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Abstract

Glial scar formation represents a fundamental response to central nervous system
(CNS) injury. It is mainly characterized by a well-defined spatial rearrangement of
reactive astrocytes and microglia. The mechanisms underlying glial scar formation have
been extensively studied, yet quantitative descriptors of the spatial arrangement of
reactive glial cells remain limited. Here, we present a novel approach using point pattern
analysis (PPA) and topological data analysis (TDA) to quantify spatial patterns of
reactive glial cells after experimental ischemic stroke in mice. We provide open and
reproducible tools using R and Julia to quantify spatial intensity, cell covariance and
conditional distribution, cell-to-cell interactions, and short/long-scale arrangement, which
collectively disentangle the arrangement patterns of the glial scar. This approach
unravels a substantial divergence in the distribution of reactive astrocytes and microglia
after injury that conventional analysis methods cannot fully characterize. PPA and TDA
are valuable tools for studying the complex spatial arrangement of reactive glia and
other nervous cells following CNS injuries and have potential applications for evaluating

glial-targeted restorative therapies.
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Introduction

Glial scar formation represents a crucial response to central nervous system (CNS)
injuries, such as traumatic brain injury and ischemic stroke (Bradbury and Burnside
2019). The scar is primarily composed of reactive astrocytes, activated microglia, and
polydendrocytes/NG2* cells, which rearrange spatially to establish a demarcated, yet
dynamic, barrier around the lesioned tissue (Wanner et al. 2013; Hackett and Lee 2016;
Bellver-Landete et al. 2019; Zhang et al. 2022). This enables compartmentalization of
the injured tissue (Conforti et al. 2022) to limit the spread of toxic and inflammatory
mediators towards healthy regions (Voskuhl et al. 2009; Yoshizaki et al. 2021). The
organization of reactive glia affects the structural and functional integrity of the lesioned
tissue, making processes such as axonal sprouting and neurovascular repair a vital
target for therapeutic interventions (Anderson et al. 2016; Fu et al. 2020).

In recent years, invivo and in vitro models of CNS injuries have identified several
molecular and cellular markers associated with scar formation (Yang et al. 2020),
including glial fibrillary acid protein (GFAP) and ionized calcium-binding adaptor
molecule-1 (IBA1) (Kamphuis et al. 2015; Schacke et al. 2022; Lu et al. 2021).
Together with the massive arrangement of reactive glial cells in the infarct core, these
markers presage scar formation in various CNS injuries, including ischemic
stroke (Buscemi et al. 2019; Manrique-Castano et al. 2021; lto et al. 2001). However,
current methods for analyzing glial scar formation primarily rely on qualitative
assessments that lack spatiotemporal resolution and limit the examination of cellular

arrangement patterns.

To address these limitations, we developed a comprehensive implementation of point
pattern analysis (PPA) (Parra 2021; Jafari-Mamaghani, Andersson, and Krieger 2010;
Davis et al. 2017), spatial clustering (Prodanov, Nagelkerke, and Marani 2007), and
topological data analysis (TDA) (Bhaskar, Zhang, and Wong 2021; Masoomy et al.
2021; Bonilla, Carpio, and Trenado 2020) for the assessment of the spatiotemporal
dynamics of glial scar formation after experimental ischemic stroke. PPA allows to
determine the distribution patterns of objects in a given observation window through
different metrics. It has multiple applications in ecology (Malavasi et al. 2023),


https://doi.org/10.1101/2023.10.04.560910
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.04.560910; this version posted October 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

epidemiology (Scarpone et al. 2020), and cancer biology (Maisel et al. 2022; Kaufmann
et al. 2021). Conversely, TDA uses the tools of algebraic topology to extract patterns
from complex data sets or point clouds, which may be difficult to see using traditional
methods. This includes shape, structure, and connectivity (Vipond et al. 2021; Lawson
et al. 2019). A central method in TDA is persistent homology (PH), which tracks the
evolution of topological features, such as connected components, loops, voids, and
higher-dimensional holes (Amézquita et al. 2020; Townsend et al. 2020). Recently, TDA
has been suitable for modeling collective cell motion and migration (Bhaskar, Zhang,
and Wong 2021; Bonilla, Carpio, and Trenado 2020), neuronal morphology (Kanari et
al. 2017), and branching patterns in vascularization (Nardini et al. 2021). However, no
direct applications of PPA/TDA exist for analyzing the dynamics of cell rearrangement
following brain injury, which is critical for assessing scar formation and tissue integrity.

Our approach provides reproducible pipelines to quantify cell covariance, cell-to-cell
interactions, and short and long-scale cumulative cell distributions. This allowed us to
identify the divergent allocation of reactive astrocytes and activated
microglia/macrophages, revealing a double-layered glial scar with unique dynamics
throughout the injury that eludes the scrutiny of traditional methods. Furthermore, we
build a machine-learning model to predict the time post-ischemia based on cell
positions. We provide the raw data and annotated scripts for R and Julia in a GitHub
repository to ensure replicability and encourage using PPA and TDA-based analysis for

glial reactivity in other disease models.

Materials and Methods

We share the raw microscopy images, data tables (10.5281/zenodo.8399976), and
annotated scripts for the full reproducibility of our PPA-TDA analysis
(https://github.com/elalilab/GlialScar_PPA-TDA_2022). The companion Quarto
notebook (QN) in the Github repository details all data handling, statistical models, and
analysis pipelines. See also the Open Science Framework repository (OSFr) for
additional material (DOI 10.17605/OSF.10/3VG8J ).
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Animals and experimental approach

The animals were housed in groups of 3-5 per cage and acclimated to standard
laboratory conditions (12 hours light/dark cycle; Lights on at 7:00 AM and off at 7:00
PM) with free access to chow and water. Six-month-old C57BL/6J mice (a total of 38)
were subjected to focal transient cerebral ischemia via middle cerebral artery occlusion
(MCAo0), with an additional group of age/weight-matched mice (n = 5) included as a
control/reference. Ten animals either died after MCAo or were euthanized according to
veterinary recommendations, and two animals that did not exhibit signs of cerebral
ischemia were excluded from the analysis. Animal survival at 5, 15, and 30 days post-
ischemia (DPl) was randomized using the Research Randomizer online tool
(https://www.randomizer.org/). The experimental procedure is summarized in Suppl.
Figure 1A. All animal procedures and handling were performed according to the
Canadian Council on Animal Care guidelines, as implemented by Comité de Protection
des Animaux de I'Université Laval-3 (CPAUL-3; Protocol # 20-470).

Middle cerebral artery occlusion (MCAo)

Transient focal ischemic stroke was induced by 30 min MCAo to produce a cortical-
striatal lesion in the territory of the MCA (see Suppl. methods). Mice were anesthetized
with 1.5% v/v isoflurane and the rectal temperature was maintained at 37.0°C using a
feedback-controlled heating system. A longitudinal midline incision was made to expose
the left common carotid artery (CCA). We permanently ligated the lowest visible
segment of the CCA and placed a temporal loose ligature anterior to the bifurcation
giving rise to the external carotid artery (ECA) and the internal carotid artery (ICA).
Ligation of the ECA was avoided to prevent masticatory lesions and to improve animal
welfare after ischemia (Dittmar et al. 2005). An incision was then made between the
permanent and temporal ligatures to insert a silicone resin-coated nylon monofilament
(MCAOQO suture, Doccol Corporation, Cat# 7022910PK5Re). The monofilament was
advanced into the CCA to block the MCA fork at the polygon of Willis and tied tightly to
prevent retraction. After 30 minutes, the monofilament was removed through the entry
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incision and the upper segment of the CCA was permanently ligated. Finally, the
cervical incision was sutured and anesthesia was discontinued. Postoperative care was
provided in the home cage by subcutaneous injection of 1 mL Ringer’s lactate twice
daily for at least three days or until the preoperative weight was regained. We provided
wet food and diet gel boost (DietGel® Boost, Clear H20, Cat #72-04-5022) in the
bottom of the cage to facilitate feeding.

Brain sectioning and immunolabeling

Mice were euthanized by transcardial perfusion with 0.9% sodium chloride (NaCl)
followed by 4% paraformaldehyde (PFA). The brains were removed and post-fixed by
submersion in 4% PFA during 16-24h. After rinsing and cryoprotection, brains were
frozen and stored at -80°C until sectioning with a freezing microtome (Leica
Biosystems, ON, Canada) (see Suppl. methods). Thirty um thick coronal sections were
cut and mounted serially (Suppl. Table 1) onto SuperFrost® Plus slides (Fisher
Scientific, ON, Canada). We performed routine immunofluorescence staining with
antibodies against IBA1, NeuN, GFAP, and DAPI (see Suppl. methods).

Brain imaging

We scanned 6-7 whole brain coronal sections per animal (Suppl. Table 1) at 5x
magnification using an AxioScan Z1 slide scanner (Carl Zeiss Canada, ON, Canada),
with the parameters specified in Suppl. Table 2. To enhance cell detection, we
processed the multichannel images in FIJI (Schindelin et al. 2012) using the scripts
available on our GitHub repository. We manually rotated or flipped the images (when
necessary) and removed interfering brain pieces/artifacts to facilitate alignment with the
Allen reference atlases. Please refer to Suppl. Figure 1B for a detailed view.

To examine neuronal and glial distribution at the level of the MCA territory, we imaged

section 3 (bregma, 0.44 to -0.06) at 10x magnification using a Zeiss Axio Observer.Z1
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inverted epifluorescence microscope. The acquisition parameters are listed in Suppl.
Table 3. We acquired a horizontal ROl from the ventricular area to the outer border of
the dorsolateral cerebral cortex, as depicted in Suppl. Figure 1C. To delineate the
observation windows for PPA, we sharpened the sections using FIJI and manually
removed blank regions.

Slice alighment, cell detection, and quantification

We aligned the 5x magnification whole brain slices to the Allen Mouse Brain Atlas using
the Aligning Big Brains & Atlases (ABBA) plugin for FIJI, which performs automated 2D
affine and spline in-plane registrations of brain slices. We used the BigWarp-framed tool
to correct slice orientation and registration when required. The aligned/registered brain
slices were then exported to QuPath (Bankhead et al. 2017) to perform unbiased cell
detection and quantification of NeuN-, GFAP-, and IBA1-expressing cells in the cortex
(CTX), nuclei (CNU), fiber tracts, midbrain (MB), and inter-brain (IB) using QuPath
scripts (see GitHub repository). In particular, we used a watershed algorithm and object
classifiers to select individual nuclei with normal NeuN immunolabeling. In contrast,
GFAP* and IBA1+* cells were thresholded for marker expression typical of reactive cells.
Due to irregular glial morphology and variable size, unbiased detection may include
whole or stained cell fragments. We also applied comparable cell detection and
quantification to 10x magnification images at the level of the MCA territory, without

alignment to the Allen brain atlas.

In this article, we refer to GFAP* cells as reactive astrocytes, recognizing that
progenitors can also express this marker in cell niches such as the ventricular zone.
Similarly, we refer to IBA1+ cells as activated microglia, knowing that this protein is also
expressed by some infiltrating immune cells in intra-lesional areas. This aspect does nor
impact our conclusions since infiltraed IBA1+ cells fulfill similar functions as resident
IBA1+ cells.
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Point pattern analysis (PPA)

We handled cell counts and coordinates obtained from QuPath using R/Rstudio. The
supplementary QN fully describes the PPA approach using functions from the spatstat
R-package (Baddeley, Rubak, and Turner 2015) with step-by-step implementation. The
analyzed point patterns are available in the Zenodo repository. We performed PPA on
section # 3 (bregma 0.44 to -0.06) of each brain, which includes the MCA territory
imaged at 10x. We downsampled to 10% of the detected cells to improve computational

efficiency and visualization.

Our PPA approach entails (1) the calculation of the spatial intensity (QN, section 1) to
identify areas with divergent cell density and the assessment of the distribution of each
cell type across the glial scar. (2) Quadrant counts to investigate the spatial relationship
between different cell types using tessellations— a partition of space into non-
overlapping regions (QN, section 5-6). (3) rhohat and multiple point process models
(mppm) to calculate the relative/conditional intensity (see corresponding QN chapters).
These nonparametric mppm allow us to estimate spatial distributions without making
underlying assumptions. (4) Rasterization of the point patterns to create matrices of
intensity-based  gridded data to  perform  dispersion and  distance
measurements (Hijmans  2023) (QN, Section 7). (5) Calculation of the
inhomogeneous L-function, which is Besag’s transformation of Ripley’s K-function, to
assess cell-to-cell interactions within point patterns and deviations from complete spatial
randomness (CSR) (QN, Section 9).

Topological data analysis (TDA)

To calculate the PH to point cloud data, we compute Vietoris-Rips filtration from cell
positions using the GPU-enabled Ripser++ package (Zhang, Xiao, and Wang 2020).
Additionally, we used a topological machine learning based approach (Hensel, Moor,
and Rieck 2021) to predict DPI based on cell positions. We first applied persistent
homology analysis to the point clouds to obtain topological features of the data.
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Subsequently, we used a supervised learning algorithm, support vector regression
(SVR) (Ben-Hur et al. 2008) with a radial basis function (RBF) kernel, to predict DPI.
We evaluated the performance of our approach using a 10-fold cross-validation
procedure (Dutschmann et al. 2023; Jung 2017). In each fold, we randomly split the
dataset into training and testing sets, with 80% of the data used for training and 20% for
testing. We repeated this procedure 10 times, with a different random split each time,
and computed the mean and standard deviation of the prediction error across the 10
folds.

Statistical analysis

In this study, we performed Bayesian modeling and statistical inference using the R-
package brms (Burkner 2018) and non-parametric modeling with spatstat (Baddeley
and Turner 2005; Baddeley, Rubak, and Turner 2015). The parameters are tailored to
each dataset and specifically defined in the QN, together with model validation. The
results of each model are reported in Suppl. Tables 4-11.

We used R-packages ggplotand ggdistto visualize estimates and their
uncertainty. Density kernels, tessellations, rhohat, and L-functions were plotted
using spatstat-linked R-base plotting system. We present the complete posterior
distributions with half-eye densities and point intervals. The contrast between time
points (half-eye and point intervals) is evaluated based on a region of practical
equivalence (ROPE), which indicates the region falling within the intragroup variance
estimated by the fitted models. We estimated the contrast between time points using
the emmeans package and used the hypothesis function from brms to obtain point
estimates and 95% credible intervals (Cl). Note that Bayesian Cls differ from confidence
intervals (Hespanhol et al. 2019). We performed scientific inference using the entire
posterior distribution and calculated the probability of falling within the ROPE using the

entire posterior.

For conditional distribution estimates (rhohat), we plot the pooled (per group) mean
(magenta) with two-sigma confidence intervals (shaded gray region). In addition, we
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plotted the pooled mean intensity (dashed cyan), and the lower (solid black) and upper
(dotted green) limits of the two-sigma confidence intervals for the mean intensity. The
scales of the plots were weighted or constrained for optimal visualization, depending on
the available ranges for the computed function. For images of the MCA territory at 10x,
we plotted L-functions with 95% confidence intervals (shaded gray area) and performed
a studentized permutation test (Hahn 2012) using the studpermu.test function

from spatstat.

For TDA, we used Betti curves to represent the Betti numbers of the dataset against a
parameter, such as a threshold or a scale. We analyzed the Betti curves using the non-
parametric two-sample Kolmogorov-Smirnov (KS) test to compare the cumulative
distribution functions (CDFs). We also employed permutation tests to randomly permute
the labels of the data points and compute the Betti curves for each permutation. We

repeated this process many times to obtain a null distribution of the test statistic.

Results

We performed PPA and TDA on NeuN* (neurons), GFAP* (reactive astrocytes), and
IBA1* (activated microglia) to quantify the spatiotemporal and topological arrangement
of glial scars after ischemic stroke. Our approach provides essential quantitative
insights into the spatial intensity (the cell density fluctuations) and the relative
distribution of glial cells (mapped by point patterns) with respect to different covariates.
Furthermore, we demonstrate that TDA enables researchers to predict stages of injury
and the distribution of different cell groups based on the allocation of single cell types.
Raw data, data handling, statistical models, and model validation are available on-line

for full reproducibility of our results.
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Spatial intensity of neurons and glial cells following injury

Ischemic stroke is associated with profound changes in the density of neurons and glial
cells at the lesioned tissue over time (Sofroniew and Vinters 2009). Therefore, we
employed PPA to examine the variation of the spatial intensity of NeuN*, GFAP+, and
IBA1+ cells during the course of injury. Details of the raw data, model selection, and

diagnostics are available (QN, Section 2 and Suppl. Table 4).

The spatial intensity of NeuN* cells showed a marked reduction of 17 units (95% CI =
9.7 - 24.7) at 5 DPI (Figure 1C, top). No substantial changes were observed from this
stage to 15 DPI (-1.64, 95% CI = -8.6 - 5.4, ROPE = 0.89). However, our results show
that at 30 DPI, the spatial intensity of NeuN* cells exhibits a partial recovery of 7 units
(95% Cl = 1.24 - 13.7, ROPE = 0.54). This output may be driven by increased neuronal
density resulting from severe brain shrinkage or the partial recovery of NeuN
immunoreactivity associated with the restauration of metabolism in the penumbra (Unal-
Cevik et al. 2004). Thus, the analysis of spatial intensity captures the complex variations
in neuronal density associated with brain shrinkage and cell antigenicity.

Using PPA, we observed that reactive astrocytes exhibited a peak in spatial intensity at
15 DPI (31, 95% CI = 27.4 - 34.8), which is sustained at later time points (-3.4, 95% CI
= -7.6 - 0.77, ROPE = 0.71) (Figure 1B-C, middle). This represents a 6-fold increase
compared to the baseline (22.9, 95% CIl = 18.3 - 27.6, ROPE = 0). Conversely, the
spatial intensity of reactive microglia peaked at 5 DPI (31.9, 95% CI = 28.3 - 36.1) and
progressively decreased until 30 DPI (10.5, 95% Cl = 7.2 - 13.2) (Figure 1B-C, bottom).
We note that those estimates are not directly comparable due to the differying
expression of GFAP and IBA1. Furthermore, the negative correlation between the
spatial intensity of glia and neurons (QN, Section 2; Suppl. Figure 2D) warrants analysis
by PPA.

Altogether, we show that quantifying the spatial intensity enables assessing the
dynamic changes in cell populations in response to injury. This approach is compatible
with classical estimations of interhemispheric cell ratios (QN, Section 3; Suppl. Figure 3;
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Suppl. Table 5), showing similar trends during the injury course mainly in the CNU and
CTX (QN, section 3; Suppl. Figure 3D).
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Figure 1. Spatial intensity of neurons, astrocytes, and microglia. A) Representative immunolabeling
of NeuN (neurons), GFAP (astrocytes), and IBA1 (microglia) at 5 DPI. Brains are displayed using
the thermal lookup table (FIJI) to facilitate the visualization of stained cells. B) Representative smoothed
intensity kernels (density function [sigma = 0.3 (NeuN); sigma = 0.2 (GFAP, IBA1)], spatstat) for NeuN,
IBA1, and GFAP at each day post-ischemia (DPI). Mean intensity estimates with 95% credible intervals
(Cl) are shown below each plot. C) Composite graphs showing Bayesian posterior distributions of the
spatial intensity for neurons (NeuN, top), astrocytes (GFAP, middle), and microglia (IBA1, bottom). Mean
point estimates and their uncertainty are plotted as half-eye and point intervals (stat_halfeye
and stat_interval functions, ggdist). Raw data (black dots) is accompanied by prediction intervals (Brewer
scale). The contrast between time points of interest (emmeans function [contrast(method = “revpairwise”
], emmeans) is displayed at the bottom of each composited graph. The region of practical equivalence
(ROPE) encloses the values falling within intragroup variance and, therefore, considered equivalent to
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null. Probability within the rope is calculated using the hypothesis function from brms. M# labels (unique

animal ID) signal the individuals plotted in panels A.

Reallocation of glial scar-forming cells following injury

Brain injury involves the activation and reallocation of glial cells to form a
scar (Manrique-Castano and EIAli 2021). We investigated this cell redistribution by
estimating the spatial intensity of reactive astrocytes and activated microglia as a
function of the spatial intensity of neurons (QN, Section 4). We show that GFAP* and
IBA1+ cells progressively reallocate into regions of low neuronal spatial intensity, as
shown by the higher peaks (rhohat) at < ~ 30-40 in Figure 2A.

Interestingly, the mppm [Lw) = exp (3.1 + 0.002 + DPI)] for astrocytes shows decreasing
slopes from 0.01 at 5 DPI to -0.008 at 30 DPI for time-specific variations (group-level
effects) (Suppl. Table 6). The preceding suggests a bimodal dynamic for reactive
astrocytes. First, these cells are likely to aggregate in high-intensity (extra-lesional)
neuronal regions, shifting later their allocation probability towards low-intensity (intra-
lesional) neuronal regions. In contrast, the mppm for activated microglia [Lw) = exp (2.8
+ 0.01 + DPI)] yields negative slopes for all the time-specific variations (Suppl. Table 6).
This indicates that IBA1* cells are preferentially positioned in low-intensity (intra-

lesional) neuronal regions as the injury progresses.

We also examined the reallocation of reactive glia in neuronal regions
using tessellations (quantiles = 0, 20, 150) (QN, Section 5), representing intra-lesional
(low spatial intensity) and extra-lesional (high spatial intensity) zones (Figure 2B, Suppl.
Table7 ). Control animals were excluded from this analysis, given the lack of reactive
glia labeling in healthy brains.
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Figure 2. Astrocyte and microglia allocation with respect to neurons. A) Conditional intensity
distribution estimates (rhohat function, spatstat) for reactive astrocytes (top) and activated microglia
(bottom) with respect to the spatial intensity (smoothed density kernel) of neurons. Data are presented as
the estimated GFAP or IBA1 intensity (magenta, y-axis) with upper and lower two-sigma confidence
intervals (shaded gray area) given the spatial intensity of neurons (x-axis). Horizontal lines represent the
mean intensity (dashed line) and the lower (solid black) and upper (dashed green) limits of the two-sigma
confidence intervals. Note the different scales, which are weighted by the available ranges of the
computed function or constrained for optimal visualization. B) (Left, Tessellation) Representative images
of tessellated neuronal smooth intensity kernels to segregate regions of low (cyan) and high (green)
neuronal spatial intensity (quantiles = 0, 20, 150). The distributions of reactive astrocytes and activated
microglia are shown as black dots. Corresponding cell counts in low (top) and high-intensity (bottom)
cuadrants and corresponding 95% credible intervals are shown for each DPI. (Right, Influence) Influence
(yellow = high, orange = low) of neuronal intensity on glial cell distribution (dfbetas function, spatstat).
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These maps are generated from superimposed point patterns at each DPI. C) Contrast between time
points for the posterior distributions of the number of reactive astrocytes and activated microglia in low-
and high-intensity neuronal regions (emmeans function [contrast(method = “revpairwise” ], emmeans).
The mean point estimates and their uncertainty are plotted as half-eye and point intervals (stat_halfeye
and stat_interval functions, ggdist). The region of practical equivalence (ROPE) encloses the values
falling within intragroup variance and, therefore, considered equivalent to null. Probability within the rope
is calculated using the hypothesis function from brms.

The results reveal that reactive astrocytes progressively populate low-intensity neuronal
regions after the first week post-ischemia (15-5 DPI = 216, 95% CI = 54 - 372, ROPE =
0.35) (Figure 2C, top). Yet, this model yields considerable uncertainty in the estimates,
probably due to different infarct sizes and individual evolution of the injury (Suppl. Table
7). Conversely, we predict a persistent distribution of reactive astrocytes in extra-
lesional regions throughout injury (Figure 2B-C, top), as implied previously by the mppm
models. On the other hand, our model predicts that active microglia are increasingly
confined to intra-lesional regions (Figure 3B-C, bottom). This entails a ~77% reduction
in IBA1+* cells in high-intensity neuronal regions at 30 DPI (30-5 DPI = -370, 95% ClI = -
485 - 249, ROPE = 0.005), as well as a reduction in intra-lesional areas (-379, 95% CI =
-493 to -260, ROPE = 0.007). This is congruent with the resolution of the inflammatory
response. We also found that intra-lesional regions strongly influence glial distribution in
the striatum at the level of the MCA territory (Figure 3B; QN, Section 5.8). Notably, the

injured area shapes an exclusion zone for GFAP+* cells at 5 DPI.

These results highlight the potential of the relative distribution (rhohat) and cell
covariance (tessellations, quadrant counts) estimates to elucidate the complex
interactions and spatiotemporal dynamics of different cell types in response to brain
injury. This approach can quantitatively characterize the positioning over time of
reactive astrocytes and activated microglia relative to neuronal intensity or other spatial
features of interest, allowing the modeling of treatments aiming at modulating glial scar
properties.
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Astrocytes and microglia form a two-layered glial scar

Next, we examined the interaction between reactive astrocytes and activated microglia
at the interface of the glial scar (QN, Section 6). First, we calculated the relative
distribution of glial cells with respect to the X-axis (Figure 3A). The graphical results
show that reactive astrocytes display a maximum likelihood over the average in extra-
lesional areas at 5 DPI. At this stage, we observed a ~ 2 mm ring of reactive cells
around the injury zone, heavily populated by activated microglia (Figure 3B). This ring
is narrowed to ~ 500 um at 15 DPI, when the mass of reactive astrocytes advances ~
200 um towards the dorsal cortex (Figure 3A). In the later stage, the spatial intensity of
reactive astrocytes is prominent in intra-lesional regions between -5 and -3 x-
coordinates. Accordingly, the mppm[Lw = exp (3.2 + 0.007 + DPI)] (QN, Section
6.1) yielded positive slopes at 15 DPI [exp(0.02)] and 30 DPI [exp (0.17)] ( Suppl. Table
8).

On the other hand, activated microglia show a consistent maximum likelihood in intra-
lesional areas (~ -4 - -2 x-coordinates) at all time points (Figure 3A). Besides,
the mppm shows [Lw) = exp (4.1 + 0.22 + DPI)] increasing slopes from exp(- 0.10) at
5DPI to exp (0.15) at 30 DPI (Suppl. Table 8), denoting a progressive centering of the
cell mass in intra-lesional regions as shown in Suppl. Figure 4A. The preceding pattern
is consistent with the resolution of inflammatory cascades and might imply that

astrocytes “sweep” immune cells into intra-lesional areas.

Next, the analysis of GFAP/IBA1 covariance by mppm (QN, section 6.3, Suppl. Table
9) suggests a negative correlation (slope, -0.002) that decreases over the injury course
(15 DPI = 0.01; 30 DPI = 0.02). This is consistent with the formation of two layers of
reactive glial cells that intermingle progressively. Alternatively, analysis using
tessellated smoothed density kernels of activated microglia (Figure 3C-D) indicates that
reactive astrocytes allocation progressively increases in low-intensity microglial regions
by ~220% from 5 DPI to 30DPI (255, 95% CI = 139-373, ROPE = 0.15) ( Suppl. Table
10). Moreover, influence plots (Figure 3C) show that from the second week after injury,
astrocyte allocation is strongly influenced by low-density microglial regions, mainly in
the cortex.
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Figure 3. Structuration of a layered glial scar. A) Conditional intensity distribution for reactive
astrocytes (GFAP*) and activated microglia (IBA1+) with respect to the x-coordinates of the ischemic
hemisphere (rhohat function, spatstat). Data are presented as the estimated GFAP or IBA1 spatial
intensity (magenta) with upper and lower two-sigma confidence intervals (shaded gray area). Horizontal
lines represent the pooled mean intensity (dashed line) and the lower (solid black) and upper (dashed
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green) limits of the two-sigma confidence intervals. B) Perspective plots (persp function, graphics) of
superimposed brains showing the spatial intensity of reactive astrocytes (256 topo colors) and activated
microglia (white dots). Reactive astrocytes form a ring that progressively encloses activated microglia in
intra-lesional regions. C) (Left Tessellation) Representative images of tessellated smooth intensity kernels
to segregate regions of low (cyan) and high (green) microglia spatial intensity (quantiles = 0, 20, 150).
Astrocytes are displayed as black dots. Corresponding cell counts in low (top) and high (bottom) intensity
quadrants for each DPI are shown with 95% credible intervals below each plot. (Right, Influence)
Estimated influence (yellow = high, orange = low) of activated microglia on reactive astrocyte distribution
(dfbetas function, spatstat). These maps are generated from superimposed point patterns at each DPI.
D) Contrast between time points for the posterior distributions of the number of reactive astrocytes in
low- and high-intensity microglial regions (emmeans function [contrast(method = “revpairwise”
], emmeans). The mean point estimates and their uncertainty are plotted as half-eye and point intervals
(stat_halfeye and stat_interval functions, ggdist). The region of practical equivalence (ROPE) encloses
the values falling within intragroup variance and, therefore, considered equivalent to null. Probability
within the rope is calculated using the hypothesis function from brms. E) Raster layers
(raster function, raster) for reactive astrocytes (terra colors) in superimposed brains. The green color
depicts the regions with high cell clustering. Dots and circles depict the centroid and standard deviation
for reactive astrocytes (blue) and activated microglia (red). Numerical summaries are displayed in each
image with the same color code for both cell types. F) Distance between the centroids of high-density
raster layers of reactive astrocytes (blue) and activated microglia (red) (5 DPI = 1.47; 15 DPI = 0.73; 30
DPI = 0.7). G) Correlation between the point patterns’ standard deviation of reactive astrocytes and
activated microglia. Comparable intercepts and slopes (5 DPI, red; 15 DPI, green; 30 DPI, blue) are

displayed in the graph. The regression shows a low explained variance (R2 = 0.28, 95% Cl = 0.05, 0.47).

Taken together, these data support a model where GFAP+ and IBA1+ cells intermingle
progressively during the injury course. Still, astrocyte allocation is prominent in low-
intensity microglial areas, consistent with a compartmentalized glial scar with reactive
astrocytes (in extra-lesional regions) enclosing activated microglia in an inner layer (in

intra-lesional regions).

To further investigate the dynamics of the two glial layers, we analyzed the distance
between the centroids of GFAP+ and IBA1+ cell masses (QN, Section 7). Raw data plots
are shown in Suppl. Figure 4B-C. The results show a minimum distance between
centroids at 15 DPI (600 ym) (15 - 5 DPI = -0.53, 95% CI = -0.93 to -0.13, ROPE =
0.35) and sustained thereafter (Suppl. Figure 4D). Yet, the astrocyte cell mass shifts its
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allocation at 30 DPI, as seen in Figure 3E (mean) and Suppl. Figure 4B (single
brains). Furthermore, analysis of cell dispersion (QN, Section 7) reveals the higher
clustering for reactive astrocytes at 30 DPI and for reactive microglia at 5 DPI (Suppl.
Figure 4E). Remarkably, the uncertainty of astrocyte clustering increases as microglial
cells disperse (Figure 3G).

The calculation of relative distributions uncovered the progressive mixing of reactive
astrocytes and activated microglia at the glial scar. Our results show that reactive
astrocytes enclose activated microglia from the second week after injury, and that the
microglial distribution in extra-lesional regions strongly influences the boundaries of the
reactive astrocyte layer. In addition, raster layers allow an accurate estimation of the
dynamics of highly clustered cells that form the glial scar walls.

Glial scar arrangement in intra-lesional regions

To gain further insights into the structure of the glial scar, we expanded our analysis to
intra-lesional regions (QN, Section 8). We defined rectangular ROls that cover the MCA
territory from the ventricular zone to the outer edge of the cerebral cortex (Suppl. Figure
1), and conducted a nonparametric estimation of the conditional distribution of reactive
astrocytes with respect to the distance to activated microglia.

The analysis indicates that the spatial intensity of reactive astrocytes is sustained within
~30 um of the nearest microglia up to 15 DPI (Figure 4A). However, the peak at > 30
um at 30 DPI suggests a more distant allocation at this stage. Accordingly,
the mppm (Suppl. Table 11) yields a higher reactive astrocyte allocation the more
distance to activated microglia as the injury progresses [15 DPI = exp(-2.7); 30 DPI =
exp(-23.5)]. The preceding suggests a meaningful decoupling of reactive astrocytes and
activated microglia when the latter are constrained to intra-lesional regions.
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Figure 4. Glial scar in intra-lesional regions A) Conditional intensity distribution (rhohat
function, spatstat) for reactive astrocytes with respect to the distance to nearest activated microglia
(distfun function, spatstat). Data are presented as the estimated GFAP+ cells spatial intensity (magenta)
with upper and lower two-sigma confidence intervals (shaded gray area). Horizontal lines represent the
pooled mean intensity (dashed line) and the lower (solid black) and upper (dashed green) limits of the
two-sigma confidence intervals. B) (first row) Representative images of GFAP (green)/IBA1 (red) staining
in intra-lesional regions. (second row) distance maps (distfun function, spatstat) of activated microglia in
the same region (256 topo colors). Green and yellow zones depict the areas where the distance between
activated microglia (low spatial intensity) is more extensive. Reactive astrocytes are represented as white
dots. (third and fourth rows) Stienen maps/diagrams (stienen function, spatstat) of GFAP+ and IBAT1+
reactive glia depicting circles around each data point with a diameter corresponding to the distance to the
nearest neighbor. C) Inhomogeneous L-function (Linhom function, spatstat) to estimate long-scale
cumulative distributions of reactive astrocytes and activated microglia. The dashed red line is centered at
0 and corresponds to a regular point pattern. Over and below the line signal clustering and inhibition
(independent), respectively. The estimates are based on Ripley’s isotropic correction (black line) with
upper and lower limits of two-sigma Cl (shadowed region). D-E) Conditional spatial intensity distribution
for reactive astrocytes and active microglia with respect to the x-axis of indicated ROls (rhohat
function, spatstat), and neuronal spatial intensity in intra-lesional regions, respectively. Data are
presented as the estimated GFAP+ cells spatial intensity (magenta) with upper and lower two-sigma
confidence intervals (shaded gray area). Horizontal lines represent the pooled mean intensity (dashed
line) and the lower (solid black) and upper (dashed green) limits of the two-sigma confidence intervals. F)
Representative images of GFAP (green)/ NeuN (red) (first row) and IBA1 (green)/ NeuN (red) (second
row) staining in intra-lesional regions demarking the allocation of glial cells with respect to neurons. (Third
row) Distance function estimate (distfun function, spatstat) for neurons in intra-lesional areas. Green and

yellow zones depict the areas where the distance between neurons (low spatial instensity) is larger.

We also analyzed the interaction within cells (QN, section 9). The results denote that,
on the long scale, reactive astrocytes transition from an independent to a regular
distribution, becoming more evenly spaced over time ( QN, section 9.1; Figure 4C,
top). In contrast, activated microglia are likely to maintain an independent distribution in
the chronic phase of the injury and show less variability in their spatial distribution (QN,
section 9.2; Figure 4C, bottom). Otherwise, on the short scale, activated microglia
exhibit higher clustering than astrocytes at 15 DPI and display a more restricted
behavior between ~20 and ~40 um at 30 DPI (Figure 4C). This implies that the
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distribution of reactive astrocytes is more dynamic than that of activated microglia,
possibly because their allocation at the edges of the injured tissue.

In addition, we analyzed the distribution of reactive astrocytes and activated microglia
with respect to the x-coordinates of the ROI at 30 DPI. Our models indicate that reactive
astrocytes are concentrated in the innermost part of the ischemic hemisphere [Lw) = exp
(9.1 - 0.9) ], while activated microglia are located near the hemispheric boundary [Lw) =
exp (8.4 - 0.3)] (Figure 4D). In the MCA territory, both cell types are prominently
positioned in areas with low neuronal intensity (QN, Section 8.3; see Figure 4E). These
findings support the notion of a compartmentalized glial scar in which the outer layer of
reactive astrocytes pushes tissue debris full of activated microglia to the borders of the

brain.

TDA supports the spatiotemporal dynamics of reactive glia observed in PPA

TDA revealed a correlation in the density of reactive astrocytes and neurons (p < 0.001)
during the first two weeks post-ischemia. Conversely, TDA tracked a shift of activated
microglia from even distribution in control conditions to clustering in specific (intra-
lesional) regions after injury (p < 0.01). Interestingly, the distribution of activated
microglia appears to be correlated with the high-density neuronal regions where
reactive astrocytes initially aggregated. Analysis of Betti curves obtained from TDA of
NeuN*, GFAP+ and IBA1+ cells positions and pairwise combinations of cell types
revealed that reactive astrocytes and activated microglia are present in regions of low
neuronal density (Figure 5A).

TDA predicts DPI using the position of single-cell types

We used a topological machine learning-based approach to predict DPI based on cell
positions. We first applied persistent homology analysis to the point clouds to obtain
topological features of the data. Subsequently, we predicted DPI using SVR with RBF
kernel. The results show that this approach can accurately predict DPI based on the
positions (point clouds) of neurons, reactive astrocytes, and activated microglia, with a
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mean absolute error (MAE) of 0.84 days and a root mean squared error (RMSE) of 1.16
days (Suppl. Table 12).
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Figure 5. Recovery of DPI and cell type from topological features. A) Confusion matrix for the
prediction of days post-injury with an overall accuracy of 77.8% using dimension 0 and dimension 1
topological features. B) Confusion matrix for the prediction of cell type with 100% accuracy using
dimension 0 and dimension 1 topological features. C) Betti curves are clustered by mouse
identity. D) Principal component analysis of Betti curves reveals clustering by mouse identity. Jitter added
to plot for visual clarity. Embedding distance between cell types over time reveals co-occurrence of
astrocytes (Gfap) and neurons (NeuN) during the first 5-15 days before shifting to low neuronal density
regions at 30 DPI.
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To further validate the effectiveness of this model, we compared it with two baseline
methods: a linear regression model and a neural network model with two hidden layers.
The linear regression model achieved a higher MAE of 1.58 days and a higher RMSE of
2.05 days, while the neural network model achieved a similar MAE of 0.88 days but a
higher RMSE of 1.39 days (Suppl. Table 13). The preceding denotes that our
topological machine learning model outperforms the baseline methods regarding
prediction accuracy.

We also performed a feature importance analysis to identify the most informative
features for predicting DPI. Our analysis revealed that the positions of activated
microglia were the most informative features, followed by the positions of neurons and
reactive astrocytes (Suppl. Table 14).

Overall, our results demonstrate the effectiveness of our topological machine learning-
based approach for predicting the post-ischemia time point using point cloud data of
neurons, astrocytes, and microglia positions. This allows the use of the topological

features of glial cell distribution to inform about injury progression in CNS diseases.

Discussion

Traditional methods to characterize the heterogeneous response of glia, based on cell
counting or quantification of glial markers stained area (Anderson et al. 2016; Okada et
al. 2006; Buscemi et al. 2019), do not fully capture the complex dynamics of glial scars.
In this study, we developed PPA/TDA-based approaches to investigate the structure
and spatiotemporal arrangement of glial scars in the mouse brain following injury. With
this approximation, researchers can uncover distribution patterns of reactive glia at
different scales. The use of the rhohat and ppm frameworks from the spatstat R-
package enables the assessment of the spatial distribution of reactive astrocytes and
activated microglia, taking into consideration cell-to-cell interactions and the
heterogeneity of the spatial process (Spatial Point Patterns: Methodology and
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Applications with R 2015). To our knowledge, the use point pattern-based approaches
in biomedicine is restricted to cancer biology (Maisel et al. 2022; Kaufmann et al. 2021).

Numerous approaches exist that demonstrate the impact of microglia (Zhang et al.
2023; Bellver-Landete et al. 2019; Fu et al. 2020), astrocytes (Anderson et al. 2016; Gu
et al. 2019; Herrmann et al. 2008), or NG2 (Rodriguez et al. 2014; Hesp et al. 2017)
dysregulation/ablation in scar formation and their subsequent effects on neurological
recovery. The assessment of these and other therapeutic approaches could benefit
from analyzing the fine traits of cell reallocation, covariance, and interaction. Indeed,
PPA or TDA-based approaches can benefit the assessment of cell or protein distribution
in other CNS diseases such as Alzheimer’s (Spangenberg et al. 2019; Al-Onaizi et al.

2022), Huntington’s (Crapser et al. 2019), or Parkinson’s disease (Sekiya et al. 2022).

(Wanner et al. 2013) demonstrated that glial scar borders are constituted by
proliferating astrocytes, which serve to contain fibrotic and inflammatory cells. However,
their findings do not incorporate a quantitative model that facilitates predictions
regarding cellular covariance or temporal evolution—capabilities inherent to our
approach. Our model elucidates the distribution patterns of reactive astrocytes and
activated microglia, thereby enabling the exploration of alternative hypotheses regarding
fibrotic scar deposition (Fernandez-Klett and Priller 2014). Although astrocytes are
commonly believed to be primary contributors to the formation of fibrotic scar through
the production of extracellular matrix (ECM) proteins like tenascin-C (TnC) (Dzyubenko
et al. 2018; Dzyubenko et al. 2022), their predominant localization in regions outside the
lesion suggests a potential key role for other cell types. Specifically, pericytes/PDGFR-
B+ cells might play a central role in this process, as indicated by other studies (Dias et
al. 2021; Soderblom et al. 2013; Goritz et al. 2011) .

Recently, TDA analysis has gained attention in oncology as a tool to determine cell
architecture, disease classification, computer-aided diagnosis, prediction of treatment
response (Bukkuri, Andor, and Darcy 2021; Singh et al. 2023), or to explore the gene
regulatory network (Masoomy et al. 2021). Also, TDA has been used to quantify cell-to-
cell interactions (Bhaskar, Zhang, and Wong 2021), track their collective

motions (Bonilla, Carpio, and Trenado 2020), or feature emerging traits in cell
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dynamics (Dawson et al. 2022). In neurobiology, TDA applications are limited to
EGG (Yamanashi et al. 2021) or fMRI analysis (Saggar et al. 2022) for the analysis of
brain networks (Das, Anand, and Chung 2023). Here, we show the first application of
TDA to analyze the topological arrangement of nervous cells (point clouds) extracted
from widefield microscopy images. This entails a step towards an unbiased and
reproducible analysis of cell distribution in fixed brain tissue, which can be extrapolated
to other body organs.

Automated/unbiased PPA for analyzing glial scars or cell redistribution has some
limitations. First, the accuracy of the initial cell detection (performed in QuPath) can be
influenced by several factors, including immunolabeling efficiency, cell size, and cell
overlapping. In particular, we faced difficulty segmenting individual GFAP+ and IBA1+
cells. Conversely, using nuclear markers like NeuN is advantageous for segmentation
algorithms like watershed. Several algorithms are suitable for segmenting quasi-circular
or oval cells (Al-Kofahi et al. 2018; Greenwald et al. 2021; Stringer et al. 2020).
However, the segmentation of highly branched and overlapping cells such as reactive
astrocytes and activated microglia is a challenge not yet addressed. Secondly, the
estimation of spatial intensity depends on the size and shape of the observation
window. The window size can influence the detection of clustering patterns and density
calculation, so it should be chosen carefully. Third, interpreting ppm and mppm models
requires careful consideration of the assumptions and parameters. Unfortunately, there
are still no tools in spatstat for mppm diagnostics or goodness-of-fit. For this reason, we
complete our analysis with Bayesian models. Furthermore, running ppm models to
large datasets can be computationally intensive and time-consuming, which may limit its
scalability for some applications involving many cells. Finally, the interpretation of
spatial intensity maps can be influenced by choice of color scales and contour lines,
which emphasize the importance of proper modeling.

Our study shows that the limitations of 2D PPA for the study of reactive glia and scar
formation in the CNS are surprassed by 3D TDA, which captures the full complexity of
the 3D microenvironment in which cells interact and migrate. Still, TDA supported the
results of PPA, indicating that astrocytes initially aggregate in high-density neuronal
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regions during the first week post-injury, before shifting to low-density neuronal regions

in the second week.

TDA, particularly through the use of persistent homology, relies on the creation of
simplicial complexes from the data. In the presence of noise, these complexes can
capture spurious topological features that do not reflect the underlying geometry or
structure of the data. This can lead to misinterpretations. Moreover, the scale at which
the data is analyzed plays a crucial role; small-scale features might be missed, while
large-scale features might overshadow more intricate details. Also, constructing
simplicial complexes, computing homology groups, and tracking persistence across
scales can be computationally demanding. As the size and dimensionality of the data
increase, the computational cost associated with TDA can escalate rapidly. This can
limit the real-time or on-the-fly applications of TDA for big datasets. To overcome these

limitations, we used a sampling strategy to subset our data.

On the other hand, Bayesian modeling with parameter estimation and uncertainty
quantification offers several advantages of traditional hypothesis testing (Kruschke and
Liddell 2018). This framework enables the direct tunning of model parameters and
obtaining transparent contrast and effect sizes based on the full posterior distribution.
We found the brms and emmeans R-packages fundamental to contrasts grouping
variables of interest, and we promote its use for proper statistical inference based on
estimation and uncertainty, which is particularly relevant for small sample sizes such as

those typical of biomedicine.

In conclusion, our study has successfully applied PPA and TDA to investigate the
spatial distribution and evolution of neurons, astrocytes, and microglia in the injured
brain after ischemic stroke. Also, it demonstrated the power and versatility of machine
learning techniques to predict days post-injury from cell positions with high accuracy.
This result not only validates the robustness of TDA for analyzing complex biological
data, but also highlights its potential for aiding in the development of novel diagnostic
and therapeutic strategies for neurological disorders and injuries. Our findings
contribute to a better understanding of the dynamic cellular interactions occurring in the
brain following ischemic stroke and provide a foundation for future research.
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