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Genetic diversity fuels gene discovery for 
tobacco and alcohol use

Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of 

worldwide deaths, respectively, due largely to broad increased risk for disease and 

injury1–4. These substances are used across the globe, yet genome-wide association 

studies have focused largely on individuals of European ancestries5. Here we 

leveraged global genetic diversity across 3.4 million individuals from four major 

clines of global ancestry (approximately 21% non-European) to power the discovery 

and fne-mapping of genomic loci associated with tobacco and alcohol use, to inform 

function of these loci via ancestry-aware transcriptome-wide association studies,  

and to evaluate the genetic architecture and predictive power of polygenic risk within 

and across populations. We found that increases in sample size and genetic diversity 

improved locus identifcation and fne-mapping resolution, and that a large majority 

of the 3,823 associated variants (from 2,143 loci) showed consistent efect sizes across 

ancestry dimensions. However, polygenic risk scores developed in one ancestry 

performed poorly in others, highlighting the continued need to increase sample sizes 

of diverse ancestries to realize any potential beneft of polygenic prediction.

We developed a multi-ancestry meta-regression method to meta- 

analyse ancestrally diverse genome-wide association study (GWAS) 

summary statistics from 60 cohorts with 3,383,199 individuals (Sup-

plementary Table 1; see Supplementary Fig. 1 for an overview of the 

project), representing major clines of recent human ancestry (Fig. 1a). 

The meta-analytic method used here uses meta-regression to account 

for per study axes of genetic ancestry variation combined with a 

random effect to capture further unexplained heterogeneity in the 

effect of a given genetic variant. Although ancestry here is continuous,  

we also performed secondary analyses of continental groups reflect-

ing four ancestry clines, including individuals of African (AFR; maxi-

mum n)=)119,589) and American (AMR; n)=)286,026) recently admixed 

ancestries primarily from the United States; individuals of East Asian 

ancestries (EAS; n)=)296,438) primarily from the United States, People9s 

Republic of China and Japan; and individuals of European ancestries 

(EUR; n)=)2,669,029) from the United States, Europe and Australia (see 

Extended Data Fig. 1 and Supplementary Note). Smoking phenotypes 

were selected to represent different stages of tobacco use and addic-

tion, including initiation, the onset of regular use, amount smoked 

and cessation. Measures of onset included whether an individual ever 

smoked regularly (smoking initiation (SmkInit); n)=)3,383,199) and 

the age at which the individual began smoking regularly (AgeSmk; 

n)=)728,826). Amount smoked among current and former regular smok-

ers was measured as cigarettes smoked per day (CigDay; n)=)784,353). 

Smoking cessation (SmkCes; n)=)1,400,535) contrasted current versus 

former smokers. Alcohol use was widely available across most studies, 

measured as drinks per week (DrnkWk; n)=)2,965,643).

Multi-ancestry meta-analysis

Using our multi-ancestry meta-analysis, we identified 2,143 associated  

loci across all phenotypes (sentinel variant P)<)5)×)1029), with 3,823 inde-

pendently associated variants (Extended Data Fig. 2, Supplementary 

Tables 2 and 3 and Supplementary Figs. 2 and 3). Of these, 1,346 loci  

and 2,486 independent variants were associated with SmkInit,  

33 loci (39 variants) with AgeSmk, 140 loci (243 variants) with CigDay, 

128 loci (206 variants) with SmkCes and 496 loci (849 variants) with 

DrnkWk. Approximately 64% (n)=)1,364) of loci were phenotype-specific, 

five loci were associated with all four smoking phenotypes but not with 

DrnkWk, and five loci were associated with all five phenotypes. All sen-

tinel variants within identified loci had high posterior probabilities that 

their effect would replicate in a sufficiently powered study according 

to a trans-ancestry extension of our GWAS cross-validation technique6. 

Only 17 sentinel variants (0.7%) had such posterior probabilities of less 

than 0.99 and were therefore removed from the counts above and from 

further consideration (additional details on these 17 variants are shown 

in Supplementary Fig. 4).

Inclusion of diverse ancestry may improve the discovery of new vari-

ants through a combination of increased genetic variation, larger sam-

ple sizes and improved fine-mapping due to diverse patterns of linkage 

disequilibrium (LD). We quantified gains in power from the use of our 

multi-ancestry model over a simpler ancestry-naive fixed-effects model 

excluding the ancestry meta-regression. Comparing the number of asso-

ciated variants, we found 721 additional independent variants that were 

identified only by the multi-ancestry meta-regression analysis. Both 

sets of models were fit to the same data, such that the larger number 

of significantly associated variants identified with the multi-ancestry 

model indicates increased power from accounting for axes of genetic 

variation and residual heterogeneity. Included among these 721 were 

newly associated variants in genes related to nervous system function 

(for example, NRXN1) including glutamatergic (GRIN2A) neurotransmis-

sion, which is of relevance to neurocircuitry in addiction7,8.

To isolate likely causal variants, we used a fine-mapping procedure 

(see Supplementary Note) that leverages variation in LD across ances-

try groups to construct 90% credible intervals. We identified 597 loci 

(27.9%) in which the 90% credible intervals included fewer than five 
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variants, including 192 loci (9.0%) with a single fine-mapped variant. 

Overall, credible intervals contained medians of 9–19 variants and 

median spans of 32–78)kb across phenotypes (Supplementary Table 4). 

Compared with the EUR-stratified GWAS (described in the next sec-

tion), the trans-ancestry fine-mapping increased the number of 90% 

credible intervals containing fewer than five variants by 27.6%, and 

containing a single variant by 41.2%. Across all 2,143 loci, 1,330 (62.1%) 

loci had a reduced number of variants in the credible intervals in the 

multi-ancestry analysis. To determine the gain in resolution attribut-

able to increased sample size (versus LD differences), we 8downsam-

pled9 the multi-ancestry analysis by removing EUR ancestry cohorts 

until the total sample size was approximately equal to that of the 

EUR-stratified analysis and regenerated fine-mapping results. Using 

the 1,330 loci with improved resolution in multi-ancestry analysis, we 

found that the credible intervals were reduced from a median of 22 

variants in the EUR-stratified analysis to 12 variants in the downsam-

pled multi-ancestry analysis, suggesting that approximately 55% of 

the observed improvement in fine-mapping is attributable to larger 

multi-ancestry sample sizes alone. These findings highlight the utility of 

both increased sample size and diverse ancestry in fine-mapping vari-

ants for these complex behavioural phenotypes. To characterize genes 

prioritized from fine-mapping, we conducted a series of functional 

enrichment analyses. We first selected intervals fine-mapped to fewer 

than five variants from the multi-ancestry results and mapped each 

variant to the nearest gene to identify 8high-priority9 genes. Relative 

to genes mapped from variants with posterior inclusion probabili-

ties (PIP))<)0.01, the high-priority genes were enriched across brain 

and nerve tissues (Extended Data Fig. 3a and Supplementary Table 5). 

Within the brain, cell-type enrichment of the high-priority genes was 

observed for projecting glutamatergic neurons from the cortex, hip-

pocampus and amygdala (telencephalon excitatory projection neu-

rons) and projection GABA neurons from medium spiny neurons of 

the striatum (telencephalon inhibitory projecting neurons), along with 

neurons in various subcortical structures such as the hypothalamus 

and midbrain, consistent with aspects of the mesolimbic theory of 

addiction7,8 (Extended Data Fig. 3b). Finally, these high-priority genes 

that were strongly associated with substance use were enriched in gene 

pathways related to neurogenesis, neuronal development, neuronal 

differentiation and synaptic function. The neurodevelopmental aspect 

of the high-priority genes could indicate a role for these genes in pro-

cesses that predispose individuals to risk of substance use and/or may 

contribute to brain circuit rewiring during drug use.

The multi-ancestry meta-analysis method also allowed for tests 

of whether a variant effect size differed (that is, was moderated) by 
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Fig. 1 | Ancestry composition and effect size moderation. a, Ancestry 

compositions of contributing studies (each point is a study). Colours are coded 

by primary ancestry of individuals in the cohort. Studies with less than 90% of 

individuals assignable to a single ancestry group are shown in grey. Ancestry 

component 3 was a north–south EUR cline, which was omitted here as we did 

not conduct meta-analyses stratified by northern versus southern Europe. 

TOPMed, Trans-Omics for Precision Medicine. b, Extent of effect size moderation 

as a function of the same ancestry dimensions as shown in a. The full moderation 

results are in Supplementary Table 2. Each point in b represents an independent 

variant with the standardized MDS component coefficient from our 

trans-ancestry models (that is, ³) along the x axes, and the corresponding mean 

difference in effect sizes (³) for the ancestry-stratified meta-analysis of the 

given ancestry versus all other ancestries along the y axes. The grey circles 

indicate variants showing little to no evidence of effect size heterogeneity 

across ancestry, whereas the coloured circles represent variants with adequate 

evidence of effect size heterogeneity. The plots highlight that the majority of 

variants have similar effect sizes across all ancestry clines, with some 

potentially interesting exceptions in which the variant effects sizes differ 

substantially between ancestry clines.
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ancestry along four ancestry dimensions estimated from multidimen-

sional scaling (MDS) of allele frequencies from each participating study 

(Fig. 1a). Roughly, the first axis represents an EAS ancestry cline, the 

second axis an AFR cline, the third a EUR cline (north to south EUR) 

and the fourth an AMR cline. There was minimal evidence of effect 

size moderation by ancestry for most independent variants, ranging 

from 76.6% (187 variants) in CigDay to 85.0% (175 variants) in SmkCes. 

Another 7.7–18.1% showed modest evidence for moderation. Finally, 

roughly 3.6% of all independent variants, reflecting 136 variants from 

84 distinct loci, showed strong evidence of effect size moderated 

by ancestry (complete results are shown in Supplementary Table 2). 

Comparisons between the variants with strong evidence for effect 

size moderation by ancestry and those with no evidence suggested 

that the identification of these 136 variants was not driven to a large 

extent by differences in imputation quality, LD scores or Fst (fixation 

index) across ancestries.

Across phenotypes, 88 of these 136 variants showed moderation by 

the first axis of ancestry variation (approximate EAS cline; Fig. 1b, left), 

29 variants by the second axis (approximate AFR cline; Fig. 1b, middle) 

and 10 variants by the fourth axis (approximate AMR cline; Fig. 1b, 

right). Nine variants showed differences in effect size moderated by 

the third axis (EUR cline). Only the effect of one variant was moderated 

by three or more ancestry clines (EAS, AFR and AMR): rs1229984, a 

missense variant in the alcohol dehydrogenase gene ADH1B, which has 

been shown to be protective against alcohol consumption9. An increase 

on any of these clines was associated with a reduced effect size of this 

allele, on average. For example, if there are two people who both carry 

one copy of the protective T allele for this variant but are separated by 

1)s.d. on MDS component 1 (EAS cline), the person with a lower value 

on that MDS cline would be expected to drink 0.3 fewer drinks than the 

person with a higher MDS value, despite the same rs1229984 genotype 

in ADH1B.

To further evaluate causal genes and relevant tissues through which 

associated variants may be operating, we applied a trans-ancestry 

transcriptome-wide association study (TWAS) analysis to each phe-

notype across 49 tissues derived from the GTEx Consortium10. Using a 

P value threshold Bonferroni-corrected for the total number of genes 

and tissues within a phenotype, we found 1,167 genes significantly 
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Fig. 2 | Within-ancestry and across-ancestry performance of polygenic 

scores in an independent target sample (Add Health35). a, Incremental 

variance explained for each target ancestry group. The colour of the stacked 

bars indicates the ancestry from which the polygenic score was derived; the 

total height of each set of the stacked bars (and 95% confidence intervals) 

correspond to the total variance explained by all four ancestry-stratified scores 

combined. For example, in the target EUR subsample, non-EUR polygenic 

scores add little over and above the EUR score. Note that some comparisons are 

underpowered to detect differences in predictive accuracy across ancestry 

(see Supplementary Note). Heritabilities, estimated by LD score regression,  

of each phenotype–ancestry combination are depicted by the grey dashed bar 

(with 95% confidence intervals) and corresponding sample sizes; these 

represent the maximum expected accuracy of the polygenic risk score (PRS).  

b, The manner in which the phenotype mean in the target sample changes as a 

function of the EUR PRS deciles. c, Results from an interaction model, in which 

each phenotype was modelled as a function of an interaction between the 

EUR-based PRS and target ancestry (coded as a factor with EUR ancestry as  

the reference and scores scaled within ancestry). The bands around each line 

denote the 95% confidence intervals. Significant interactions are noted with 

text. Using SmkInit as an example, the purple line represents the predicted 

proportion of regular smokers as a function of the EUR PRS in the EUR 

subsample of Add Health, the blue lines show the predicted proportion of 

regular smokers by standard deviation of the EUR PRS in the EAS subsample, 

and so on. In this case, the magnitude of the association between the 

EUR-based PRS and SmkInit (that is, the slope) was significantly greater  

in the EUR target ancestry than all other ancestries. Full PRS results are in 

Supplementary Table 12.
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associated with SmkInit, 21 genes with AgeSmk, 203 genes with CigDay, 

188 genes with SmkCes and 504 genes with DrnkWk (resulting in 1,705 

unique genes across phenotypes; Supplementary Table 6). For each of 

our five phenotypes, matrix decomposition parallel analysis11 of the 

per-tissue P value correlation matrix suggested two components: one 

explaining 53.7–55.2% of the variance in P values, and another explain-

ing 3.5–3.8% of the variance in P values. Similar loading patterns were 

observed for all phenotypes such that all tissues loaded strongly (all 

loadings)>)0.12) on the first component, suggesting that it represents 

a general effect across tissues, whereas only brain tissues had strong 

loadings on the second component (all loadings)>)0.12), indicating 

the importance of brain-specific gene expression effects for these 

tobacco and alcohol use phenotypes. Pathway enrichment analyses 

of the TWAS-associated genes identified 1,029 unique gene pathways 

across phenotypes that were broadly enriched across tissues (Sup-

plementary Table 7), including many of obvious relevance to neuro-

transmission and neurodevelopment.

To further illustrate several variants within genes of interest, we 

integrated findings described above to select variants for which there 

was evidence of association across analytic methods and for which 

the availability of diverse ancestries was clearly relevant. Illustrative 

variants were chosen in a similar way as described for the enrich-

ment analyses above: (1) we extracted variants from multi-ancestry 

fine-mapped credible intervals containing less than five variants, and 

(2) we cross-referenced the resulting variants with the multi-ancestry 

TWAS cis-expression quantitative trait loci and their significantly asso-

ciated genes. We highlight five of the 52 genes that resulted from this 

process.

We found the nicotinic gene cluster CHRNA5–A3–B4 to be signifi-

cantly associated with SmkInit12 with a fine-mapped 90% credible 

interval that shrank from 53 variants in EUR-stratified results to just 

two variants in multi-ancestry results (rs2869055 and rs28438420; 

Supplementary Table 4). These variants are not in high LD (r2)=)0.31 

for both variants) with the well-known variant rs16969968 in this gene 

cluster. By contrast, this locus was fine-mapped to two variants in high 

LD with rs16969968 for CigDay (r2)=)0.84 and 0.86), suggesting that the 

variants underlying this signal for smoking initiation may be distinct 

from those for cigarettes per day. We also found a novel association 

between SmkInit and CACNA1B, which encodes a voltage-gated calcium 

channel (Cav2.2) that controls neuronal neurotransmitter release and 

has been associated with cocaine reinstatement13, increased aggression 

and vigilance, and reduced startle and exploration14. CACNA1B is linked 

to multiple psychiatric disorders, including schizophrenia, bipolar 

disorder and autism spectrum disorders15–17.

CigDay was associated with variants in neurturin (NRTN), a type of 

glial cell line-derived neurotrophic factor involved in the development 

and survival of dopamine neurons18. This gene has been studied in 

relation to Parkinson disease for its potential to restore dopamine 

neurocircuitry19. Likewise, PAK6 was another novel gene strongly asso-

ciated with CigDay in TWAS results and was fine-mapped to just three 

variants in the 90% credible interval. PAK6 encodes a p21-activated 

kinase that is highly expressed in the striatum and hippocampus, 

has been implicated in the migration of GABAergic interneurons20 

as well as the modulation of dopaminergic neurotransmission21, and 

is involved in locomotor activity and cognitive function22. PAK6 has 

been robustly associated with schizophrenia23 and neurodegenerative 

diseases24,25, such as Parkinson disease and Alzheimer disease, further 

highlighting its role in synaptic changes. Finally, we found a novel 

association between ECE2 and DrnkWk. ECE2 is involved in cortical 

development26 as well as the processing of several neuroendocrine 

peptides, including neurotensin and substance P27, and may also have 

a role in amyloid-³ processing28. ECE2 also generates peptides such 

as BAM 12 (which shows »-opioid receptor selectivity) and BAM 22 

(which shows μ-opioid receptor selectivity), suggesting a link with 

pain transmission27.

Genetic correlation and polygenic scores

To evaluate heritability, genetic correlation and polygenic scoring, we 

generated ancestry-stratified GWAS meta-analysis results for each of 

the four continental groups: AFR, AMR, EAS and EUR (Supplementary 

Table 2 lists ancestry-stratified loci). Heritability and cross-phenotype 

genetic correlations were generally similar in sign and modest in mag-

nitude in each ancestry (Fig. 2a and Supplementary Tables 8 and 9). 

Smoking phenotypes were moderately genetically correlated with 

each other (|rg|)=)0.30–0.63) and with DrnkWk (|rg|)=)0.16–0.27). Genetic 

correlations for the same phenotype between each of the largest con-

tributing cohorts and all remaining cohorts (restricted to EUR ances-

tries only) were generally high for each smoking phenotype (mean rg 

of 0.93) and DrnkWk (mean rg of 0.72), indicating that these measures 

were reliable across cohorts (Supplementary Table 9).

To characterize the multifactorial genetic aetiology of tobacco and 

alcohol use, we computed genetic correlations of our EUR-stratified 

results with 1,141 medical, biomarker and behavioural phenotypes 

from the UK Biobank29 (Supplementary Tables 10 and 11). An affinity 

propagation clustering algorithm30 was used to aid interpretability 

by grouping UK Biobank phenotypes such that each of the five cur-

rent phenotypes were exemplars (Supplementary Fig. 5). SmkInit and 

AgeSmk clustered together, as did SmkCes and CigDay, with all four 

forming a broad higher-level smoking cluster. Phenotypes with high 

positive genetic correlations with SmkInit included addiction to any 

substance, neighbourhood material deprivation, diagnosis of chronic 

obstructive pulmonary disease, and a negative correlation with age 

at first sexual intercourse (|rg|)=)0.57–0.64). For AgeSmk, the largest 

genetic correlations were with reproductive phenotypes such as age 

at first birth (rg)=)0.69–0.71) and measures of years of education and 

attainment (rg)=)0.58–0.69). CigDay and SmkCes were most highly 

positively correlated with respiratory and cardiovascular diseases 

and cancers (rg)=)0.52–0.72), highlighting their genetic link to adverse 

disease outcomes. Finally, DrnkWk was most strongly correlated with 

problematic drinking behaviours (rg)=)0.52–0.70), indicating extensive 

overlap in the genetic architecture of DrnkWk and measures of alcohol 

use, problems and alcohol use disorder. This is consistent with previous 

findings of strong but imperfect genetic correlations (for example, 

rg)=)0.8) between alcohol consumption and alcohol use disorder from 

large-scale GWAS31,32. We note, however, that genetic correlations can be 

difficult to interpret33,34 as they may be affected by genetic confound-

ing, mediation effects or sampling bias.

We used the ancestry-stratified meta-analysis results to construct 

ancestry-specific polygenic risk scores in Add Health35, an independ-

ent target sample of individuals of diverse ancestries from the United 

States (n)=)2,199 AFR, 1,132 AMR, 525 EAS and 6,092 EUR). To evalu-

ate within-ancestry and across-ancestry performance of polygenic 

scores, we iteratively fit a multiple regression model and evaluated 

the incremental predictive accuracy of each ancestry-based score, 

over and above scores already entered into the model (that is, first 

including the AMR-based score, then adding the AFR-based, EAS-based 

and EUR-based scores one at a time to evaluate incremental predic-

tion accuracy). EUR-based scores in EUR ancestries outperformed 

ancestry-matched scores in non-EUR ancestries (Fig. 2a) and showed 

significantly stronger associations with most phenotypes in EUR ances-

tries than in non-EUR ancestries (described by decile plots and tested 

by modelling an interaction between the EUR-based polygenic risk 

score and the target sample ancestry group), consistent with expec-

tations36 (Fig. 2b,c). For each ancestry and phenotype, the EUR-based 

score on its own outperformed the ancestry-matched score on its own 

(Supplementary Table 12). These results highlight the relative utility 

of current polygenic scores for EUR ancestries versus all others. In 

interpreting these results, however, we note that some comparisons 

may be underpowered to identify differences in the variance explained 

by polygenic scores between ancestries. Finally, EUR-based scores 



724 | Nature | Vol 612 | 22/29 December 2022

Article

overpredicted tobacco and alcohol use for individuals of non-EUR 

ancestry and underpredicted for individuals of EUR ancestry, although 

this prediction bias is readily eliminated through statistical correction 

with genetic principal components.

Summary

Tobacco and alcohol use are heritable behaviours that can be radically 

affected by environmental factors, including cultural context37 and 

public health policies38,39. Despite this, we found that a large majority 

of associated genetic variants showed homogeneous effect size esti-

mates across diverse ancestries, suggesting that the genetic variants 

associated with substance use affect such individuals similarly. The 

limited extent of variant effect size heterogeneity, coupled with similar 

heritability estimates and cross-trait genetic correlations, indicates 

that the genetic architecture underlying substance use is not markedly 

different across ancestries. There are some potentially interesting 

exceptions of ancestrally heterogeneous effects in genes such as ADH1B 

and CACNA1B. By contrast, polygenic scores generally performed well 

in EUR ancestries but with mixed-to-limited results in other ancestries, 

suggesting that portability of such scores across ancestries remains 

challenging, even when discovery sample sizes across all ancestries 

are more than 100,000. Explanations for this apparent discrepancy 

have been proposed40, but more stringent and sensitive tests will be 

required to draw strong conclusions about such patterns of heredity.

Most individuals of EUR, AFR and AMR ancestries in the current 

study live in the United States and Europe and share somewhat similar 

environments regarding tobacco and alcohol availability and policies 

surrounding use of these substances, and all included individuals were 

adults. Further increases in genetic diversity and consideration of envi-

ronmental moderators, including cultural factors, will continue to add 

to our understanding of the genetic architecture of both substance use 

and related behaviours and diseases.
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Methods

Here we describe an overview of the methods used to conduct the 

association, fine-mapping and downstream in silico functional analysis. 

Additional details can be found in the Supplementary Note.

Generation of summary statistics and ancestry considerations

Except for TOPMed studies, in which the genetic data were derived from 

deep whole-genome sequencing, participants in all studies were geno-

typed on genome-wide arrays. The majority of studies imputed their 

genotypes to the Haplotype Reference Consortium41 (for EUR ances-

tries) or 1000 Genomes42 (Supplementary Table 1). GWAS summary sta-

tistics were generated in each study sample typically using RVTESTS43, 

BOLT-LMM44 or SAIGE45 with covariates of sex, age, age squared and 

genetic principal components according to an analysis plan detailed in 

the Supplementary Note. Studies composed primarily of closely related 

individuals (for example, family studies) first regressed out covariates, 

inverse-normalized the residuals as necessary and then tested additive 

variant effects under a linear mixed model with a genetic kinship matrix 

for all phenotypes. Some studies of unrelated individuals followed the 

same analysis for quasi-continuous phenotypes (AgeSmk, CigDay and 

DrnkWk), but estimated additive genetic effects under a logistic model 

for binary phenotypes (SmkInit and SmkCes).

We used terminology and acronyms from the 1000 Genomes Project42 

to describe ancestry. The majority of participating cohorts stratified their 

sample by ancestry before generation of summary statistics. Cohorts 

composed of substantial samples of multiple ancestry groups pro-

vided summary statistics stratified by ancestry, as well as results based 

on all individuals regardless of ancestry for use in the multi-ancestry 

meta-analyses. As TOPMed served multiple functions in the present study, 

including as an LD reference panel, we detailed the ancestry analyses and 

classification of TOPMed data in the Supplementary Note. For example, 

for both ancestry-stratified and multi-ancestry conditional analysis, we 

created TOPMed reference panels for estimating LD. We first created 

ancestry-stratified reference samples, resulting in matched ancestry 

reference sample sizes of n)=)28,665 AFR, n)=)19,737 AMR, n)=)4,918 EAS 

and n)=)51,656 EUR. To create a TOPMed-based reference sample for 

multi-ancestry analyses, we combined the matched ancestry individuals, 

resulting in a diverse ancestry reference panel (n)=)104,976) that matches  

the ancestry proportions of the included cohorts to estimate LD.

Extensive quality control and filtering were performed on the sum-

mary statistics from each cohort. We removed studies with a sample 

size of less than 100, and those with genomic control values greater 

than 1.1 or less than 0.9 and a sample size of less than 10,000 (per study 

sample size and genomic control values are listed in Supplementary 

Table 1), as well as variants with an imputation quality of less than 0.3.

Ancestry-stratified meta-analyses

Ancestry-stratified meta analyses were performed using the software 

package rareGWAMA (see URLs for software use). Specifically, the 

method aggregated weighted Z-score statistics, that is,

( )

3

3
Z

w Z

w
= ,k k k

k k

META
2

1/2

where Zk is the Z-score statistic in study k. The weight wk is defined by 

w N p p R= (1 2 ) ,k k k k k
2  where p

k
 is the variant allele frequency, and Rk

2 is 

the imputation quality in study k. This method accounts for 

between-study heterogeneity in phenotype measures, imputation 

accuracy, allele frequencies and sample sizes.

Multi-ancestry meta-analyses

Multi-ancestry meta-analyses were performed using mixed-effects 

meta-regression for optimal trans-ancestry meta-analysis (MEMO) 

implemented in rareGWAMA (see URLs for software use). The full model 
is b C ³ e ÷= 3 + + ,jk l

L
lk jl jk jk=0  where bjk is the genetic effect estimate for 

the jth variant in the kth study, and Clk is the lth ancestry component 

for the kth study. Note that we set C = 1k0 , so ³j0 serves as the intercept. 

The regression coefficient ³
jl

 captures the effect of the lth axis of genetic 

variation for the jth variant, with ³
j0

 as an intercept in the model, and 

∼e N Ç(0, )jk
2  is the random effect that captures unexplained effect 

size heterogeneity after adjusting for genetic variation. Finally, 

∼÷ N s(0, )jk jk
2  is the random error term, where s jk

2  is the variance of the 

genetic effect estimate bjk. This method models heterogeneity of effects 

attributable to ancestry as well as a random effect to capture residual 

heterogeneity. The MEMO model contains fixed-effect, random-effect 

and meta-regression models as special cases. Specifically, removing 

the random effect ejk results in a regular meta-regression model, remov-

ing the covariates of genetic variation (C )lk , but retaining ejk results in 

a random-effect meta-analysis model, whereas removing both ejk and 

Clk results in a fixed-effect meta-analysis model.

Per study ancestry variation, Clk is calculated using MDS on the basis 
of allele frequency. We defined the genetic distance between two  

studies, that is, study k and k2, with J variants, as d f f= 3 ( 2 ) ,kk j jk jk2 2

2
 

where f
jk

 and f
jk 2

 are the allele frequency for the jth variant for study 

k and k2, respectively. We fit models with 0, 1, 2, 3 and 4 MDS components 
and combined the results using a minimal P value approach (see 
Extended Data Fig. 1a for a visual representation of the first four MDS 

components).

To better ensure robustness, for each phenotype, we filtered variants 

from the meta-analytic results to variants that were present in at least 

three studies, had an effective sample size (sample size multiplied by 

imputation accuracy) to maximum sample size ratio of g)0.1, and minor 

allele frequency (MAF))>)0.001 in the multi-ancestry and EUR-stratified 

meta-analysis or MAF)>)0.01 for AMR-stratified, AFR-stratified and 

EAS-stratified meta-analysis, given the expected drop off in imputation 

accuracy for those ancestries. These filters reduce potential artefacts 

arising from sparse data or poor imputation and retain variants with 

reasonable statistical power.

With increasing imputation accuracy and the inclusion of variants 

with MAF down to 0.1% (for EUR), genome-wide significant variants 

were identified using a threshold of P)<)5)×)1029, to account for approxi-

mately 10 million independent tests. The threshold was chosen based 

on previous work on low-frequency variants5,46,47. All statistical tests are 

two-sided unless otherwise stated.

Robustness and replicability of signals

We applied genomic control correction for low-frequency variants 

(MAF)<)1%) in both multi-ancestry and ancestry-stratified meta- 

analyses. Genomic control correction for common variants was not 

applied given that elevation of genomic control values is expected 

with high polygenicity (that is, it assumes sparsity) and very large sam-

ple sizes48; such a correction may be overly conservative. To evaluate 

this decision, we estimated the replicability of associated loci using a 

trans-ancestry extension of an existing method6. This method, 8RATES9, 

incorporates cohort-level summary statistics (single-nucleotide poly-

morphism (SNP) effect sizes and their corresponding standard errors), 

along with allele frequency-based MDS components per study to assign 

a posterior probability that each sentinel variant effect would replicate 

in a sufficiently powered study. To further evaluate robustness of our 

results, we estimated LD score regression (LDSC) intercepts and attenu-

ation ratios to account for bias in the intercept test when sample sizes 

become extreme, as in the present case. Results were within expected 

limits and consistent with a limited effect of population stratification 

on the meta-analysis results44 (Supplementary Table 8). Then, we com-

pared the sign of SNP effect size estimates between EUR-stratified 

results and within-sibling GWAS results from the UK Biobank, finding 

sign concordance estimates of 63.4–80% across phenotypes, all of 

which were significantly higher than would be expected if our results 
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were driven entirely by population stratification or cryptic relatedness 

and were consistent in magnitude with other large-scale association 

studies49. Finally, given reduced power in the within-sibling GWAS, we 

additionally compared the sign of SNP effect size estimates between 

EUR-stratified 23andMe summary statistics (the largest participating 

cohort) and EUR-stratified summary statistics with all cohorts except 

23andMe, finding sign concordance estimates of 94.3–100%. See 

the Supplementary Note for further details on the methods and full 

results, including the list of excluded variants and loci.

Conditional analyses and locus definitions

We performed sequential forward selection to identify indepen-

dently associated variants in each locus50 for ancestry-stratified and 

multi-ancestry results. The procedure begins by including only the 

top association signal into a set of independently associated variants 

(×) per locus. Conditional analysis is then conducted on the remaining 

variants, conditioning on variants in ×. If any of these conditional sig-

nals remained significant (that is, P)<)5)×)1029), we added the top signal 

to the set ×. The process iterates until there are no remaining signifi-

cantly associated variants. The method requires an external genomic 

reference panel to estimate LD patterns. For ancestry-stratified condi-

tional analyses, we used ancestry-matched individuals from TOPMed 

to estimate LD (sample sizes given previously). For multi-ancestry 

conditional analyses, we used the diverse ancestry TOPMed refer-

ence panel (n)=)104,976) that matched the ancestry proportions of 

the included cohorts.

Loci were defined based in part on the conditional analysis, using  

a multi-step approach. First, consistent with previous GWAS meta- 

analysis5 in EUR ancestries, we identified all 1-Mb windows surrounding 

sentinel variants and collapsed overlapping windows. This resulted 

in a total of 1,449 such windows. For each window, we then used our 

ancestry-aware conditional analysis51 (described previously) with an 

ancestry-matched reference panel from TOPMed to enumerate all 

independent variants within each window. Then, for each independ-

ent variant, we defined a locus as the region including all variants in 

LD of r2)>)0.1, based on the same ancestry-matched TOPMed reference 

panel (Supplementary Table 3 and Supplementary Fig. 3). Overlapping 

loci were then collapsed. This procedure avoids conventional defini-

tions of a locus based on work in EUR ancestries and is tailored to the 

multi-ancestry data at hand.

Allelic effect size moderation

We evaluated evidence of effect size moderation by ancestry in the 

multi-ancestry model for each independent variant. To do so, we 

extended the MEMO model into a mixture model that separated vari-

ants with homogenous effects (models with only an intercept term) 

from those with possible heterogeneous effects (on at least one axis 

of genetic variation). We considered six sub-models including the null 

model, and the models in which the number of included components 

varied from 0 to 4.

/ 3L y p p b( ) = ( |NULL) + p [q p(b |MR ( j))

+ … + q p(b |MR ( j))],

a
a j
NULL

a
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j*S
j0 j 0
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a

where p b( |NULL)j  and ∣p b MR( )j l  are the likelihoods of the variant  

j effect sizes under the null model and the meta-regression models with 

l axes of genetic variation, respectively; p
a
NULL and p

a
ALT are the proba-

bilities of locus a carrying zero or at least one causal variant, respec-

tively. The term q
jl

 is the probability that the model with l axes of genetic 

variation best fit the data. We selected the model with the largest pos-

terior probability for each variant as the best-fitting model to capture 

the genetic effect heterogeneity. Variants in which the zero component 

model was selected (that is, all models with at least one component 

were rejected) were considered to have homogeneous effects across 

ancestry. Among the remaining variants, we considered which one of 

the meta-regression models (that is, 1–4 components) best described 

the extent of effect heterogeneities based on the posterior probabilities 

for each model. In addition, we required that strongly heterogeneous 

variants had an MDS component effect that was significantly different 

from zero and were polymorphic in two or more ancestry-stratified 

cohorts to ease interpretation of heterogeneous effects. For example, 

a variant in which the model with two components best fit the data was 

considered at least weakly heterogeneous. If this variant also had a 

component two effect significantly different than zero (³ b 0,
j2

 from 

above) and was polymorphic in at least two ancestries, it was considered 

strongly heterogeneous.

Fine-mapping

On the basis of the selected genetic effect model (above), for each vari-

ant in a locus, we calculated the Bayes factor by � = expj

X T K2 ( + 1) log

2

j





,  

where Xj denotes the chi-squared test statistic for variant j, T denotes 

the number of axes of genetic variation included in the best-fitting 

model (that is, 0–4 MDS components) and K denotes the number of 

studies contributing to the GWAS. Using the approximate Bayes factor, 
we then calculated the posterior inclusion probability for each variant 

as Ã =j
�

�3

j

i i
, where i indexes each locus. Finally, we derived 90% credible 

intervals by ranking variants within a locus by their single posterior 
estimate and selecting variants until the cumulative posterior inclusion 
probability reached 0.90.

For EUR-stratified fine-mapping, we approximated the Bayes factor 

as above with T set to 0. Fine-mapping was conducted in EUR-stratified 

results, using identical loci as in multi-ancestry fine-mapping, to 

describe the increased resolution attributable to diverse ancestry 

inclusion and differences in sample size.

Functional enrichment analysis was conducted to test whether 

high-priority genes identified in the fine-mapping results were expressed 

in specific tissue types or enriched in certain cell types or gene pathways. 

High-priority genes were defined as those mapped from variants in cred-

ible intervals containing less than five variants. That is, for each variant in 

credible intervals with less than five variants, we used the UCSC genome 

annotation database to assign genes. We assigned intergenic variants 

to the nearest gene. We mapped genes from variants with PIP)<)0.01 

(as 8control9 genes) in the same way. Functional enrichment was then 

evaluated by estimating a relative risk (as described and implemented 

previously52), defined as the ratio of the proportion of genes mapped 

from variants in credible intervals with less than five variants that are in 

a given annotation category to the proportion of genes mapped from 

variants, within associated loci, with PIP)<)0.01 in the same annotation 

category. Annotation categories were derived from GTEx tissue expres-

sion53, central nervous systems cell types50 and gene pathways54.

TWAS

TWAS were performed using a trans-ancestry method. In brief, this 

method fits a series of meta-regression models including the first four 

axes of genetic variation (MDS components), similar to that of our 

multi-ancestry meta-analysis model minus the random-effect term. 

Genetic effect estimates from these four models were then used to 

estimate phenotypic effects of each variant. Together, with variant 

weights taken from PrediXcan55 based on 49 tissues from GTEx10 release 

version 8 (which includes up to 15% of individuals of non-EUR ancestry), 

the phenotypic effect estimates were used to construct a single TWAS 

statistic for each MDS component. A minimum P value approach56 was 

then applied to combine all four TWAS statistic P values. Finally, we used 

a Cauchy combination test57 to combine P values across all available 

tissues for each gene. The final, combined P value was subjected to a 

Bonferroni correction for 22,121 genes in 49 tissues. We present our 

TWAS results based on per gene P values combined across all available 

tissues, resulting in a 5 (phenotype) × 22,121 (gene) matrix of P values. 



Pathway enrichment was also conducted using a weighted regression 

approach58 with the TWAS per-tissue P values to quantify the enrich-

ment of identified genes in each pathway.

Heritability and genetic correlations

LDSC59 was used to estimate heritability of our five phenotypes for 

EAS and EUR ancestries using a standard 1-cM window size. For ances-

tries with more recent admixture (AFR and AMR ancestries), we used 

covariate-adjusted LDSC60 for the same analyses in which in-sample 

LD scores were calculated using ancestry-matched TOPMed refer-

ence samples and adjusted by the first 50 principal components. For 

more recently admixed AFR and AMR ancestries, which tend to show 

longer-range LD, we used a 20-cM window size when calculating LD 

scores. For both LDSC and covariate-adjusted LDSC, variants were subset 

to HapMap3 (ref. 61) with MAF)>)0.05, as recommended for this approach.

We calculated genetic correlations between our five phenotypes 

and 4,065 UK Biobank phenotypes (both restricted to EUR ances-

try) using bivariate LDSC with 1000 Genomes-based pre-calculated 

EUR LD scores for HapMap3 variants. We excluded phenotypes with 

heritability Z-scores less than 3 (reflecting near-zero heritability), 

genetic correlations with our phenotypes less than 20.8 or greater 

than 0.8, to remove phenotypes approaching redundancy with our 

target tobacco and alcohol use measures (for example, cigarettes per 

day versus packs per day), and those whose genetic correlations were 

unable to be estimated largely due to negative heritability estimates, 

leaving 1,141 UK Biobank phenotypes. Affinity propagation clustering62, 

a message-passing algorithm based on exemplars that identifies their 

corresponding set of clusters, was then used to further interpret the 

pattern of genetic correlations and multifactorial nature of substance 

use. A Bonferroni-corrected P value threshold for 1,141 UK Biobank 

phenotypes was used to identify genetic correlations that were sig-

nificantly different from zero.

Polygenic scoring

Polygenic risk scores were computed using LDpred for each ances-

try group separately, an approach that incorporates the correlation 

between genetic variants to re-weight effect size estimates63. We used 

an independent prediction cohort, Add Health35, to validate each score. 

Add Health is a nationally representative sample of US adolescents 

enrolled in grades 7 through 12 during the 1994–1995 school year. The 

mean birth year of respondents was 1979 (s.d.)=)1.8) and the mean age 

at assessment (here, wave 4) was 29.0 years (s.d.)=)1.8), which is com-

parable, in general, to the age of participants in the 23andMe cohort 

but younger, on average, than those in other cohorts. Add Health is 

composed of individuals from the same four major ancestral groups 

(defined with reference to 1000 Genomes; see Supplementary Note 

for details) comprising our ancestry-stratified results (EUR, AFR, AMR 

and EAS). Phenotypic descriptive statistics are given in Supplementary 

Table 12. Across the full Add Health sample, approximately 41% ever 

smoke regularly and reported an average of 7.3 cigarettes per day. For 

each polygenic score, we used only HapMap3 variants and those with 

MAF)>)0.01. We used each Add Health ancestry group as its own LD 

reference panel for construction of each polygenic score, after remov-

ing related individuals, except for EAS in which we use 1000 Genomes 

due to the small sample size in Add Health.

Prediction accuracy of each polygenic score was estimated by taking 

the difference in the coefficient of determination (R2) between a base 

model that included only the covariates of age, sex, age × sex interac-

tion, and the first ten genetic principal components, and a full model 

that additionally included the polygenic score. All scores were scaled 

to have a mean of zero and standard deviation of one.

URLs for software use

BCFtools, http://samtools.github.io/bcftools/; BOLT-LMM, https://

data.broadinstitute.org/alkesgroup/BOLT-LMM/; cov-LDSC, https://

github.com/immunogenomics/cov-ldsc; EAGLE, https://alkes-

group.broadinstitute.org/Eagle/; GCTA, http://cnsgenomics.com/

software/gcta/; IMPUTE2, https://mathgen.stats.ox.ac.uk/impute/

impute_v2.html; LDpred, https://github.com/bvilhjal/ldpred/; LDSC, 

https://github.com/bulik/ldsc/; MEMO (rareGWAMA), https://github.

com/dajiangliu/rareGWAMA/; Minimac3, https://genome.sph.umich.

edu/wiki/Minimac3; PLINK, https://www.cog-genomics.org/plink/; 

R, https://www.r-project.org/; RATES, https://github.com/wangc29/

RATES; RVTESTS, https://github.com/zhanxw/rvtests/; SAIGE, https://

github.com/weizhouUMICH/SAIGE; SHAPEIT, http://mathgen.stats.

ox.ac.uk/genetics_software/shapeit/shapeit.html; TESLA, https://

github.com/funfunchen/rareGWAMA; VCFtools, https://vcftools.

github.io/index.html.
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Ethical review and approval were provided by the University of Min-

nesota institutional review board. All human participants provided 

informed consent.

Reporting summary

Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability

GWAS summary statistics can be downloaded online (https://doi.

org/10.13020/przg-dp88) with more information available here: 

https://genome.psych.umn.edu/index.php/GSCAN. We have pro-

vided association results for variants that passed quality-control 

filters in the multi-ancestry and ancestry-stratified results for each 

of the five substance use phenotypes, excluding data provided by 

23andMe. Ancestry-stratified polygenic score weights based on 

ancestry-stratified summary statistics are also provided. 23andMe 

results are available directly from the company.

Code availability

All software used to perform these analyses is publicly available. Soft-

ware tools used are listed in the main text and Methods. 
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Extended Data Fig. 1 | Ancestry space of studies contributing to meta- 

analysis (panel a), versus individuals from TOPMed and 1000 Genomes 

(panel b). The meta-regression within the MEMO model requires specification 

of ancestry clines. To ensure consistency in the meaning of ancestry clines 

across all five MEMO analyses (one for each phenotype) we created a single 

multidimensional scaling solution based on allele frequencies from all 

phenotypes in all participating cohorts. These solutions are plotted in panel a 

(circles correspond to TOPMed cohorts, squares are all other cohorts which 

used imputed microarray genotypes, and triangles are 1000 Genomes ancestry 

groups). Colors of points correspond to the primary assigned ancestry of each 

cohort (studies with)<)90% of individuals coming from a single ancestry group 

are shown in grey). Panel b shows projection of principal components (after 

OADP transformation) of TOPMed individuals onto PCs of 1000 Genomes 

individuals, in colored triangles. Each 1000 Genomes individual is colored by 

their known ancestry. This PC information was used in assigning ancestry to 

TOPMed individuals for the purpose of reference panel creation (individuals of 

South Asian ancestry were not included in analyses). The PCs in panel b were 

reordered or reversed in some cases to align with panel a. These transformations 

are noted in the axis labels.
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Extended Data Fig. 2 | Multi-ancestry meta-analysis Manhattan plots. Black 

horizontal line corresponds to P)=)5)×)1029, the GWAS significance threshold 

used for all analyses. Note that some y-axis scales are discontinuous to better 

illustrate variants with very small P-values (e.g., the Drinks per Week y-axis is 

cut at 30 with a maximum value of 307.7, denoting a P-value of 1.9)×)102308). All 

P-values are from two-sided statistical tests.



Extended Data Fig. 3 | Tissue expression and brain cell type enrichment  

in high priority genes. Panel a shows tissue expression enrichment in 8high 

priority9 genes. We define high priority genes here as those located nearest  

to the variants in fine-mapped credible intervals containing less than five 

variants. These genes were compared to 8control9 genes identified in the same 

way, but from variants in credible intervals with PIP)<)0.01 from the trans-ancestry 

fine-mapping. The x-axis denotes GTEx tissue types. The y-axis represents 

relative risk estimates comparing high priority to control genes. Panel b shows 

similar relative risk comparisons with 39 brain cell types. Data are presented  

as relative risk values with error bars denoting bootstrapped 95% confidence 

intervals. Further details on estimating relative risk are included in the 

Supplementary Note section 8Functional enrichment9.






