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50 Abstract

51 Deep brain stimulation (DBS) is a powerful clinical tool for the treatment of circuitopathy-related
52 neurological and psychiatric diseases and disorders such as Parkinson’s disease and obsessive-
53 compulsive disorder. Electrically-mediated DBS, however, is limited by the spread of stimulus
54  currents into tissue unrelated to disease course and treatment, potentially causing undesirable
55 patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical
56 neuromodulation technique that uses near to mid-infrared light to drive graded excitatory and
57 inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS
58 paradigm. INS has been shown to provide spatially constrained responses in cortical neurons
59 and, unlike other optical techniques, does not require genetic modification of the neural target. In
60 this study, we show that INS produces graded, biophysically relevant single-unit responses with
61 robust information transfer in thalamocortical circuits. Importantly, we show that cortical spread of
62 activation from thalamic INS produces more spatially constrained response profiles than
63 conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep
64 reinforcement learning for closed-loop control of thalamocortical circuits, creating real-time
65 representations of stimulus-response dynamics while driving cortical neurons to precise firing
66 patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm
67  for both open and closed-loop DBS.

68

69 Significance Statement

70 Despite initial clinical successes, electrical deep brain stimulation (DBS) is fraught with off-target
71 current spillover into tissue outside of therapeutic targets, giving rise to patient side effects and
72 the reduction of therapeutic efficacy. In this study, we validate infrared neural stimulation (INS) as
73 a spatially constrained optical DBS paradigm by quantifying dose-response profiles and robust
74 information transfer through INS driven thalamocortical circuits. We show that INS elicits
75 biophysically relevant responses which are spatially constrained compared to conventional
76 electrical stimulation, potentially reducing off-target side effects. Leveraging the spatial specificity
77  of thalamocortical INS, we used deep reinforcement learning to close the loop on thalamocortical
78 INS and showed the ability to drive subject-specific thalamocortical circuits to target response
79 states in real time.
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80 Main Text

81

82 Introduction

83 Electrical stimulation of the nervous system has emerged as a potent clinical tool for the

84 treatment of a wide variety of neurological diseases. Neuromodulation technologies also

85 represent the fastest-growing medical device market(1). The most prominent of these devices are

86 cochlear implants (Cl), which induce sound percepts in individuals with profound hearing loss,

87 and deep brain stimulation (DBS), which has proven effective in treating movement-related

88 symptoms associated with Parkinson’s disease and essential tremor. Additionally, diseases

89 treated by electrical neuromodulation are expanding, with DBS having recently received an FDA

90 humanitarian device exemption for the treatment of obsessive-compulsive disorder while also in

91 clinical trial for major depressive disorder(2), Tourette’s syndrome(3), and epilepsy(4). Peripheral

92 nerve electrical stimulation technologies are also maturing into viable clinical tools, including

93 vagus nerve stimulation for the treatment of epilepsy(5) and carotid sinus stimulation for the

94  treatment of heart disease(6).

95

96 Despite initial clinical success, electrical paradigms of neuromodulation are fraught with

97 undesirable current spillover into off-target neural circuits(7—11) leading to undesirable side

98 effects and a reduction in therapeutic efficacy(12—-14). The development of focal stimulation

99 strategies is paramount to more effective clinical stimulation and the improvement of patient side-
100  effect profiles. One such tool is infrared neural stimulation (INS), an optical modality which
101 stimulates nerves and neurons using near to mid infrared wavelength (700-2000 nm) light(15—
102 18). INS has shown spatially specific recruitment of both peripheral nerves(11, 19, 20) and central
103 neurons(17, 18). Importantly, INS does not require genetic manipulation necessary for other
104 optical stimulation methods(21), acting purportedly on intrinsic cell biophysics(22). INS also
105  shows promising safety profiles for translation to human patients(23-25) and has found use in
106  diagnostic targeting of human nerve roots in surgical resection procedures(26). While INS is a
107 promising modality for neuromodulation therapies, progress towards optically-based DBS (oDBS)
108 is hindered by a lack of understanding of INS entrainment of thalamocortical and sub-
109 thalamocortical networks; the understanding of which is necessary for treating “circuitopathies”
110 associated with diseases treated by DBS(27-32). Specifically, there is a dearth of information
111 related to dose-response dependencies of INS laser parameters in circuital recruitment and the
112 resulting spread of activation across neural circuits.
113
114 In this study, we validate INS as a potent oDBS paradigm by quantifying INS dose-response
115 profiles from varying laser parameters, INS driven information transmission across the
116 thalamocortical synapse, and spatial specificity of network INS in the rat auditory thalamocortical
117 model. Our experiments show strong evoked firing rate dependence on applied laser energy with
118 increases in thalamocortical information transfer with increased laser energy. We further show
119 that INS evokes cortical activity that maintains typical thalamocortical response profiles with
120 constrained spread of activation well below the spread of electrical stimulation. Owing to the
121 targeted neural activation of INS, we engineered a closed-loop control approach called SpikerNet,
122 a deep reinforcement learning (RL) based reactive DBS system(33, 34). Closed-loop DBS utilizes
123  feedback from biomarkers of disease to apply stimulation only when needed(35) and has shown
124  advantageous in therapeutic efficacy and battery life(36). However, the relatively simple control
125 algorithms of conventional closed-loop DBS limit the ability to capture complex dynamics of
126  neural activity related to disease which can cause interference with normal activity, such as
127 interruption of volitional movement(37) which is further exacerbated by large scale activation from
128  electrical stimulation(38). More complex control methods are advantageous in accounting for
129 brain wide state changes, such as sleep wake cycles(39). We therefore utilized deep RLs ability
130 to develop statistical mappings of systems in response to state perturbations in order to drive
131 cortical activity to desired firing states.
132
133 Results
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134

135 Implanting Stimulation and Recording Devices

136  The auditory pathway has a rich history of neuromodulation, with electrical stimulation of the

137  cochlea resulting in cochlear implants, one of the first and most successful clinical

138 neuromodulation devices(40). Other clinical auditory devices include the auditory brainstem and
139 midbrain implants(41, 42) with electrical neuromodulation across all auditory nuclei(43—45) are
140 being investigated for clinical viability. Auditory thalamocortical circuits are particularly suited for
141 study because the regional architecture of the auditory thalamus permits stimulation of both core
142 and belt pathways in rodents, primates(46), and humans(47) using a single dorsoventrally

143 oriented electrode. This enables testing stimulation strategies simultaneously in both tonotopic
144  core pathways and higher-order belt pathways, along with the ability to rapidly test circuit function
145  with minimally invasive scalp evoked auditory potentials(48—50) before and after device

146  implantation. To facilitate understanding of dose-response effects of network function elicited

147  through INS, rats were implanted with fiber optic optrodes into the medial geniculate body of the
148  auditory thalamus (MGB). The ventral and dorsal divisions of the MGB have primary excitatory
149  afferents to layer 3/4 of auditory cortex(51) (Fig 1A,C). Sixteen channel planar arrays were

150 implanted into layer 3/4 of primary auditory cortex (Fig 1A), and all MGB subdivisions have at

151 least some projection to primary auditory cortex(52). Postmortem histological analyses confirmed
152 placement of optrodes into the MGB (Fig 1D).

153

154 Development of INS into a clinically viable neuromodulation system has been limited by a lack of
155 understanding of underlying stimulation mechanisms and stimulus to response mappings. A

156 confounding factor is that commercial INS systems are not widely available and are prohibitively
157  expensive or removed from the market by product recalls (53). To facilitate continued INS

158  studies, we developed INSight, a low-cost open source INS and optical stimulation system which
159 uses off the shelf components for ease of building and modification. Importantly, INSight can

160 integrate into established recording systems. Materials, build instructions, and calibrations are
161  found in the supplementary material (Fig S10-11) and the INSight Github repository:

162 https://github.com/bscoventry/INSight.

163

164 Changes in neural activity due to presence of devices in the brain

165 Implantation of recording and stimulation devices present a critical assault to normal neural
166  function(54, 55). Therefore, we first considered the effect of the presence of stimulation and
167 recording devices in brain activity through auditory evoked mid-latency responses (MLRs) in a
168  subset of rats (n=6). MLRs stimuli consisted of evoked responses to auditory click trains with
169 recordings taking place 24 hours before and 72 hours after implantation procedures. MLRs report
170  auditory generators in thalamus and cortex and serve as a read out of neural ensemble
171 function(56-59). We utilized a 4 positive channel EEG recording configuration to allow for
172 responses of thalamocortical generators and from rostral brainstem regions(48)(Fig 1A Right) on
173 each hemisphere and we analyzed ratios of post-pre positive peaks 1 and 2 (P1,P2)
174 corresponding to brainstem and cortical generators, respectively and negative peak 1 (N1 or N1-
175 P2) corresponding to thalamic generators (Fig 1B). While there was some variability in wave
176 amplitudes and latencies, comparisons of evoked activity resulting from click-train auditory stimuli
177 at 65 and 85 dB-SPL (Fig 1E) showed no significant difference in response (p>0.05, Wilcoxon
178  sign-rank) suggesting that presence of stimulation optrodes and recording electrodes did not
179  significantly damage or alter thalamic and cortical activity at the onset of INS experiments. It
180  should be noted that post-surgical recordings were performed 72 hours after surgery, well within
181 the device heal-in window(60) with further neural reorganization likely to occur throughout the
182 duration of the study.

183

184 Dose-response relationships of cortical neuron response from thalamic INS

185 We next examined the interplay of INS laser energy and interstimulus pulse intervals (ISI) on
186  evoked cortical single unit firing rates. Excitatory peristimulus time histograms (PSTHSs) of single
187 units which were responsive to INS stimuli (Z-score increase > 7.84 from basal firing rate, p <

4
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188 0.00001) were analyzed. Units showing inhibitory responses or no change from basal firing rates
189 were excluded from the present study. While INS dose-response relationships have been studied
190 in cortex(17, 18), they remain unstudied across thalamocortical networks. Dose-response profiles
191 were modeled as a Bayesian linear random effects regression model, allowing us to account for
192 hierarchical structure of data consisting of variability within and between subjects across
193 implantation lifetimes. Bayesian inference is particularly powerful for this model as it provides
194 complete quantification of posterior distributions over all regression parameters and allows for
195 direct uncertainty quantification of parameters. Inference was performed directly on observed
196 data posterior distributions. As Bayesian methods require specification of prior probability
197 distributions for inference, broad, non-informative normal prior distributions were used in
198 inference models. Prior sensitivity analyses were performed in order to ensure prior distributions
199  did not unduly influence inference (Fig S5, Table S2). Dose-response regression models took the
200 form of

201

202 max(FR) = a; + f1; *E + o x IS + P3; * (E *ISI) + ¢;

203

204  with response variable FR representing the natural log transformed evoked firing rate and
205 independent variables E and ISI being the natural log transformed energy per pulse and inter-
206  stimulus interval respectively. Natural log transformations of response and independent variables
207  were chosen as model comparisons and sensitivity analyses dictated that these models best fit
208  observed data (Fig S5). An error term of € was added for uncertainty quantification. Full model
209  descriptions and sensitivity analyses are provided in Sl:Bayesian model description (Fig S1-S9).
210 Regression parameters were summarized by their maximum a priori estimate (ie most probable
211 value) with independent variables considered significant contributors to response if the highest
212 density interval (HDI) of the parameter distribution corresponding to the 95% most probable
213 parameter values did not overlap 0, following Bayesian inference convention(61). Regression
214 models (Fig 2B) show that INS responsive units had a basal firing rate greater than 0 (« MAP =
215 2.2,95% HDI exludes 0) with max evoked firing rates depending significantly on applied laser
216 energy (B,, MAP = 0.58, 95% HDI excludes 0) but not on ISI (8,, MAP = -0.055) or energy-ISI
217  interactions (B85, MAP = 0.028). However, the relatively wide spread of the ISI parameter g,
218 across 0 suggests a potential critical point in ISI timing past which thalamocortical neurons are
219 unable to entrain to individual pulses and instead integrate INS pulses into a single network
220 event.

221

222 Cortical encoding of INS stimuli

223 We next used Shannon mutual information measures [I(R;S,),Eq.2] to assess and quantify
224 information carried by evoked spike-trains in response to INS stimulation energy. Mutual
225 information measures the reduction of uncertainty in neural response given knowledge of the
226 stimulus. Higher values of information represent more unique and separable encoding of neural
227 response distributions for each stimulus. Stimulus-information profiles were calculated from 5 ms
228 binned estimates of response probability mass distributions during INS conditioned on applied
229 energy. Bias in mutual information resulting from incomplete knowledge of population response
230 distributions was estimated and corrected using the methods of quadratic extrapolation(62, 63).
231 We found that increasing INS energy per pulse resulted in increases in information contained in
232 response spike trains (Fig 2.C). Increases in information are also positively correlated with
233 increased INS energy per pulse showing strong dependence of evoked PSTHs on laser energy,
234 particularly > 0.8 mJ/pulse (Fig. 2C).

235

236 Auditory thalamocortical circuits perform complex transformations of inputs at the auditory
237 thalamocortical synapse(64) with cortical neurons employing differential coding strategies across
238 local heterogeneous cells and circuits(65, 66). Therefore, it is imperative that any stimulation
239 modality be able to drive naturalistic response profiles. INS-evoked PSTHs were classified into
240 onset, sustained, onset-sustained, and offset categories representative of the known range of
241 possible responses(67) (Fig 3A). PSTHs showing post-stimulation drop of 95% of basal activity

5
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242  were assigned an “inhibitory” flag corresponding to presence of post stimulus inhibition.
243 Classification results are summarized in Table 1. Onset responses were the most represented
244  class (Onset+Inhibition: 49.93%, Onset: 12.04%) followed by sustained (Sustained: 18.78%,
245  Sustained+Inhibition:4.51%) and onset-sustained classes (Onset-sustained: 6.05%, Onset-
246  sustained+inhibition: 2.82%). Offset responses were the rarest observed class (5.87%).
247 Observed distributions of firing classes are supported by studies of auditory evoked cortical unit
248 responses(67), suggesting that INS drive naturalistic thalamocortical encodings.

249

250 While these response states were categorically divided into possible response classes(67), these
251 categories are not meant to suggest all responses fit neatly into well-defined clusters. Principal
252  components analysis (PCA) dimensionality reduction was performed on response profiles to
253 assess the extent to which responses fall on a continuum. Dimensionality reduction into the top 3
254  components of largest variance (65.11% variance explained) shows that while responses do form
255 some identifiable clusters, responses fall on a continuum of responses within a given cluster, with
256 large overlap between clusters (Fig 3B). Bayesian multinominal regression models
257 (Supplementary Methods) were utilized to infer whether firing class membership was solely a
258  function of INS stimulation parameters. Multinominal regression compares log odds of a PSTH
259 belonging to a given category against a reference category. The most populous onset+inhibition
260 category was chosen as reference. Models suggest that class membership is a function of INS
261 energy and ISI with movement from onset+inhibition to onset resulting from increases in energy
262 and ISI, movement to onset-sustained resulting from decreases in energy and ISI, movement to
263 onset-sustained+inhibition resulting from slight decreases in energy but large decreases in I1SI,
264 movement to sustained+inhibition resulting from larger decreases in 1SI, and movement to offset
265 class resulting from large decreases in applied energy and smaller decreases in ISI (Fig S12).
266  These models suggest an interplay between INS stimulation parameters, network dynamics, and
267 intrinsic cellular biophysics determines response profile class.

268

269 INS induces spatially constrained thalamocortical recruitment

270

271 We next investigated the spatial selectivity of thalamocortical INS using joint peristimulus time
272 histogram (JPSTH) analyses. JPSTHs allow for the assessment of the time-resolved correlation
273 between pairs of neurons in response to INS stimuli. We first assessed stimulation induced
274  correlations of activity related to the initial stimulation event (Fig 4A Left). We next calculated
275  JPSTHSs representing functional connectivity between compared neurons when direct stimulus
276  effects are removed (Fig 4A Middle). Consistent spatial geometry of planar recording arrays
277  allowed for assessment of the functional connectivity of responses as a function of distance (Fig
278  4Aright). The maximum spread of correlated activity across all energies was calculated to obtain
279 an upper bound of lateral stimulation spread. Previous electrical mapping studies in rodent
280 auditory thalamocortical areas using linear, Michigan style arrays in nearly all cases showed
281 electrical stimulation spread across the entire extent of recording arrays, up to 1900 um (68, 69).
282 INS correlation analysis shows all responses were constrained to < 1500 um, with 90% of
283 responses constrained to < 1000 um (Fig 4B, left). We next recalculated maximal spread for
284 active units at stimulation intensities < 1mJ, corresponding to an inflection point of increased
285  stimulus transmitted information (Fig 2C), to assess if maximum spatial spread is modulated by
286 INS intensity. At lower energy stimulation, maximal spatial spread was limited to < 1250 um, with
287 90% of responses constrained to < 1000 um (Fig 4B, right), including numerous instances of
288 moderate correlation even < 500 um. These data suggest maximal spreads of INS-induced
289 activity is significantly less than electrical stimulation. Spread of activation after accounting for
290 direct co-stimulation induced by INS shows similar results, with spreads of correlated activity
291 limited to 1250 um across all energy levels and 1000 um for energies < 1mJ (Fig 4C).

292

293 Closed-loop control through deep reinforcement learning

294  After observation of spatial selectivity in thalamocortical INS, we sought to control small neural
295 populations through closed-loop feedback. Current adaptive DBS systems used in Parkinson’s

6
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296  disease use relatively simple control algorithms centered around reducing f band biomarker
297 correlates of symptomology using single or dual threshold “thermostatic” control(37, 70, 71) which
298 may interfere with activities such as volitional movement(37) and may potentially occlude
299  oscillatory neural dynamics unrelated to disease(34). Control of smaller populations of neurons
300 relevant to disease with control algorithms that encode subject specific firing dynamics may
301 provide targeted treatment and a reduction in off-target side effects. We utilized deep
302 reinforcement learning (RL) to learn complex stimulus-response dynamics in real time while
303 finding stimuli to reach a desired firing states. State, in this study, refers to discrete classes of
304 dynamical activity with stereotyped spontaneous and stimulus evoked activity(72). RL consists of
305 a computational agent which takes actions in response to observations of a given neural state
306 and learns which actions to take to maximize current and future rewards. In our deep RL
307 paradigm, termed SpikerNet, the RL agent can take actions from an action space consisting of
308 INS stimulus parameters of laser energy, ISI, and number of pulses which are constrained to
309 consensus safe energy levels. Stimuli are applied in response to observation of neuron PSTHs
310 from recording electrodes. A reward was then calculated by quantifying mean-squared error
311 distance between evoked firing and target PSTHs. Action policies and state response
312 relationships are then learned using actor-critic deep neural networks, with the actor network
313 encoding actions to take in each environment and the critic learning present and future rewards of
314  taking a given action (Fig 5A, S13).

315

316 We have previously shown in computational models that SpikerNet is able to quickly learn
317  stimulus trajectories to achieve desired firing patterns(34). SpikerNet’s ability to achieve desired
318 firing patterns in vivo was tested by sampling from distributions of previously evoked responses to
319 create novel, previously unobserved firing response target states for the recorded unit. We
320 determined SpikerNet was able to find target firing states precisely (Fig 5B, mean-squared error =
321 3.872) within a limited number of search iterations (Fig 5C) as predicted in our computational
322 studies(34). It should be noted that search dynamics are intrinsically stochastic and unique to a
323 given animal, target response, and algorithm seeding. Search trajectories during training stages
324 show rapid discovery of target responses indicated by low mean square error followed by
325 exploratory behavior away from the target(Fig S13), characteristic of RL sampling of action-
326 response distributions(73) and necessary to develop a full stimulus to response mapping. We
327 also found that SpikerNet exploration generated a wide variety of firing classes during search that
328 were not identified during our standard intensity and ISI stimulation protocol, including onset-
329 inhibition responses (Fig 5D, trial 0,2), sustained activity followed by burst offset response (Fig
330 5D, trial 12), and multi-peaked sustained responses (Fig 5D, trial 22). The ability to create and
331 observe such diverse firing patterns is critical to learning stimuli to generate any firing state as
332  well as relearn stimulus-neural dynamics as responses change due to age of recording and
333 stimulation devices and neural adaptation over time.

334

335 Discussion

336

337 In this study, we demonstrated INS as a viable oDBS method for treatment of circuitopathy-

338 related neurological diseases and disorders. We quantified INS dose-response profiles and

339  stimulus-response information transformations while also showing the ability of INS to drive

340 biophysically relevant cortical responses at safe energy levels. We further show that INS provides
341 spatially specific activation in thalamocortical networks with spread well below conventional

342 electrical stimulation. Finally, we leverage the spatial specificity of INS to derive a deep

343 reinforcement learning based closed-loop optical control system that can drive neural responses
344  to target states.

345

346 INS drives physiological thalamocortical responses

347

348 While many previous INS studies have explored the role of wavelength dependence on INS

349 activation(16, 74, 75), dose-response relationships have largely not been studied. Activation
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350 profiles are critical for therapeutic dosing of neuromodulation therapies to titrate efficacious

351 pulses while minimizing patient discomfort from overdriving neurons. Dose-response curves show
352 exponential increases in maximum firing rates in response to increased laser energy with some
353 evidence that extremes in interstimulus intervals further shape neural response PSTHSs through
354 integration of INS pulses close in time (Fig 1A,B). One caveat to our study is that only excitatory
355 responses were considered. It has been observed that continuous pulse-width or high frequency
356 (= 200 Hz) INS stimulation can drive selective inhibitory responses in nerve through introduction
357  of a thermal block(76-78), though this type of stimulation can produce longer lasting mixed

358 excitatory and inhibitory responses, with a higher proportion of excitatory responses for lower
359  stimulus energies(79). An understanding of joint excitatory and inhibitory effects of circuital INS
360  would potentially allow for bidirectional control of local microcircuits and is planned for further
361 study.

362

363 INS of thalamocortical neurons produced a variety of short-latency peristimulus responses in

364 auditory cortex neurons, comparable to sound driven auditory cortex responses across

365 species(67, 80—83). These results suggest that thalamocortical INS stimulation largely preserves
366 natural network activation, including sustained responses where the response outlasts the

367  stimulus as well as inhibitory responses. Our INS stimulation parameters differed from previous
368 INS studies in somatosensory cortex and more closely resemble MGB firing rates(46, 84). There
369 is evidence that DBS imparts its therapeutic effect partially through activation of motor cortex from
370  antidromic activation of subthalamic nucleus collaterals(85). While our study can’t strictly rule in
371 or out similar antidromic activation of thalamocortical targets, given that MGV largely sends

372 afferent projections to layer IlI/IV of A1, INS activation in the present study is likely driven by

373 orthodromic stimulation.

374

375 Spatial selectivity of thalamocortical INS

376

377 A oft-touted advantage of INS for cochlear/peripheral (11, 20, 26) and cortical neuron(18)

378 stimulation is constrained stimulation. However, there historically has been a dearth in

379 understanding of network responses and spread of activation through synapses elicited from INS.
380 Previous studies have often focused on intrinsic optical and calcium imaging recording of cortical
381 cells from direct INS stimulation(17, 18, 86). Here we show that INS drives spiking responses
382 across the thalamocortical synapse within a constrained region that is significantly smaller than
383 the region affected by equivalent electrical stimulation. At low INS stimulation energies, activation
384 could be < 500 um, and even at saturating energy levels for firing rates, activation was typically
385 less than 1500 um. It is possible that the activation spread at low energies could be even more
386 restricted, given that we were not able to measure spread of activation in the immediate vicinity of
387 the implanted optrode and that we did not optimize thalamus/cortex overlap in our implantation.
388 Both anatomically and electrophysiologically in A1, there are matched reciprocal projections

389 between the auditory thalamus and cortex(87, 88). Additional mapping during implantation

390 surgery to identify most effective stimulation sites for a given cortical site may reduce energies
391 needed or increase informational capacity even further. As hybrid recording electrodes fixed with
392 optrodes are in use in optogenetic studies, it is feasible to fabricate similar recording arrays with
393 optics that pass near-infrared stimuli, allowing for the study of joint activation and spread in

394  thalamus and cortex concurrently. Regardless, our results show finely graded thalamocortical
395 recruitment, which would potentially reduce off target stimulation side effect profiles in oDBS

396  applications. Further constrained stimulation could also be set during the programming stage of
397  an oDBS system, potentially allowing for fine tuning of therapeutic stimulation.

398

399  Clinical viability of INS

400

401 This study lays significant groundwork for the preclinical development of INS for use in a spatially
402 constrained oDBS system. Furthermore, INS has already shown promise in human nerve

403 mapping(26) and intracortical microstimulation(89). However, significant hurdles remain for
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404 translation of INS. Laser parameters necessary for stimulation have high optical energy (1-4 mJ)
405 requirements, making fully implantable devices technically challenging. Much progress is

406 currently being made in implantable IR systems that satisfy requirements for stimulation which
407 could be realizable on implantable pulse generators(90). Safety profiles of INS are also

408 promising, with tissue ablation thresholds well studied(24-26, 91, 92). While our data suggests
409 INS drives biophysically relevant responses across a diversity of cell response patterns, disease
410 models are necessary to fully assess therapeutic potential of INS as a DBS paradigm. The

411 biophysical mechanisms of INS are still in debate, with transient thermal gradients(93, 94),

412 transient cellular capacitance changes(95, 96), intracellular calcium cycling(97, 98), intrinsic ion
413 channel light transduction(22, 99), or combinations thereof suggested as causative mechanisms
414  of INS. While not directly assessed within this study, observed short-latency, fast-spiking

415 responses suggest primary ion channel mediation of INS as opposed to slower intracellular

416  calcium signaling. In vitro whole cell and outside-out patch clamp studies could elucidate the
417  interplay of the intracellular and membrane bound ion channel sequalae of transient and local
418  thermodynamic changes. A better understanding of these photon-neuron interactions could give
419 rise to more efficient stimulation with larger margins of safety for use in clinical settings.

420

421 Closed-loop reinforcement learning based DBS

422

423 Closed-loop DBS provides key advantages over conventional open-loop DBS, including improved
424  stimulation efficacy, reductions in side-effects, and longer IPG battery life(36, 100). However,
425 current closed-loop approaches are limited by non-specific activation of neural targets(71) and
426 relatively simple, threshold-based control algorithms which have difficulty in deciphering

427  pathologic and non-pathologic neural activity(34, 37). We developed SpikerNet to take advantage
428  of spatial selectivity found in INS while also allowing for robust learning of complex neural firing
429 patterns in real-time. An advantage of reinforcement learning over other deep neural network
430 paradigms is that statistical models of neural firing patterns are learned in situ and are specific to
431 a subject’s unique neural responses, requiring little training time and not requiring retraining or
432 recalibration. We show that SpikerNet rapidly finds and fits targeted firing patterns (Fig 5B) with
433 search behavior that suggests the ability to fit a wide range of possible neural firing patterns (Fig
434  5C). We have previously shown in computational models that SpikerNet is flexible to drastic

435 changes in firing patterns(34) suggesting that SpikerNet can adapt to long term changes in neural
436 environments present in chronic, clinical DBS and can reduce the number of trips to the clinic for
437  stimulator adjustments. We also observed evidence of SpikerNet finding target responses

438 through the duration of a subject’s recording period, during which arousal can significantly change
439 firing responses requiring retuning of stimulus parameters (Fig S13). Taken together, SpikerNet
440 could serve as a powerful closed-loop DBS paradigm which can learn and adapt to changes in
441 individual neural responses.

442

443 Deep neural network-based approaches however present a significant challenge for translation,
444 in that algorithm decisions are typically made through a “black box” and ultimately unobservable
445 system that may limit guarantees on device efficacy. Reinforcement learning methods however
446 are advantageous in that the stimulus-response relationships after training can be directly

447 observed in implanted devices, allowing for better inference on device operation. However, as
448  stimulation policies are learned using deep neural networks, the salient neural state features
449  leading to stimulus policy formation is still subject to the blackbox problem. The use of novel small
450 network RL policy interpretability tools(101) with a posteriori evaluation of trained input/output
451 responses can allow for a deeper understanding of algorithmic decision making. In this way, we
452 see SpikerNet as a tool which can be utilized as a “physician in the loop” system, where

453 SpikerNet can be utilized in concert with a trained DBS technologist to assist in difficulties found
454 in DBS programming(102) and with physician monitoring during autonomous learning and

455 stimulation.

456

457
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458 Materials and Methods

459

460 All experimental and surgical procedures and protocols were approved by the Institutional Animal
461 Care and Use Committee (PACUC) of Purdue University (West Lafayette, IN, #120400631) and
462 in accordance with the guidelines of the American Association for Laboratory Animal Science
463 (AALAS) and the National Institutes of Health guidelines for animal research. A total of 11 rats
464  were used in this study.

465

466 Surgical Procedures

467  Adult Sprague-Dawley rats with weights between 300-400 g (Envigo, Indianapolis IN) were

468 initially anesthetized in an induction chamber with 5% isoflurane and given a bolus injection of a
469 ketamine/dexmedetomidine cocktail (70 7:—5,0.2 T—j respectively). Surgical plane of anesthesia was

470 monitored continuously throughout the procedure by evaluation of toe-pinch reflex. A

471 preoperative analgesic dose of Buprenorphine (1 mg/kg) was administered 30 minutes prior to
472 first incision and every 6-12 hours for 72 hours post-surgery. Rats were placed in a stereotaxic
473 frame secured by hollow ear bars. An initial incision was made down midline with blunt dissection
474 of periosteum performed to reveal cranial sutures. Three stainless steel bone screws were placed
475 in the skull to ensure stability of implanted devices and headcap with a fourth titanium bone screw
476 placed to serve as a ground and reference electrode(103). Right hemisphere temporalis muscle
477  was gently resected and a 2x2 mm craniectomy was made above auditory cortex (A1) (centered:
478 -6 AP, -5 ML)(104). Dura was gently resected using a 25G curved needle. A 2mmx2mm 16

479 channel microwire array (TDT, Alachua FL, electrode spacing given in Fig 1A) was inserted

480 perpendicular to the surface of the brain. Devices were slowly inserted into A1 during application
481 of 80 dB gaussian noise stimuli. Devices were placed centered putatively in layer IlI/IV of A1 after
482 confirmation of low latency, high amplitude multiunit activity was observed on the array(44, 105).
483 One animal received a 3mm linear array (NeuroNexus A1-16, 200 um between contacts) with
484 contacts placed in A1 layers 3/4 in place of TDT planar array. A second craniectomy was made
485 above the medial geniculate body (MGB) (-6 AP, -3.5 ML)(44) and a fiber optrode (Thor Labs,
486 Newton NJ) was placed -6 mm into tissue (Fig 1A). Recording arrays and fiber optics were sealed
487 into place by application of UV-curable composite (Pentron, Wallingford, CT). Rats were returned
488 to their home cage and allowed to recover for 72 hours prior to beginning of the recording regime.
489

490 Electrophysiological Recordings

491

492 All recordings were performed in a 9'x9’ electrically and acoustically isolated chamber (Industrial
493  Acoustics Corporation, Naperville IL) with laser electronics placed outside of the chamber to

494 prevent field interactions from high current pulses(106, 107). Prior to recording sessions, rats
495  were given a bolus intramuscular injection of dexmedetomidine (0.2 mg/kg) for sedation(44, 48,
496 108). Optical stimuli were delivered via a custom made, open-source INSight system (all plans
497  available at our Github repository: https://github.com/bscoventry/INSight and included in

498  supplementary material) with a 1907 nm semiconductor laser (Akela Trio, Jamesburg NJ) fiber
499 coupled to the optrode with a 200 ym, 0.22 NA fiber (Thor Labs FG200LCC). Laser stimuli were
500 controlled via a RX-7 stimulator (TDT) and consisted of train stimuli with pulse widths between
501 0.2-10 ms, interstimulus intervals between 0.2-100 ms and energy per pulse between 0-4 mJ,
502 below reported thresholds of laser ablation(23, 26).

503

504 Each recording trial was composed of a 200 ms pre-stimulus interval to facilitate spontaneous
505 rate calculations, application of the train stimuli, and a post-stimulus interval with total trial length
506 equal to 1 second. Applied laser energies were randomized to limit effects from neural adaptation
507 with 30-60 repetitions per pulse width/interstimulus interval combinations. Signals from recording
508 electrodes were amplified via a Medusa 32 channel preamplifier and discretized and sampled at
509 24.414 kHz with a RZ-2 biosignal processor and visualized using Open-Ex software (TDT). Action
510 potentials were extracted from raw waveforms via real-time digital band-pass filtering with cutoff
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511 frequencies of 300-5000 Hz, with LFPs extracted from real-time digital filters with bands 3-500
512 Hz. Chronic recordings were made through the lifetime of implanted optrodes and electrodes.
513

514 Electroencephalographic Mid-latency Responses

515

516 To assess the impact of unilaterally implanted devices, pre and post-surgery mid-latency

517 response (MLR) electroencephalography was performed. The experimental setup used has been
518  described in detail in previous studies(49, 50).

519

520 Briefly, recordings were performed in a double-walled acoustically isolated anechoic chamber.
521 Rats were given a bolus injection of dexmedetomidine (0.2 mg/kg) and maintained at 37°C via a
522  warming pad. Needle electrodes (AMBU, Columbia MD) were placed in a four-channel

523 configuration (Fig. 2) (channel 1 - Fz to Cz, channel 2 - horizontally P5-P6, channel 3 -

524 contralateral to speaker, C3-P5, channel 4 - ipsilateral to speaker, C4-P6). The reference

525 electrode was placed across the mastoid bone, and the ground electrode placed at the base of
526 the tail. Auditory click stimuli consisting of square pulses of alternating polarity with 0.1 ms in
527 duration at a presentation rate of 4 Hz with sound levels between 65-85 dBSPL. 200 repetitions
528 were collected over a 100ms window and averaged. Presurgical recordings were performed 24-
529 48 hours before surgical procedure and postsurgical recordings were performed 72-96 hours
530 post-surgery.

531

532 Data Processing and Analyses

533

534  Action potentials and MLRs were exported and processed using custom written programs in the
535 Matlab programming environment (Mathworks, Natick MA). Spikes were sorted into single-units
536 using superparamagnetic clustering methods in Wave-Clus(109). Peri-stimulus time histograms
537 (PSTH) were calculated and density estimates of firing rate functions were calculated from

538 PSTHSs using Bayesian adaptive regressive splines (BARS) under a Poisson prior with A = 6
539 (110, 111). Trials containing artifacts due to breathing or volitional movement were detected via
540 between-channel cross correlation and RMS voltages exceeding 1 mV were removed from

541 recordings. To facilitate comparisons between electrodes and animals, PSTHs were standardized
542 using the following equation:

PSTH —
7= UpsTH Eq. 1

2
OpsTH

543

544  where Z is the standardized PSTH and u,o2, are the mean and standard deviation of the

545 PSTH. Neurons were classified as responsive to INS if a PSTH in the stimulus series showed a z-
546  score firing increase of > 7.84 (4 * 1.96, 1.96 = critical Z-score threshold) above mean

547 spontaneous firing rate.

548

549 After detection and PSTH calculation, single unit responses were sorted into one of 7 established
550 firing pattern classes found in rat auditory cortex(67, 112). Responses were first classified into
551 onset, offset, sustained, or onset-sustained classes, with onset responses exhibiting a rise above
552 spontaneous activity followed by a drop to spontaneous rates before cessation of the stimulation
553 and offset responses characterized by an increase in firing rate from baseline after termination of
554 stimulus plus 7ms to account for maximal response latencies in cortex from thalamic

555 stimulation(112, 113). Responses showing firing activity above spontaneous activity throughout
556 the duration of the stimulus were classified as sustained or onset-sustained, with onset-sustained
557 responses showing a ratio of peak onset response to sustained rates >3. The inhibited response
558  subclass showed a post-stimulus reduction in basal firing rate to below 95% of mean rate during
559 the 200 ms prestimulus interval.

560
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561 Information Theoretic Analysis of INS Encoding

562 Mutual information (MI) measures of thalamocortical encoding of INS stimulation were performed
563 using direct estimation of response distributions from observed data followed by sampling bias
564  correction using quadratic extrapolation(63). Stimulus-information relationships were estimated
565 using the approach of Borst and Theunissen(114):

p(n-lsx))

p(r) Eq. 2

1R S2) = ) plrils) logs (

566
567  where I(R;S,) is the “plug-in” estimated mutual information of response R conditioned on INS
568 stimulus with stimulus energy x (S,) across the duration of the entire stimulus. The values p(1;)
569  and p(r;|s,) are the probability mass estimates of response probabilities across all trials and
570  stimuli and conditioned on INS stimulus energy respectively. Probability mass functions (PMF)
571 were estimated using histogram counts of spike responses with 1ms bin sizes for optimal
572 information precision in A1 neurons(115). Calculations of M| from estimated PMFs was performed
573 using the MIToolbox(116). Bias resulting from imperfect knowledge of true PMFs was corrected
574  for using the method of quadratic extrapolation(62) as:
a
Iplug—in = ITrue + N + m Eq 3

575

576 where N is the observed number of trials and a, b are free parameters dependent on stimulus-
577 response relationships estimated by recalculating /,,,,4-in (R; Sx) at 50% and 25% of total samples
578 and then performing least squares fit to the quadratic equation above. Information in spike trains
579 was measured from onset of the stimulus till offset + 2 ms to account for offset responses.

580

581  Assessment of spatial selectivity through joint-peristimulus time histograms

582 To assess spread of activation across cortical neurons, joint-peristimulus time histogram (JPSTH)
583 analysis was performed(117). JPSTHs quantify dynamical, correlated activity between two

584 neurons in response to a time-locked stimulus and thus represent purported functional

585 connectivity from a source. JPSTHs were calculated using methods of Aertsen et al(118).

586 Neurons were compared across each active electrode by first estimating joint densities of neuron
587 PSTHs as:

1

JPSTH;;(u,v) = Ez nf5(u,v) Eq. 4
588
589  where nﬁ‘]-(u, v) represents the spike count in bin u, v locked to stimulus repetition k for each
590 neuron i, j for all stimulus repetitions K. The joint covariance due to co-stimulation of neurons
591  from INS stimulation is calculated as the outer product of the PSTHs undertest
592

COVstim(u,v) = PSTH, @ PSTH, Eq. 5

593

594 and represent stimulus-induced co-variation. Functional connectivity after stimulation was then
595 calculated as

JPSTH;;(u,v) — covgyim (U, v)

OpsTH,OPSTH,

JPSTHyormaiizea = Eq. 6

596 Distance of spread of activation was then calculated as the Euclidean distance between

597 correlated neuron responses on each recording electrode given correlation between units.

598  Animals receiving linear arrays (n=1) were excluded from this analysis as array geometry is not
599  optimal for analyses assessing spread within cortical layers.

600
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Deep Reinforcement Learning Based Closed Loop Control
Closed loop DBS control was achieved through a novel deep reinforcement learning based
paradigm which we termed as SpikerNet(33). SpikerNet was programmed in Python using the
Pytorch deep learning backend(119). A custom made OpenAl Gym environment served as the
interface between TDT data acquisition hardware and Pytorch. Deep reinforcement learning
seeks to maximize a target reward by continually sampling an environment while learning which
actions taken provide highest future rewards through time(120, 121). In SpikerNet, the
environment space was defined as the continuum of evoked cortical neuron firing rate PSTH
densities. The action space as the continuum of stimulation amplitudes, pulse widths, and
number of INS pulses delivered in a trial. The action space of stimulation parameters was limited
in both hardware and software to below ablation thresholds to ensure SpikerNet did not damage
thalamic structures during parameter search. Deep reinforcement learning was performed using
the twin-delayed deep deterministic policy gradients (TD3) algorithm, which is a model agnostic
double Q learning method for continuous environment and action spaces that outperforms other
model-free deep-Q learning methods(122). To assess the ability of SpikerNet to reach arbitrary
spike PSTHs, distributions of all observed PSTHs were formed. From that distribution, a target
PSTH was sampled and represented a non-observed but biophysically plausible target PSTH.
Reward functions were set as

1

MSE(PSTHtargetrPSTHObserved) Eq 7

with mean-squared error (MSE) chosen as it provides asymptotically the maximum likelihood
estimator. Online multi-unit PSTHs were calculated online from 10 repetitions of INS stimuli with
densities estimated using online Bayesian adaptive regression splines. A MSE value below 0.14
denoted an observed result that is sufficiently close to the target response and acts as a signal to
begin a new search episode. It is important to note that SpikerNet performs reward maximization
through all episodes and is not truncated at the threshold of a sufficiently close fit.

Statistical Methods

Postsurgical changes in MLRs were assessed using the nonparametric Wilcoxon signed-rank test
with comparisons made between pre and post implant first wave peak positivity (P1)
representative of short latency brain stem responses, and first wave peak negativity (N1) and
second peak positivity (P2) representative of later thalamocortical responses(58) (Fig 2A) with
significance level set to p < 0.05.

To assess dose-response characteristics of thalamocortical recruitment from INS stimulation, a
random effects multilinear regression model was utilized. Random effects repeated measures
regression models were used to account for differences within subjects resulting from differences
in recorded neuron physiology and distance from neuron to electrode as well as differences
between subject responses. The multi-regression model was defined as

max(FR) = a; + f1;*E + Py *ISI + P3; * (E *ISI) + €; Eq. 8

where FR is the BARS estimate of evoked firing rate, energy is the applied laser energy, 1Sl is the
interstimulus interval, i is the mapping index codifying a neuron on an electrode of a given
subject, and ¢ is estimated model error. The a coefficient corresponds to basal firing rate and s
coefficients correspond to slope parameters of applied laser energy, IS, and energy-ISI
interactions. We chose to perform Bayesian inference to estimate model parameters because
Bayesian methods are particularly powerful in modeling hierarchical random effects models(61,
123) and allow for robust and informative evaluation of regression parameters in posterior
probability distributions. Parameter posterior distributions were summarized by their maximum a
priori estimates (MAP), the most probable value and posterior 95% highest density intervals
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650  (HDI), quantifying the 95% most likely parameter values. Regression coefficients were considered
651 significant if the 95% HDI did not overlap 0 in line with Bayesian inference convention(124).

652 Bayesian formulations require choosing of prior distribution on regression parameters. As little is
653 known about the effects of INS on thalamocortical firing patterns, normal distributions with a

654 hyperprior variance of 5 were used. To ensure that prior distributions did not dominate observed
655 data, prior distribution sensitivity analyses were performed (supplementary information (SI):

656 Bayesian Model Specification). Analysis of observed data distributions suggested that log

657 transformation of predictor laser parameters and evoked firing rate predictions provided best fit
658 models. This was confirmed by post-hoc model comparisons and parameter sensitivity analyses
659 (SI: Bayesian model specification).

660

661 Significance of stimulation and JPSTH correlations was assessed via shuffled permutation testing
662 in which a null hypothesis was set such that p(PSTH,, PSTH,) = 0. For each pairwise correlation,
663  one PSTH had bin counts shuffled following a uniform distribution and correlations recalculated. A
664 total of 5000 shuffles for each pairwise comparison were performed. The number of shuffled

665 correlations which were at least as extreme or greater than non-shuffled correlation was counted.
666 Empirical p-values were calculated as the number of observed shuffles with correlation values
667 greater than test correlations divided by number of permutation trials. Correlations were

668 considered significant if empirical p-values < 0.05.

669

670 Immunohistochemistry

671

672  Atthe end of experiments, rats were euthanized via a barbiturate overdose (beauthanasia 0.5 Z—j)

673 and underwent trans-cardiac perfusion of phosphate-buffered saline (PBS) and 0.4%

674 paraformaldehyde. Brains were sliced into 20-50 um slices using a cryotome and stored for

675 immunohistochemistry. Brain slices containing the MGB were stained with NeuN (Abcam,

676 Cambridge UK) conjugated to an Alexa-Fluor 488 secondary to label neurons and GFAP (Abcam)
677 conjugated to an Alexa-Fluor 647 secondary to label reactive astrocytes. Full

678 immunohistochemistry protocol is provided in the supplementary information. Slices were

679 mounted and imaged using a Zeiss LSM710 confocal microscope (Zeiss, Jena GE) at 10x

680 magnification resulting in an effective pixel size of 2.77um"2. Tile scans across the length and
681 height of the slice were made and stitched together using Zen10 (Zeiss) imaging suite. The MGB
682 was identified via anatomical markers in conjunction with a rat stereotaxic atlas(125).

683
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703 https://osf.io/w4ufh/?view only=7b4a9a0b1669486b81ea7c10139f252b. INSight INS system

704 build files and materials list is available from: https://github.com/bscoventry/INSight. Due to patent
705 restrictions, data and source code related to SpikerNet is available upon reasonable request from
706 corresponding authors.
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Figure 1. Implantation and EEG-MLR procedures. A. Left: Rodents were implanted with fiber
optic optrodes into the medial geniculate body and 16 channel microwire arrays into auditory
cortex. Placement of microwire array was confirmed by tonic single unit responses evoked from
80 dB filtered Gaussian noise stimuli during implantation. A. Right: Schematic of the 4-channel
EEG-MLR recording preparation. B. Left: Schematic of the rodent auditory thalamocortical circuit.
Stimulation optrodes were placed in the ventral division of the medial geniculate body with
primary excitatory efferent projections to layer 3-4 of primary auditory cortex. Microwire array
recording electrodes were placed in layer 3-4 of primary auditory cortex confirmed during surgery
by low-latency single unit activity. B. Right: Histological images demonstrate placement of
stimulation optrode was within medial geniculate body. C. EEG-MLR pre-post surgical ratios
show small changes in wave P1, N1, and P2 correlates of auditory thalamocortical function in
amplitude and latency due to passive presence of device at 65 or 85 dB-SPL click stimuli. While
changes in amplitudes and latencies were observed effects, differences did not rise to level of
significance (p>0.05). Rodent implantation and EEG diagrams were created using BioRender
under publication license.
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Figure 3. A. Evoked cortical firing activity was classified into onset, onset-sustained, sustained,
and offset classes. Any response which showed an offset inhibition resulting in basal firing rate
<5% prestimulus firing rate was given an inhibition designation (top left, Onset for example). B.
Decomposition of response classes into the top 3 principal components show that these classes
exist across a continuum.
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Figure 4: Joint peristimulus time histogram analysis reveals INS thalamocortical recruitment is

spatially constrained. A. Schematic of JPSTH analysis.

Covariance maps were first calculated

between the two PSTHs under test. Covariance maps represent the joint activity of two neurons
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1184 due to the INS stimulus directly. Subtracting the covariance map from the joint histogram

1185 generates the JPSTH, a measurement of correlated activity of the neural network in response to
1186  the stimulus. Creating a histogram of the main diagonal of the JPSTH creates a coincidence
1187  histogram of total synchrony of the two neurons. Finally, cross correlograms create a statistic of
1188 connectivity of the two neurons. Covariance and JPSTH joint histograms were smoothed by a 2D
1189  gaussian filter for visualization purposes, but full calculations were performed on raw joint

1190 histograms. B. INS-induced correlations show that lateral spread of activation in cortex from
1191 thalamic INS were constrained to < 1500 um, with 90% of responses constrained to < 1000 um.
1192 Laser energies < 1mJ limited lateral spread to < 1250 um. C. Pairwise JPTHs, measuring post-
1193 stimulation induced connectivity show lateral spreads limited to < 1250 um across all applied
1194 energies and < 1000 um for stimulus energies < 1 mJ. All correlations and JPSTHs shown were
1195 statistically significant (p < 0.05) after permutation testing.
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Figure 5: SpikerNet, a deep reinforcement learning based closed loop control system. A.
Schematic of SpikerNet operation, which utilizes TD3 reinforcement learning. The state is
representative of a response as recorded from the electrode environment. The agent is the set of
all safe stimulation parameters. B. SpikerNet is able to find arbitrary neural firing patterns through
repeated iterations of stimulation through the environment. C. SpikerNet partakes in search and
targeting behavior to find target responses and to learn stimulation parameters which best drive

the neural environment to target state. D. Example evoked responses during SpikerNet search

0 125 250 375500 635 750 875 1000

and learning show a wide variety of firing classes are evoked during algorithm search. While fits
were calculated around the window of evoked activity, more complex multi-peaked and offset
responses were observed (Trial 12, 22, 26).
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Table 1. Distribution of Cortical Firing Classes (n=3371)

Firing Class

% of Responses % of Responses in Class
Onset 12.04
Onset + Inhibition 49.93 61.97
Sustained 18.78
Sustained + Inhibition 4.51 23.29
Onset-Sustained 6.05
Onset-S'u.s’Falned + 282 8.87
Inhibition
Offset 5.87 5.87
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1. Bayesian Model Descriptions and Sensitivity Analyses. This report follows the
guidelines for reporting of Bayesian Analysis (BARG) (1) consisting of:

Necessary software and source code directory
Goals of the analysis

Model descriptions and decision criterion

Prior and hyperprior descriptions

Sensitivity analyses for varying prior distributions
Posterior and MCMC diagnostics

1.1 Necessary software and source code directory
BARG: Step 2A, 6

Bayesian modeling was performed using Python 3.6.8 on an MSI GS-66 Laptop with an Intel
Core i7 processor (6 cores) and an Nvidia RTX2070 GPU. Models were implemented in PyMC3
version 3.11.5 (2), a probabilistic programming module in the Python environment. All source
code is available at this paper’s github repository (Sl: Software S1). All source data is available at
this article’s open science framework repository (Sl: Dataset D1).

1.2 Goals of the Analyses

BARG: Preamble
The goal of the utilized regression analyses is to establish a model of the relationship between
stimulus parameters (applied laser energy and interstimulus intervals) with evoked
thalamocortical neural responses as quantified by single unit firing rates. While this is normally
established using frequentist multilinear regression analyses, neuron responses are
heterogeneous with differences arising from nominal firing patterns arising individual cell types,
differences in exact placement in receptive fields of stimulation and recording devices, and
changes in within-animal recordings from glial scaring and skull growth over time leading to
changes in placement of devices. These nuances are best characterized by hierarchical
regression models.

Bayesian approaches allow for flexible and explicit hierarchical model descriptions which provide
rich and descriptive inference and quantification of uncertainty in measurements by inference of
direct probability measures on posterior distributions as opposed to less intuitive and harder to
interpret frequentist p-values. Bayesian approaches are data driven and account for previous
knowledge to be encoded as prior distributions. It can be shown that Bayesian hierarchical
regression is a regularized frequentist random effects model with uniform distributions on the
hyperparameters. However, frequentist approaches collapse inference into singular decision
boundaries (p-values) and do not allow for model constructions which best fit the observed data.

To this end, we utilized Bayesian hierarchical multilinear regression to account for both within and
between subject differences of evoked responses to INS stimuli as a function of applied laser
energy, time between laser pulses (interstimulus intervals, ISI), and the interaction between
applied laser energy and ISI. The general regression model is:

FR= a;+ P, *E+ Py xISI + By xE IS + €

where FR is the max evoked firing rate. Firing rate functions were calculated from recorded
peristimulus time histograms with Bayesian adaptive regression splines density estimation(3).
Parameters f; quantify the effect of laser energy(B;), pulse ISI(B,), and laser energy and pulse
ISI interaction(B;) on evoked firing rates respectively. The a parameter describes the model
intercept and quantifies subthreshold spontaneous activity and the e quantifies model error.
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Hierarchical models perform ‘partial pooling’ of response data which accounts for individual
differences in parameter estimation. This is done by assuming parameters a, 8;, 8, B; and € are
not singular values but form distributions that quantify firing rate dependencies from laser
parameters while accounting for within-subject differences. Prior selection is discussed in section
1.3.

Partial pooling was performed by adding an implicit class definition e; ; in PyMC (see code) which
encodes the response arising from the i" electrode in the jt" subject.

We also utilized Bayesian formulations of multinominal regression (aka Softmax regression) to
understand the dependency of neural firing class on the laser parameters of applied energy and
interstimulus interval. The multinominal regression model is as follows:

Yi = Boi + B * Energy + B, = ISI

where y; is defined as the i*" firing class. Firing classes included onset, onset-sustained,
sustained, onset+inhibition, onset-sustained+inhibition, sustained+inhibition, and offset with class
inclusion criteria defined in the materials and methods portion of the main text. The probability of
class y; is calculated via the softmax link function:

Ok (vi) =

evi
Ykeselk

which creates a mapping of outcome y; against all k outcomes in the set of possible classes S.
For efficient computation, g, and B, were recast as a singular tensor optimized for sampling. The
multinominal regression model then takes the following form:

Y = 0 (.BO + (ﬁ 'XEnergy,ISI))

where the - operator is the tensor inner product.
1.3 Prior Selection

As single unit thalamocortical recordings elicited from INS have largely been unexplored,
previous knowledge cannot be adequately constructed into a highly informative prior. However,
our previous experience in thalamus and cortical recordings(4—10) and in INS parameter
selection(11, 12) gives prior information on potential variances of firing rate in cortex from
thalamic stimulation. As such, we chose moderately informative distributions (see section 3) so as
to not unduly influence the posterior and let the observed data fully inform the posterior. Normal
distributions were chosen over uniform distributions to allow for unforeseen high variance, low
probability events to inform the posterior if evidence is sufficiently strong. A choice of uniform
distribution would drive such events to probability zero, missing potentially notable neural
recruitment. To ensure the prior distribution did not unduly inform posterior distributions away
from observed data, sensitivity analyses to prior parameters was performed (Section 3).

Observation of evoked INS responses tended towards normal distributions, dictating a normal
likelihood distribution. Previous studies in regression suggest the use of a Student T distribution,
which incorporates an added hyperprior for degrees of freedom (v), performs a robust regression
against potential outliers(13). Importantly, as v — o, the Student T distribution becomes a normal
distribution and relative tail spread of the Student T distribution is learned online through v
hyperpriors.

An interaction term, 3; = E = ISI was included in the analysis as it was hypothesized that
extremely short ISIs could cause neuron interactions between pulses potentially leading to
temporal integration of laser energy.

1.4 Posterior Decision Rules
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Inference was performed on posterior distributions with credible regions (analogous to frequentist
confidence intervals) defined as a highest density interval (HDI) of 95% of parameter maximal a
posteriori density (MAP) parameter estimates which represent the most probable value of the
coefficient. MAP estimates are analogous to maximum likelihood estimation found in frequentist
approaches. This allows for the quantification of parameter uncertainty as variance observed in
posterior parameter distributions, with narrow HDIs representing more certain estimates. It is
customary to define a region of practical equivalence (ROPE) if prior information dictates that
incremental parameter changes are effectively the same. As we lack prior knowledge to inform
the choice of a prior rope, we take an agnostic approach that any change seen is worth
investigating and thus ROPEs are not presented. An effect was deemed significant if it's 95% HDI
did not overlap with 0, in line with proposed decision rules typical of Bayesian inference(14, 15).

1.5 Final Model

Posterior predictive checks and sensitivity analysis were performed to titrate the best performing
models as measured against observed data (Section 3). The final hierarchical regression model
is schematized in figure S1 and for the multinominal regression model in figure S2. Final models
included deterministic nodes at outputs of prior nodes to prevent NUTS from becoming stuck in
regions of the sampling space which are difficult to explore 1.

1.6 Model Sensitivity analyses
BARG: Step 3A,C

Individual To evaluate the dependance of hyperprior parameters on model fitting, we used leave
one out (LOO) cross validation(16). Three separate models were evaluated with model variances
varied to test sensitivity of each model. Initial model construction suggested that natural-log
transformations of the dependent variable (firing rate) produced distributions which are better
modeled as normal distributions. To this end, hierarchical models under test were as follows:

MODEL NAME MODEL
REGRESSION FR = a + B, * Energy + B, x ISI + B; * Energy = ISI + €
SEMILOG
REGRESSION In(FR) = a+ B, * Energy + [, * ISI + 33 * Energy * IS + €
NATURAL LOG _
REGRESSION In(FR) = a + B, * In(Energy) + B, * In(ISI) + B * In(Energy) = In(ISI) + €

Table S1: Regression models under test

For each model, the variance hyperprior was varied to assess the impact of prior parameters on
posterior predictions. Prior classes were defined as: informative (variance < 1), moderately
informative (variance = 5), and weakly informative (variance > 10). Primary metrics for model
comparison were expected log pointwise predictive density (ELPD), defined as(17):

k

elpd = Z j dyip.ylog (p(7ly))
i=1

where p;, y; are unknown distributions representing the true data generating function for
estimates of true posterior predictive function (¥ |y) from observed data y. Estimated p,, y;
distributions are obtained via cross validation during LOO analysis. In general, higher values of
ELPD are a result of higher out of sample predictive fit indicative of a better model. Weight values
generated by LOO cross validation were also analyzed and predict the probability of each model
given observed data. Finally, we observed the standard error of the ELPD estimate (SE), and the
difference between the model with highest ELPD and every other model (dSE) with dSE of the
top model set to 0.00 by definition. All LOO calculations were performed post hoc with the python
package arviz, a plugin for PyMC.
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Table S2: LOO model comparison results for the Bayesian hierarchical regression models. Var:
Prior variance parameter, log: log predictor and predicted variable model. semilog: semilog
predictor model. ST: Student T Likelihood models. N: Normal likelihood models

MODEL R ELPD WEIGHT SE DSE

ST LOG VAR 5 1 -5337.48 2.046623e-01 46.220458 0.00
ST LOG VAR 100 2 -5337.62 1.763745¢e-01 46.227682 0.420867
ST LOG VAR 0.5 3 -5337.76 1.552051e-01 49.173347 0.409773
ST LOG VAR 25 4 -5338.15 1.058393¢-01 46.358847 0.492297
ST LOG VAR 10 5 -5338.18 9.996540e-02 46.141502 0.300197
ST LOG VAR 1 6  -5338.26 9.238175e-02 49.030330 0.331152
N LOG VAR 10 7 -5340.60 7.103823¢-02 49.024680 3.308668
NLOG VAR 1 8 -5341.09 4.291607¢e-02 48.985814 3.293779
N LOG VAR5 9  -5341.16 3.978488e-02 89.737613 3.296273
N LOG VAR 0.5 10 -5342.46 1.183257¢-02 89.930943 3.300550
ST SEMILOG VAR 1 11 -5466.76 4.359604e-37 84.933022 15.845916
ST SEMILOG VAR 5 12 -5467.12 3.535240e-37 89.043113 15.856552
ST SEMILOG VAR 10 13 -5467.15 5.622764¢-37 85.266895 15.895646
ST SEMILOG VAR 0.5 | 14  -5467.18 3.483572e-37 85.266895 15.866405
ST VAR 1 15 -15336.31 0.000000e+00 49.465018 79.406629
ST VAR 0.5 16 -15355.67 0.000000e+00 49.509352 80.415787
ST VAR S 17  -15355.67 0.000000e+00 49.487001 80.415787
N VAR 10 18  -16119.11 0.000000e+00 49.510419 82.384329
N VAR 1 19 -16132.23 0.000000e-+00 49.524316 83.549811
N VAR 0.5 20  -16154.55 0.000000e-+00 49.514661 84.262219
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Sensitivity analyses were also performed for the Bayesian multinominal regression models, also
with informative (variance = 1), moderately informative (variance = 5) and weakly informative
(variance = 10) prior parameters. Table S3 outlines LOO model comparisons for the Bayesian
multinominal regression model. Comparisons suggest that the standard models perform better
than semilog based models, with only minimal changes in model performance with varying prior
variances, suggesting that the posterior distribution is largely driven by observed data.

Table S3: LOO model comparison results for the Bayesian multinominal regression models. Var:
Prior variance parameter, semilog: semilog predictor model.

MODEL R ELPD WEIGHT SE DSE
VAR 1 1 -3861.38 0.400151 38.15 0.00
VAR 10 2 -3861.76 0.261702 38.79 0.84
VAR5 3 -3861.85 0.239520 38.82 0.88
SEMILOG
VAR 1 4 -3871.25 0.037136 37.59 7.28
SEMILOG
VAR 10 5 -3871.38 0.032181 38.12 7.36
SEMILOG
VAR 5 6 -3871.46 0.029310 38.12 7.36

1.7 Posterior and MCMC Diagnostics
BARG: Step 1E, 2A-D, 3A,C
1.7.1 Choice of MCMC method

For sampling, the Hamiltonian-based MCMC method no U-turn sampling (NUTS)(18) was used.
NUTS presents a modification of general Hamiltonian Monte Carlo samplers and presents an
efficient sampler for hierarchical and high-dimensional models at the cost of slower sampling
times. Hierarchical regression models ran 4 simultaneous chains with 4000 burn in samples and
5000 iterations with a 95% target inclusion probability. Multinominal regression models also ran 4
simultaneous chains with 5000 burn in samples and 5000 iterations with a target inclusion
probability of 99.95% inclusion probability owing to a more difficult posterior to sample.

MCMC Diagnostics

Energy transition plots were used to assess how well NUTS explored the target posterior
distribution of the best performing model as assessed by PSIS-LOO comparisons between
models(19). As NUTS sampling is based off dynamical systems modeling (Hamiltonian Monte
Carlo), movement through the typical set towards a target distribution has associated momentum
and thus potential and kinetic energy associated with movement through probability space.
Efficiency in movement through the target distribution can then be assessed by comparing energy
associated with the marginal energy distribution, quantifying the geometry of the underlying target
distribution with the energy associated with the distribution of Markov state transitions. The
hierarchical regression model displayed overlapping marginal energy and energy transition
distributions (Fig S3) suggesting that sample to sample movement was nearly independent and
indicative of efficient sampling of the target posterior distribution.

Furthermore, traces of sampled prior and hyper-prior parameters in hierarchical and multinominal
regression models suggest effective sampling of the posterior distribution (Fig S4). Furthermore,
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the Gelman-Rubin statistic, quantifying within and between chain estimates and correlation was
7 < 1.05, indicative of convergence of marginal posterior parameter values(20).

1.7.2 Posterior Predictive Checks

An advantage of using Bayesian-based inference approaches is the ability to directly and
explicitly compare model fits to observed data, a process often not available in frequentist-based
software packages or left out of final analysis. During inference model development, posterior
predictive checks were performed by sampling from the posterior distribution (20,000 draws).
Kernel density estimates of posterior predictive distributions were compared to kernel densities of
observed data. Goodness of fit was quantified using the Bayesian formulation of the p-value(13).
Similar to the frequentist p-value, the Bayesian p-value is also a measure of discrepancy,
quantifying the probability that posterior predictive-based draws are more extreme than observed
data. The Bayesian p-value is defined as:

Ps = ff dyrde IT(yT’G)ET(yr'B)p(yrIg)p(ely)

where | is the indicator function, y™ is the posterior predictive distribution and y is the posterior
distribution. Similar to the posterior distribution, posterior predictive distribution and Bayesian p-
values were estimated using NUTS. The closer the Bayesian p-value is to 0.5, the better the data
sampled from the posterior distribute around the observed data.

Figures S5 and S6 display posterior predictive fits and Bayesian p-values for the hierarchical
linear and multinominal regression models respectively. Both models suggest excellent posterior
predictive fits with p = 0.51 for the hierarchical linear regression model (Fig S5) andp = 0.50
for the multinominal regression model (Fig S6).

1.8 Prior and Posterior Trace plots
BARG: Step 2B,C

Critical to the performance of HMC based Bayesian sampling is the convergence of sampling
traces. Output trace plots display the chain of sampled values and the resulting kernel density
estimates of sampled distributions. All sampled traces showed no divergences in sampling,
suggesting that sampled traces were well behaved in sampling the space of the distribution.
Furthermore, the Gelman-Rubin statistic, quantifying within and between chain estimates and
correlation was # < 1.5 for all sampled traces suggesting good convergence and effective
sampling of target distributions. For clarity and transparency, traces are available on open
science framework, with traces for all hyperpriors and posteriors presented here (Figures S7-S9).
Traces were checked for characteristic sampling behavior(18) with no pathological traces found in
models.
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2. Design of the INSight System
2.1 System Description

The goal of INSight was to develop an low cost INS system that was in reach for neuroscience
and neuroengineering laboratories who don’t already have access significant optical. To this end,
designs were made using off the shelf components with a stimulation interface which could easily
connect to recording hardware with DACs or digital trigger outputs.

The INS lasing system consists of 3 subsystem realizations (Figure S10 A); the laser diode, laser
diode driver, and driver control system, with two optional but recommended support systems: the
thermal electric cooler (TEC) system and the power monitoring system. The laser diode system
consists of an Akela Laser (Jamesburg, NJ) Trio diode mounted via pogo pins to a custom
interface printed circuit board (Figure S11). The Trio diodes have small form factors, low cost,
and are modular, allowing for the rapid switching between different wavelength modules to vary
optical penetration depths(21, 22) or to leverage the same system for optogenetic applications.
For this study, a 1907 nm, 1W diode was used in accordance with commonly used wavelengths
in INS(23). The laser diode is driven through high current, single strand 18-gauge wire using a
PLD1000 pulser (Wavelength Electronics, Bozeman MT) with output current controllable by
voltage pulses from a control source such as neural recording hardware or the Arduino control
module provided. Pulse shapes and waveforms can be implemented using a computer controlled
arbitrary function generator connected to the driver analog input. In this study, a RX-7 stimulation
isolator (Tucker-Davis Technologies, Alachua FL) was used. In settings where a triggerable
voltage source is unavailable, we developed an open source, Arduino based stimulation system
which is included in our online build materials. Power to the system was provided by a high
current fixed voltage PCB mount supply (LS50-5, TDK-Lambda). The diode laser was fiber
coupled to implanted devices using an SMA to FC/PC 400-2400 nm wavelength multimode fiber
(Thor Labs, Newton NJ) which can be commutated using a rotary patch cable (Thor Labs). Laser
output power was measured using a S305C power sensor (Thor Labs) to validate applied energy.
The akela trio substrate displayed strong linearity through periodic open loop tests over the span
of a year (Figure S10.B). It should be noted that if the system is operated in open loop, routine
power calibrations should be performed to account for laser power drift due to age of the device,
ambient temperature, or recent thermal contraction/expansion of the laser substrate.

Modularity was designed into INSight, making it suitable for INS, optogenetics, and as a laser
activation source for calcium imaging and other optical techniques. Furthermore, the trio module
can be substituted for multiwavelength modules for more expansive applications. INSight can
also be modified to accommodate other commercially available laser diode modules.

2.2 Laser Board Layout and Interfacing

In order to create an interface allowing for quick laser diode substitutions, a customized printed
circuit board (Figure S11) was created. The pads corresponding to the laser diode should be
populated with pogo pins (Adafruit Industries, New York, NY). The laser is place on the pogo pins
and secured by screwing the laser diode into the board via through holes on the Trio enclosure,
facilitating a quick and easy laser diode replacement system. Traces between the diode laser
anode and cathode and laser driver should be as wide as possible with a minimal connection
path to ensure proper current handling with minimized trace heating. If wires are used, wire of
gauges 18 or less or high current capacity wire should be used with the shortest wire length
possible.

2.3 INSight electrical properties

Relevant electrical properties of the proposed system are found in table S.4.
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Parameter Value Unit
Maximum Laser Output Power 1 w
Laser Diode Forward Voltage <25 \%
Laser Driver Analog Input Rise 7 VE]
Time
Max Laser Driver Supply 5.5 \%
Voltage
Laser Driver Analog Input Supply Voltage + 0.5 \%
Maximum Voltage
Laser Driver Current to 4.6 AlV
Voltage Transfer Function

Table S.4: Laser System Electrical Properties
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3. Supplementary Methods

3.1 Bayesian Multinominal Regression

Bayesian formulations of multinominal regressions were utilized to assess cortical neuron firing
class dependence on stimulation parameters. Multinominal regression models were of the form

¥i = 6(Bo,; + Pui * Energy + By * 1SI)
where B, is the regression intercept term, g, , are the energy and ISI regression slope
coefficients respectively, and 6 is the softmax operator mapping regression to probability
space corresponding to highest probability of class membership in class y;. Due to
indeterminacy of regression coefficients inherent to nominal models, predictions of class
membership can only be made in reference to a reference category. To this end, we
chose the reference category to be onset+inhibition which is the data category with the
largest number of members in our dataset. Therefore, multinominal regressions are
interpreted as the log odds of moving from the most populous class to a different firing
class contingent upon INS parameters. Bayesian methods were used for parameter
estimation and inference. Models were built in Python using PyMC v4. Prior distributions
on f coefficients were chosen to be zero mean, variance 1 normal distributions which
showed best fit to our observed data. Prior sensitivity analysis were performed and
quantified in Sl:Bayesian Model Description. Parameter posterior distributions were
summarized by their maximum a priori estimates (MAP), the most probable value and
posterior 95% highest density intervals (HDI), quantifying the 95% most likely parameter
values. Regression coefficients were considered significant if the 95% HDI did not
overlap 0 in line with Bayesian inference convention.

3.2 PSTH classification via principle components analysis

Whether observed PSTHs formed distinct clusters of responses or exist across a
continuum of the response space was assessed using principle components analysis.
Individual PSTHs were represented as row vectors r(i) = PSTH; in a response matrix

r = N x b where N is the total number of evoked PSTHs and b is the total number of
bins. PSTHs were constructed from 5 ms bins. Response matrix r was then decomposed
into a vector of principle components 7 with weights w €{0,1}. Finding components of
maximal variance was found by ensuring the first weight component w(1) satisfies

w(1) = argmax,, -, w' r’rw

The remaining k — 1 components and weights are then estimated as

k-1
k) =r— ) rw(s)wT(s)
T (1T
w(k) = argmax {W}

The first 3 components representing 65.11% of explained variance were extracted for
clustering. Components were then mapped to response classes for visualization.
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4. Immunohistochemsitry

4.1

Solutions for HCN immunohistochemistry

10% bovine serum albumin (BSA)

19 BSA
10 mL 1XPBS
10% sodium azide
19 sodium azide
10 mL 1XPBS

1XPBS-0.1% Triton (0.1% PBST)
100 pL triton X-100
100 mL 1XPBS

1XPBS-0.3% Triton (0.3% PBST)
300 pL triton X-100
100 mL 1XPBS

Immuno buffer

1mL 100% goat serum
0.6 mL 10% BSA
200 pL 10% sodium azide

Fill up to 20 mL with 0.3% PBST

Antibody dilutions 1:200, 1:2000 titrate to slice thickness

12
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4.2 IHC Protocol

Name: Date:
Animal ID:
Thickness:
Serum
Primary Host Concentration Secondary Concentration
Protocol:
1. 2x 5-min wash in 1XPBS-0.1% Triton (0.1% PBST) at room temperature.
2. 30-min incubation in 1XPBS-3% Triton (0.3% PBST) at room temperature.
3. 1-hour incubation in immuno buffer.
4. 48-hour incubation in 1° antibody diluted with immuno buffer at 4°C.
5. 3x 10-min washes in 0.1% PBST.

PROTECT FROM LIGHT FROM THIS STEP FORWARD

24-hour incubation in 2° antibody diluted with immuno buffer at 4°C.

3x 10-min washes in 0.1% PBST.

Mount sections in slides using 1XPBS (no detergent). DO NOT LET DRY FOR TOO LONG!
Coverslip using mounting medium (40pL is sufficient) and seal with clear nail polish.

= © ©o N o

0.Let slides sit overnight in the dark.

Notes:

13
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5. Supplementary Figures

Fig S1:

GV 2
! - ! Priors
(¢4
Dctcrlnlnmnc I)x,lcmunhtu, Dglm“mmﬁlu, Determimistic
Regression Likelihood

Student T

Figure S1: Schematic of Bayesian hierarchical Multilinear regression utilized in this study.
Deterministic nodes were included in the model to prevent MCMC sampling from entering regions
of solution space which are difficult to move away from.
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Fig S2:

BO B1,2
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|
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P
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Figure S2: Schematic of Bayesian multinominal regression utilized in this study. Deterministic
nodes were included in the model to prevent MCMC sampling from entering regions of solution
space which are difficult to move away from.
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Fig S3:

Il Marginal Energy
Energy transition

Figure S3: Energy trace of NUTS trace for the Bayesian hierarchical regression model.
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Fig S4:

Il Marginal Energy
Energy transition

Figure S4: Energy trace of NUTS trace for the Bayesian multinominal regression model.
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Fig S5
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Figure S5: Posterior predictive checks for the Bayesian hierarchical multilinear regression
models. Strong overlap of posterior predictive distribution with observed density estimates and p-
values near 0.50 indicate model was well fit to observed data.
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Fig S6

Bayesian Multinomial Posterior Predictive Checks

—— Posterior predictive
—— Observed
— — Posterior predictive mean

0 1 2 3 4 5 6 7 0.46 0.48 0.50 0.52 0.54

Posterior Predictive PMF Bayesian P-Value
Figure S6: Posterior predictive checks for the Bayesian multinominal regression models. Strong

overlap of posterior predictive distribution with observed probability mass estimates and p-values
near 0.50 indicate model was well fit to observed data.
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Fig S7

Bayesian Hierarchical Multilinear Regression Hyperprior Traceplots

Kernel Density Estimate Trace
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Figure S7: Traceplots and kernel density estimates for hyperpriors of the Bayesian hierarchical
multilinear regression model.
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Fig S8
Bayesian Hierarchical Multilinear Regression Posterior Traceplots
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Figure S8: Traceplots and kernel density estimates for posteriors of the Bayesian hierarchical
multilinear regression model. Model is partially pooled, with each color representing estimation of
the parameter for a given neuron on a given site.
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Fig S9

Bayesian Multinomial Regression Posterior Traceplots
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B0

Figure S9: Traceplots and kernel density estimates for posteriors of the Bayesian multinominal
regression model. Each color represents estimation of the parameter for a given firing class. As g
was cast to encapsulate regression coefficients for both laser energy and ISI (see model
description), both coefficients are presented on the same kernel density and trace plot.
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Fig S10
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Figure S10: INS laser system description and validation. A.) Block diagram detailing system
composition. Boxes colored gold consist of required hardware necessary for laser operation.
Boxes colored pink with dotted lines are optional, but strongly suggested control modules to
accompany primary system design. B.) Measured output optical power in response to open loop
application of voltage pulses to the laser driver shows strong output linearity with respect to
applied modulation voltage. Four calibration curves taken over the span of a year show the need
for routine calibration and/or the use of a power control system in closed loop operation. N.B.
Applied voltage refers to the voltage applied from laser control hardware, not the voltage at the
laser diode. In our case, control voltages were generated from a TDT RZ-2 analog output.
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Fig S11
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Figure S11: Example laser driver and diode printed circuit board interface. Ground layers have
been removed for image clarity. Pads associated with the Akela Trio laser diode should be
populated with pogo pins and secured by screwing in the diode through the predrilled screw
holes. All Gerber files are available at https://github.com/bscoventry/INSight.
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Figure S12: Posterior distributions of multinominal regression parameters suggest that evoked
cortical firing classes are partly influenced by stimulation parameters. The most populous class
onset+inhib was chosen for the reference class. Class membership changes resulting from
changes in laser parameters was considered significant if 95% HDI did not overlap 0. Movement
from membership of onset+inhib to onset arose from increasing laser energy and I1SI. Movement
from onset+inhib to onset-sustained resulted from decreased laser energy and decreased ISls
while movement of onset-inhib to onset-sustained+inhib was due only to decreases in ISI.
Likewise, movement from onset+inhib to sustained firing resulted from slight decreases in applied
laser energy but larger decreases in ISI while movement towards sustained+inhibition was
marked by larger decreases in ISI. Finally movement to offset responses was marked by larger
decreases in laser energy and smaller decreases in laser pulse ISI. This data taken together
suggests a complex interplay between stimulation parameters and native cellular biophysics.
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Fig S13
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Figure S13: Plotting SpikerNet mean-square error during training reveals searching and targeting
behavior, with periods marked by large mean-square errors indicative of algorithmic searching
behavior followed by targeting optimal stimuli as evidenced by low mean-square error.
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6. Software and Data Repositories
6.1 Dataset S1

Datasets can be found in the following open science framework repository:
https://osf.io/w4ufh/?view_only=7b4a9a0b1669486b81ea7c10139f252b

6.2 Software S1

Analysis programs can be found at the following github repository:
https://github.com/bscoventry/OpticalTCNeuromodulation

INSight design files and software can be found at the following github repository:
https://qgithub.com/bscoventry/INSight
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