior probabilities that
their effect would replicate in a sufficiently powered study according
to atrans-ancestry extension of our GWAS cross-validation technique®.
Only 17 sentinel variants (0.7%) had such posterior probabilities of less
than 0.99 and were therefore removed from the counts above and from
further consideration (additional details on these 17 variants are shown
in Supplementary Fig. 4).

Inclusion of diverse ancestry may improve the discovery of new vari-
antsthroughacombination of increased genetic variation, larger sam-
plesizesandimproved fine-mapping due to diverse patterns of linkage
disequilibrium (LD). We quantified gains in power from the use of our
multi-ancestry model over asimpler ancestry-naive fixed-effects model
excludingthe ancestry meta-regression. Comparing the number of asso-
ciated variants, we found 721 additionalindependent variants that were
identified only by the multi-ancestry meta-regression analysis. Both
sets of models were fit to the same data, such that the larger number
of significantly associated variants identified with the multi-ancestry
modelindicates increased power from accounting for axes of genetic
variation and residual heterogeneity. Included among these 721 were
newly associated variants in genes related to nervous system function
(forexample, NRXNI) including glutamatergic (GRIN2A) neurotransmis-
sion, which is of relevance to neurocircuitry in addiction”.

Toisolate likely causal variants, we used a fine-mapping procedure
(see Supplementary Note) that leverages variationin LD across ances-
try groups to construct 90% credible intervals. We identified 597 loci
(27.9%) in which the 90% credible intervals included fewer than five
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Fig.1|Ancestry compositionand effect size moderation.a, Ancestry
compositions of contributing studies (each pointis astudy). Colours are coded
by primary ancestry of individualsin the cohort. Studies with less than 90% of
individuals assignable to asingle ancestry group are shownin grey. Ancestry
component3was anorth-south EUR cline, which was omitted here aswe did
not conduct meta-analyses stratified by northern versus southern Europe.
TOPMed, Trans-Omics for Precision Medicine. b, Extent of effect size moderation
asafunctionofthe sameancestry dimensionsasshownina. The fullmoderation
results areinSupplementary Table 2. Each pointinbrepresentsanindependent
variantwith the standardized MDS component coefficient from our

variants, including 192 loci (9.0%) with a single fine-mapped variant.
Overall, credible intervals contained medians of 9-19 variants and
median spans of 32-78 kb across phenotypes (Supplementary Table 4).
Compared with the EUR-stratified GWAS (described in the next sec-
tion), the trans-ancestry fine-mapping increased the number of 90%
credible intervals containing fewer than five variants by 27.6%, and
containing asingle variant by 41.2%. Across all 2,143 loci, 1,330 (62.1%)
loci had areduced number of variants in the credible intervals in the
multi-ancestry analysis. To determine the gain in resolution attribut-
able to increased sample size (versus LD differences), we ‘downsam-
pled’ the multi-ancestry analysis by removing EUR ancestry cohorts
until the total sample size was approximately equal to that of the
EUR-stratified analysis and regenerated fine-mapping results. Using
the 1,330 loci withimproved resolution in multi-ancestry analysis, we
found that the credible intervals were reduced from a median of 22
variants in the EUR-stratified analysis to 12 variants in the downsam-
pled multi-ancestry analysis, suggesting that approximately 55% of
the observed improvement in fine-mapping is attributable to larger
multi-ancestry sample sizes alone. These findings highlight the utility of
bothincreased sample size and diverse ancestry in fine-mapping vari-
ants for these complex behavioural phenotypes. To characterize genes
prioritized from fine-mapping, we conducted a series of functional

Component 2 effect (approximate AFR cline)
in s.d. units (y,)

Component 4 effect (approximate AMR cline)
in s.d. units (y,)

trans-ancestry models (thatis, y) along the x axes, and the corresponding mean
differencein effectsizes (f) for the ancestry-stratified meta-analysis of the
givenancestry versusall other ancestries along the yaxes. The grey circles
indicate variants showinglittle to no evidence of effect size heterogeneity
across ancestry, whereas the coloured circlesrepresent variants withadequate
evidence of effect size heterogeneity. The plots highlight that the majority of
variants have similar effect sizes across all ancestry clines, with some
potentially interesting exceptions inwhich the variant effects sizes differ
substantially between ancestry clines.

enrichment analyses. We first selected intervals fine-mapped to fewer
than five variants from the multi-ancestry results and mapped each
variant to the nearest gene to identify ‘high-priority’ genes. Relative
to genes mapped from variants with posterior inclusion probabili-
ties (PIP) < 0.01, the high-priority genes were enriched across brain
and nervetissues (Extended Data Fig.3aand Supplementary Table 5).
Within the brain, cell-type enrichment of the high-priority genes was
observed for projecting glutamatergic neurons from the cortex, hip-
pocampus and amygdala (telencephalon excitatory projection neu-
rons) and projection GABA neurons from medium spiny neurons of
thestriatum (telencephaloninhibitory projecting neurons), along with
neurons in various subcortical structures such as the hypothalamus
and midbrain, consistent with aspects of the mesolimbic theory of
addiction” (Extended Data Fig. 3b). Finally, these high-priority genes
that were strongly associated with substance use were enriched ingene
pathways related to neurogenesis, neuronal development, neuronal
differentiation and synaptic function. The neurodevelopmental aspect
of the high-priority genes could indicate a role for these genes in pro-
cesses that predispose individuals to risk of substance use and/or may
contribute to brain circuit rewiring during drug use.

The multi-ancestry meta-analysis method also allowed for tests
of whether a variant effect size differed (that is, was moderated) by
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Fig.2|Within-ancestry and across-ancestry performance of polygenic
scoresinanindependenttargetsample (Add Health*). a, Incremental
variance explained for each target ancestry group. The colour of the stacked
barsindicates the ancestry from which the polygenic score was derived; the
total height of each set of the stacked bars (and 95% confidence intervals)
correspond to the total variance explained by all four ancestry-stratified scores
combined. Forexample, in the target EUR subsample, non-EUR polygenic
scoresadd little over and above the EUR score. Note that some comparisons are
underpowered to detect differencesin predictive accuracy acrossancestry
(seeSupplementary Note). Heritabilities, estimated by LD score regression,

of each phenotype-ancestry combination are depicted by the grey dashed bar
(with 95% confidence intervals) and corresponding sample sizes; these
represent the maximum expected accuracy of the polygenicrisk score (PRS).

b, The manner in which the phenotype meaninthe target sample changesasa

ancestry along four ancestry dimensions estimated from multidimen-
sional scaling (MDS) of allele frequencies from each participating study
(Fig.1a). Roughly, the first axis represents an EAS ancestry cline, the
second axis an AFR cline, the third a EUR cline (north to south EUR)
and the fourth an AMR cline. There was minimal evidence of effect
size moderation by ancestry for most independent variants, ranging
from 76.6% (187 variants) in CigDay to 85.0% (175 variants) in SmkCes.
Another 7.7-18.1% showed modest evidence for moderation. Finally,
roughly 3.6% of all independent variants, reflecting 136 variants from
84 distinct loci, showed strong evidence of effect size moderated
by ancestry (complete results are shown in Supplementary Table 2).
Comparisons between the variants with strong evidence for effect
size moderation by ancestry and those with no evidence suggested
that the identification of these 136 variants was not driven to a large
extent by differences in imputation quality, LD scores or Fst (fixation
index) across ancestries.

Across phenotypes, 88 of these 136 variants showed moderation by
the first axis of ancestry variation (approximate EAS cline; Fig. 1b, left),
29 variants by the second axis (approximate AFR cline; Fig. 1b, middle)
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function of the EURPRS deciles. ¢, Results fromaninteraction model, in which
each phenotype was modelled as afunction of aninteraction between the
EUR-based PRS and target ancestry (coded as a factor with EUR ancestry as
thereference andscores scaled withinancestry). The bands around eachline
denote the 95% confidence intervals. Significant interactions are noted with
text. Using SmkInit as an example, the purpleline represents the predicted
proportion of regular smokers as afunction of the EURPRS in the EUR
subsample of Add Health, the blue lines show the predicted proportion of
regular smokers by standard deviation of the EURPRS inthe EAS subsample,
andsoon.Inthis case, the magnitude of the association between the
EUR-based PRS and SmkiInit (that is, the slope) was significantly greater
inthe EUR target ancestry than all other ancestries. Full PRS results arein
Supplementary Table12.

and 10 variants by the fourth axis (approximate AMR cline; Fig. 1b,
right). Nine variants showed differences in effect size moderated by
the third axis (EUR cline). Only the effect of one variant was moderated
by three or more ancestry clines (EAS, AFR and AMR): rs1229984, a
missense variantinthe alcohol dehydrogenase gene ADH1B, which has
beenshown to be protective against alcohol consumption®. Anincrease
onany of these clines was associated with a reduced effect size of this
allele, on average. For example, if there are two people who both carry
one copy of the protective T allele for this variant but are separated by
1s.d. on MDS component 1 (EAS cline), the person with a lower value
onthat MDS cline would be expected to drink 0.3 fewer drinks than the
personwith ahigher MDS value, despite the same rs1229984 genotype
in ADHIB.

Tofurther evaluate causal genes and relevant tissues through which
associated variants may be operating, we applied a trans-ancestry
transcriptome-wide association study (TWAS) analysis to each phe-
notype across 49 tissues derived from the GTEx Consortium’. Using a
Pvalue threshold Bonferroni-corrected for the total number of genes
and tissues within a phenotype, we found 1,167 genes significantly



associated with Smkinit, 21 genes with AgeSmk, 203 genes with CigDay,
188 genes with SmkCes and 504 genes with DrnkWk (resultingin1,705
unique genes across phenotypes; Supplementary Table 6). For each of
our five phenotypes, matrix decomposition parallel analysis™ of the
per-tissue Pvalue correlation matrix suggested two components: one
explaining 53.7-55.2% of the variance in Pvalues, and another explain-
ing 3.5-3.8% of the variance in Pvalues. Similar loading patterns were
observed for all phenotypes such that all tissues loaded strongly (all
loadings > 0.12) on the first component, suggesting that it represents
ageneral effect across tissues, whereas only brain tissues had strong
loadings on the second component (all loadings > 0.12), indicating
the importance of brain-specific gene expression effects for these
tobacco and alcohol use phenotypes. Pathway enrichment analyses
of the TWAS-associated genes identified 1,029 unique gene pathways
across phenotypes that were broadly enriched across tissues (Sup-
plementary Table 7), including many of obvious relevance to neuro-
transmission and neurodevelopment.

To further illustrate several variants within genes of interest, we
integrated findings described above to select variants for which there
was evidence of association across analytic methods and for which
the availability of diverse ancestries was clearly relevant. Illustrative
variants were chosen in a similar way as described for the enrich-
ment analyses above: (1) we extracted variants from multi-ancestry
fine-mapped credible intervals containing less than five variants, and
(2) we cross-referenced the resulting variants with the multi-ancestry
TWAS cis-expression quantitative trait loci and their significantly asso-
ciated genes. We highlight five of the 52 genes that resulted from this
process.

We found the nicotinic gene cluster CHRNA5-A3-B4 to be signifi-
cantly associated with SmkInit' with a fine-mapped 90% credible
interval that shrank from 53 variants in EUR-stratified results to just
two variants in multi-ancestry results (rs2869055 and rs28438420;
Supplementary Table 4). These variants are not in high LD (r>=0.31
for both variants) with the well-known variant rs16969968 in this gene
cluster. By contrast, this locus was fine-mapped to two variantsin high
LD withrs16969968 for CigDay (r* = 0.84 and 0.86), suggesting that the
variants underlying this signal for smoking initiation may be distinct
from those for cigarettes per day. We also found a novel association
between SmkInitand CACNA1IB, which encodes a voltage-gated calcium
channel (Ca,2.2) that controls neuronal neurotransmitter release and
hasbeenassociated with cocaine reinstatement®, increased aggression
andvigilance, and reduced startle and exploration'. CACNA1Bislinked
to multiple psychiatric disorders, including schizophrenia, bipolar
disorder and autism spectrum disorders™.

CigDay was associated with variants in neurturin (VRTN), atype of
glial cellline-derived neurotrophic factorinvolvedin the development
and survival of dopamine neurons®®. This gene has been studied in
relation to Parkinson disease for its potential to restore dopamine
neurocircuitry”. Likewise, PAK6 was another novel gene strongly asso-
ciated with CigDay in TWAS results and was fine-mapped tojust three
variants in the 90% credible interval. PAK6 encodes a p21-activated
kinase that is highly expressed in the striatum and hippocampus,
has been implicated in the migration of GABAergic interneurons?
as well as the modulation of dopaminergic neurotransmission®, and
is involved in locomotor activity and cognitive function®. PAK6 has
beenrobustly associated with schizophrenia? and neurodegenerative
diseases®*?, such as Parkinson disease and Alzheimer disease, further
highlighting its role in synaptic changes. Finally, we found a novel
association between ECE2 and DrnkWk. ECE2 is involved in cortical
development?® as well as the processing of several neuroendocrine
peptides, including neurotensin and substance P¥, and may also have
arole in amyloid-p processing®. ECE2 also generates peptides such
as BAM 12 (which shows k-opioid receptor selectivity) and BAM 22
(which shows p-opioid receptor selectivity), suggesting a link with
pain transmission?.

Genetic correlation and polygenicscores

Toevaluate heritability, genetic correlation and polygenic scoring, we
generated ancestry-stratified GWAS meta-analysis results for each of
the four continental groups: AFR, AMR, EAS and EUR (Supplementary
Table 2 lists ancestry-stratified loci). Heritability and cross-phenotype
genetic correlations were generally similar in sign and modest in mag-
nitude in each ancestry (Fig. 2a and Supplementary Tables 8 and 9).
Smoking phenotypes were moderately genetically correlated with
eachother (Ir,| = 0.30-0.63) and with DrnkWk (|r,| = 0.16-0.27). Genetic
correlations for the same phenotype between each of the largest con-
tributing cohorts and all remaining cohorts (restricted to EUR ances-
tries only) were generally high for each smoking phenotype (meanr,
0f 0.93) and DrnkWk (meanr, 0f 0.72), indicating that these measures
were reliable across cohorts (Supplementary Table 9).

To characterize the multifactorial genetic aetiology of tobacco and
alcohol use, we computed genetic correlations of our EUR-stratified
results with 1,141 medical, biomarker and behavioural phenotypes
from the UK Biobank? (Supplementary Tables 10 and 11). An affinity
propagation clustering algorithm?® was used to aid interpretability
by grouping UK Biobank phenotypes such that each of the five cur-
rent phenotypes were exemplars (Supplementary Fig. 5). SmkInit and
AgeSmk clustered together, as did SmkCes and CigDay, with all four
forming a broad higher-level smoking cluster. Phenotypes with high
positive genetic correlations with SmklInit included addiction to any
substance, neighbourhood material deprivation, diagnosis of chronic
obstructive pulmonary disease, and a negative correlation with age
at first sexual intercourse (|r,| = 0.57-0.64). For AgeSmk, the largest
genetic correlations were with reproductive phenotypes such as age
at first birth (r, = 0.69-0.71) and measures of years of education and
attainment (r,= 0.58-0.69). CigDay and SmkCes were most highly
positively correlated with respiratory and cardiovascular diseases
and cancers (r,= 0.52-0.72), highlighting their geneticlink to adverse
disease outcomes. Finally, DrnkWk was most strongly correlated with
problematic drinking behaviours (r,= 0.52-0.70), indicating extensive
overlapinthe genetic architecture of DrnkWk and measures of alcohol
use, problems and alcohol use disorder. This is consistent with previous
findings of strong but imperfect genetic correlations (for example,
r,=0.8) betweenalcohol consumptionand alcohol use disorder from
large-scale GWAS®*2, We note, however, that genetic correlations can be
difficult to interpret®*>*as they may be affected by genetic confound-
ing, mediation effects or sampling bias.

We used the ancestry-stratified meta-analysis results to construct
ancestry-specific polygenic risk scores in Add Health®, an independ-
enttarget sample of individuals of diverse ancestries from the United
States (n=2,199 AFR, 1,132 AMR, 525 EAS and 6,092 EUR). To evalu-
ate within-ancestry and across-ancestry performance of polygenic
scores, we iteratively fit a multiple regression model and evaluated
the incremental predictive accuracy of each ancestry-based score,
over and above scores already entered into the model (that is, first
includingthe AMR-based score, then adding the AFR-based, EAS-based
and EUR-based scores one at a time to evaluate incremental predic-
tion accuracy). EUR-based scores in EUR ancestries outperformed
ancestry-matched scores in non-EUR ancestries (Fig. 2a) and showed
significantly stronger associations with most phenotypes in EUR ances-
triesthaninnon-EUR ancestries (described by decile plots and tested
by modelling an interaction between the EUR-based polygenic risk
score and the target sample ancestry group), consistent with expec-
tations® (Fig. 2b,c). For each ancestry and phenotype, the EUR-based
scoreonits ownoutperformed the ancestry-matched score onits own
(Supplementary Table 12). These results highlight the relative utility
of current polygenic scores for EUR ancestries versus all others. In
interpreting these results, however, we note that some comparisons
may be underpowered to identify differencesin the variance explained
by polygenic scores between ancestries. Finally, EUR-based scores

Nature | Vol 612 | 22/29 December 2022 | 723



Article

overpredicted tobacco and alcohol use for individuals of non-EUR
ancestry and underpredicted for individuals of EUR ancestry, although
this predictionbiasis readily eliminated through statistical correction
with genetic principal components.

Summary

Tobacco and alcohol use are heritable behaviours that can be radically
affected by environmental factors, including cultural context® and
public health policies®**’, Despite this, we found that a large majority
of associated genetic variants showed homogeneous effect size esti-
mates across diverse ancestries, suggesting that the genetic variants
associated with substance use affect such individuals similarly. The
limited extent of variant effect size heterogeneity, coupled with similar
heritability estimates and cross-trait genetic correlations, indicates
that the genetic architecture underlying substance use is not markedly
different across ancestries. There are some potentially interesting
exceptions of ancestrally heterogeneous effects in genes suchas ADHIB
and CACNA1B. By contrast, polygenic scores generally performed well
in EUR ancestries but with mixed-to-limited resultsin other ancestries,
suggesting that portability of such scores across ancestries remains
challenging, even when discovery sample sizes across all ancestries
are more than 100,000. Explanations for this apparent discrepancy
have been proposed*’, but more stringent and sensitive tests will be
required to draw strong conclusions about such patterns of heredity.

Most individuals of EUR, AFR and AMR ancestries in the current
study livein the United States and Europe and share somewhat similar
environments regarding tobacco and alcohol availability and policies
surrounding use of these substances, and allincluded individuals were
adults. Furtherincreasesin genetic diversity and consideration of envi-
ronmental moderators, including cultural factors, will continue to add
toour understanding of the genetic architecture of both substance use
andrelated behaviours and diseases.
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Methods

Here we describe an overview of the methods used to conduct the
association, fine-mapping and downstream insilico functional analysis.
Additional details can be found in the Supplementary Note.

Generation of summary statistics and ancestry considerations
Except for TOPMed studies, inwhich the genetic datawere derived from
deep whole-genome sequencing, participantsinall studies were geno-
typed on genome-wide arrays. The majority of studies imputed their
genotypes to the Haplotype Reference Consortium* (for EUR ances-
tries) or 1000 Genomes* (Supplementary Table 1). GWAS summary sta-
tistics were generated in each study sample typically using RVTESTS*,
BOLT-LMM* or SAIGE* with covariates of sex, age, age squared and
genetic principal components according to an analysis plandetailedin
the Supplementary Note. Studies composed primarily of closely related
individuals (for example, family studies) first regressed out covariates,
inverse-normalized the residuals as necessary and then tested additive
variant effects under a linear mixed model with agenetickinship matrix
for all phenotypes. Some studies of unrelated individuals followed the
same analysis for quasi-continuous phenotypes (AgeSmk, CigDay and
DrnkWk), but estimated additive genetic effects under alogistic model
for binary phenotypes (Smkinit and SmkCes).

We used terminology and acronyms from the 1000 Genomes Project*?
todescribeancestry. The majority of participating cohorts stratified their
sample by ancestry before generation of summary statistics. Cohorts
composed of substantial samples of multiple ancestry groups pro-
vided summary statistics stratified by ancestry, as well as results based
onallindividuals regardless of ancestry for use in the multi-ancestry
meta-analyses. As TOPMed served multiple functionsinthe presentstudy,
includingasanLDreference panel, we detailed the ancestry analyses and
classification of TOPMed datainthe Supplementary Note. Forexample,
forbothancestry-stratified and multi-ancestry conditional analysis, we
created TOPMed reference panels for estimating LD. We first created
ancestry-stratified reference samples, resulting in matched ancestry
reference sample sizes of n=28,665 AFR, n=19,737 AMR, n=4,918 EAS
and n= 51,656 EUR. To create a TOPMed-based reference sample for
multi-ancestry analyses, we combined the matched ancestry individuals,
resultingin a diverse ancestry reference panel (n =104,976) that matches
the ancestry proportions of the included cohorts to estimate LD.

Extensive quality control and filtering were performed on the sum-
mary statistics from each cohort. We removed studies with a sample
size of less than 100, and those with genomic control values greater
thanl.lorlessthan 0.9 and asamplesize of less than10,000 (per study
sample size and genomic control values are listed in Supplementary
Table1), as well as variants with an imputation quality of less than 0.3.

Ancestry-stratified meta-analyses

Ancestry-stratified metaanalyses were performed using the software
package rareGWAMA (see URLs for software use). Specifically, the
method aggregated weighted Z-score statistics, that is,

Zk WiZy

(zk wk)m ’

whereZkis the Z-score statistic in study k. The weight w, is defined by

= [N, (1- pk)Rk,wherepk1sthevar|antaIIeIefrequency,andRkls
the imputation quality in study k. This method accounts for
between-study heterogeneity in phenotype measures, imputation
accuracy, allele frequencies and sample sizes.

ZygTA=

Multi-ancestry meta-analyses
Multi-ancestry meta-analyses were performed using mixed-effects
meta-regression for optimal trans-ancestry meta-analysis (MEMO)

1mplemented in rareGWAMA (see URLs for software use). The full model
isby = =Y o Cult i €jx» Where by, is the genetic effect estimate for
thejth variantin the kth study, and Cy is the Ith ancestry component
forthe kthstudy. Note thatwe set Cy, =1,s0¥;gservesas theintercept.
Theregression coefficienty /,captures the effect ofthe [thaxis of genetic
variation for the jth varlant withy, asanintercept in the model, and
€jk~ N (0, 7?) is the random effect that captures unexplained effect
size heterogeneity after adjusting for genetic variation. Finally,
€ix~N(O, sfk) istherandomerror term, where sﬁkis thevarianceofthe
genetic effect estimate by,.. This method models heterogeneity of effects
attributable to ancestry as well as arandom effect to capture residual
heterogeneity. The MEMO model contains fixed-effect, random-effect
and meta-regression models as special cases. Specifically, removing
therandomeffecte; resultsinaregular meta-regression model, remov-
ing the covariates of genetic variation (Cy), but retaining e;, results in
arandom-effect meta-analysis model, whereas removingboth e, and
Cy resultsin a fixed-effect meta-analysis model.

Per study ancestry variation, Cy is calculated using MDS on the basis
of allele frequency. We defined the genetic distance between two

studies, thatis, study kand k', with /variants, asdy. = .|}, (/;k jjk,

where fk and fk are the allele frequency for the jth variant for study
kand K/, respectlvely We fit modelswith 0,1,2,3and 4 MDS components
and combined the results using a minimal P value approach (see
Extended Data Fig. 1a for a visual representation of the first four MDS
components).

Tobetter ensure robustness, for each phenotype, we filtered variants
fromthe meta-analytic results to variants that were presentin at least
three studies, had an effective sample size (sample size multiplied by
imputationaccuracy) to maximum sample size ratio of > 0.1, and minor
allele frequency (MAF) > 0.001in the multi-ancestry and EUR-stratified
meta-analysis or MAF > 0.01 for AMR-stratified, AFR-stratified and
EAS-stratified meta-analysis, given the expected drop offinimputation
accuracy for those ancestries. These filters reduce potential artefacts
arising from sparse data or poor imputation and retain variants with
reasonable statistical power.

With increasing imputation accuracy and the inclusion of variants
with MAF down to 0.1% (for EUR), genome-wide significant variants
wereidentified using a threshold of P< 5 x 107, to account for approxi-
mately 10 millionindependent tests. The threshold was chosenbased
on previous work on low-frequency variants®>***, All statistical tests are
two-sided unless otherwise stated.

Robustness and replicability of signals

We applied genomic control correction for low-frequency variants
(MAF <1%) in both multi-ancestry and ancestry-stratified meta-
analyses. Genomic control correction for common variants was not
applied given that elevation of genomic control values is expected
with high polygenicity (that s, it assumes sparsity) and very large sam-
ple sizes*®; such a correction may be overly conservative. To evaluate
this decision, we estimated the replicability of associated loci using a
trans-ancestry extension of an existing method®. This method, ‘RATES’,
incorporates cohort-level summary statistics (single-nucleotide poly-
morphism (SNP) effect sizes and their corresponding standard errors),
along with allele frequency-based MDS components per study to assign
aposterior probability that each sentinel variant effect would replicate
inasufficiently powered study. To further evaluate robustness of our
results, we estimated LD score regression (LDSC) intercepts and attenu-
ationratios toaccountforbiasin theintercept test when sample sizes
become extreme, asinthe present case. Results were within expected
limits and consistent with a limited effect of population stratification
onthe meta-analysis results* (Supplementary Table 8). Then, we com-
pared the sign of SNP effect size estimates between EUR-stratified
results and within-sibling GWAS results from the UK Biobank, finding
sign concordance estimates of 63.4-80% across phenotypes, all of
which were significantly higher than would be expected if our results
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were driven entirely by population stratification or cryptic relatedness
and were consistent in magnitude with other large-scale association
studies®. Finally, given reduced power in the within-sibling GWAS, we
additionally compared the sign of SNP effect size estimates between
EUR-stratified 23andMe summary statistics (the largest participating
cohort) and EUR-stratified summary statistics with all cohorts except
23andMe, finding sign concordance estimates of 94.3-100%. See
the Supplementary Note for further details on the methods and full
results, including the list of excluded variants and loci.

Conditional analyses and locus definitions

We performed sequential forward selection to identify indepen-
dently associated variants in each locus® for ancestry-stratified and
multi-ancestry results. The procedure begins by including only the
top association signal into a set of independently associated variants
(¢) perlocus. Conditional analysis is then conducted on the remaining
variants, conditioning on variantsin ¢. If any of these conditional sig-
nals remained significant (thatis, P< 5 x107°), we added the top signal
to the set ¢. The process iterates until there are no remaining signifi-
cantly associated variants. The method requires an external genomic
reference panel to estimate LD patterns. For ancestry-stratified condi-
tional analyses, we used ancestry-matched individuals from TOPMed
to estimate LD (sample sizes given previously). For multi-ancestry
conditional analyses, we used the diverse ancestry TOPMed refer-
ence panel (n =104,976) that matched the ancestry proportions of
theincluded cohorts.

Loci were defined based in part on the conditional analysis, using
amulti-step approach. First, consistent with previous GWAS meta-
analysis®’in EUR ancestries, we identified all 1-Mb windows surrounding
sentinel variants and collapsed overlapping windows. This resulted
in a total of 1,449 such windows. For each window, we then used our
ancestry-aware conditional analysis™ (described previously) with an
ancestry-matched reference panel from TOPMed to enumerate all
independent variants within each window. Then, for each independ-
ent variant, we defined alocus as the region including all variants in
LD of *> 0.1, based on the same ancestry-matched TOPMed reference
panel (Supplementary Table 3 and Supplementary Fig. 3). Overlapping
loci were then collapsed. This procedure avoids conventional defini-
tions of alocus based on work in EUR ancestries and is tailored to the
multi-ancestry dataat hand.

Allelic effect size moderation

We evaluated evidence of effect size moderation by ancestry in the
multi-ancestry model for each independent variant. To do so, we
extended the MEMO model into a mixture model that separated vari-
ants with homogenous effects (models with only an intercept term)
from those with possible heterogeneous effects (on at least one axis
of genetic variation). We considered six sub-models including the null
model, and the models in which the number of included components
varied from O to 4.

L(y) =[1pY" " p(yINULL) + pAT ZS [q;0 P(BjIMR( )
a JE€S,
+..+ qj4 p(bleR4(J))]:

where p(b;INULL) and p(bIMR)) are the likelihoods of the variant
jeffectsizesunder the nullmodel and the meta-regression models with
[axes of genetic variation, respectively; pi"" and p'" are the proba-
bilities of locus a carrying zero or at least one causal variant, respec-
tively. Theterm q,is the probability that the model with [axes of genetic
variation best fit the data. We selected the model with the largest pos-
terior probability for each variant as the best-fitting model to capture
the genetic effect heterogeneity. Variants in which the zero component
model was selected (that is, all models with at least one component
were rejected) were considered to have homogeneous effects across

ancestry. Among the remaining variants, we considered which one of
the meta-regression models (that is, 1-4 components) best described
the extent of effect heterogeneities based on the posterior probabilities
foreachmodel.Inaddition, we required that strongly heterogeneous
variants had an MDS component effect that was significantly different
from zero and were polymorphic in two or more ancestry-stratified
cohortstoeaseinterpretation of heterogeneous effects. Forexample,
avariantinwhichthe model with two components best fit the datawas
considered at least weakly heterogeneous. If this variant also had a
component two effect significantly different than zero (y,, = 0, from
above) and was polymorphicinatleast two ancestries, it was considered
strongly heterogeneous.

Fine-mapping

Onthebasis of the selected genetic effect model (above), for each vari-
Xj- (T+1)Iogk:|

antinalocus, we calculated the Bayes factor by 4, = exp[ 3

where X; denotes the chi-squared test statistic for variant/, T denotes
the number of axes of genetic variation included in the best-fitting
model (that is, 0-4 MDS components) and K denotes the number of
studies contributing to the GWAS. Using the approximate Bayes factor,
we then calculated the posteriorinclusion probability for each variant

asm; = % whereiindexes eachlocus. Finally, we derived 90% credible
intervals by ranking variants within alocus by their single posterior
estimate and selecting variants until the cumulative posterior inclusion
probability reached 0.90.

For EUR-stratified fine-mapping, we approximated the Bayes factor
asabove with T'set to 0. Fine-mapping was conducted in EUR-stratified
results, using identical loci as in multi-ancestry fine-mapping, to
describe the increased resolution attributable to diverse ancestry
inclusion and differences in sample size.

Functional enrichment analysis was conducted to test whether
high-priority genesidentified inthe fine-mapping results were expressed
inspecifictissue typesorenrichedin certaincell types or gene pathways.
High-priority genes were defined as those mapped from variantsin cred-
ibleintervals containing less than five variants. That is, for each variantin
credibleintervals with less than five variants, we used the UCSC genome
annotation database to assign genes. We assigned intergenic variants
to the nearest gene. We mapped genes from variants with PIP < 0.01
(as ‘control’ genes) in the same way. Functional enrichment was then
evaluated by estimating arelative risk (as described and implemented
previously*), defined as the ratio of the proportion of genes mapped
fromvariantsin credibleintervals with less than five variants thatarein
agiven annotation category to the proportion of genes mapped from
variants, within associated loci, with PIP < 0.01in the same annotation
category. Annotation categories were derived from GTEx tissue expres-
sion®, central nervous systems cell types® and gene pathways**.

TWAS

TWAS were performed using a trans-ancestry method. In brief, this
method fitsaseries of meta-regression models including the first four
axes of genetic variation (MDS components), similar to that of our
multi-ancestry meta-analysis model minus the random-effect term.
Genetic effect estimates from these four models were then used to
estimate phenotypic effects of each variant. Together, with variant
weights taken from PrediXcan® based on 49 tissues from GTEx release
version 8 (whichincludes up to15% of individuals of non-EUR ancestry),
the phenotypic effect estimates were used to construct asingle TWAS
statistic for each MDS component. Aminimum Pvalue approach’ was
thenapplied to combine all four TWAS statistic Pvalues. Finally, we used
a Cauchy combination test” to combine P values across all available
tissues for each gene. The final, combined P value was subjected to a
Bonferroni correction for 22,121 genes in 49 tissues. We present our
TWAS results based on per gene Pvalues combined across all available
tissues, resultingin a5 (phenotype) x 22,121 (gene) matrix of Pvalues.



Pathway enrichmentwas also conducted using aweighted regression
approach® with the TWAS per-tissue P values to quantify the enrich-
ment of identified genes in each pathway.

Heritability and genetic correlations
LDSC* was used to estimate heritability of our five phenotypes for
EAS and EUR ancestries using a standard 1-cM window size. For ances-
tries with more recent admixture (AFR and AMR ancestries), we used
covariate-adjusted LDSC® for the same analyses in which in-sample
LD scores were calculated using ancestry-matched TOPMed refer-
ence samples and adjusted by the first 50 principal components. For
more recently admixed AFR and AMR ancestries, which tend to show
longer-range LD, we used a 20-cM window size when calculating LD
scores.ForbothLDSC and covariate-adjusted LDSC, variants were subset
to HapMap?3 (ref. ®") with MAF > 0.05, as recommended for this approach.
We calculated genetic correlations between our five phenotypes
and 4,065 UK Biobank phenotypes (both restricted to EUR ances-
try) using bivariate LDSC with 1000 Genomes-based pre-calculated
EUR LD scores for HapMap3 variants. We excluded phenotypes with
heritability Z-scores less than 3 (reflecting near-zero heritability),
genetic correlations with our phenotypes less than —0.8 or greater
than 0.8, to remove phenotypes approaching redundancy with our
target tobacco and alcohol use measures (for example, cigarettes per
day versus packs per day), and those whose genetic correlations were
unable to be estimated largely due to negative heritability estimates,
leaving 1,141 UK Biobank phenotypes. Affinity propagation clustering®?,
amessage-passing algorithmbased on exemplars that identifies their
corresponding set of clusters, was then used to further interpret the
patternof genetic correlations and multifactorial nature of substance
use. A Bonferroni-corrected P value threshold for 1,141 UK Biobank
phenotypes was used to identify genetic correlations that were sig-
nificantly different from zero.

Polygenicscoring

Polygenic risk scores were computed using LDpred for each ances-
try group separately, an approach that incorporates the correlation
between genetic variants to re-weight effect size estimates®>, We used
anindependent prediction cohort, Add Health®, to validate each score.
Add Health is a nationally representative sample of US adolescents
enrolledingrades 7 through 12 during the 1994-1995 school year. The
mean birth year of respondents was1979 (s.d. =1.8) and the mean age
at assessment (here, wave 4) was 29.0 years (s.d. =1.8), which is com-
parable, in general, to the age of participants in the 23andMe cohort
but younger, on average, than those in other cohorts. Add Health is
composed of individuals from the same four major ancestral groups
(defined with reference to 1000 Genomes; see Supplementary Note
for details) comprising our ancestry-stratified results (EUR, AFR, AMR
and EAS). Phenotypic descriptive statistics are givenin Supplementary
Table 12. Across the full Add Health sample, approximately 41% ever
smokeregularly and reported an average of 7.3 cigarettes per day. For
each polygenic score, we used only HapMap3 variants and those with
MAF > 0.01. We used each Add Health ancestry group as its own LD
reference panel for construction of each polygenic score, after remov-
ingrelated individuals, except for EAS in which we use 1000 Genomes
due to the small sample size in Add Health.

Predictionaccuracy of each polygenic score was estimated by taking
the difference in the coefficient of determination (R?) between a base
model thatincluded only the covariates of age, sex, age x sex interac-
tion, and the first ten genetic principal components, and a full model
that additionally included the polygenic score. All scores were scaled
to have amean of zero and standard deviation of one.

URLs for software use
BCFtools, http://samtools.github.io/bcftools/; BOLT-LMM, https://
data.broadinstitute.org/alkesgroup/BOLT-LMM/; cov-LDSC, https://

github.com/immunogenomics/cov-ldsc; EAGLE, https://alkes-
group.broadinstitute.org/Eagle/; GCTA, http://cnsgenomics.com/
software/gcta/; IMPUTE2, https://mathgen.stats.ox.ac.uk/impute/
impute_v2.html; LDpred, https://github.com/bvilhjal/Idpred/; LDSC,
https://github.com/bulik/ldsc/; MEMO (rareGWAMA), https://github.
com/dajiangliu/rareGWAMA/; Minimac3, https://genome.sph.umich.
edu/wiki/Minimac3; PLINK, https://www.cog-genomics.org/plink/;
R, https://www.r-project.org/; RATES, https://github.com/wangc29/
RATES; RVTESTS, https://github.com/zhanxw/rvtests/; SAIGE, https://
github.com/weizhouUMICH/SAIGE; SHAPEIT, http://mathgen.stats.
ox.ac.uk/genetics_software/shapeit/shapeit.html; TESLA, https://
github.com/funfunchen/rareGWAMA; VCFtools, https://vcftools.
github.io/index.html.

Ethics

Ethical review and approval were provided by the University of Min-
nesota institutional review board. All human participants provided
informed consent.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

GWAS summary statistics can be downloaded online (https://doi.
org/10.13020/przg-dp88) with more information available here:
https://genome.psych.umn.edu/index.php/GSCAN. We have pro-
vided association results for variants that passed quality-control
filters in the multi-ancestry and ancestry-stratified results for each
of the five substance use phenotypes, excluding data provided by
23andMe. Ancestry-stratified polygenic score weights based on
ancestry-stratified summary statistics are also provided. 23andMe
results are available directly from the company.

Code availability

Allsoftware used to perform these analyses is publicly available. Soft-
ware tools used are listed in the main text and Methods.

41.  McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat.
Genet. 48,1279-1283 (2016).

42. 1000 Genomes Project Consortium et al. A global reference for human genetic variation.
Nature 526, 68-74 (2015).

43. Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: an efficient and comprehensive
tool for rare variant association analysis using sequence data. Bioinformatics 32,
1423-1426 (2016).

44. Loh, P-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for
biobank-scale datasets. Nat. Genet. 50, 906-908 (2018).

45. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness
in large-scale genetic association studies. Nat. Genet. 50, 1335-1341(2018).

46. Chen, Z. & Liu, Q. A new approach to account for the correlations among single
nucleotide polymorphisms in genome-wide association studies. Hum. Hered. 72, 1-9
(2011).

47. Gao, X., Becker, L. C., Becker, D. M., Starmer, J. D. & Province, M. A. Avoiding the high
Bonferroni penalty in genome-wide association studies. Genet. Epidemiol. 34, 100-105
(2010).

48. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet.
19, 807-812 (201).

49. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association
study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112-1121 (2018).

50. Bryois, J. et al. Genetic identification of cell types underlying brain complex traits yields
insights into the etiology of Parkinson’s disease. Nat. Genet. 52, 482-493 (2020).

51. Jiang, Y. et al. Proper conditional analysis in the presence of missing data: application to
large scale meta-analysis of tobacco use phenotypes. PLoS Genet. 14, 1007452 (2018).

52. Kanai, M. et al. Insights from complex trait fine-mapping across diverse populations.
Preprint at medRxiv https://doi.org/10.1101/2021.09.03.21262975 (2021).

53. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580-585
(2013).

54. Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine.
Nucleic Acids Res. 49, D325-D334 (2021).

55. Gamazon, E. R. et al. A gene-based association method for mapping traits using reference
transcriptome data. Nat. Genet. 47,1091-1098 (2015).


http://samtools.github.io/bcftools/
https://data.broadinstitute.org/alkesgroup/BOLT-LMM/
https://data.broadinstitute.org/alkesgroup/BOLT-LMM/
https://github.com/immunogenomics/cov-ldsc
https://github.com/immunogenomics/cov-ldsc
https://alkesgroup.broadinstitute.org/Eagle/
https://alkesgroup.broadinstitute.org/Eagle/
http://cnsgenomics.com/software/gcta/
http://cnsgenomics.com/software/gcta/
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
https://github.com/bvilhjal/ldpred/
https://github.com/bulik/ldsc/
https://github.com/dajiangliu/rareGWAMA/
https://github.com/dajiangliu/rareGWAMA/
https://genome.sph.umich.edu/wiki/Minimac3
https://genome.sph.umich.edu/wiki/Minimac3
https://www.cog-genomics.org/plink/
https://www.r-project.org/
https://github.com/wangc29/RATES
https://github.com/wangc29/RATES
https://github.com/zhanxw/rvtests/
https://github.com/weizhouUMICH/SAIGE
https://github.com/weizhouUMICH/SAIGE
http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
https://github.com/funfunchen/rareGWAMA
https://github.com/funfunchen/rareGWAMA
https://vcftools.github.io/index.html
https://vcftools.github.io/index.html
https://doi.org/10.13020/przg-dp88
https://doi.org/10.13020/przg-dp88
https://genome.psych.umn.edu/index.php/GSCAN
https://doi.org/10.1101/2021.09.03.21262975

Article

56. Lin, D.-Y. & Tang, Z.-Z. A general framework for detecting disease associations with rare
variants in sequencing studies. Am. J. Hum. Genet. 89, 354-367 (2011).

57.  Liu, Y. & Xie, J. Cauchy combination test: a powerful test with analytic p-value calculation
under arbitrary dependency structures. J. Am. Stat. Assoc. 115, 393-402 (2020).

58. Leeuw, C.A., de, Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set
analysis of GWAS data. PLoS Comput. Biol. 11, 1004219 (2015).

59. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from
polygenicity in genome-wide association studies. Nat. Genet. 47, 291-295 (2015).

60. Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in
admixed populations. Hum. Mol. Genet. 30, 1521-1534 (2021).

61. Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human
populations. Nature 467, 52-58 (2010).

62. Frey, B. J. & Dueck, D. Clustering by passing messages between data points. Science 315,
972-976 (2007).

63. Vilhjalmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic
risk scores. Am. J. Hum. Genet. 97, 576-592 (2015).

Acknowledgements This study was designed and carried out by the GWAS and Sequencing
Consortium of Alcohol and Nicotine use (GSCAN). It was conducted by using the UK Biobank
Resource under application number 16651. This study was supported by funding from US
National Institutes of Health awards RS6HG011035, RO1DA044283, RO1DA042755 and
UO1DA041120 to SV., and RO1GM126479, R56HG011035, RO30D032630, ROTHG0O11035 and
R56HG012358 to D.J.L. G.R.B.S. was also supported by National Institutes of Health award
T32DA050560. D.J.L. and X.W. were in part supported by the Penn State College of Medicine’s
Biomedical Informatics and Atrtificial Intelligence Program in the Strategic Plan. A full list of
acknowledgements is provided in the Supplementary Note.

Author contributions D.J.L. and SV. designed, led and oversaw the study. G.R.B.S and X.W.
were the lead analysts for the study, and they were assisted by D.J.L., SV., F. Chen, S.-K.J., M. Liu
and CW. Phenotype definitions were developed by L.J.B., M.C.C., J. Kaprio., E.J., D.J.L.,

M. McGue, M.R.M., SV. and L.Z. Software development was carried out by XW., D.J.L., F. Chen
and CW. Multi-ancestry meta-analyses were performed by X.W. Ancestry-stratified
meta-analyses were performed by G.R.B.S. and M. Liu. Conditional analyses were performed
by X.W. and G.R.B.S. Fine-mapping and allelic heterogeneity were performed by X.W. and
G.R.B.S. Replicability analyses were performed by CW., S.-K.J. and G.R.B.S. Multi-ancestry
TWAS were performed by F. Chen. Heritability and genetic correlation analyses were

performed by S.-K.J. Polygenic scoring analyses was performed by G.R.B.S. Bioinformatics
analyses were performed and interpreted by F. Chen, S.-K.J., G.R.B.S., SV. and J.A. Stitzel.
Figures were created by M. Liu, G.R.B.S., S.-K.J. and SV. M. Liu and SV. coordinated among
participating cohorts. M.A.E. and M.C.K. helped with data access. G.R.B.S. coordinated
authorship and acknowledgement details. C.B., AW.B., L.B., S.P.D., S.A.GT., D.B.H., M.R.M. and
T.ET. provided helpful advice and feedback on study design and the manuscript. All authors
contributed to and critically reviewed the manuscript. G.R.B.S., X.W., S.-K.J., F. Chen, CW.,
D.J.L. and SV. made major contributions to the writing and editing.

Competing interests The spouse of N.L. Saccone is listed as an inventor on issued U.S. patent
8080371 ‘Markers of addiction’, covering the use of certain single-nucleotide polymorphisms
in determining the diagnosis, prognosis and treatment of addiction. M.H.C. has received grant
funding from GSK and Bayer, and speaking or consulting fees from AstraZeneca, Illumina and
Genentech. RT.-S. is a former employee and current shareholder of GSK and is currently a
non-executive member of the ENA Respiratory board of directors. She reports personal fees
from Teva, Immunomet, Vocalis Health and ENA Respiratory (until January 2021). D.A.S. is the
founder and chief scientific officer of Eleven P15, a company focused on the early diagnosis of
treatment of pulmonary fibrosis. J.B.N. and E.J. are employed by Regeneron Pharmaceuticals,
Inc. The spouse of C.J.W. is employed by Regeneron Pharmaceuticals, Inc. L.J.B. is listed as an
inventor on Issued U.S. Patent 8080371 ‘Markers for addiction’, covering the use of certain
single-nucleotide polymorphisms in determining the diagnosis, prognosis and treatment of
addiction. The 23andMe Research Team, including J.S. and S.S.S., are employees of 23andMe,
Inc., and hold stock and/or stock options in 23andMe. T.ET.,, D.F.G., H.S., G.B. and K. Stefansson
are employees of deCODE genetics/AMGEN. M. Moll received grant support from Bayer. AW.B.
is listed as a co-inventor on a U.S. patent application ‘Biosignature discovery for substance use
disorder using statistical learning’ assigned to BioRealm, LLC, and serves as a scientific advisor
and consultant to BioRealm, LLC. All other authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-022-05477-4.

Correspondence and requests for materials should be addressed to Dajiang J. Liu or

Scott Vrieze.

Peer review information Nature thanks David Balding, Ditte Demontis, Eske Derks and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://doi.org/10.1038/s41586-022-05477-4
http://www.nature.com/reprints

a .
.‘ 404"
200 ~ .
g v A A ® African
g : > 754 g
20 P . East Asian
150 4 5
B
N ™ . < ® European
E £ o{K & =07
2 100 A 2 o \ o 2 ® American
g g g :
B . IS £ 5 ® Multiple Ancestries
3 . 8 20+ 8§ 25+
50 o o o o
i ]
° L]
-40 4 o
04 % 0+ A
i_; a0 2 & # o A | A 1000Genomes
o
a
e 60 ° O  Imputed
T T T T T T
0 100 0 100 0 100 ® TOPMed

Component 1 Component 1

Component 1

b 1504 150 4
100 -
1001
= 50 = =
3} 3 3 50 :
a a . 4 a
1 ¢
O_
Y
-50 - "% )
T T T T T T T T T
-50 0 50 100 100 50 0 50 100
PC2 PC2

Extended DataFig.1|Ancestry space of studies contributing to meta-
analysis (panel a), versusindividuals from TOPMed and1000 Genomes
(panelb). The meta-regression within the MEMO model requires specification
ofancestry clines. To ensure consistency in the meaning of ancestry clines
acrossall five MEMO analyses (one for each phenotype) we created asingle
multidimensional scaling solution based on allele frequencies fromall
phenotypesinall participating cohorts. These solutions are plotted in panela
(circles correspond to TOPMed cohorts, squares are all other cohorts which
used imputed microarray genotypes, and triangles are 1000 Genomes ancestry
groups). Colors of points correspond to the primary assigned ancestry of each

cohort (studies with < 90% of individuals coming from a single ancestry group
areshowningrey). Panelbshows projection of principal components (after
OADP transformation) of TOPMed individuals onto PCs of 1000 Genomes
individuals,in colored triangles. Each1000 Genomesindividualis colored by
theirknownancestry. This PCinformation was used in assigning ancestry to
TOPMed individuals for the purpose of reference panel creation (individuals of
South Asianancestry werenotincluded inanalyses). The PCsin panelbwere
reordered or reversedinsome casesto align with panel a. These transformations
arenotedintheaxislabels.
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Extended DataFig.2 | Multi-ancestry meta-analysis Manhattanplots.Black illustrate variants with very small P-values (e.g., the Drinks per Week y-axis is
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Extended DataFig. 3 | Tissue expression and brain cell type enrichment
inhighpriority genes. Panel ashows tissue expression enrichment in ‘high

relative risk estimates comparing high priority to control genes. Panel b shows
similar relative risk comparisons with 39 brain cell types. Data are presented
asrelative risk values with error bars denoting bootstrapped 95% confidence

intervals. Further details on estimating relative risk areincluded in the

Supplementary Note section ‘Functional enrichment’.

priority’ genes. We define high priority genes here as those located nearest
tothevariantsinfine-mapped credibleintervals containing less than five

variants. These genes were compared to ‘control’ genesidentified in the same

way, but fromvariantsin credibleintervals with PIP < 0.01from the trans-ancestry
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Software and code

Policy information about availability of computer code

Data collection  No software was used.

Data analysis All studies used either Shapelt2 or EAGLEV2.4 to phase genotypes and used either Minimac3 or IMPUTE?2 for imputation. Summary statistics
were generated using RVTESTS release v1.9.7 or v1.9.9, BOLT-LMM v2.3.2, or SAIGE v0.35.8.1. Standard quality control used PLINK v1.9 or
v2.0, BCFtools v1.9, and VCFtools v0.1.16. Meta-analyses and conditional analyses were performed using rareGWAMA v0.7 in Rv3.6.0 and
GCTA v1.93.0 and v1.94.0. Transcriptome-wide association analysis was performed using TESLA (implemented in rareGWAMA). Replicability of
associated loci was performed using RATES v1.0.0. Standard and covariate-adjusted LD Score Regression was used to measure heritability, test
for population stratification, and estimate genetic correlations (LDSC v1.0.1 and cov-LDSC v1.0.0). LDpred v1.0.8 was used to construct the
polygenic scores.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

GWAS summary statistics can be downloaded online (https://doi.org/10.13020/przg-dp88) with more information available here: https://genome.psych.umn.edu/
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index.php/GSCAN. We provide association results for variants that passed quality-control filters in the multi-ancestry and ancestry-stratified results for each of the
five substance use phenotypes, excluding data provided by 23andMe. Ancestry-stratified polygenic score weights based on ancestry-stratified summary statistics
are also provided. 23andMe results are available directly from the company.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was necessary as we increased our sample size to the extent possible. We contacted as many studies
(with our phenotypes of interest) as possible and applied for relevant studies available in public repositories. Our meta-analysis includes the
largest sample size of similar phenotypes to date and therefore, our results are sufficiently powered.

Data exclusions = We excluded results from smaller studies when those results behaved unusually (e.g., inflated or deflated genomic controls), and there was
no alternative explanation (e.g., inflation was due to polygenic signal). We applied filters to the genomic data post meta-analysis (minor allele
frequency > .1% for European-stratified results or > 1% for all others, effective sample size of at least 1% per phenotype and at least 3 studies
must be included for each variant) in order to only report variants on which we had robust results. Finally, we removed 17 loci in which the
lead SNPs posterior probability of replicability fell below a threshold of .99, although these are reported in the supplementary materials.

Replication In order to maximize power to detect the variants, we did not separate our sample into a separate discovery and replication set. We used a
trans-ancestry extension of the Meta-Analysis Model-based Assessment for replicability (MAMBA) to assess the posterior probability of
replicability of associations without an independent replication sample. References are available in the manuscript.

Randomization  N/A. No randomization was employed as the current study was observational and used all available participants.

Blinding N/A. Blinding was not applicable to the current study as we did not employ any intervention.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Human research participants
Clinical data
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Human research participants

Policy information about studies involving human research participants

Population characteristics All participants were adults. We included all available individuals of all genders and sexes from European, African, American,
or East Asian ancestry populations.

Recruitment We did not do any recruitment. Analysis was of existing de-identified data.

Ethics oversight University of Minnesota IRB

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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