

1 Main Manuscript for

2 Spatially specific, closed-loop infrared thalamocortical deep brain 3 stimulation

4

5 Brandon S Coventry^{1,2*}, Georgia L Lawlor^{1,2}, Christina B Bagnati¹, Claudia Krogmeier³, Edward L
6 Bartlett^{1,2,4*}

7

8 ¹ Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA

9 ² Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University,
10 West Lafayette, IN USA

11 ³ Department of Computer Graphics Technology, Purdue University, West Lafayette, IN USA

12 ⁴ Department of Biological Sciences, Purdue University, West Lafayette, IN USA

13

14 * Corresponding authors

15

16 Edward L Bartlett
17 Weldon School of Biomedical Engineering
18 Department of Biological Sciences
19 Purdue University
20 206 S Martin Jischke Dr
21 West Lafayette, IN 47907
22 Telephone: 1 765 496-1425
23 Email: ebartle@purdue.edu

24

25 Brandon S Coventry
26 Department of Neurological Surgery
27 Wisconsin Institute for Translational Neuroengineering
28 University of Wisconsin-Madison
29 1111 Highland Ave
30 Madison, WI 53705
31 Email: coventry@wisc.edu

32

33 **Author Contributions:** BSC and ELB conceived the study and acquired funding. BSC and CBB
34 acquired EEG-MLR data. BSC designed and built the INSight system, designed and programmed
35 SpikerNet, acquired single unit responses, analyzed single unit data, performed
36 immunohistochemistry and imaging. ELB analyzed MLR data. GLL conceived and wrote code for
37 JPSTH analyses. BSC and CMK performed and assisted in surgical procedures. ELB supervised
38 the study. BSC and ELB wrote the manuscript. BSC, GLL, CBB, CMK, and ELB reviewed and
39 edited the paper.

40 **Competing Interest Statement:** BSC and ELB hold a provisional patent on the closed-loop
41 reinforcement learning based neural modulation system presented (USPTO application number
42 18/083490). GLL, CBB, and CMK report no competing interests.

43 **Keywords:** Infrared Neural Stimulation, Deep Brain Stimulation, Closed-Loop DBS, Deep
44 Reinforcement Learning

45 **This PDF file includes:**

46 Main Text
47 Figures 1 to 5
48 Tables 1 to 1

49

50 **Abstract**

51 Deep brain stimulation (DBS) is a powerful clinical tool for the treatment of circuitopathy-related
52 neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-
53 compulsive disorder. Electrically-mediated DBS, however, is limited by the spread of stimulus
54 currents into tissue unrelated to disease course and treatment, potentially causing undesirable
55 patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical
56 neuromodulation technique that uses near to mid-infrared light to drive graded excitatory and
57 inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS
58 paradigm. INS has been shown to provide spatially constrained responses in cortical neurons
59 and, unlike other optical techniques, does not require genetic modification of the neural target. In
60 this study, we show that INS produces graded, biophysically relevant single-unit responses with
61 robust information transfer in thalamocortical circuits. Importantly, we show that cortical spread of
62 activation from thalamic INS produces more spatially constrained response profiles than
63 conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep
64 reinforcement learning for closed-loop control of thalamocortical circuits, creating real-time
65 representations of stimulus-response dynamics while driving cortical neurons to precise firing
66 patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm
67 for both open and closed-loop DBS.

68

69 **Significance Statement**

70 Despite initial clinical successes, electrical deep brain stimulation (DBS) is fraught with off-target
71 current spillover into tissue outside of therapeutic targets, giving rise to patient side effects and
72 the reduction of therapeutic efficacy. In this study, we validate infrared neural stimulation (INS) as
73 a spatially constrained optical DBS paradigm by quantifying dose-response profiles and robust
74 information transfer through INS driven thalamocortical circuits. We show that INS elicits
75 biophysically relevant responses which are spatially constrained compared to conventional
76 electrical stimulation, potentially reducing off-target side effects. Leveraging the spatial specificity
77 of thalamocortical INS, we used deep reinforcement learning to close the loop on thalamocortical
78 INS and showed the ability to drive subject-specific thalamocortical circuits to target response
79 states in real time.

80 **Main Text**

81

82 **Introduction**

83 Electrical stimulation of the nervous system has emerged as a potent clinical tool for the
84 treatment of a wide variety of neurological diseases. Neuromodulation technologies also
85 represent the fastest-growing medical device market(1). The most prominent of these devices are
86 cochlear implants (CI), which induce sound percepts in individuals with profound hearing loss,
87 and deep brain stimulation (DBS), which has proven effective in treating movement-related
88 symptoms associated with Parkinson's disease and essential tremor. Additionally, diseases
89 treated by electrical neuromodulation are expanding, with DBS having recently received an FDA
90 humanitarian device exemption for the treatment of obsessive-compulsive disorder while also in
91 clinical trial for major depressive disorder(2), Tourette's syndrome(3), and epilepsy(4). Peripheral
92 nerve electrical stimulation technologies are also maturing into viable clinical tools, including
93 vagus nerve stimulation for the treatment of epilepsy(5) and carotid sinus stimulation for the
94 treatment of heart disease(6).

95

96 Despite initial clinical success, electrical paradigms of neuromodulation are fraught with
97 undesirable current spillover into off-target neural circuits(7–11) leading to undesirable side
98 effects and a reduction in therapeutic efficacy(12–14). The development of focal stimulation
99 strategies is paramount to more effective clinical stimulation and the improvement of patient side-
100 effect profiles. One such tool is infrared neural stimulation (INS), an optical modality which
101 stimulates nerves and neurons using near to mid infrared wavelength (700-2000 nm) light(15–
102 18). INS has shown spatially specific recruitment of both peripheral nerves(11, 19, 20) and central
103 neurons(17, 18). Importantly, INS does not require genetic manipulation necessary for other
104 optical stimulation methods(21), acting purportedly on intrinsic cell biophysics(22). INS also
105 shows promising safety profiles for translation to human patients(23–25) and has found use in
106 diagnostic targeting of human nerve roots in surgical resection procedures(26). While INS is a
107 promising modality for neuromodulation therapies, progress towards optically-based DBS (oDBS)
108 is hindered by a lack of understanding of INS entrainment of thalamocortical and sub-
109 thalamocortical networks; the understanding of which is necessary for treating “circuitopathies”
110 associated with diseases treated by DBS(27–32). Specifically, there is a dearth of information
111 related to dose-response dependencies of INS laser parameters in circuital recruitment and the
112 resulting spread of activation across neural circuits.

113

114 In this study, we validate INS as a potent oDBS paradigm by quantifying INS dose-response
115 profiles from varying laser parameters, INS driven information transmission across the
116 thalamocortical synapse, and spatial specificity of network INS in the rat auditory thalamocortical
117 model. Our experiments show strong evoked firing rate dependence on applied laser energy with
118 increases in thalamocortical information transfer with increased laser energy. We further show
119 that INS evokes cortical activity that maintains typical thalamocortical response profiles with
120 constrained spread of activation well below the spread of electrical stimulation. Owing to the
121 targeted neural activation of INS, we engineered a closed-loop control approach called SpikerNet,
122 a deep reinforcement learning (RL) based reactive DBS system(33, 34). Closed-loop DBS utilizes
123 feedback from biomarkers of disease to apply stimulation only when needed(35) and has shown
124 advantageous in therapeutic efficacy and battery life(36). However, the relatively simple control
125 algorithms of conventional closed-loop DBS limit the ability to capture complex dynamics of
126 neural activity related to disease which can cause interference with normal activity, such as
127 interruption of volitional movement(37) which is further exacerbated by large scale activation from
128 electrical stimulation(38). More complex control methods are advantageous in accounting for
129 brain wide state changes, such as sleep wake cycles(39). We therefore utilized deep RLs ability
130 to develop statistical mappings of systems in response to state perturbations in order to drive
131 cortical activity to desired firing states.

132

133 **Results**

134

135 **Implanting Stimulation and Recording Devices**

136 The auditory pathway has a rich history of neuromodulation, with electrical stimulation of the
137 cochlea resulting in cochlear implants, one of the first and most successful clinical
138 neuromodulation devices(40). Other clinical auditory devices include the auditory brainstem and
139 midbrain implants(41, 42) with electrical neuromodulation across all auditory nuclei(43–45) are
140 being investigated for clinical viability. Auditory thalamocortical circuits are particularly suited for
141 study because the regional architecture of the auditory thalamus permits stimulation of both core
142 and belt pathways in rodents, primates(46), and humans(47) using a single dorsoventrally
143 oriented electrode. This enables testing stimulation strategies simultaneously in both tonotopic
144 core pathways and higher-order belt pathways, along with the ability to rapidly test circuit function
145 with minimally invasive scalp evoked auditory potentials(48–50) before and after device
146 implantation. To facilitate understanding of dose-response effects of network function elicited
147 through INS, rats were implanted with fiber optic optrodes into the medial geniculate body of the
148 auditory thalamus (MGB). The ventral and dorsal divisions of the MGB have primary excitatory
149 afferents to layer 3/4 of auditory cortex(51) (Fig 1A,C). Sixteen channel planar arrays were
150 implanted into layer 3/4 of primary auditory cortex (Fig 1A), and all MGB subdivisions have at
151 least some projection to primary auditory cortex(52). Postmortem histological analyses confirmed
152 placement of optrodes into the MGB (Fig 1D).

153

154 Development of INS into a clinically viable neuromodulation system has been limited by a lack of
155 understanding of underlying stimulation mechanisms and stimulus to response mappings. A
156 confounding factor is that commercial INS systems are not widely available and are prohibitively
157 expensive or removed from the market by product recalls (53). To facilitate continued INS
158 studies, we developed INSight, a low-cost open source INS and optical stimulation system which
159 uses off the shelf components for ease of building and modification. Importantly, INSight can
160 integrate into established recording systems. Materials, build instructions, and calibrations are
161 found in the supplementary material (Fig S10-11) and the INSight Github repository:
162 <https://github.com/bSCOVENTRY/INSight>.

163

164 **Changes in neural activity due to presence of devices in the brain**

165 Implantation of recording and stimulation devices present a critical assault to normal neural
166 function(54, 55). Therefore, we first considered the effect of the presence of stimulation and
167 recording devices in brain activity through auditory evoked mid-latency responses (MLRs) in a
168 subset of rats (n=6). MLRs stimuli consisted of evoked responses to auditory click trains with
169 recordings taking place 24 hours before and 72 hours after implantation procedures. MLRs report
170 auditory generators in thalamus and cortex and serve as a read out of neural ensemble
171 function(56–59). We utilized a 4 positive channel EEG recording configuration to allow for
172 responses of thalamocortical generators and from rostral brainstem regions(48)(Fig 1A Right) on
173 each hemisphere and we analyzed ratios of post-pre positive peaks 1 and 2 (P1,P2) corresponding
174 to brainstem and cortical generators, respectively and negative peak 1 (N1 or N1-P2) corresponding
175 to thalamic generators (Fig 1B). While there was some variability in wave
176 amplitudes and latencies, comparisons of evoked activity resulting from click-train auditory stimuli
177 at 65 and 85 dB-SPL (Fig 1E) showed no significant difference in response ($p>0.05$, Wilcoxon
178 sign-rank) suggesting that presence of stimulation optrodes and recording electrodes did not
179 significantly damage or alter thalamic and cortical activity at the onset of INS experiments. It
180 should be noted that post-surgical recordings were performed 72 hours after surgery, well within
181 the device heal-in window(60) with further neural reorganization likely to occur throughout the
182 duration of the study.

183

184 **Dose-response relationships of cortical neuron response from thalamic INS**

185 We next examined the interplay of INS laser energy and interstimulus pulse intervals (ISI) on
186 evoked cortical single unit firing rates. Excitatory peristimulus time histograms (PSTHs) of single
187 units which were responsive to INS stimuli (Z-score increase ≥ 7.84 from basal firing rate, $p <$

188 0.00001) were analyzed. Units showing inhibitory responses or no change from basal firing rates
189 were excluded from the present study. While INS dose-response relationships have been studied
190 in cortex(17, 18), they remain unstudied across thalamocortical networks. Dose-response profiles
191 were modeled as a Bayesian linear random effects regression model, allowing us to account for
192 hierarchical structure of data consisting of variability within and between subjects across
193 implantation lifetimes. Bayesian inference is particularly powerful for this model as it provides
194 complete quantification of posterior distributions over all regression parameters and allows for
195 direct uncertainty quantification of parameters. Inference was performed directly on observed
196 data posterior distributions. As Bayesian methods require specification of prior probability
197 distributions for inference, broad, non-informative normal prior distributions were used in
198 inference models. Prior sensitivity analyses were performed in order to ensure prior distributions
199 did not unduly influence inference (Fig S5, Table S2). Dose-response regression models took the
200 form of

201

$$202 \max(FR) = \alpha_i + \beta_{1,i} * E + \beta_{2,i} * ISI + \beta_{3,i} * (E * ISI) + \epsilon_i$$

203

204 with response variable FR representing the natural log transformed evoked firing rate and
205 independent variables E and ISI being the natural log transformed energy per pulse and inter-
206 stimulus interval respectively. Natural log transformations of response and independent variables
207 were chosen as model comparisons and sensitivity analyses dictated that these models best fit
208 observed data (Fig S5). An error term of ϵ was added for uncertainty quantification. Full model
209 descriptions and sensitivity analyses are provided in SI:Bayesian model description (Fig S1-S9).
210 Regression parameters were summarized by their maximum *a priori* estimate (ie most probable
211 value) with independent variables considered significant contributors to response if the highest
212 density interval (HDI) of the parameter distribution corresponding to the 95% most probable
213 parameter values did not overlap 0, following Bayesian inference convention(61). Regression
214 models (Fig 2B) show that INS responsive units had a basal firing rate greater than 0 (α MAP =
215 2.2, 95% HDI excludes 0) with max evoked firing rates depending significantly on applied laser
216 energy (β_1 , MAP = 0.58, 95% HDI excludes 0) but not on ISI (β_2 , MAP = -0.055) or energy-ISI
217 interactions (β_3 , MAP = 0.028). However, the relatively wide spread of the ISI parameter β_2
218 across 0 suggests a potential critical point in ISI timing past which thalamocortical neurons are
219 unable to entrain to individual pulses and instead integrate INS pulses into a single network
220 event.

221

222 **Cortical encoding of INS stimuli**

223 We next used Shannon mutual information measures $[I(R; S_x), Eq. 2]$ to assess and quantify
224 information carried by evoked spike-trains in response to INS stimulation energy. Mutual
225 information measures the reduction of uncertainty in neural response given knowledge of the
226 stimulus. Higher values of information represent more unique and separable encoding of neural
227 response distributions for each stimulus. Stimulus-information profiles were calculated from 5 ms
228 binned estimates of response probability mass distributions during INS conditioned on applied
229 energy. Bias in mutual information resulting from incomplete knowledge of population response
230 distributions was estimated and corrected using the methods of quadratic extrapolation(62, 63).
231 We found that increasing INS energy per pulse resulted in increases in information contained in
232 response spike trains (Fig 2.C). Increases in information are also positively correlated with
233 increased INS energy per pulse showing strong dependence of evoked PSTHs on laser energy,
234 particularly > 0.8 mJ/pulse (Fig. 2C).

235

236 Auditory thalamocortical circuits perform complex transformations of inputs at the auditory
237 thalamocortical synapse(64) with cortical neurons employing differential coding strategies across
238 local heterogeneous cells and circuits(65, 66). Therefore, it is imperative that any stimulation
239 modality be able to drive naturalistic response profiles. INS-evoked PSTHs were classified into
240 onset, sustained, onset-sustained, and offset categories representative of the known range of
241 possible responses(67) (Fig 3A). PSTHs showing post-stimulation drop of 95% of basal activity

242 were assigned an “inhibitory” flag corresponding to presence of post stimulus inhibition.
243 Classification results are summarized in Table 1. Onset responses were the most represented
244 class (Onset+Inhibition: 49.93%, Onset: 12.04%) followed by sustained (Sustained: 18.78%,
245 Sustained+Inhibition: 4.51%) and onset-sustained classes (Onset-sustained: 6.05%, Onset-
246 sustained+inhibition: 2.82%). Offset responses were the rarest observed class (5.87%).
247 Observed distributions of firing classes are supported by studies of auditory evoked cortical unit
248 responses(67), suggesting that INS drive naturalistic thalamocortical encodings.
249

250 While these response states were categorically divided into possible response classes(67), these
251 categories are not meant to suggest all responses fit neatly into well-defined clusters. Principal
252 components analysis (PCA) dimensionality reduction was performed on response profiles to
253 assess the extent to which responses fall on a continuum. Dimensionality reduction into the top 3
254 components of largest variance (65.11% variance explained) shows that while responses do form
255 some identifiable clusters, responses fall on a continuum of responses within a given cluster, with
256 large overlap between clusters (Fig 3B). Bayesian multinominal regression models
257 (Supplementary Methods) were utilized to infer whether firing class membership was solely a
258 function of INS stimulation parameters. Multinominal regression compares log odds of a PSTH
259 belonging to a given category against a reference category. The most populous onset+inhibition
260 category was chosen as reference. Models suggest that class membership is a function of INS
261 energy and ISI with movement from onset+inhibition to onset resulting from increases in energy
262 and ISI, movement to onset-sustained resulting from decreases in energy and ISI, movement to
263 onset-sustained+inhibition resulting from slight decreases in energy but large decreases in ISI,
264 movement to sustained+inhibition resulting from larger decreases in ISI, and movement to offset
265 class resulting from large decreases in applied energy and smaller decreases in ISI (Fig S12).
266 These models suggest an interplay between INS stimulation parameters, network dynamics, and
267 intrinsic cellular biophysics determines response profile class.
268

269 **INS induces spatially constrained thalamocortical recruitment**

270

271 We next investigated the spatial selectivity of thalamocortical INS using joint peristimulus time
272 histogram (JPSTH) analyses. JPSTHs allow for the assessment of the time-resolved correlation
273 between pairs of neurons in response to INS stimuli. We first assessed stimulation induced
274 correlations of activity related to the initial stimulation event (Fig 4A Left). We next calculated
275 JPSTHs representing functional connectivity between compared neurons when direct stimulus
276 effects are removed (Fig 4A Middle). Consistent spatial geometry of planar recording arrays
277 allowed for assessment of the functional connectivity of responses as a function of distance (Fig
278 4A right). The maximum spread of correlated activity across all energies was calculated to obtain
279 an upper bound of lateral stimulation spread. Previous electrical mapping studies in rodent
280 auditory thalamocortical areas using linear, Michigan style arrays in nearly all cases showed
281 electrical stimulation spread across the entire extent of recording arrays, up to $1900 \mu m$ (68, 69).
282 INS correlation analysis shows all responses were constrained to $\leq 1500 \mu m$, with 90% of
283 responses constrained to $\leq 1000 \mu m$ (Fig 4B, left). We next recalculated maximal spread for
284 active units at stimulation intensities $< 1mJ$, corresponding to an inflection point of increased
285 stimulus transmitted information (Fig 2C), to assess if maximum spatial spread is modulated by
286 INS intensity. At lower energy stimulation, maximal spatial spread was limited to $< 1250 \mu m$, with
287 90% of responses constrained to $\leq 1000 \mu m$ (Fig 4B, right), including numerous instances of
288 moderate correlation even $\leq 500 \mu m$. These data suggest maximal spreads of INS-induced
289 activity is significantly less than electrical stimulation. Spread of activation after accounting for
290 direct co-stimulation induced by INS shows similar results, with spreads of correlated activity
291 limited to $1250 \mu m$ across all energy levels and $1000 \mu m$ for energies $< 1mJ$ (Fig 4C).
292

293 **Closed-loop control through deep reinforcement learning**

294 After observation of spatial selectivity in thalamocortical INS, we sought to control small neural
295 populations through closed-loop feedback. Current adaptive DBS systems used in Parkinson’s

296 disease use relatively simple control algorithms centered around reducing β band biomarker
297 correlates of symptomology using single or dual threshold “thermostatic” control(37, 70, 71) which
298 may interfere with activities such as volitional movement(37) and may potentially occlude
299 oscillatory neural dynamics unrelated to disease(34). Control of smaller populations of neurons
300 relevant to disease with control algorithms that encode subject specific firing dynamics may
301 provide targeted treatment and a reduction in off-target side effects. We utilized deep
302 reinforcement learning (RL) to learn complex stimulus-response dynamics in real time while
303 finding stimuli to reach a desired firing states. State, in this study, refers to discrete classes of
304 dynamical activity with stereotyped spontaneous and stimulus evoked activity(72). RL consists of
305 a computational agent which takes actions in response to observations of a given neural state
306 and learns which actions to take to maximize current and future rewards. In our deep RL
307 paradigm, termed SpikerNet, the RL agent can take actions from an action space consisting of
308 INS stimulus parameters of laser energy, ISI, and number of pulses which are constrained to
309 consensus safe energy levels. Stimuli are applied in response to observation of neuron PSTHs
310 from recording electrodes. A reward was then calculated by quantifying mean-squared error
311 distance between evoked firing and target PSTHs. Action policies and state response
312 relationships are then learned using actor-critic deep neural networks, with the actor network
313 encoding actions to take in each environment and the critic learning present and future rewards of
314 taking a given action (Fig 5A, S13).
315

316 We have previously shown in computational models that SpikerNet is able to quickly learn
317 stimulus trajectories to achieve desired firing patterns(34). SpikerNet’s ability to achieve desired
318 firing patterns *in vivo* was tested by sampling from distributions of previously evoked responses to
319 create novel, previously unobserved firing response target states for the recorded unit. We
320 determined SpikerNet was able to find target firing states precisely (Fig 5B, mean-squared error =
321 3.872) within a limited number of search iterations (Fig 5C) as predicted in our computational
322 studies(34). It should be noted that search dynamics are intrinsically stochastic and unique to a
323 given animal, target response, and algorithm seeding. Search trajectories during training stages
324 show rapid discovery of target responses indicated by low mean square error followed by
325 exploratory behavior away from the target(Fig S13), characteristic of RL sampling of action-
326 response distributions(73) and necessary to develop a full stimulus to response mapping. We
327 also found that SpikerNet exploration generated a wide variety of firing classes during search that
328 were not identified during our standard intensity and ISI stimulation protocol, including onset-
329 inhibition responses (Fig 5D, trial 0,2), sustained activity followed by burst offset response (Fig
330 5D, trial 12), and multi-peaked sustained responses (Fig 5D, trial 22). The ability to create and
331 observe such diverse firing patterns is critical to learning stimuli to generate any firing state as
332 well as relearn stimulus-neural dynamics as responses change due to age of recording and
333 stimulation devices and neural adaptation over time.
334

335 Discussion

336
337 In this study, we demonstrated INS as a viable oDBS method for treatment of circuitopathy-
338 related neurological diseases and disorders. We quantified INS dose-response profiles and
339 stimulus-response information transformations while also showing the ability of INS to drive
340 biophysically relevant cortical responses at safe energy levels. We further show that INS provides
341 spatially specific activation in thalamocortical networks with spread well below conventional
342 electrical stimulation. Finally, we leverage the spatial specificity of INS to derive a deep
343 reinforcement learning based closed-loop optical control system that can drive neural responses
344 to target states.
345

346 INS drives physiological thalamocortical responses

347
348 While many previous INS studies have explored the role of wavelength dependence on INS
349 activation(16, 74, 75), dose-response relationships have largely not been studied. Activation

350 profiles are critical for therapeutic dosing of neuromodulation therapies to titrate efficacious
351 pulses while minimizing patient discomfort from overdriving neurons. Dose-response curves show
352 exponential increases in maximum firing rates in response to increased laser energy with some
353 evidence that extremes in interstimulus intervals further shape neural response PSTHs through
354 integration of INS pulses close in time (Fig 1A,B). One caveat to our study is that only excitatory
355 responses were considered. It has been observed that continuous pulse-width or high frequency
356 (≥ 200 Hz) INS stimulation can drive selective inhibitory responses in nerve through introduction
357 of a thermal block(76–78), though this type of stimulation can produce longer lasting mixed
358 excitatory and inhibitory responses, with a higher proportion of excitatory responses for lower
359 stimulus energies(79). An understanding of joint excitatory and inhibitory effects of circuital INS
360 would potentially allow for bidirectional control of local microcircuits and is planned for further
361 study.

362
363 INS of thalamocortical neurons produced a variety of short-latency peristimulus responses in
364 auditory cortex neurons, comparable to sound driven auditory cortex responses across
365 species(67, 80–83). These results suggest that thalamocortical INS stimulation largely preserves
366 natural network activation, including sustained responses where the response outlasts the
367 stimulus as well as inhibitory responses. Our INS stimulation parameters differed from previous
368 INS studies in somatosensory cortex and more closely resemble MGB firing rates(46, 84). There
369 is evidence that DBS imparts its therapeutic effect partially through activation of motor cortex from
370 antidromic activation of subthalamic nucleus collaterals(85). While our study can't strictly rule in
371 or out similar antidromic activation of thalamocortical targets, given that MGV largely sends
372 afferent projections to layer III/IV of A1, INS activation in the present study is likely driven by
373 orthodromic stimulation.

374
375 **Spatial selectivity of thalamocortical INS**
376

377 A oft-touted advantage of INS for cochlear/peripheral (11, 20, 26) and cortical neuron(18)
378 stimulation is constrained stimulation. However, there historically has been a dearth in
379 understanding of network responses and spread of activation through synapses elicited from INS.
380 Previous studies have often focused on intrinsic optical and calcium imaging recording of cortical
381 cells from direct INS stimulation(17, 18, 86). Here we show that INS drives spiking responses
382 across the thalamocortical synapse within a constrained region that is significantly smaller than
383 the region affected by equivalent electrical stimulation. At low INS stimulation energies, activation
384 could be ≤ 500 μ m, and even at saturating energy levels for firing rates, activation was typically
385 less than 1500 μ m. It is possible that the activation spread at low energies could be even more
386 restricted, given that we were not able to measure spread of activation in the immediate vicinity of
387 the implanted optrode and that we did not optimize thalamus/cortex overlap in our implantation.
388 Both anatomically and electrophysiologically in A1, there are matched reciprocal projections
389 between the auditory thalamus and cortex(87, 88). Additional mapping during implantation
390 surgery to identify most effective stimulation sites for a given cortical site may reduce energies
391 needed or increase informational capacity even further. As hybrid recording electrodes fixed with
392 optrodes are in use in optogenetic studies, it is feasible to fabricate similar recording arrays with
393 optics that pass near-infrared stimuli, allowing for the study of joint activation and spread in
394 thalamus and cortex concurrently. Regardless, our results show finely graded thalamocortical
395 recruitment, which would potentially reduce off target stimulation side effect profiles in oDBS
396 applications. Further constrained stimulation could also be set during the programming stage of
397 an oDBS system, potentially allowing for fine tuning of therapeutic stimulation.

398
399 **Clinical viability of INS**
400

401 This study lays significant groundwork for the preclinical development of INS for use in a spatially
402 constrained oDBS system. Furthermore, INS has already shown promise in human nerve
403 mapping(26) and intracortical microstimulation(89). However, significant hurdles remain for

404 translation of INS. Laser parameters necessary for stimulation have high optical energy (1-4 mJ)
405 requirements, making fully implantable devices technically challenging. Much progress is
406 currently being made in implantable IR systems that satisfy requirements for stimulation which
407 could be realizable on implantable pulse generators(90). Safety profiles of INS are also
408 promising, with tissue ablation thresholds well studied(24–26, 91, 92). While our data suggests
409 INS drives biophysically relevant responses across a diversity of cell response patterns, disease
410 models are necessary to fully assess therapeutic potential of INS as a DBS paradigm. The
411 biophysical mechanisms of INS are still in debate, with transient thermal gradients(93, 94),
412 transient cellular capacitance changes(95, 96), intracellular calcium cycling(97, 98), intrinsic ion
413 channel light transduction(22, 99), or combinations thereof suggested as causative mechanisms
414 of INS. While not directly assessed within this study, observed short-latency, fast-spiking
415 responses suggest primary ion channel mediation of INS as opposed to slower intracellular
416 calcium signaling. *In vitro* whole cell and outside-out patch clamp studies could elucidate the
417 interplay of the intracellular and membrane bound ion channel sequelae of transient and local
418 thermodynamic changes. A better understanding of these photon-neuron interactions could give
419 rise to more efficient stimulation with larger margins of safety for use in clinical settings.
420

421 **Closed-loop reinforcement learning based DBS**

422

423 Closed-loop DBS provides key advantages over conventional open-loop DBS, including improved
424 stimulation efficacy, reductions in side-effects, and longer IPG battery life(36, 100). However,
425 current closed-loop approaches are limited by non-specific activation of neural targets(71) and
426 relatively simple, threshold-based control algorithms which have difficulty in deciphering
427 pathologic and non-pathologic neural activity(34, 37). We developed SpikerNet to take advantage
428 of spatial selectivity found in INS while also allowing for robust learning of complex neural firing
429 patterns in real-time. An advantage of reinforcement learning over other deep neural network
430 paradigms is that statistical models of neural firing patterns are learned *in situ* and are specific to
431 a subject's unique neural responses, requiring little training time and not requiring retraining or
432 recalibration. We show that SpikerNet rapidly finds and fits targeted firing patterns (Fig 5B) with
433 search behavior that suggests the ability to fit a wide range of possible neural firing patterns (Fig
434 5C). We have previously shown in computational models that SpikerNet is flexible to drastic
435 changes in firing patterns(34) suggesting that SpikerNet can adapt to long term changes in neural
436 environments present in chronic, clinical DBS and can reduce the number of trips to the clinic for
437 stimulator adjustments. We also observed evidence of SpikerNet finding target responses
438 through the duration of a subject's recording period, during which arousal can significantly change
439 firing responses requiring retuning of stimulus parameters (Fig S13). Taken together, SpikerNet
440 could serve as a powerful closed-loop DBS paradigm which can learn and adapt to changes in
441 individual neural responses.
442

443 Deep neural network-based approaches however present a significant challenge for translation,
444 in that algorithm decisions are typically made through a “black box” and ultimately unobservable
445 system that may limit guarantees on device efficacy. Reinforcement learning methods however
446 are advantageous in that the stimulus-response relationships after training can be directly
447 observed in implanted devices, allowing for better inference on device operation. However, as
448 stimulation policies are learned using deep neural networks, the salient neural state features
449 leading to stimulus policy formation is still subject to the blackbox problem. The use of novel small
450 network RL policy interpretability tools(101) with a *posteriori* evaluation of trained input/output
451 responses can allow for a deeper understanding of algorithmic decision making. In this way, we
452 see SpikerNet as a tool which can be utilized as a “physician in the loop” system, where
453 SpikerNet can be utilized in concert with a trained DBS technologist to assist in difficulties found
454 in DBS programming(102) and with physician monitoring during autonomous learning and
455 stimulation.
456

458 **Materials and Methods**

459

460 All experimental and surgical procedures and protocols were approved by the Institutional Animal
461 Care and Use Committee (PACUC) of Purdue University (West Lafayette, IN, #120400631) and
462 in accordance with the guidelines of the American Association for Laboratory Animal Science
463 (AALAS) and the National Institutes of Health guidelines for animal research. A total of 11 rats
464 were used in this study.

465

466 **Surgical Procedures**

467 Adult Sprague-Dawley rats with weights between 300-400 g (Envigo, Indianapolis IN) were
468 initially anesthetized in an induction chamber with 5% isoflurane and given a bolus injection of a
469 ketamine/dexmedetomidine cocktail ($70 \frac{mg}{kg}$, $0.2 \frac{mg}{kg}$ respectively). Surgical plane of anesthesia was
470 monitored continuously throughout the procedure by evaluation of toe-pinch reflex. A
471 preoperative analgesic dose of Buprenorphine (1 mg/kg) was administered 30 minutes prior to
472 first incision and every 6-12 hours for 72 hours post-surgery. Rats were placed in a stereotaxic
473 frame secured by hollow ear bars. An initial incision was made down midline with blunt dissection
474 of periosteum performed to reveal cranial sutures. Three stainless steel bone screws were placed
475 in the skull to ensure stability of implanted devices and headcap with a fourth titanium bone screw
476 placed to serve as a ground and reference electrode(103). Right hemisphere temporalis muscle
477 was gently resected and a 2x2 mm craniectomy was made above auditory cortex (A1) (centered:
478 -6 AP, -5 ML)(104). Dura was gently resected using a 25G curved needle. A 2mmx2mm 16
479 channel microwire array (TDT, Alachua FL, electrode spacing given in Fig 1A) was inserted
480 perpendicular to the surface of the brain. Devices were slowly inserted into A1 during application
481 of 80 dB gaussian noise stimuli. Devices were placed centered putatively in layer III/IV of A1 after
482 confirmation of low latency, high amplitude multiunit activity was observed on the array(44, 105).
483 One animal received a 3mm linear array (NeuroNexus A1-16, 200 μm between contacts) with
484 contacts placed in A1 layers 3/4 in place of TDT planar array. A second craniectomy was made
485 above the medial geniculate body (MGB) (-6 AP, -3.5 ML)(44) and a fiber optrode (Thor Labs,
486 Newton NJ) was placed -6 mm into tissue (Fig 1A). Recording arrays and fiber optics were sealed
487 into place by application of UV-curable composite (Pentron, Wallingford, CT). Rats were returned
488 to their home cage and allowed to recover for 72 hours prior to beginning of the recording regime.
489

490

491 **Electrophysiological Recordings**

492

493 All recordings were performed in a 9'x9' electrically and acoustically isolated chamber (Industrial
494 Acoustics Corporation, Naperville IL) with laser electronics placed outside of the chamber to
495 prevent field interactions from high current pulses(106, 107). Prior to recording sessions, rats
496 were given a bolus intramuscular injection of dexmedetomidine (0.2 mg/kg) for sedation(44, 48,
497 108). Optical stimuli were delivered via a custom made, open-source INSight system (all plans
498 available at our Github repository: <https://github.com/bSCOVENTRY/INSight> and included in
499 supplementary material) with a 1907 nm semiconductor laser (Akela Trio, Jamesburg NJ) fiber
500 coupled to the optrode with a 200 μm , 0.22 NA fiber (Thor Labs FG200LCC). Laser stimuli were
501 controlled via a RX-7 stimulator (TDT) and consisted of train stimuli with pulse widths between
502 0.2-10 ms, interstimulus intervals between 0.2-100 ms and energy per pulse between 0-4 mJ,
503 below reported thresholds of laser ablation(23, 26).

504

505 Each recording trial was composed of a 200 ms pre-stimulus interval to facilitate spontaneous
506 rate calculations, application of the train stimuli, and a post-stimulus interval with total trial length
507 equal to 1 second. Applied laser energies were randomized to limit effects from neural adaptation
508 with 30-60 repetitions per pulse width/interstimulus interval combinations. Signals from recording
509 electrodes were amplified via a Medusa 32 channel preamplifier and discretized and sampled at
510 24.414 kHz with a RZ-2 biosignal processor and visualized using Open-Ex software (TDT). Action
potentials were extracted from raw waveforms via real-time digital band-pass filtering with cutoff

511 frequencies of 300-5000 Hz, with LFPs extracted from real-time digital filters with bands 3-500
512 Hz. Chronic recordings were made through the lifetime of implanted optrodes and electrodes.
513

514 **Electroencephalographic Mid-latency Responses**

515
516 To assess the impact of unilaterally implanted devices, pre and post-surgery mid-latency
517 response (MLR) electroencephalography was performed. The experimental setup used has been
518 described in detail in previous studies(49, 50).
519

520 Briefly, recordings were performed in a double-walled acoustically isolated anechoic chamber.
521 Rats were given a bolus injection of dexmedetomidine (0.2 mg/kg) and maintained at 37°C via a
522 warming pad. Needle electrodes (AMBU, Columbia MD) were placed in a four-channel
523 configuration (Fig. 2) (channel 1 - Fz to Cz, channel 2 - horizontally P5-P6, channel 3 -
524 contralateral to speaker, C3-P5, channel 4 - ipsilateral to speaker, C4-P6). The reference
525 electrode was placed across the mastoid bone, and the ground electrode placed at the base of
526 the tail. Auditory click stimuli consisting of square pulses of alternating polarity with 0.1 ms in
527 duration at a presentation rate of 4 Hz with sound levels between 65-85 dB SPL. 200 repetitions
528 were collected over a 100ms window and averaged. Presurgical recordings were performed 24-
529 48 hours before surgical procedure and postsurgical recordings were performed 72-96 hours
530 post-surgery.
531

532 **Data Processing and Analyses**

533
534 Action potentials and MLRs were exported and processed using custom written programs in the
535 Matlab programming environment (Mathworks, Natick MA). Spikes were sorted into single-units
536 using superparamagnetic clustering methods in Wave-Clus(109). Peri-stimulus time histograms
537 (PSTH) were calculated and density estimates of firing rate functions were calculated from
538 PSTHs using Bayesian adaptive regressive splines (BARS) under a Poisson prior with $\lambda = 6$
539 (110, 111). Trials containing artifacts due to breathing or volitional movement were detected via
540 between-channel cross correlation and RMS voltages exceeding 1 mV were removed from
541 recordings. To facilitate comparisons between electrodes and animals, PSTHs were standardized
542 using the following equation:

$$Z = \frac{PSTH - \mu_{PSTH}}{\sigma_{PSTH}^2} \quad \text{Eq. 1}$$

543
544 where Z is the standardized PSTH and μ, σ_{PSTH}^2 are the mean and standard deviation of the
545 PSTH. Neurons were classified as responsive to INS if a PSTH in the stimulus series showed a z-
546 score firing increase of ≥ 7.84 ($4 * 1.96$, 1.96 = critical Z-score threshold) above mean
547 spontaneous firing rate.
548

549 After detection and PSTH calculation, single unit responses were sorted into one of 7 established
550 firing pattern classes found in rat auditory cortex(67, 112). Responses were first classified into
551 onset, offset, sustained, or onset-sustained classes, with onset responses exhibiting a rise above
552 spontaneous activity followed by a drop to spontaneous rates before cessation of the stimulation
553 and offset responses characterized by an increase in firing rate from baseline after termination of
554 stimulus plus 7ms to account for maximal response latencies in cortex from thalamic
555 stimulation(112, 113). Responses showing firing activity above spontaneous activity throughout
556 the duration of the stimulus were classified as sustained or onset-sustained, with onset-sustained
557 responses showing a ratio of peak onset response to sustained rates >3 . The inhibited response
558 subclass showed a post-stimulus reduction in basal firing rate to below 95% of mean rate during
559 the 200 ms prestimulus interval.
560

561 **Information Theoretic Analysis of INS Encoding**

562 Mutual information (MI) measures of thalamocortical encoding of INS stimulation were performed
563 using direct estimation of response distributions from observed data followed by sampling bias
564 correction using quadratic extrapolation(63). Stimulus-information relationships were estimated
565 using the approach of Borst and Theunissen(114):

$$I(R; S_x) = \sum_i p(r_i|s_x) \log_2 \left(\frac{p(r_i|s_x)}{p(r_i)} \right) \quad \text{Eq. 2}$$

566
567 where $I(R; S_x)$ is the “plug-in” estimated mutual information of response R conditioned on INS
568 stimulus with stimulus energy x (S_x) across the duration of the entire stimulus. The values $p(r_i)$
569 and $p(r_i|s_x)$ are the probability mass estimates of response probabilities across all trials and
570 stimuli and conditioned on INS stimulus energy respectively. Probability mass functions (PMF)
571 were estimated using histogram counts of spike responses with 1ms bin sizes for optimal
572 information precision in A1 neurons(115). Calculations of MI from estimated PMFs was performed
573 using the MIToolbox(116). Bias resulting from imperfect knowledge of true PMFs was corrected
574 for using the method of quadratic extrapolation(62) as:

$$I_{\text{plug-in}} = I_{\text{True}} + \frac{a}{N} + \frac{b}{N^2} \quad \text{Eq. 3}$$

575
576 where N is the observed number of trials and a, b are free parameters dependent on stimulus-
577 response relationships estimated by recalculating $I_{\text{plug-in}}(R; S_x)$ at 50% and 25% of total samples
578 and then performing least squares fit to the quadratic equation above. Information in spike trains
579 was measured from onset of the stimulus till offset + 2 ms to account for offset responses.
580

581 **Assessment of spatial selectivity through joint-peristimulus time histograms**

582 To assess spread of activation across cortical neurons, joint-peristimulus time histogram (JPSTH)
583 analysis was performed(117). JPSTHs quantify dynamical, correlated activity between two
584 neurons in response to a time-locked stimulus and thus represent purported functional
585 connectivity from a source. JPSTHs were calculated using methods of Aertsen et al(118).
586 Neurons were compared across each active electrode by first estimating joint densities of neuron
587 PSTHs as:

$$JPSTH_{ij}(u, v) = \frac{1}{K} \sum n_{ij}^k(u, v) \quad \text{Eq. 4}$$

588
589 where $n_{ij}^k(u, v)$ represents the spike count in bin u, v locked to stimulus repetition k for each
590 neuron i, j for all stimulus repetitions K . The joint covariance due to co-stimulation of neurons
591 from INS stimulation is calculated as the outer product of the PSTHs under test
592

$$\text{cov}_{\text{stim}}(u, v) = \text{PSTH}_1 \otimes \text{PSTH}_2 \quad \text{Eq. 5}$$

593
594 and represent stimulus-induced co-variation. Functional connectivity after stimulation was then
595 calculated as

$$JPSTH_{\text{Normalized}} = \frac{JPSTH_{ij}(u, v) - \text{cov}_{\text{stim}}(u, v)}{\sigma_{\text{PSTH}_1} \sigma_{\text{PSTH}_2}} \quad \text{Eq. 6}$$

596 Distance of spread of activation was then calculated as the Euclidean distance between
597 correlated neuron responses on each recording electrode given correlation between units.
598 Animals receiving linear arrays (n=1) were excluded from this analysis as array geometry is not
599 optimal for analyses assessing spread within cortical layers.
600

601 **Deep Reinforcement Learning Based Closed Loop Control**
602 Closed loop DBS control was achieved through a novel deep reinforcement learning based
603 paradigm which we termed as SpikerNet(33). SpikerNet was programmed in Python using the
604 Pytorch deep learning backend(119). A custom made OpenAI Gym environment served as the
605 interface between TDT data acquisition hardware and Pytorch. Deep reinforcement learning
606 seeks to maximize a target reward by continually sampling an environment while learning which
607 actions taken provide highest future rewards through time(120, 121). In SpikerNet, the
608 environment space was defined as the continuum of evoked cortical neuron firing rate PSTH
609 densities. The action space as the continuum of stimulation amplitudes, pulse widths, and
610 number of INS pulses delivered in a trial. The action space of stimulation parameters was limited
611 in both hardware and software to below ablation thresholds to ensure SpikerNet did not damage
612 thalamic structures during parameter search. Deep reinforcement learning was performed using
613 the twin-delayed deep deterministic policy gradients (TD3) algorithm, which is a model agnostic
614 double Q learning method for continuous environment and action spaces that outperforms other
615 model-free deep-Q learning methods(122). To assess the ability of SpikerNet to reach arbitrary
616 spike PSTHs, distributions of all observed PSTHs were formed. From that distribution, a target
617 PSTH was sampled and represented a non-observed but biophysically plausible target PSTH.
618 Reward functions were set as

$$\frac{1}{MSE(PSTH_{target}, PSTH_{Observed})} \quad Eq. 7$$

619 with mean-squared error (MSE) chosen as it provides asymptotically the maximum likelihood
620 estimator. Online multi-unit PSTHs were calculated online from 10 repetitions of INS stimuli with
621 densities estimated using online Bayesian adaptive regression splines. A MSE value below 0.14
622 denoted an observed result that is sufficiently close to the target response and acts as a signal to
623 begin a new search episode. It is important to note that SpikerNet performs reward maximization
624 through all episodes and is not truncated at the threshold of a sufficiently close fit.
625

626 **Statistical Methods**

627 Postsurgical changes in MLRs were assessed using the nonparametric Wilcoxon signed-rank test
628 with comparisons made between pre and post implant first wave peak positivity (P1)
629 representative of short latency brain stem responses, and first wave peak negativity (N1) and
630 second peak positivity (P2) representative of later thalamocortical responses(58) (Fig 2A) with
631 significance level set to $p < 0.05$.
632

633 To assess dose-response characteristics of thalamocortical recruitment from INS stimulation, a
634 random effects multilinear regression model was utilized. Random effects repeated measures
635 regression models were used to account for differences within subjects resulting from differences
636 in recorded neuron physiology and distance from neuron to electrode as well as differences
637 between subject responses. The multi-regression model was defined as
638

$$\max(FR) = \alpha_i + \beta_{1,i} * E + \beta_{2,i} * ISI + \beta_{3,i} * (E * ISI) + \epsilon_i \quad Eq. 8$$

639 where FR is the BARS estimate of evoked firing rate, energy is the applied laser energy, ISI is the
640 interstimulus interval, i is the mapping index codifying a neuron on an electrode of a given
641 subject, and ϵ is estimated model error. The α coefficient corresponds to basal firing rate and β
642 coefficients correspond to slope parameters of applied laser energy, ISI, and energy-ISI
643 interactions. We chose to perform Bayesian inference to estimate model parameters because
644 Bayesian methods are particularly powerful in modeling hierarchical random effects models(61,
645 123) and allow for robust and informative evaluation of regression parameters in posterior
646 probability distributions. Parameter posterior distributions were summarized by their maximum a
647 priori estimates (MAP), the most probable value and posterior 95% highest density intervals
648
649

650 (HDI), quantifying the 95% most likely parameter values. Regression coefficients were considered
651 significant if the 95% HDI did not overlap 0 in line with Bayesian inference convention(124).
652 Bayesian formulations require choosing of prior distribution on regression parameters. As little is
653 known about the effects of INS on thalamocortical firing patterns, normal distributions with a
654 hyperprior variance of 5 were used. To ensure that prior distributions did not dominate observed
655 data, prior distribution sensitivity analyses were performed (supplementary information (SI):
656 Bayesian Model Specification). Analysis of observed data distributions suggested that log
657 transformation of predictor laser parameters and evoked firing rate predictions provided best fit
658 models. This was confirmed by post-hoc model comparisons and parameter sensitivity analyses
659 (SI: Bayesian model specification).

660
661 Significance of stimulation and JPSTH correlations was assessed via shuffled permutation testing
662 in which a null hypothesis was set such that $\rho(PSTH_1, PSTH_2) = 0$. For each pairwise correlation,
663 one PSTH had bin counts shuffled following a uniform distribution and correlations recalculated. A
664 total of 5000 shuffles for each pairwise comparison were performed. The number of shuffled
665 correlations which were at least as extreme or greater than non-shuffled correlation was counted.
666 Empirical p-values were calculated as the number of observed shuffles with correlation values
667 greater than test correlations divided by number of permutation trials. Correlations were
668 considered significant if empirical p-values < 0.05 .

669
670 **Immunohistochemistry**
671

672 At the end of experiments, rats were euthanized via a barbiturate overdose (beauthanasia $0.5 \frac{mg}{kg}$)
673 and underwent trans-cardiac perfusion of phosphate-buffered saline (PBS) and 0.4%
674 paraformaldehyde. Brains were sliced into 20-50 μm slices using a cryotome and stored for
675 immunohistochemistry. Brain slices containing the MGB were stained with NeuN (Abcam,
676 Cambridge UK) conjugated to an Alexa-Fluor 488 secondary to label neurons and GFAP (Abcam)
677 conjugated to an Alexa-Fluor 647 secondary to label reactive astrocytes. Full
678 immunohistochemistry protocol is provided in the supplementary information. Slices were
679 mounted and imaged using a Zeiss LSM710 confocal microscope (Zeiss, Jena GE) at 10x
680 magnification resulting in an effective pixel size of $2.77 \mu m^2$. Tile scans across the length and
681 height of the slice were made and stitched together using Zen10 (Zeiss) imaging suite. The MGB
682 was identified via anatomical markers in conjunction with a rat stereotaxic atlas(125).
683

684 **Acknowledgments**
685

686 This study was supported by a grant from the National Institutes of Health (NIDCD
687 R01DC011580, PI: ELB) and the Purdue Institute for Integrative Neuroscience collaborative
688 training grant (PI: BSC). The authors would like to thank Dan Pederson, PhD and Kirk Foster for
689 guidance in PCB layout and Don Ready, PhD for maintenance and funding of the Purdue
690 University Life Science Fluorescence Imaging Facility. B. S. Coventry is now affiliated with the
691 Department of Neurological Surgery and the Wisconsin Institute for Translational
692 Neuroengineering, University of Wisconsin-Madison, Madison, WI USA.
693

694 **Competing Interests:**

695 BSC and ELB hold a provisional patent on the SpikerNet closed loop reinforcement learning
696 based neuromodulation system presented (USPTO: 18/083490). GLL, CBB, and CMK declare no
697 competing interests.
698

699 **Data and Code Availability**

700 All neural analysis and statistical inference code is available from
701 <https://github.com/bSCOVENTRY/OpticalTCNeuromodulation>. Data used in this study can be found in
702 the following open science framework repository:

703 https://osf.io/w4ufh/?view_only=7b4a9a0b1669486b81ea7c10139f252b. INsight INS system
704 build files and materials list is available from: <https://github.com/bscoventry/INSight>. Due to patent
705 restrictions, data and source code related to SpikerNet is available upon reasonable request from
706 corresponding authors.

707
708 **References**
709

- 710 1. Global Industry Analysts, “Global Neuromodulation Industry.” Report # 5957502.
711 URL: <https://www.reportlinker.com/p05957502/Global-Neuromodulation->
712 Industry.html?utm_source=GNW (2021).
- 713 2. Y. Wu, *et al.*, Deep Brain Stimulation in Treatment-Resistant Depression: A
714 Systematic Review and Meta-Analysis on Efficacy and Safety. *Front. Neurosci.* **15**,
715 655412 (2021).
- 716 3. D. Martinez-Ramirez, *et al.*, Efficacy and Safety of Deep Brain Stimulation in
717 Tourette Syndrome: The International Tourette Syndrome Deep Brain Stimulation
718 Public Database and Registry. *JAMA Neurol* **75**, 353 (2018).
- 719 4. I. E. Harmsen, *et al.*, Clinical trials for deep brain stimulation: Current state of
720 affairs. *Brain Stimulation* **13**, 378–385 (2020).
- 721 5. M. Tzadok, *et al.*, Rapid titration of VNS therapy reduces time-to-response in
722 epilepsy. *Epilepsy & Behavior* **134**, 108861 (2022).
- 723 6. M. Halbach, *et al.*, Baroreflex activation therapy for the treatment of heart failure
724 with reduced ejection fraction in patients with and without coronary artery disease.
725 *International Journal of Cardiology* **266**, 187–192 (2018).
- 726 7. J. L. Lujan, P. E. Crago, Automated optimal coordination of multiple-DOF
727 neuromuscular actions in feedforward neuroprostheses. *IEEE Transactions on*
728 *Biomedical Engineering* **56**, 179–187 (2009).
- 729 8. G. S. Stickney, *et al.*, Effects of electrode design and configuration on channel
730 interactions. *Hearing Research* **211**, 33–45 (2006).
- 731 9. M. S. Noor, K. Murari, C. B. McCracken, Z. H. Kiss, Spatiotemporal dynamics of
732 cortical perfusion in response to thalamic deep brain stimulation. *Neuroimage* **126**,
733 131–139 (2016).
- 734 10. S. Hemm, *et al.*, Deep brain stimulation in movement disorders: stereotactic
735 coregistration of two-dimensional electrical field modeling and magnetic resonance
736 imaging. *Journal of Neurosurgery* **103**, 949–955 (2005).
- 737 11. A. D. Izzo, *et al.*, Selectivity of neural stimulation in the auditory system: a
738 comparison of optic and electric stimuli. *Journal of biomedical optics* **12**, 021008
739 (2007).

740 12. C. B. Maks, C. R. Butson, B. L. Walter, J. L. Vitek, C. C. McIntyre, Deep brain
741 stimulation activation volumes and their association with neurophysiological
742 mapping and therapeutic outcomes. *Journal of Neurology, Neurosurgery &*
743 *Psychiatry* **80**, 659–666 (2009).

744 13. L. T. Cohen, L. M. Richardson, E. Saunders, R. S. C. Cowan, Spatial spread of
745 neural excitation in cochlear implant recipients: Comparison of improved ECAP
746 method and psychophysical forward masking. *Hearing Research* **179**, 72–87 (2003).

747 14. V. Colletti, R. V. Shannon, Open set speech perception with auditory brainstem
748 implant? *The Laryngoscope* **115**, 1974–8 (2005).

749 15. J. Wells, C. Kao, E. D. Jansen, P. Konrad, A. Mahadevan-Jansen, Application of
750 infrared light for in vivo neural stimulation. *Journal of biomedical optics* **10**,
751 064003 (2005).

752 16. B. S. Coventry, J. T. Sick, T. M. Talavage, K. M. Stantz, E. L. Bartlett, Short-wave
753 Infrared Neural Stimulation Drives Graded Sciatic Nerve Activation Across A
754 Continuum of Wavelengths in *2020 42nd Annual International Conference of the*
755 *IEEE Engineering in Medicine & Biology Society (EMBC)*, (IEEE, 2020)
756 <https://doi.org/10.1109/EMBC44109.2020.9176177>.

757 17. J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, A. W. Roe,
758 Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo.
759 *NeuroImage* **57**, 155–166 (2011).

760 18. J. M. Cayce, *et al.*, Infrared neural stimulation of primary visual cortex in non-
761 human primates. *NeuroImage* **84**, 181–190 (2014).

762 19. A. I. Matic, J. T. Walsh, C.-P. Richter, Spatial extent of cochlear infrared neural
763 stimulation determined by tone-on-light masking. *Journal of Biomedical Optics* **16**,
764 118002 (2011).

765 20. J. Wells, P. Konrad, C. Kao, E. D. Jansen, A. Mahadevan-Jansen, Pulsed laser
766 versus electrical energy for peripheral nerve stimulation. *Journal of Neuroscience*
767 *Methods* **163**, 326–337 (2007).

768 21. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-
769 timescale, genetically targeted optical control of neural activity. *Nature*
770 *neuroscience* **8**, 1263–8 (2005).

771 22. X. Liu, *et al.*, Nonthermal and reversible control of neuronal signaling and behavior
772 by midinfrared stimulation. *Proceedings of the National Academy of Sciences* **118**,
773 e2015685118 (2021).

774 23. M. M. Chernov, G. Chen, A. W. Roe, Histological Assessment of Thermal Damage
775 in the Brain Following Infrared Neural Stimulation. *Brain Stimulation* **7**, 476–482
776 (2014).

777 24. J. D. Wells, *et al.*, Optically mediated nerve stimulation: Identification of injury
778 thresholds. *Lasers in Surgery and Medicine* **39**, 513–526 (2007).

779 25. V. Goyal, S. Rajguru, A. I. Matic, S. R. Stock, C.-P. Richter, Acute damage
780 threshold for infrared neural stimulation of the cochlea: functional and histological
781 evaluation. *Anatomical record (Hoboken, N.J. : 2007)* **295**, 1987–99 (2012).

782 26. J. M. Cayce, *et al.*, Infrared neural stimulation of human spinal nerve roots in vivo.
783 *Neurophotonics* **2**, 015007 (2015).

784 27. A. L. Benabid, *et al.*, Long-term suppression of tremor by chronic stimulation of the
785 ventral intermediate thalamic nucleus. *The Lancet* **337**, 403–406 (1991).

786 28. P. J. Karas, *et al.*, Deep Brain Stimulation for Obsessive Compulsive Disorder:
787 Evolution of Surgical Stimulation Target Parallels Changing Model of
788 Dysfunctional Brain Circuits. *Front. Neurosci.* **12**, 998 (2019).

789 29. S. Senova, *et al.*, Deep Brain Stimulation for Refractory Obsessive-Compulsive
790 Disorder: Towards an Individualized Approach. *Front. Psychiatry* **10**, 905 (2019).

791 30. A. Horn, “Predicting treatment response based on DBS connectivity” in
792 *Connectomic Deep Brain Stimulation*, (Elsevier, 2022), pp. 375–404.

793 31. X. L. Mason, K. A. Cross, A. Arac, Y. Bordelon, A. D. Wu, Vim-Thalamic Deep
794 Brain Stimulation for Cervical Dystonia and Upper-Limb Tremor: Quantification by
795 Markerless-3D Kinematics and Accelerometry. *Tremor and Other Hyperkinetic
796 Movements* **12**, 5 (2022).

797 32. M. Jakobs, A. Fomenko, A. M. Lozano, K. L. Kiening, Cellular, molecular, and
798 clinical mechanisms of action of deep brain stimulation—a systematic review on
799 established indications and outlook on future developments. *EMBO Mol Med* **11**,
800 e9575 (2019).

801 33. E. L. Bartlett, B.S. Coventry Reinforcement Learning Based Closed-Loop
802 Neuromodulation System. USPTO: 18/083,490 (2023).

803 34. B. S. Coventry, E. L. Bartlett, Closed-Loop Reinforcement Learning Based Deep
804 Brain Stimulation Using SpikerNet: A Computational Model in *11th International
805 IEEE EMBS Conference on Neural Engineering*, (IEEE, 2023).
806 <https://doi.org/10.1109/NER52421.2023.10123797>

807 35. S. Little, *et al.*, Adaptive deep brain stimulation in advanced Parkinson disease. *Ann
808 Neurol.* **74**, 449–457 (2013).

809 36. B. Rosin, *et al.*, Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating
810 Parkinsonism. *Neuron* **72**, 370–384 (2011).

811 37. S. Little, P. Brown, Debugging Adaptive Deep Brain Stimulation for Parkinson’s
812 Disease. *Mov Disord* **35**, 555–561 (2020).

813 38. E. Krook-Magnuson, J. N. Gelinas, I. Soltesz, G. Buzsáki, Neuroelectronics and
814 Biooptics: Closed-Loop Technologies in Neurological Disorders. *JAMA Neurol* **72**,
815 823 (2015).

816 39. C. Smyth, *et al.*, Adaptive Deep Brain Stimulation for sleep stage targeting in
817 Parkinson’s disease. *Brain Stimulation*, **16**, 1292–1296 (2023).

818 40. A. Mudry, M. Mills, The Early History of the Cochlear Implant: A Retrospective.
819 *JAMA Otolaryngol Head Neck Surg* **139**, 446 (2013).

820 41. R. Behr, *et al.*, New Outcomes With Auditory Brainstem Implants in NF2 Patients.
821 *Otology & Neurotology* **35**, 1844–1851 (2014).

822 42. H. H. Lim, T. Lenarz, Auditory midbrain implant: Research and development
823 towards a second clinical trial. *Hearing Research* **322**, 212–223 (2015).

824 43. A. S. Koivuniemi, K. J. Otto, Asymmetric versus symmetric pulses for cortical
825 microstimulation. *IEEE Transactions on Neural Systems and Rehabilitation
826 Engineering* **19**, 468–476 (2011).

827 44. R. S. Verner, M. I. Banks, E. L. Bartlett, Global State Changes Induce Non-
828 reciprocal Reduction of Mutual Information in the Thalamocortical Network.
829 *BioRxiv* (2017) <https://doi.org/https://doi.org/10.1101/213272>.

830 45. H. H. Lim, *et al.*, Electrical stimulation of the midbrain for hearing restoration:
831 insight into the functional organization of the human central auditory system. *The
832 Journal of neuroscience : the official journal of the Society for Neuroscience* **27**,
833 13541–13551 (2007).

834 46. E. L. Bartlett, X. Wang, Correlation of neural response properties with auditory
835 thalamus subdivisions in the awake marmoset. *J Neurophysiol* **105**, 2647–2667
836 (2011).

837 47. J. A. Winer, The human medial geniculate body. *Hearing Research* **15**, 225–247
838 (1984).

839 48. A. Parthasarathy, E. Bartlett, Two-channel recording of auditory-evoked potentials
840 to detect age-related deficits in temporal processing. *Hearing Research* **289**, 52–62
841 (2012).

842 49. A. Parthasarathy, P. A. Cunningham, E. L. Bartlett, Age-Related Differences in
843 Auditory Processing as Assessed by Amplitude-Modulation Following Responses in
844 Quiet and in Noise. *Front. Ag. Neurosci.* **2** (2010).

845 50. Y. Venkataraman, E. L. Bartlett, Postnatal development of auditory central evoked
846 responses and thalamic cellular properties. *Developmental Neurobiology* **74**, 541–
847 555 (2014).

848 51. E. L. Bartlett, The organization and physiology of the auditory thalamus and its role
849 in processing acoustic features important for speech perception. *Brain and*
850 *Language* **126**, 29–48 (2013).

851 52. P. H. Smith, D. J. Uhlrich, K. A. Manning, Evaluation of medial division of the
852 medial geniculate (MGM) and posterior intralaminar nucleus (PIN) inputs to the rat
853 auditory cortex, amygdala, and striatum. *J of Comparative Neurology* **527**, 1478–
854 1494 (2019).

855 53. Aculight-Lockheed Martin, Class 2 Device Recall Lockheed Martin Aculight
856 Capella R1850 Laser (2011).
857 <https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm?id=96310>

858 54. B. A. Gregory, *et al.*, Structural and functional changes of pyramidal neurons at the
859 site of an implanted microelectrode array in rat primary motor cortex (2022)
860 <https://doi.org/10.1101/2022.09.15.507997> (March 31, 2023).

861 55. S. Song, B. Regan, E. S. Ereifej, E. R. Chan, J. R. Capadona, Neuroinflammatory
862 Gene Expression Analysis Reveals Pathways of Interest as Potential Targets to
863 Improve the Recording Performance of Intracortical Microelectrodes. *Cells* **11**,
864 2348 (2022).

865 56. C. Liégeois-Chauvel, A. Musolino, J. M. Badier, P. Marquis, P. Chauvel, Evoked
866 potentials recorded from the auditory cortex in man: evaluation and topography of
867 the middle latency components. *Electroencephalography and Clinical*
868 *Neurophysiology/Evoked Potentials Section* **92**, 204–214 (1994).

869 57. F. Musiek, S. Nagle, The Middle Latency Response: A Review of Findings in
870 Various Central Nervous System Lesions. *J Am Acad Audiol* **29**, 855–867 (2018).

871 58. N. Race, J. Lai, R. Shi, E. L. Bartlett, Differences in postinjury auditory system
872 pathophysiology after mild blast and nonblast acute acoustic trauma. *Journal of*
873 *Neurophysiology* **118**, 782–799 (2017).

874 59. E. X. Han, J. M. Fernandez, C. Swanberg, R. Shi, E. L. Bartlett, Longitudinal
875 auditory pathophysiology following mild blast-induced trauma. *Journal of*
876 *Neurophysiology* **126**, 1172–1189 (2021).

877 60. V. Sankar, *et al.*, Electrode impedance analysis of chronic tungsten microwire
878 neural implants: understanding abiotic vs. biotic contributions. *Front. Neuroeng.* **7**
879 (2014).

880 61. J. K. Kruschke, W. Vanpaemel, “Bayesian Estimation in Hierarchical Models” in
881 *The Oxford Handbook of Computational and Mathematical Psychology*, (Oxford
882 University Press, 2015), pp. 279–299.

883 62. S. P. Strong, R. Koberle, R. R. De Ruyter Van Steveninck, W. Bialek, Entropy and
884 Information in Neural Spike Trains. *Phys. Rev. Lett.* **80**, 197–200 (1998).

885 63. S. Panzeri, R. Senatore, M. A. Montemurro, R. S. Petersen, Correcting for the
886 Sampling Bias Problem in Spike Train Information Measures. *Journal of*
887 *Neurophysiology* **98**, 1064–1072 (2007).

888 64. L. M. Miller, M. A. Escabí, H. L. Read, C. E. Schreiner, Functional Convergence of
889 Response Properties in the Auditory Thalamocortical System. *Neuron* **32**, 151–160
890 (2001).

891 65. X. Wang, T. Lu, D. Bendor, E. Bartlett, Neural coding of temporal information in
892 auditory thalamus and cortex. *Neuroscience* **154**, 294–303 (2008).

893 66. S. A. Vasquez-Lopez, *et al.*, Thalamic input to auditory cortex is locally
894 heterogeneous but globally tonotopic. *eLife* **6**, e25141 (2017).

895 67. O. Profant, J. Burianová, J. Syka, The response properties of neurons in different
896 fields of the auditory cortex in the rat. *Hearing Research* **296**, 51–59 (2013).

897 68. H. Hentschke, A. Raz, B. M. Krause, C. A. Murphy, M. I. Banks, Disruption of
898 cortical network activity by the general anaesthetic isoflurane. *British Journal of*
899 *Anaesthesia* **119**, 685–696 (2017).

900 69. T. I. Shiramatsu, *et al.*, Microelectrode mapping of tonotopic, laminar, and field-
901 specific organization of thalamo-cortical pathway in rat. *Neuroscience* **332**, 38–52
902 (2016).

903 70. M. Scherer, *et al.*, Single-neuron bursts encode pathological oscillations in
904 subcortical nuclei of patients with Parkinson’s disease and essential tremor. *Proc.*
905 *Natl. Acad. Sci. U.S.A.* **119**, e2205881119 (2022).

906 71. H. Cagnan, T. Denison, C. McIntyre, P. Brown, Emerging technologies for
907 improved deep brain stimulation. *Nature Biotechnology* **37**, 1024–1033 (2019).

908 72. K. D. Harris, A. Thiele, Cortical state and attention. *Nat Rev Neurosci* **12**, 509–523
909 (2011).

910 73. F. Agostinelli, S. McAleer, A. Shmakov, P. Baldi, Solving the Rubik's cube with
911 deep reinforcement learning and search. *Nat Mach Intell* **1**, 356–363 (2019).

912 74. R. G. McCaughey, C. Chlebicki, B. J. F. Wong, Novel wavelengths for laser nerve
913 stimulation. *Lasers in Surgery and Medicine* **42**, 69–75 (2010).

914 75. A. D. Izzo, *et al.*, Laser stimulation of auditory neurons: effect of shorter pulse
915 duration and penetration depth. *Biophysical journal* **94**, 3159–66 (2008).

916 76. A. R. Duke, *et al.*, Transient and selective suppression of neural activity with
917 infrared light. *Sci Rep* **3**, 2600 (2013).

918 77. A. R. Duke, H. Lu, M. W. Jenkins, H. J. Chiel, E. D. Jansen, Spatial and temporal
919 variability in response to hybrid electro-optical stimulation. *Journal of Neural
920 Engineering* **9**, 036003 (2012).

921 78. J. B. Ford, *et al.*, Optimizing thermal block length during infrared neural inhibition
922 to minimize temperature thresholds. *Journal of Neural Engineering* **18**, 056016
923 (2021).

924 79. M. Wang, *et al.*, Prolonged post-stimulation response induced by 980-nm infrared
925 neural stimulation in the rat primary motor cortex. *Lasers Med Sci* **35**, 365–372
926 (2020).

927 80. X. Wang, T. Lu, R. K. Snider, L. Liang, Sustained firing in auditory cortex evoked
928 by preferred stimuli. *Nature* **435**, 341–346 (2005).

929 81. R. G. Rutkowski, T. M. Shackleton, J. W. H. Schnupp, M. N. Wallace, A. R.
930 Palmer, Spectrotemporal Receptive Field Properties of Single Units in the Primary,
931 Dorsocaudal and Ventrorostral Auditory Cortex of the Guinea Pig. *Audiol Neurotol*
932 **7**, 214–227 (2002).

933 82. D. B. Polley, H. L. Read, D. A. Storace, M. M. Merzenich, Multiparametric
934 Auditory Receptive Field Organization Across Five Cortical Fields in the Albino
935 Rat. *Journal of Neurophysiology* **97**, 3621–3638 (2007).

936 83. K. G. Ranasinghe, W. A. Vrana, C. J. Matney, M. P. Kilgard, Increasing diversity of
937 neural responses to speech sounds across the central auditory pathway.
938 *Neuroscience* **252**, 80–97 (2013).

939 84. E. L. Bartlett, X. Wang, Neural Representations of Temporally Modulated Signals
940 in the Auditory Thalamus of Awake Primates. *Journal of Neurophysiology* **97**,
941 1005–1017 (2007).

942 85. K. B. Baker, E. B. Montgomery, A. R. Rezai, R. Burgess, H. O. Lüders,
943 Subthalamic nucleus deep brain stimulus evoked potentials: Physiological and

944 therapeutic implications: Evoked Potentials from STN DBS. *Mov. Disord.* **17**, 969–
945 983 (2002).

946 86. J. M. Cayce, *et al.*, Calcium imaging of infrared-stimulated activity in rodent brain.
947 *Cell Calcium* **55**, 183–190 (2014).

948 87. J. A. Winer, D. T. Larue, Patterns of reciprocity in auditory thalamocortical and
949 corticothalamic connections: Study with horseradish peroxidase and
950 autoradiographic methods in the rat medial geniculate body. *J. Comp. Neurol.* **257**,
951 282–315 (1987).

952 88. Y. Zhang, N. Suga, Modulation of Responses and Frequency Tuning of Thalamic
953 and Collicular Neurons by Cortical Activation in Mustached Bats. *Journal of*
954 *Neurophysiology* **84**, 325–333 (2000).

955 89. L. Pan, *et al.*, Infrared Neural Stimulation in Human Cerebral Cortex. *Brain*
956 *Stimulation* **16**, 418–430 (2023).

957 90. M. Meneghetti, *et al.*, Soft monolithic infrared neural interface for simultaneous
958 neurostimulation and electrophysiology. *Light Sci Appl* **12**, 127 (2023).

959 91. S. L. Jacques, Laser-Tissue Interactions: Photochemical, Photothermal, and
960 Photomechanical. *Surgical Clinics of North America* **72**, 531–558 (1992).

961 92. A. I. Matic, *et al.*, Behavioral and Electrophysiological Responses Evoked by
962 Chronic Infrared Neural Stimulation of the Cochlea. *PLoS ONE* **8** (2013).

963 93. R. D. Rabbitt, *et al.*, Heat pulse excitability of vestibular hair cells and afferent
964 neurons. *Journal of neurophysiology* **116**, 825–843 (2016).

965 94. J. Wells, *et al.*, Biophysical mechanisms of transient optical stimulation of
966 peripheral nerve. *Biophysical journal* **93**, 2567–80 (2007).

967 95. M. G. Shapiro, C.-P. Richter, K. Homma, S. Villarreal, F. Bezanilla, Infrared light
968 excites cells by changing their electrical capacitance. *Nature Communications* **3**
969 (2012).

970 96. H. T. Beier, G. P. Tolstykh, J. D. Musick, R. J. Thomas, B. L. Ibey, Plasma
971 membrane nanoporation as a possible mechanism behind infrared excitation of cells.
972 *Journal of neural engineering* **11**, 066006–066006 (2014).

973 97. V. Lumbreiras, E. Bas, C. Gupta, S. M. Rajguru, Pulsed infrared radiation excites
974 cultured neonatal spiral and vestibular ganglion neurons by modulating
975 mitochondrial calcium cycling. *Journal of neurophysiology* **112**, 1246–55 (2014).

976 98. G. P. Tolstykh, C. A. Olsovsky, B. L. Ibey, H. T. Beier, Ryanodine and IP 3
977 receptor-mediated calcium signaling play a pivotal role in neurological infrared
978 laser modulation. *Neurophotonics* **4**, 025001 (2017).

979 99. M. Ganguly, *et al.*, Voltage-gated potassium channels are critical for infrared
980 inhibition of action potentials: an experimental study. *Neurophotonics* **6**, 040501
981 (2019).

982 100. S. Little, *et al.*, Adaptive deep brain stimulation for Parkinson's disease
983 demonstrates reduced speech side effects compared to conventional stimulation in
984 the acute setting. *J Neurol Neurosurg Psychiatry* **87**, 1388–1389 (2016).

985 101. W. Guo, X. Wu, U. Khan, X. Xing, EDGE: Explaining Deep Reinforcement
986 Learning Policies in (2021), pp. 12222–12236.

987 102. M. S. Okun, *et al.*, Management of Referred Deep Brain Stimulation Failures: A
988 Retrospective Analysis From 2 Movement Disorders Centers. *Arch Neurol* **62**, 1250
989 (2005).

990 103. G. J. Gage, *et al.*, Surgical Implantation of Chronic Neural Electrodes for Recording
991 Single Unit Activity and Electrocorticographic Signals. *Journal of Visualized
992 Experiments* (2012) <https://doi.org/10.3791/3565>.

993 104. V. Lamas, S. Estévez, M. Pernía, I. Plaza, M. A. Merchán, Stereotactically-guided
994 Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain.
995 *Journal of Visualized Experiments* (2017) <https://doi.org/10.3791/56429>.

996 105. G. B. Christianson, M. Sahani, J. F. Linden, Depth-Dependent Temporal Response
997 Properties in Core Auditory Cortex. *J. Neurosci.* **31**, 12837–12848 (2011).

998 106. A. C. Thompson, *et al.*, Infrared neural stimulation fails to evoke neural activity in
999 the deaf guinea pig cochlea. *Hearing Research* **324**, 46–53 (2015).

1000 107. I. U. Teudt, H. Maier, C. P. Richter, A. Kral, Acoustic events and “optophonic”
1001 cochlear responses induced by pulsed near-infrared LASER. *IEEE Transactions on
1002 Biomedical Engineering* **58**, 1648–1655 (2011).

1003 108. M. Ter-Mikaelian, D. H. Sanes, M. N. Semple, Transformation of Temporal
1004 Properties between Auditory Midbrain and Cortex in the Awake Mongolian Gerbil.
1005 *Journal of Neuroscience* **27**, 6091–6102 (2007).

1006 109. R. Q. Quiroga, Z. Nadasdy, Y. Ben-Shaul, Unsupervised spike detection and sorting
1007 with wavelets and superparamagnetic clustering. *Neural computation* **16**, 1661–
1008 1687 (2004).

1009 110. I. Dimatteo, C. R. Genovese, R. E. Kass, Bayesian curve-fitting with free-knot
1010 splines. *Biometrika* **88**, 1055–1071 (2001).

1011 111. G. Wallstrom, J. Liebner, R. E. Kass, An Implementation of Bayesian Adaptive
1012 Regression Splines (BARS) in C with S and R Wrappers. *J Stat Softw.* **26**, 1–21
1013 (2008).

1014 112. B. M. Krause, A. Raz, D. J. Uhlrich, P. H. Smith, M. I. Banks, Spiking in auditory
1015 cortex following thalamic stimulation is dominated by cortical network activity.
1016 *Frontiers in Systems Neuroscience* **8** (2014).

1017 113. H. C. Walker, *et al.*, Short latency activation of cortex by clinically effective
1018 thalamic brain stimulation for tremor. *Mov. Disord.* **27**, 1404–1412 (2012).

1019 114. A. Borst, F. E. Theunissen, Information theory and neural coding. *Nature
1020 neuroscience* **2**, 947–957 (1999).

1021 115. C. Kayser, N. K. Logothetis, S. Panzeri, Millisecond encoding precision of auditory
1022 cortex neurons. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 16976–16981 (2010).

1023 116. G. Brown, A. Pocock, M.-J. Zhao, M. Lujan, Conditional Likelihood Maximisation:
1024 A Unifying Framework for Information Theoretic Feature Selection. *Journal of
1025 Machine Learning Research* **13**, 27–66 (2012).

1026 117. G. L. Gerstein, D. H. Perkel, Simultaneously Recorded Trains of Action Potentials:
1027 Analysis and Functional Interpretation. *Science* **164**, 828–830 (1969).

1028 118. A. M. Aertsen, G. L. Gerstein, M. K. Habib, G. Palm, Dynamics of neuronal firing
1029 correlation: modulation of “effective connectivity.” *Journal of Neurophysiology* **61**,
1030 900–917 (1989).

1031 119. A. Paszke, *et al.*, PyTorch: An Imperative Style, High-Performance Deep Learning
1032 Library (2019).

1033 120. V. Mnih, *et al.*, Human-level control through deep reinforcement learning. *Nature*
1034 **518**, 529–533 (2015).

1035 121. R. S. Sutton, A. G. Barto, *Reinforcement Learning*, 2nd Ed. (The MIT Press, 2018).

1036 122. S. Fujimoto, H. van Hoof, D. Meger, Addressing Function Approximation Error in
1037 Actor-Critic Methods. *arXiv* (2018).

1038 123. J. K. Kruschke, *Doing Bayesian Data Analysis: A tutorial with R, JAGS, and stan*,
1039 2nd Ed. (Academic Press, 2014).

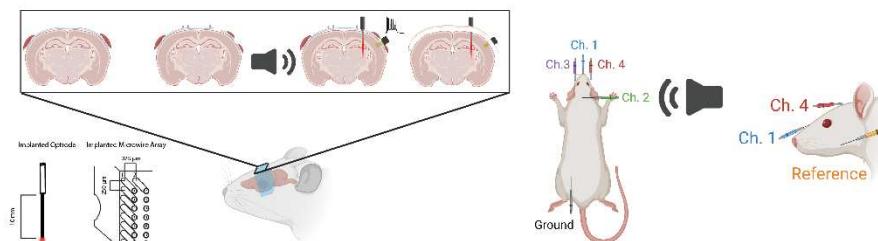
1040 124. J. K. Kruschke, Bayesian Assessment of Null Values Via Parameter Estimation and
1041 Model Comparison. *Perspectives on Psychological Science* **6**, 299–312 (2011).

1042 125. G. Paxinos, C. Watson, *The Rat Brain in Stereotaxic Coordinates*, 7th Ed.
1043 (Academic Press, 2013).

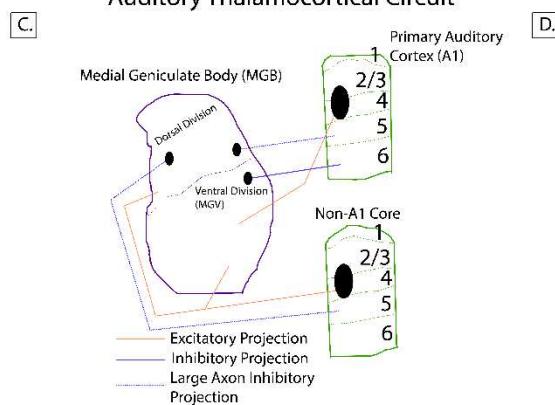
1044

1045 **Figures and Tables**

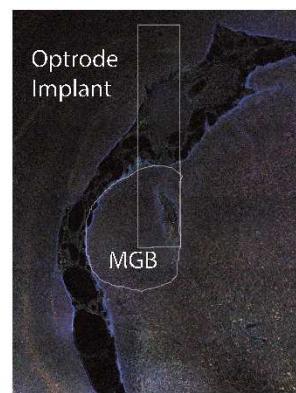
A. Optrode and Electrode Implantation Procedure **B. EEG/MLR Recording Sites**



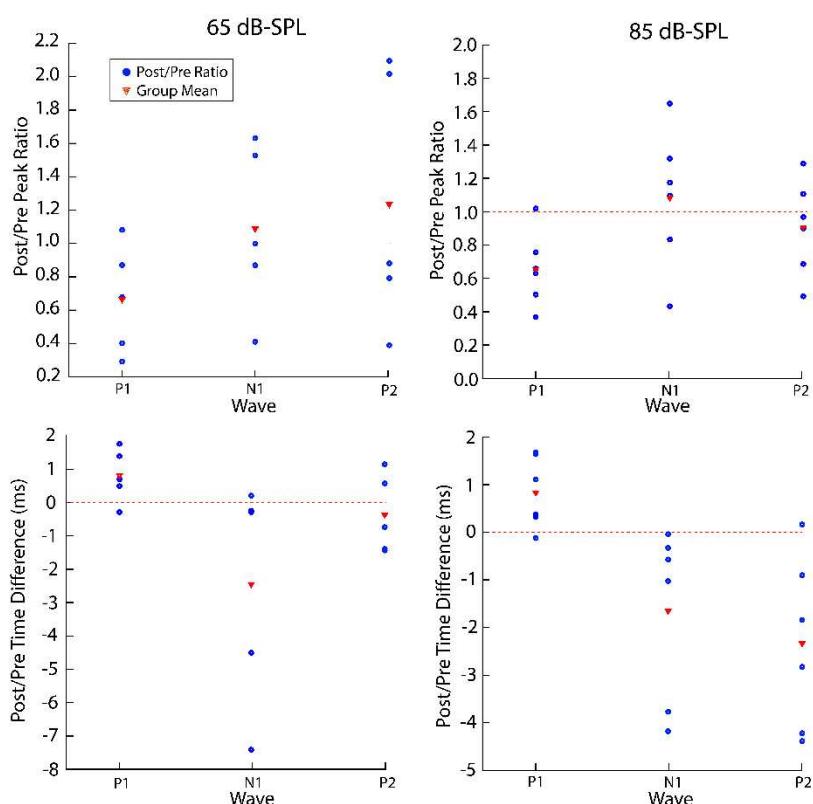
Auditory Thalamocortical Circuit



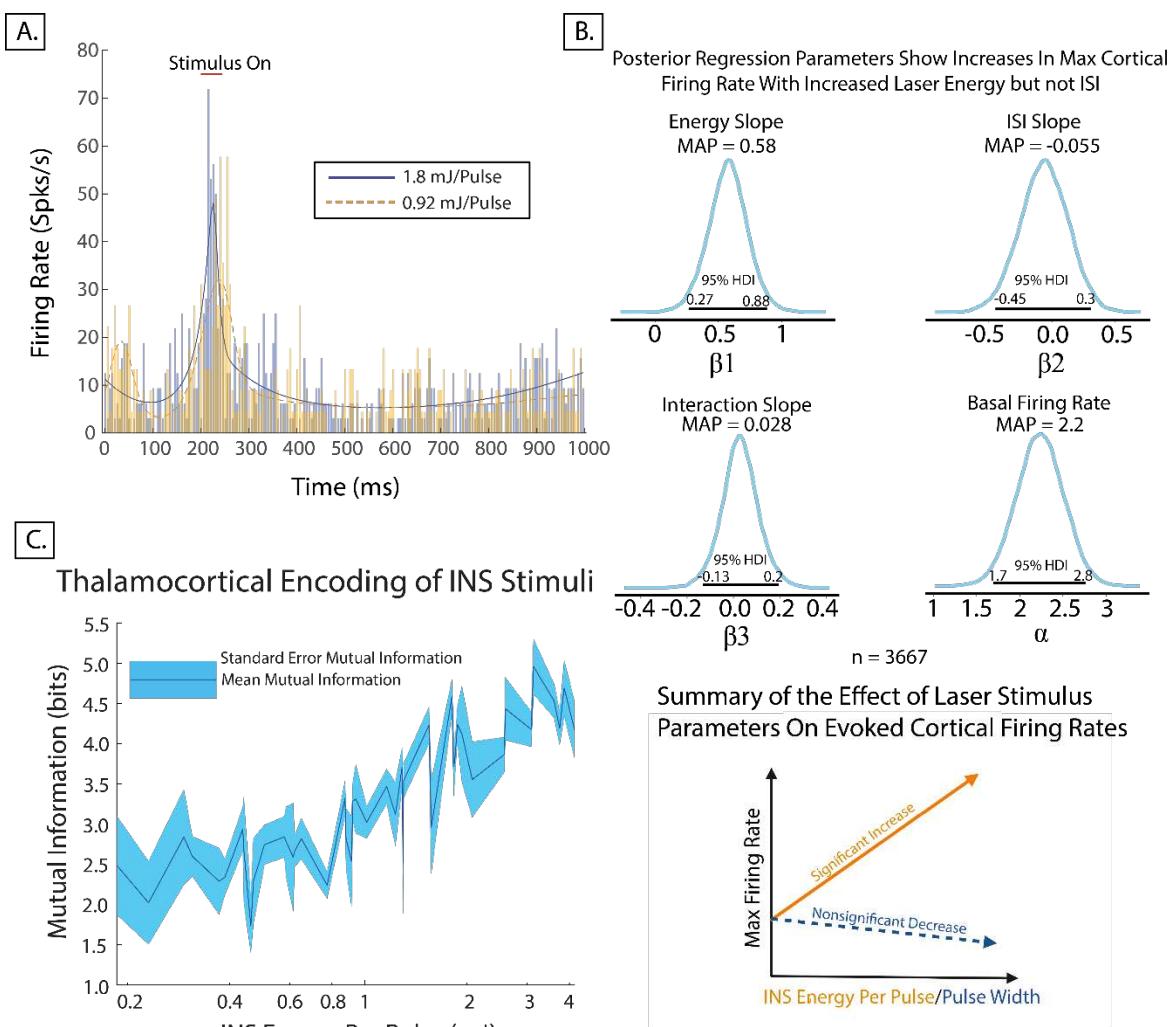
Optrode Placement



E. Pre/Post Implant MLR Wave Amplitudes and Times



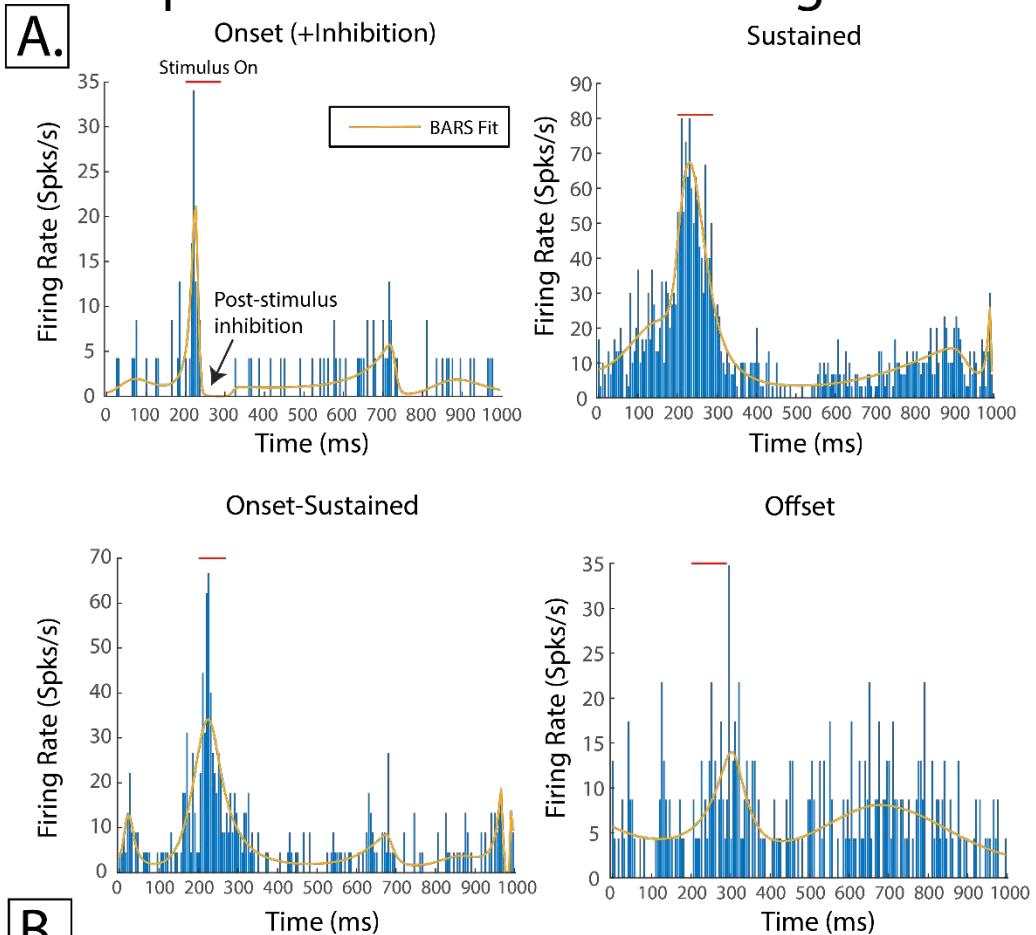
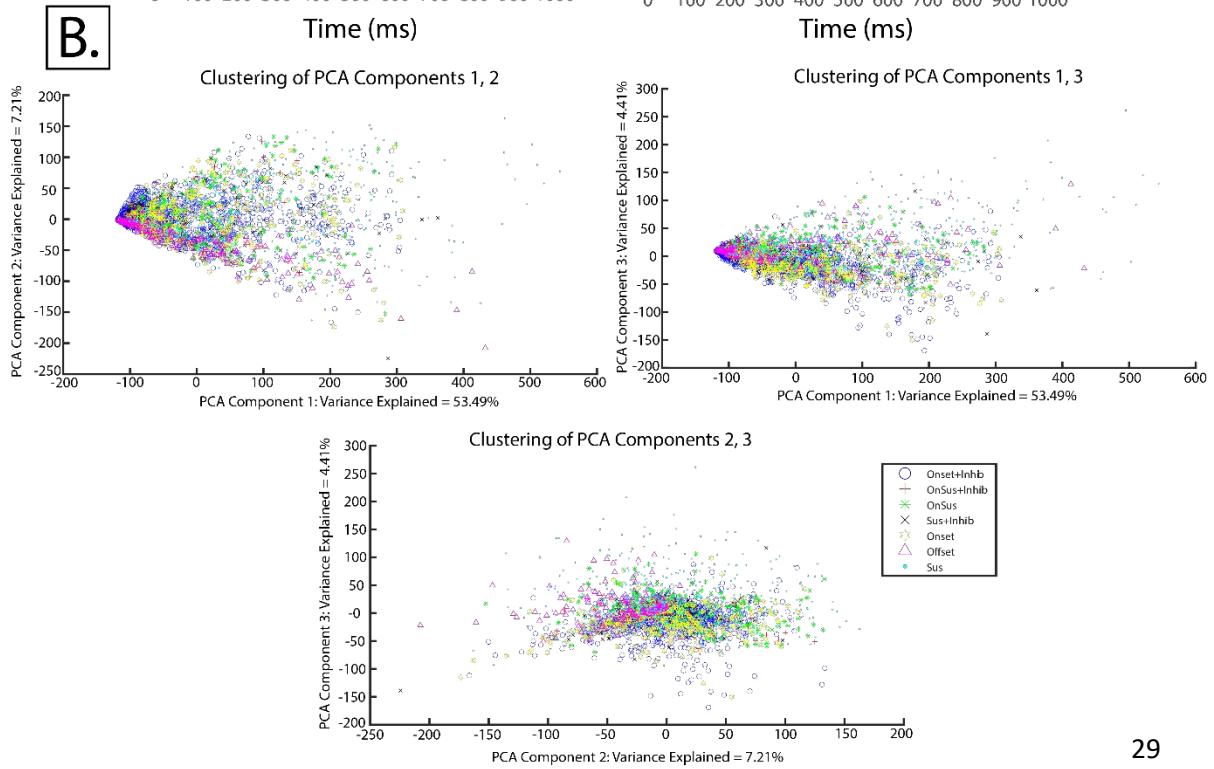
1047 **Figure 1.** Implantation and EEG-MLR procedures. A. Left: Rodents were implanted with fiber
1048 optic optrodes into the medial geniculate body and 16 channel microwire arrays into auditory
1049 cortex. Placement of microwire array was confirmed by tonic single unit responses evoked from
1050 80 dB filtered Gaussian noise stimuli during implantation. A. Right: Schematic of the 4-channel
1051 EEG-MLR recording preparation. B. Left: Schematic of the rodent auditory thalamocortical circuit.
1052 Stimulation optrodes were placed in the ventral division of the medial geniculate body with
1053 primary excitatory efferent projections to layer 3-4 of primary auditory cortex. Microwire array
1054 recording electrodes were placed in layer 3-4 of primary auditory cortex confirmed during surgery
1055 by low-latency single unit activity. B. Right: Histological images demonstrate placement of
1056 stimulation optrode was within medial geniculate body. C. EEG-MLR pre-post surgical ratios
1057 show small changes in wave P1, N1, and P2 correlates of auditory thalamocortical function in
1058 amplitude and latency due to passive presence of device at 65 or 85 dB-SPL click stimuli. While
1059 changes in amplitudes and latencies were observed effects, differences did not rise to level of
1060 significance ($p>0.05$). Rodent implantation and EEG diagrams were created using BioRender
1061 under publication license.
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100



1101
1102 **Figure 2.** A. Example INS-evoked peristimulus time histograms. BARS estimates of 1.8mJ (solid
1103 blue line) and 0.92mJ (dotted orange line) show higher energy pulses drive higher firing, lower
1104 latency responses. B. Bayesian hierarchical linear regression models of cortical dose-response
1105 profiles elicited from varying INS parameters. Distributions of regression parameters are given for
1106 applied laser energy, laser pulse width, and laser energy-pulse width interactions. Regressions
1107 show that increases in applied energy significantly increase maximum cortical firing rates with a
1108 maximum a priori estimate 0.58 increase in log firing rate in response to increases in log energy
1109 (95% HDI does not overlap 0). The width of the 95% HDI of the energy parameter (0.27-0.88)
1110 suggests that while cortical firing rates increase with increases in laser energy, INS dose-
1111 response profiles are dependent on the physiology of the neuron. Slight decreases in firing rate
1112 with increased laser pulse widths were observed (MAP = -0.055), but not significant (95% HDI
1113 overlaps 0). Laser energy and pulsewidth interactions also did not significantly change evoked
1114 cortical firing rates (95% HDI overlaps 0). Basal firing rates of neurons were significantly above
1115 zero (95% HDI does not overlap 0, MAP estimate = 2.2). C. Evoked single unit spike train
1116 information increases as INS energy increases.

1117
1118
1119
1120
1121

Representative Cortical Firing Classes



1123 **Figure 3.** A. Evoked cortical firing activity was classified into onset, onset-sustained, sustained,
1124 and offset classes. Any response which showed an offset inhibition resulting in basal firing rate
1125 <5% prestimulus firing rate was given an inhibition designation (top left, Onset for example). B.
1126 Decomposition of response classes into the top 3 principal components show that these classes
1127 exist across a continuum.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

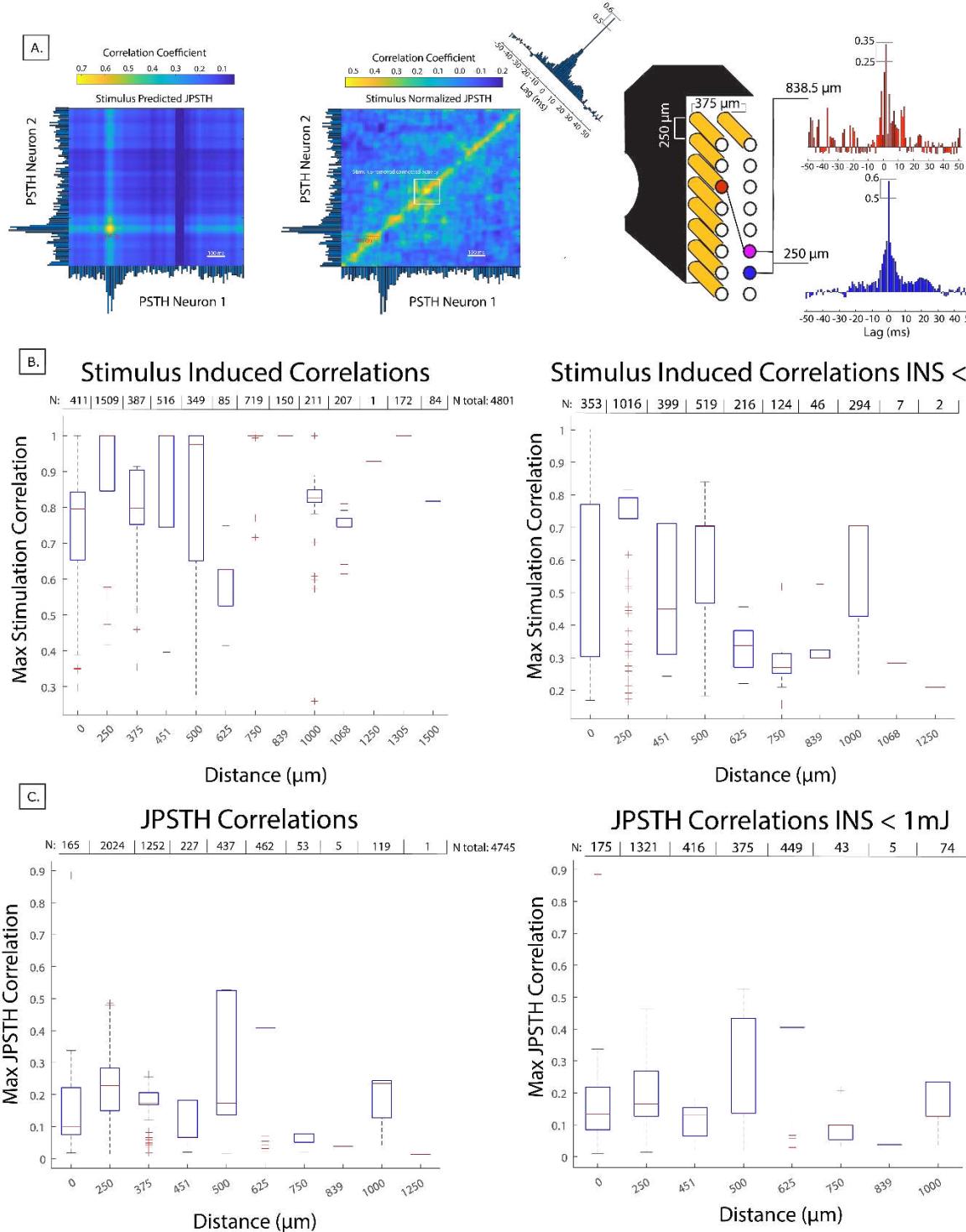
1173

1174

1175

1176

1177
1178



1179

Figure 4: Joint peristimulus time histogram analysis reveals INS thalamocortical recruitment is spatially constrained. A. Schematic of JPSTH analysis. Covariance maps were first calculated between the two PSTHs under test. Covariance maps represent the joint activity of two neurons

1184 due to the INS stimulus directly. Subtracting the covariance map from the joint histogram
1185 generates the JPSTH, a measurement of correlated activity of the neural network in response to
1186 the stimulus. Creating a histogram of the main diagonal of the JPSTH creates a coincidence
1187 histogram of total synchrony of the two neurons. Finally, cross correlograms create a statistic of
1188 connectivity of the two neurons. Covariance and JPSTH joint histograms were smoothed by a 2D
1189 gaussian filter for visualization purposes, but full calculations were performed on raw joint
1190 histograms. B. INS-induced correlations show that lateral spread of activation in cortex from
1191 thalamic INS were constrained to $\leq 1500 \mu m$, with 90% of responses constrained to $\leq 1000 \mu m$.
1192 Laser energies $< 1\text{mJ}$ limited lateral spread to $\leq 1250 \mu m$. C. Pairwise JPTHs, measuring post-
1193 stimulation induced connectivity show lateral spreads limited to $\leq 1250 \mu m$ across all applied
1194 energies and $\leq 1000 \mu m$ for stimulus energies $< 1 \text{ mJ}$. All correlations and JPSTHs shown were
1195 statistically significant ($p < 0.05$) after permutation testing.

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

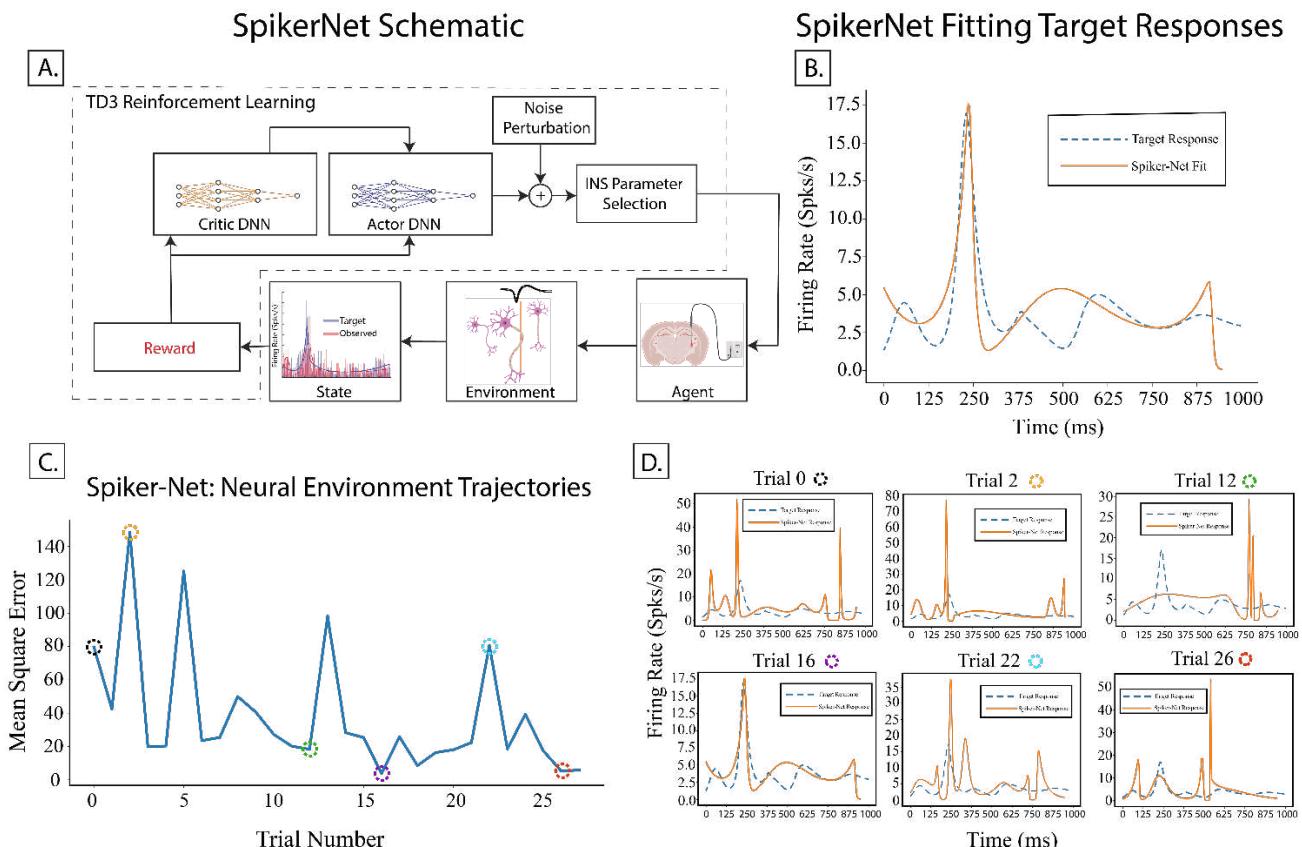
1232

1233

1234

1235

1236



1237
1238 **Figure 5:** SpikerNet, a deep reinforcement learning based closed loop control system. A.
1239 Schematic of SpikerNet operation, which utilizes TD3 reinforcement learning. The state is
1240 representative of a response as recorded from the electrode environment. The agent is the set of
1241 all safe stimulation parameters. B. SpikerNet is able to find arbitrary neural firing patterns through
1242 repeated iterations of stimulation through the environment. C. SpikerNet partakes in search and
1243 targeting behavior to find target responses and to learn stimulation parameters which best drive
1244 the neural environment to target state. D. Example evoked responses during SpikerNet search
1245 and learning show a wide variety of firing classes are evoked during algorithm search. While fits
1246 were calculated around the window of evoked activity, more complex multi-peaked and offset
1247 responses were observed (Trial 12, 22, 26).
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

1265
1266

Table 1. Distribution of Cortical Firing Classes (n=3371)

Firing Class	% of Responses	% of Responses in Class
Onset	12.04	61.97
Onset + Inhibition	49.93	
Sustained	18.78	23.29
Sustained + Inhibition	4.51	
Onset-Sustained	6.05	
Onset-Sustained + Inhibition	2.82	8.87
Offset	5.87	5.87

1267

Supporting Information for

Spatially specific, closed-loop infrared thalamocortical deep brain stimulation

Brandon S Coventry^{1,2*}, Georgia L Lawlor^{1,2}, Christina B Bagnati¹, Claudia M Krogmeier³, Edward L Bartlett^{1,2,4*}

1 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA

2 Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA

3 Department of Computer Graphics Technology, Purdue University, West Lafayette, IN USA

4 Department of Biological Sciences, Purdue University, West Lafayette, IN USA

* Corresponding authors

Edward L Bartlett

Weldon School of Biomedical Engineering

Department of Biological Sciences

Purdue University

206 S Martin Jischke Dr

West Lafayette, IN 47907

Telephone: 1 765 496-1425

Email: ebartle@purdue.edu

Brandon S Coventry

Department of Neurological Surgery

Wisconsin Institute for Translational Neuroengineering

University of Wisconsin-Madison

1111 Highland Ave

Madison, WI 53705

Email: coventry@wisc.edu

This PDF file includes:

Supporting text

Figures S1 to S13

Tables S1 to S4

Legends for Datasets S1

SI References

Other supporting materials for this manuscript include the following:

Datasets S1

Supplementary Material Outline

1. Bayesian Model Descriptions

- 1.1. Software requirements
- 1.2. Goals of Analyses and the BARG
- 1.3. Bayesian Prior Selections
- 1.4. Posterior Decision Rules
- 1.5. Final Statistical Models
- 1.6. Model Sensitivity Analyses
- 1.7. Posterior Distribution and Markov-Chain Monte Carlo Diagnostics
 - 1.7.1. MCMC Methods
 - 1.7.2. Posterior Predictive Checks
- 1.8. Prior and Posterior Trace Plots

2. Design of INSight, an Open-Source Optical Stimulation Platform

- 2.1. INSight Design
- 2.2. Printed Circuit Board Interfacing
- 2.3. Electrical Properties

3. Supplementary Methods

- 3.1. Principal Components Decomposition of Neural Firing Classes
- 3.2. Bayesian Multinomial Regression

4. Immunohistochemistry

- 4.1. Recipes
- 4.2. Protocol

5. SI Figures

6. Data Repository and Code Repository Links

7. SI References

1. Bayesian Model Descriptions and Sensitivity Analyses. This report follows the guidelines for reporting of Bayesian Analysis (BARG) (1) consisting of:

- Necessary software and source code directory
- Goals of the analysis
- Model descriptions and decision criterion
- Prior and hyperprior descriptions
- Sensitivity analyses for varying prior distributions
- Posterior and MCMC diagnostics

1.1 Necessary software and source code directory

BARG: Step 2A, 6

Bayesian modeling was performed using Python 3.6.8 on an MSI GS-66 Laptop with an Intel Core i7 processor (6 cores) and an Nvidia RTX2070 GPU. Models were implemented in PyMC3 version 3.11.5 (2), a probabilistic programming module in the Python environment. All source code is available at this paper's github repository (SI: Software S1). All source data is available at this article's open science framework repository (SI: Dataset D1).

1.2 Goals of the Analyses

BARG: Preamble

The goal of the utilized regression analyses is to establish a model of the relationship between stimulus parameters (applied laser energy and interstimulus intervals) with evoked thalamocortical neural responses as quantified by single unit firing rates. While this is normally established using frequentist multilinear regression analyses, neuron responses are heterogeneous with differences arising from nominal firing patterns arising individual cell types, differences in exact placement in receptive fields of stimulation and recording devices, and changes in within-animal recordings from glial scarring and skull growth over time leading to changes in placement of devices. These nuances are best characterized by hierarchical regression models.

Bayesian approaches allow for flexible and explicit hierarchical model descriptions which provide rich and descriptive inference and quantification of uncertainty in measurements by inference of direct probability measures on posterior distributions as opposed to less intuitive and harder to interpret frequentist p-values. Bayesian approaches are data driven and account for previous knowledge to be encoded as prior distributions. It can be shown that Bayesian hierarchical regression is a regularized frequentist random effects model with uniform distributions on the hyperparameters. However, frequentist approaches collapse inference into singular decision boundaries (p-values) and do not allow for model constructions which best fit the observed data.

To this end, we utilized Bayesian hierarchical multilinear regression to account for both within and between subject differences of evoked responses to INS stimuli as a function of applied laser energy, time between laser pulses (interstimulus intervals, ISI), and the interaction between applied laser energy and ISI. The general regression model is:

$$FR = \alpha_i + \beta_1 * E + \beta_2 * ISI + \beta_3 * E * ISI + \epsilon$$

where FR is the max evoked firing rate. Firing rate functions were calculated from recorded peristimulus time histograms with Bayesian adaptive regression splines density estimation(3). Parameters β_i quantify the effect of laser energy(β_1), pulse ISI(β_2), and laser energy and pulse ISI interaction(β_3) on evoked firing rates respectively. The α parameter describes the model intercept and quantifies subthreshold spontaneous activity and the ϵ quantifies model error.

Hierarchical models perform ‘partial pooling’ of response data which accounts for individual differences in parameter estimation. This is done by assuming parameters $\alpha, \beta_1, \beta_2, \beta_3$ and ϵ are not singular values but form distributions that quantify firing rate dependencies from laser parameters while accounting for within-subject differences. Prior selection is discussed in section 1.3.

Partial pooling was performed by adding an implicit class definition $e_{i,j}$ in PyMC (see code) which encodes the response arising from the i^{th} electrode in the j^{th} subject.

We also utilized Bayesian formulations of multinomial regression (aka Softmax regression) to understand the dependency of neural firing class on the laser parameters of applied energy and interstimulus interval. The multinomial regression model is as follows:

$$\gamma_i = \beta_{0,i} + \beta_{1,i} * Energy + \beta_{2,i} * ISI$$

where γ_i is defined as the i^{th} firing class. Firing classes included onset, onset-sustained, sustained, onset+inhibition, onset-sustained+inhibition, sustained+inhibition, and offset with class inclusion criteria defined in the materials and methods portion of the main text. The probability of class γ_i is calculated via the softmax link function:

$$\theta_k(\gamma_i) = \frac{e^{\gamma_i}}{\sum_{k \in S} e^{\gamma_k}}$$

which creates a mapping of outcome γ_i against all k outcomes in the set of possible classes S . For efficient computation, β_1 and β_2 were recast as a singular tensor optimized for sampling. The multinomial regression model then takes the following form:

$$\gamma = \theta \left(\beta_0 + (\beta \cdot X_{Energy, ISI}) \right)$$

where the \cdot operator is the tensor inner product.

1.3 Prior Selection

As single unit thalamocortical recordings elicited from INS have largely been unexplored, previous knowledge cannot be adequately constructed into a highly informative prior. However, our previous experience in thalamus and cortical recordings(4–10) and in INS parameter selection(11, 12) gives prior information on potential variances of firing rate in cortex from thalamic stimulation. As such, we chose moderately informative distributions (see section 3) so as to not unduly influence the posterior and let the observed data fully inform the posterior. Normal distributions were chosen over uniform distributions to allow for unforeseen high variance, low probability events to inform the posterior if evidence is sufficiently strong. A choice of uniform distribution would drive such events to probability zero, missing potentially notable neural recruitment. To ensure the prior distribution did not unduly inform posterior distributions away from observed data, sensitivity analyses to prior parameters was performed (Section 3).

Observation of evoked INS responses tended towards normal distributions, dictating a normal likelihood distribution. Previous studies in regression suggest the use of a Student T distribution, which incorporates an added hyperprior for degrees of freedom (ν), performs a robust regression against potential outliers(13). Importantly, as $\nu \rightarrow \infty$, the Student T distribution becomes a normal distribution and relative tail spread of the Student T distribution is learned online through ν hyperpriors.

An interaction term, $\beta_3 * E * ISI$ was included in the analysis as it was hypothesized that extremely short ISIs could cause neuron interactions between pulses potentially leading to temporal integration of laser energy.

1.4 Posterior Decision Rules

Inference was performed on posterior distributions with credible regions (analogous to frequentist confidence intervals) defined as a highest density interval (HDI) of 95% of parameter maximal *a posteriori* density (MAP) parameter estimates which represent the most probable value of the coefficient. MAP estimates are analogous to maximum likelihood estimation found in frequentist approaches. This allows for the quantification of parameter uncertainty as variance observed in posterior parameter distributions, with narrow HDIs representing more certain estimates. It is customary to define a region of practical equivalence (ROPE) if prior information dictates that incremental parameter changes are effectively the same. As we lack prior knowledge to inform the choice of a prior rope, we take an agnostic approach that any change seen is worth investigating and thus ROPEs are not presented. An effect was deemed significant if its 95% HDI did not overlap with 0, in line with proposed decision rules typical of Bayesian inference(14, 15).

1.5 Final Model

Posterior predictive checks and sensitivity analysis were performed to titrate the best performing models as measured against observed data (Section 3). The final hierarchical regression model is schematized in figure S1 and for the multinomial regression model in figure S2. Final models included deterministic nodes at outputs of prior nodes to prevent NUTS from becoming stuck in regions of the sampling space which are difficult to explore ¹.

1.6 Model Sensitivity analyses

BARG: Step 3A,C

Individual To evaluate the dependance of hyperprior parameters on model fitting, we used leave one out (LOO) cross validation(16). Three separate models were evaluated with model variances varied to test sensitivity of each model. Initial model construction suggested that natural-log transformations of the dependent variable (firing rate) produced distributions which are better modeled as normal distributions. To this end, hierarchical models under test were as follows:

MODEL NAME	MODEL
REGRESSION	$FR = \alpha + \beta_1 * Energy + \beta_2 * ISI + \beta_3 * Energy * ISI + \epsilon$
SEMILOG	
REGRESSION	$ln(FR) = \alpha + \beta_1 * Energy + \beta_2 * ISI + \beta_3 * Energy * ISI + \epsilon$
NATURAL LOG	
REGRESSION	$ln(FR) = \alpha + \beta_1 * ln(Energy) + \beta_2 * ln(ISI) + \beta_3 * ln(Energy) * ln(ISI) + \epsilon$

Table S1: Regression models under test

For each model, the variance hyperprior was varied to assess the impact of prior parameters on posterior predictions. Prior classes were defined as: informative (variance ≤ 1), moderately informative (variance = 5), and weakly informative (variance ≥ 10). Primary metrics for model comparison were expected log pointwise predictive density (ELPD), defined as(17):

$$elpd = \sum_{i=1}^k \int dy_i p_t \bar{y}_i \log(p(\bar{y}_i|y))$$

where p_t, y_i are unknown distributions representing the true data generating function for estimates of true posterior predictive function ($\bar{y}|y$) from observed data y . Estimated p_t, y_i distributions are obtained via cross validation during LOO analysis. In general, higher values of ELPD are a result of higher out of sample predictive fit indicative of a better model. Weight values generated by LOO cross validation were also analyzed and predict the probability of each model given observed data. Finally, we observed the standard error of the ELPD estimate (SE), and the difference between the model with highest ELPD and every other model (dSE) with dSE of the top model set to 0.00 by definition. All LOO calculations were performed *post hoc* with the python package arviz, a plugin for PyMC.

Table S2: LOO model comparison results for the Bayesian hierarchical regression models. Var: Prior variance parameter, log: log predictor and predicted variable model. semilog: semilog predictor model. ST: Student T Likelihood models. N: Normal likelihood models

MODEL	R	ELPD	WEIGHT	SE	DSE
ST LOG VAR 5	1	-5337.48	2.046623e-01	46.220458	0.00
ST LOG VAR 100	2	-5337.62	1.763745e-01	46.227682	0.420867
ST LOG VAR 0.5	3	-5337.76	1.552051e-01	49.173347	0.409773
ST LOG VAR 25	4	-5338.15	1.058393e-01	46.358847	0.492297
ST LOG VAR 10	5	-5338.18	9.996540e-02	46.141502	0.300197
ST LOG VAR 1	6	-5338.26	9.238175e-02	49.030330	0.331152
N LOG VAR 10	7	-5340.60	7.103823e-02	49.024680	3.308668
N LOG VAR 1	8	-5341.09	4.291607e-02	48.985814	3.293779
N LOG VAR 5	9	-5341.16	3.978488e-02	89.737613	3.296273
N LOG VAR 0.5	10	-5342.46	1.183257e-02	89.930943	3.300550
ST SEMILOG VAR 1	11	-5466.76	4.359604e-37	84.933022	15.845916
ST SEMILOG VAR 5	12	-5467.12	3.535240e-37	89.043113	15.856552
ST SEMILOG VAR 10	13	-5467.15	5.622764e-37	85.266895	15.895646
ST SEMILOG VAR 0.5	14	-5467.18	3.483572e-37	85.266895	15.866405
ST VAR 1	15	-15336.31	0.000000e+00	49.465018	79.406629
ST VAR 0.5	16	-15355.67	0.000000e+00	49.509352	80.415787
ST VAR 5	17	-15355.67	0.000000e+00	49.487001	80.415787
N VAR 10	18	-16119.11	0.000000e+00	49.510419	82.384329
N VAR 1	19	-16132.23	0.000000e+00	49.524316	83.549811
N VAR 0.5	20	-16154.55	0.000000e+00	49.514661	84.262219

Sensitivity analyses were also performed for the Bayesian multinomial regression models, also with informative (variance = 1), moderately informative (variance = 5) and weakly informative (variance = 10) prior parameters. Table S3 outlines LOO model comparisons for the Bayesian multinomial regression model. Comparisons suggest that the standard models perform better than semilog based models, with only minimal changes in model performance with varying prior variances, suggesting that the posterior distribution is largely driven by observed data.

Table S3: LOO model comparison results for the Bayesian multinomial regression models. Var: Prior variance parameter, semilog: semilog predictor model.

MODEL	R	ELPD	WEIGHT	SE	DSE
VAR 1	1	-3861.38	0.400151	38.15	0.00
VAR 10	2	-3861.76	0.261702	38.79	0.84
VAR 5	3	-3861.85	0.239520	38.82	0.88
SEMILOG VAR 1	4	-3871.25	0.037136	37.59	7.28
SEMILOG VAR 10	5	-3871.38	0.032181	38.12	7.36
SEMILOG VAR 5	6	-3871.46	0.029310	38.12	7.36

1.7 Posterior and MCMC Diagnostics

BARG: Step 1E, 2A-D, 3A,C

1.7.1 Choice of MCMC method

For sampling, the Hamiltonian-based MCMC method no U-turn sampling (NUTS)(18) was used. NUTS presents a modification of general Hamiltonian Monte Carlo samplers and presents an efficient sampler for hierarchical and high-dimensional models at the cost of slower sampling times. Hierarchical regression models ran 4 simultaneous chains with 4000 burn in samples and 5000 iterations with a 95% target inclusion probability. Multinomial regression models also ran 4 simultaneous chains with 5000 burn in samples and 5000 iterations with a target inclusion probability of 99.95% inclusion probability owing to a more difficult posterior to sample.

MCMC Diagnostics

Energy transition plots were used to assess how well NUTS explored the target posterior distribution of the best performing model as assessed by PSIS-LOO comparisons between models(19). As NUTS sampling is based off dynamical systems modeling (Hamiltonian Monte Carlo), movement through the typical set towards a target distribution has associated momentum and thus potential and kinetic energy associated with movement through probability space. Efficiency in movement through the target distribution can then be assessed by comparing energy associated with the marginal energy distribution, quantifying the geometry of the underlying target distribution with the energy associated with the distribution of Markov state transitions. The hierarchical regression model displayed overlapping marginal energy and energy transition distributions (Fig S3) suggesting that sample to sample movement was nearly independent and indicative of efficient sampling of the target posterior distribution.

Furthermore, traces of sampled prior and hyper-prior parameters in hierarchical and multinomial regression models suggest effective sampling of the posterior distribution (Fig S4). Furthermore,

the Gelman-Rubin statistic, quantifying within and between chain estimates and correlation was $\hat{r} < 1.05$, indicative of convergence of marginal posterior parameter values(20).

1.7.2 Posterior Predictive Checks

An advantage of using Bayesian-based inference approaches is the ability to directly and explicitly compare model fits to observed data, a process often not available in frequentist-based software packages or left out of final analysis. During inference model development, posterior predictive checks were performed by sampling from the posterior distribution (20,000 draws). Kernel density estimates of posterior predictive distributions were compared to kernel densities of observed data. Goodness of fit was quantified using the Bayesian formulation of the p-value(13). Similar to the frequentist p-value, the Bayesian p-value is also a measure of discrepancy, quantifying the probability that posterior predictive-based draws are more extreme than observed data. The Bayesian p-value is defined as:

$$p_B = \iint dy^r d\theta I_{T(y^r, \theta) \geq T(y^r, \theta)} p(y^r | \theta) p(\theta | y)$$

where I is the indicator function, y^r is the posterior predictive distribution and y is the posterior distribution. Similar to the posterior distribution, posterior predictive distribution and Bayesian p-values were estimated using NUTS. The closer the Bayesian p-value is to 0.5, the better the data sampled from the posterior distribute around the observed data.

Figures S5 and S6 display posterior predictive fits and Bayesian p-values for the hierarchical linear and multinomial regression models respectively. Both models suggest excellent posterior predictive fits with $\bar{p} = 0.51$ for the hierarchical linear regression model (Fig S5) and $\bar{p} = 0.50$ for the multinomial regression model (Fig S6).

1.8 Prior and Posterior Trace plots

BARG: Step 2B,C

Critical to the performance of HMC based Bayesian sampling is the convergence of sampling traces. Output trace plots display the chain of sampled values and the resulting kernel density estimates of sampled distributions. All sampled traces showed no divergences in sampling, suggesting that sampled traces were well behaved in sampling the space of the distribution. Furthermore, the Gelman-Rubin statistic, quantifying within and between chain estimates and correlation was $\hat{r} < 1.5$ for all sampled traces suggesting good convergence and effective sampling of target distributions. For clarity and transparency, traces are available on open science framework, with traces for all hyperpriors and posteriors presented here (Figures S7-S9). Traces were checked for characteristic sampling behavior(18) with no pathological traces found in models.

2. Design of the INSight System

2.1 System Description

The goal of INSight was to develop an low cost INS system that was in reach for neuroscience and neuroengineering laboratories who don't already have access significant optical. To this end, designs were made using off the shelf components with a stimulation interface which could easily connect to recording hardware with DACs or digital trigger outputs.

The INS lasing system consists of 3 subsystem realizations (Figure S10 A); the laser diode, laser diode driver, and driver control system, with two optional but recommended support systems: the thermal electric cooler (TEC) system and the power monitoring system. The laser diode system consists of an Akela Laser (Jamesburg, NJ) Trio diode mounted via pogo pins to a custom interface printed circuit board (Figure S11). The Trio diodes have small form factors, low cost, and are modular, allowing for the rapid switching between different wavelength modules to vary optical penetration depths(21, 22) or to leverage the same system for optogenetic applications. For this study, a 1907 nm, 1W diode was used in accordance with commonly used wavelengths in INS(23). The laser diode is driven through high current, single strand 18-gauge wire using a PLD1000 pulser (Wavelength Electronics, Bozeman MT) with output current controllable by voltage pulses from a control source such as neural recording hardware or the Arduino control module provided. Pulse shapes and waveforms can be implemented using a computer controlled arbitrary function generator connected to the driver analog input. In this study, a RX-7 stimulation isolator (Tucker-Davis Technologies, Alachua FL) was used. In settings where a triggerable voltage source is unavailable, we developed an open source, Arduino based stimulation system which is included in our online build materials. Power to the system was provided by a high current fixed voltage PCB mount supply (LS50-5, TDK-Lambda). The diode laser was fiber coupled to implanted devices using an SMA to FC/PC 400-2400 nm wavelength multimode fiber (Thor Labs, Newton NJ) which can be commutated using a rotary patch cable (Thor Labs). Laser output power was measured using a S305C power sensor (Thor Labs) to validate applied energy. The akela trio substrate displayed strong linearity through periodic open loop tests over the span of a year (Figure S10.B). It should be noted that if the system is operated in open loop, routine power calibrations should be performed to account for laser power drift due to age of the device, ambient temperature, or recent thermal contraction/expansion of the laser substrate.

Modularity was designed into INSight, making it suitable for INS, optogenetics, and as a laser activation source for calcium imaging and other optical techniques. Furthermore, the trio module can be substituted for multiwavelength modules for more expansive applications. INSight can also be modified to accommodate other commercially available laser diode modules.

2.2 Laser Board Layout and Interfacing

In order to create an interface allowing for quick laser diode substitutions, a customized printed circuit board (Figure S11) was created. The pads corresponding to the laser diode should be populated with pogo pins (Adafruit Industries, New York, NY). The laser is place on the pogo pins and secured by screwing the laser diode into the board via through holes on the Trio enclosure, facilitating a quick and easy laser diode replacement system. Traces between the diode laser anode and cathode and laser driver should be as wide as possible with a minimal connection path to ensure proper current handling with minimized trace heating. If wires are used, wire of gauges 18 or less or high current capacity wire should be used with the shortest wire length possible.

2.3 INSight electrical properties

Relevant electrical properties of the proposed system are found in table S.4.

Parameter	Value	Unit
<i>Maximum Laser Output Power</i>	1	W
<i>Laser Diode Forward Voltage</i>	< 2.5	V
<i>Laser Driver Analog Input Rise Time</i>	7	μs
<i>Max Laser Driver Supply Voltage</i>	5.5	V
<i>Laser Driver Analog Input Maximum Voltage</i>	Supply Voltage + 0.5	V
<i>Laser Driver Current to Voltage Transfer Function</i>	4.6	A / V

Table S.4: Laser System Electrical Properties

3. Supplementary Methods

3.1 Bayesian Multinomial Regression

Bayesian formulations of multinomial regressions were utilized to assess cortical neuron firing class dependence on stimulation parameters. Multinomial regression models were of the form

$$\gamma_i = \theta(\beta_{0,i} + \beta_{1,i} * Energy + \beta_{2,i} * ISI)$$

where β_0 is the regression intercept term, $\beta_{1,2}$ are the energy and ISI regression slope coefficients respectively, and θ is the softmax operator mapping regression to probability space corresponding to highest probability of class membership in class γ_i . Due to indeterminacy of regression coefficients inherent to nominal models, predictions of class membership can only be made in reference to a reference category. To this end, we chose the reference category to be *onset+inhibition* which is the data category with the largest number of members in our dataset. Therefore, multinomial regressions are interpreted as the log odds of moving from the most populous class to a different firing class contingent upon INS parameters. Bayesian methods were used for parameter estimation and inference. Models were built in Python using PyMC v4. Prior distributions on β coefficients were chosen to be zero mean, variance 1 normal distributions which showed best fit to our observed data. Prior sensitivity analysis were performed and quantified in SI:Bayesian Model Description. Parameter posterior distributions were summarized by their maximum a priori estimates (MAP), the most probable value and posterior 95% highest density intervals (HDI), quantifying the 95% most likely parameter values. Regression coefficients were considered significant if the 95% HDI did not overlap 0 in line with Bayesian inference convention.

3.2 PSTH classification via principle components analysis

Whether observed PSTHs formed distinct clusters of responses or exist across a continuum of the response space was assessed using principle components analysis. Individual PSTHs were represented as row vectors $r(i) = PSTH_i$ in a response matrix $r = N \times b$ where N is the total number of evoked PSTHs and b is the total number of bins. PSTHs were constructed from 5 ms bins. Response matrix r was then decomposed into a vector of principle components τ with weights $w \in \{0,1\}$. Finding components of maximal variance was found by ensuring the first weight component $w(1)$ satisfies

$$w(1) = \operatorname{argmax}_{\|w\|=1} w^T r^T r w$$

The remaining $k - 1$ components and weights are then estimated as

$$\begin{aligned} \tau(k) &= r - \sum_{s=1}^{k-1} r w(s) w^T(s) \\ w(k) &= \operatorname{argmax} \left\{ \frac{w^T \tau(k)^T \tau(k) w}{w^T w} \right\} \end{aligned}$$

The first 3 components representing 65.11% of explained variance were extracted for clustering. Components were then mapped to response classes for visualization.

4. Immunohistochemistry

4.1

Solutions for HCN immunohistochemistry

10% bovine serum albumin (BSA)

1 g	BSA
10 mL	1XPBS

10% sodium azide

1 g	sodium azide
10 mL	1XPBS

1XPBS-0.1% Triton (0.1% PBST)

100 μ L	triton X-100
100 mL	1XPBS

1XPBS-0.3% Triton (0.3% PBST)

300 μ L	triton X-100
100 mL	1XPBS

Immuno buffer

1 mL	100% goat serum
0.6 mL	10% BSA
200 μ L	10% sodium azide
Fill up to 20 mL with 0.3% PBST	

Antibody dilutions 1:200, 1:2000 titrate to slice thickness

4.2 IHC Protocol

Name: _____ Date: _____

Animal ID: _____
Thickness: _____

Serum				
Primary	Host	Concentration	Secondary	Concentration

Protocol:

1. 2x 5-min wash in 1XPBS-0.1% Triton (0.1% PBST) at room temperature.
2. 30-min incubation in 1XPBS-3% Triton (0.3% PBST) at room temperature.
3. 1-hour incubation in immuno buffer.
4. 48-hour incubation in 1° antibody diluted with immuno buffer at 4°C.
5. 3x 10-min washes in 0.1% PBST.

PROTECT FROM LIGHT FROM THIS STEP FORWARD

6. 24-hour incubation in 2° antibody diluted with immuno buffer at 4°C.
7. 3x 10-min washes in 0.1% PBST.
8. Mount sections in slides using 1XPBS (no detergent). DO NOT LET DRY FOR TOO LONG!
9. Coverslip using mounting medium (40µL is sufficient) and seal with clear nail polish.
10. Let slides sit overnight in the dark.

Notes:

5. Supplementary Figures

Fig S1:

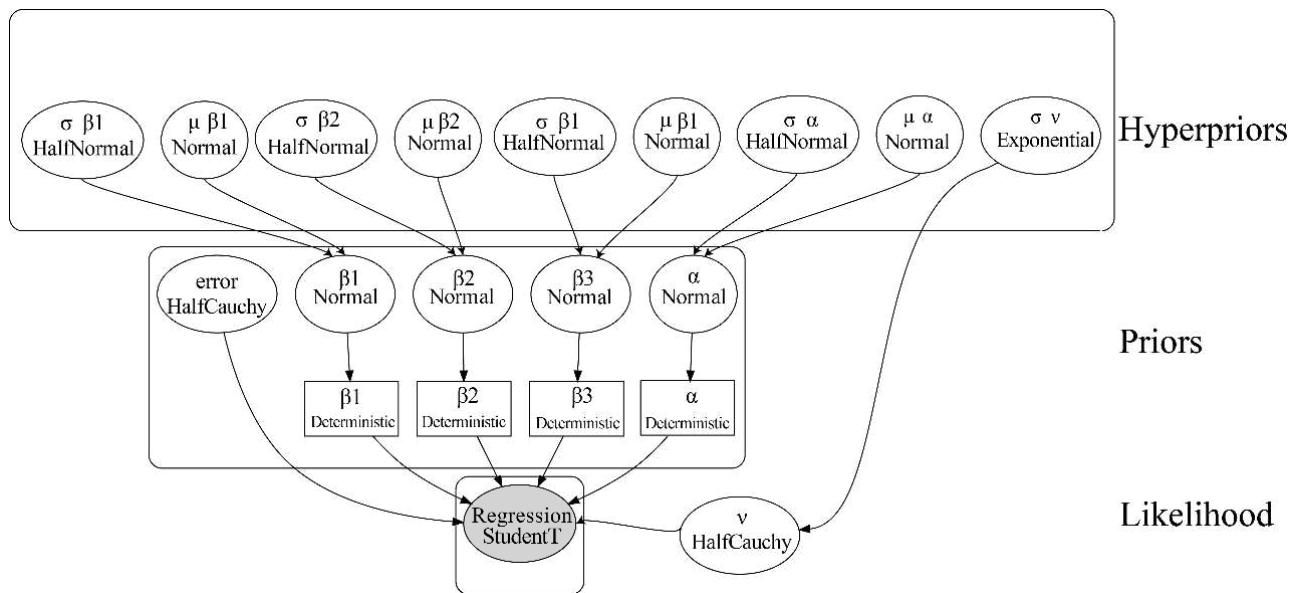


Figure S1: Schematic of Bayesian hierarchical Multilinear regression utilized in this study. Deterministic nodes were included in the model to prevent MCMC sampling from entering regions of solution space which are difficult to move away from.

Fig S2:

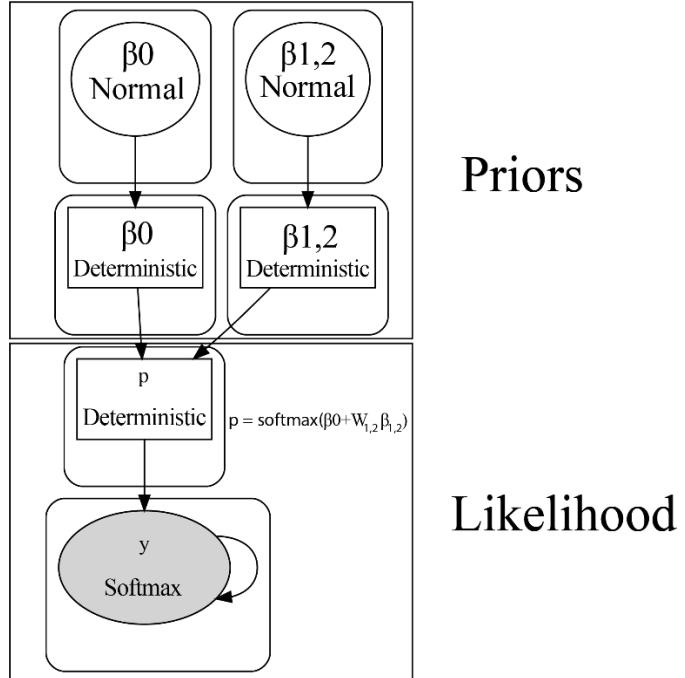


Figure S2: Schematic of Bayesian multinomial regression utilized in this study. Deterministic nodes were included in the model to prevent MCMC sampling from entering regions of solution space which are difficult to move away from.

Fig S3:

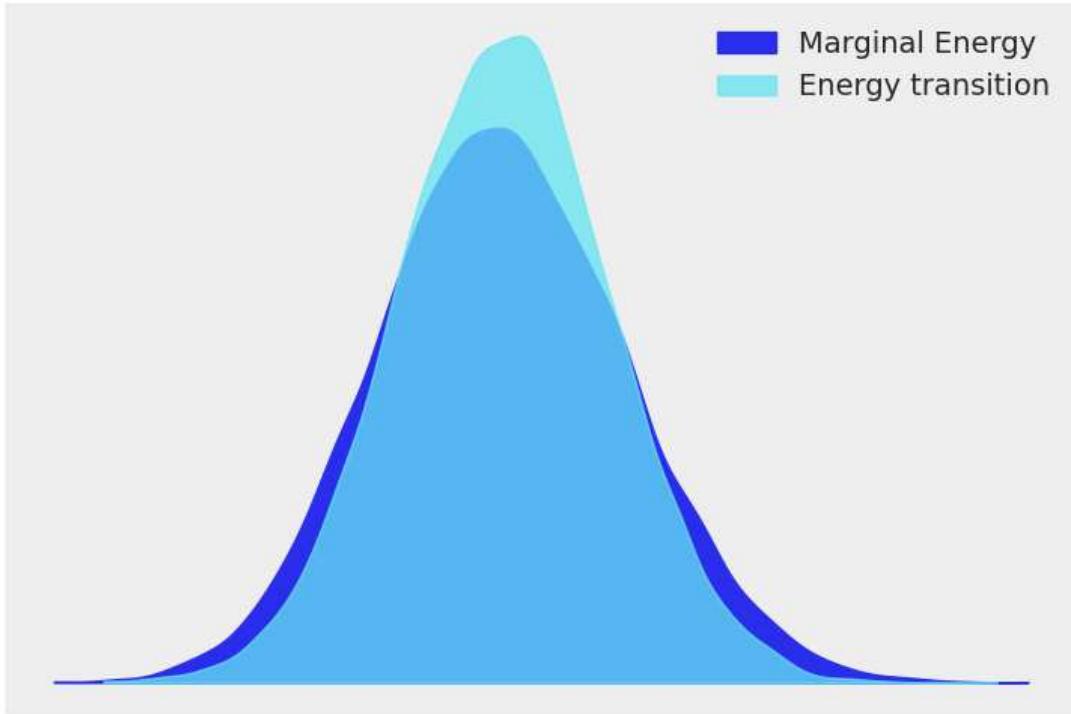


Figure S3: Energy trace of NUTS trace for the Bayesian hierarchical regression model.

Fig S4:

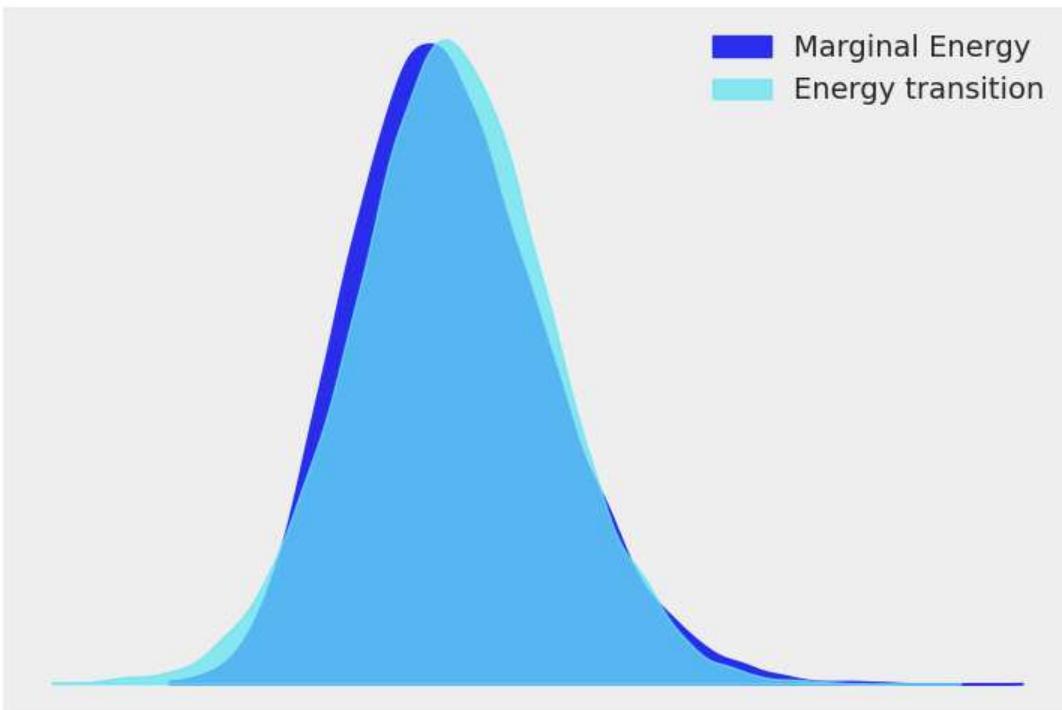


Figure S4: Energy trace of NUTS trace for the Bayesian multinomial regression model.

Fig S5

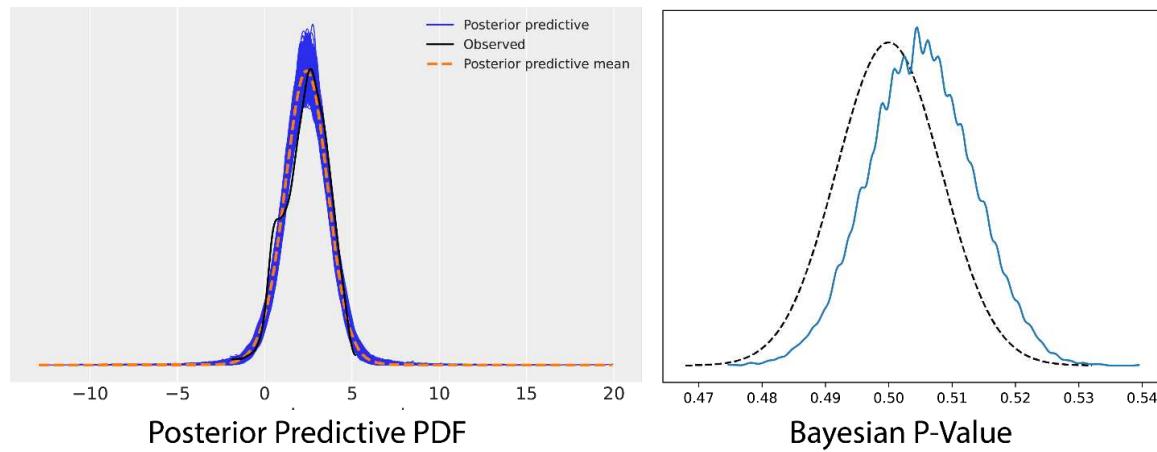


Figure S5: Posterior predictive checks for the Bayesian hierarchical multilinear regression models. Strong overlap of posterior predictive distribution with observed density estimates and p-values near 0.50 indicate model was well fit to observed data.

Fig S6

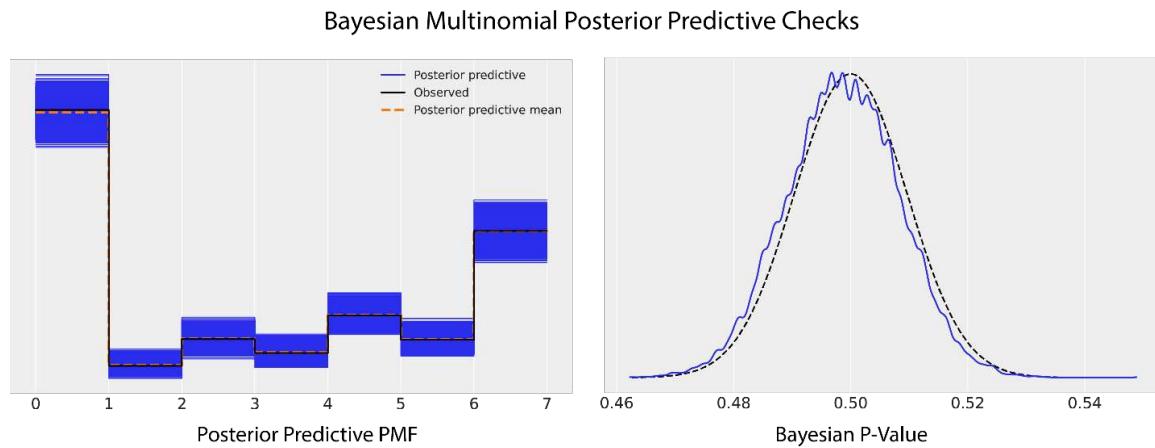


Figure S6: Posterior predictive checks for the Bayesian multinomial regression models. Strong overlap of posterior predictive distribution with observed probability mass estimates and p-values near 0.50 indicate model was well fit to observed data.

Fig S7

Bayesian Hierarchical Multilinear Regression Hyperprior Traceplots

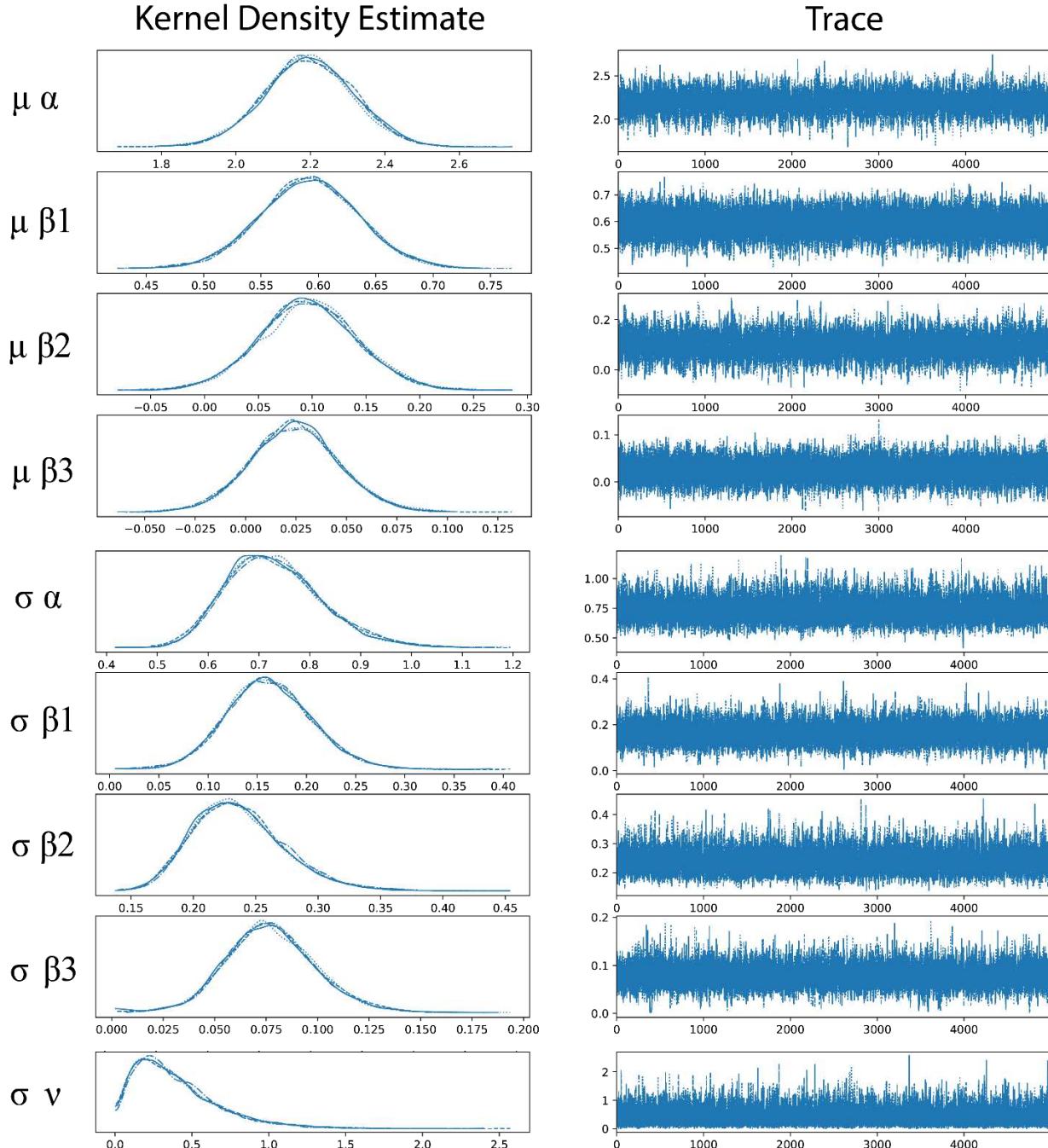


Figure S7: Traceplots and kernel density estimates for hyperpriors of the Bayesian hierarchical multilinear regression model.

Fig S8

Bayesian Hierarchical Multilinear Regression Posterior Traceplots

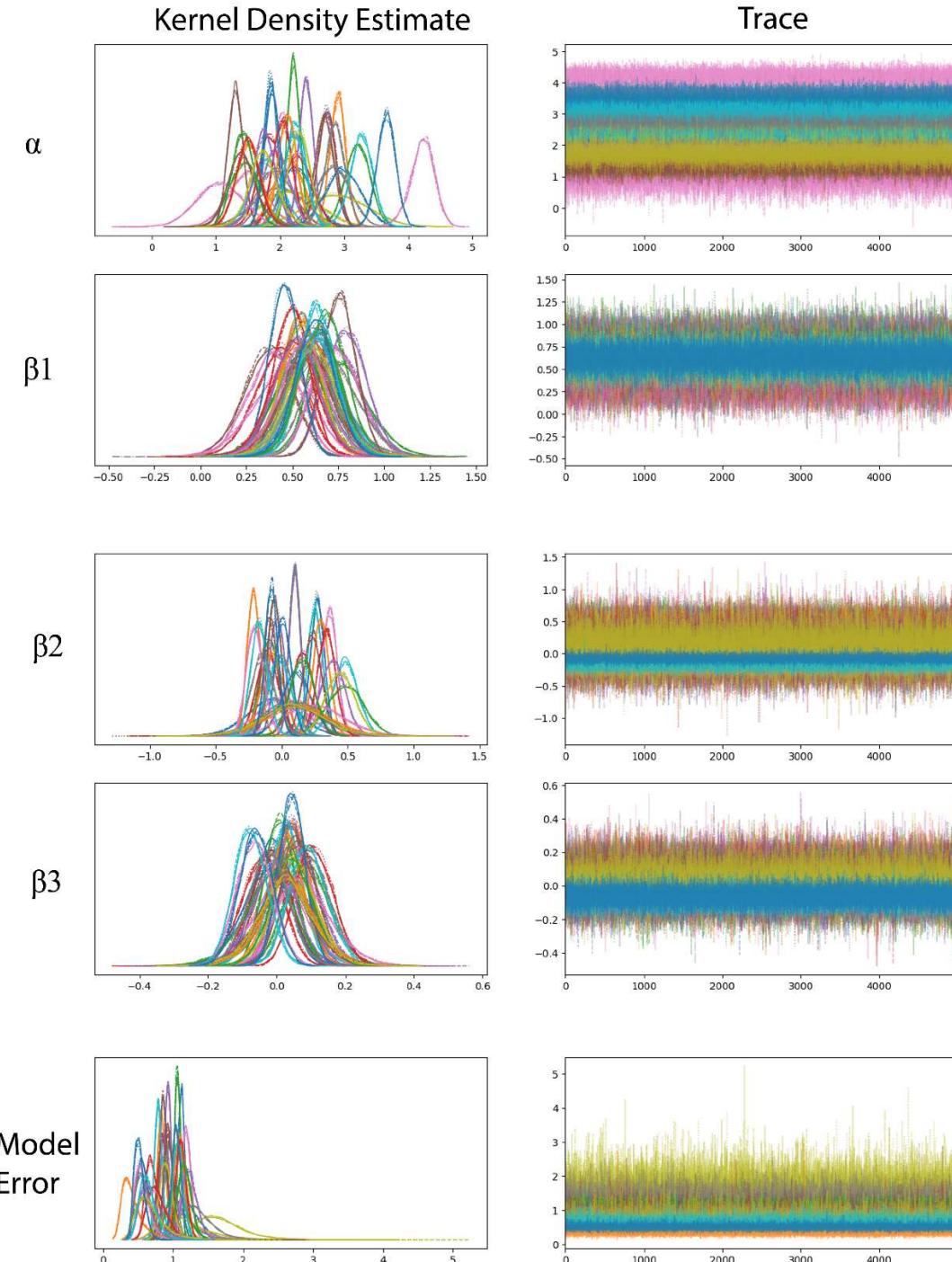


Figure S8: Traceplots and kernel density estimates for posteriors of the Bayesian hierarchical multilinear regression model. Model is partially pooled, with each color representing estimation of the parameter for a given neuron on a given site.

Fig S9

Bayesian Multinomial Regression Posterior Traceplots

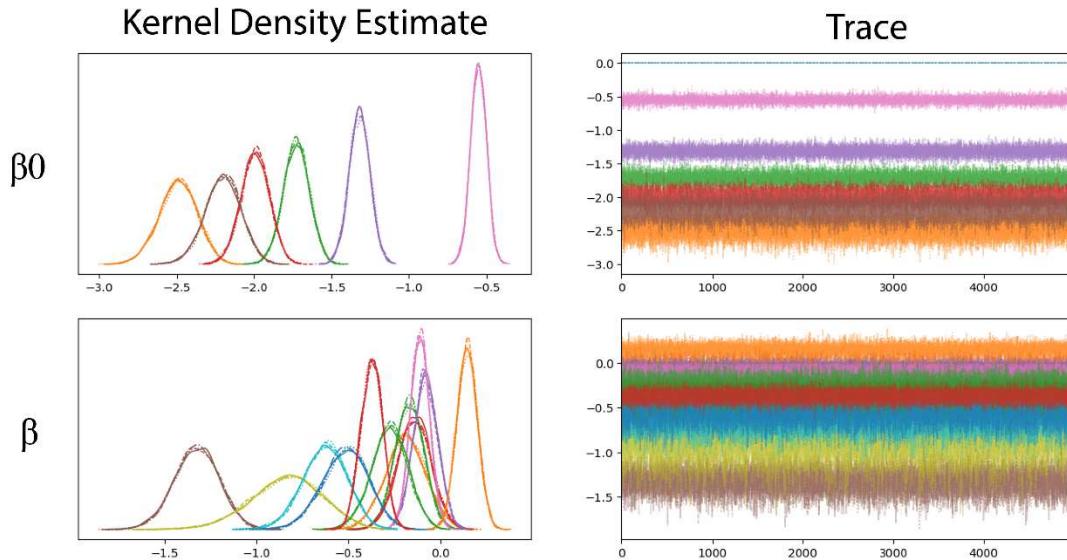


Figure S9: Traceplots and kernel density estimates for posteriors of the Bayesian multinomial regression model. Each color represents estimation of the parameter for a given firing class. As β was cast to encapsulate regression coefficients for both laser energy and ISI (see model description), both coefficients are presented on the same kernel density and trace plot.

Fig S10

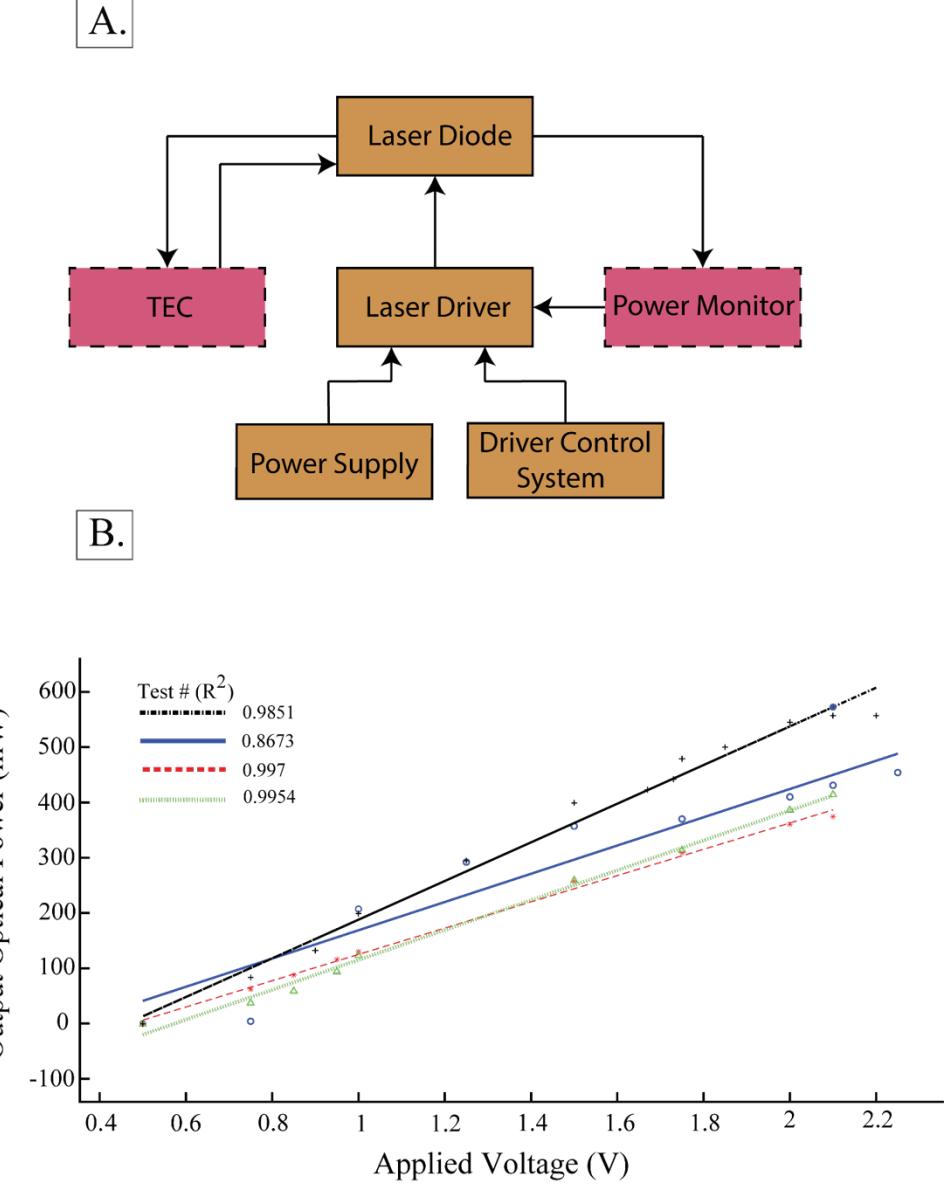


Figure S10: INS laser system description and validation. A.) Block diagram detailing system composition. Boxes colored gold consist of required hardware necessary for laser operation. Boxes colored pink with dotted lines are optional, but strongly suggested control modules to accompany primary system design. B.) Measured output optical power in response to open loop application of voltage pulses to the laser driver shows strong output linearity with respect to applied modulation voltage. Four calibration curves taken over the span of a year show the need for routine calibration and/or the use of a power control system in closed loop operation. N.B. Applied voltage refers to the voltage applied from laser control hardware, not the voltage at the laser diode. In our case, control voltages were generated from a TDT RZ-2 analog output.

Fig S11

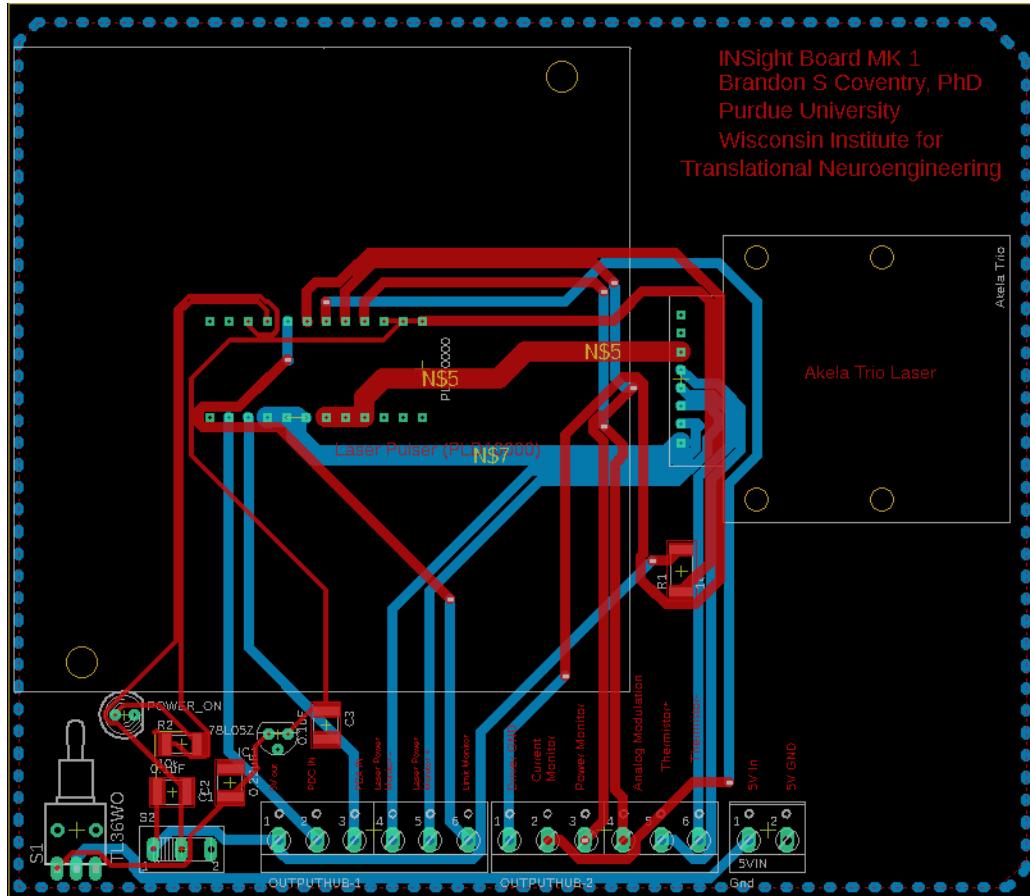


Figure S11: Example laser driver and diode printed circuit board interface. Ground layers have been removed for image clarity. Pads associated with the Akela Trio laser diode should be populated with pogo pins and secured by screwing in the diode through the predrilled screw holes. All Gerber files are available at <https://github.com/bscoventry/INSight>.

Fig S12

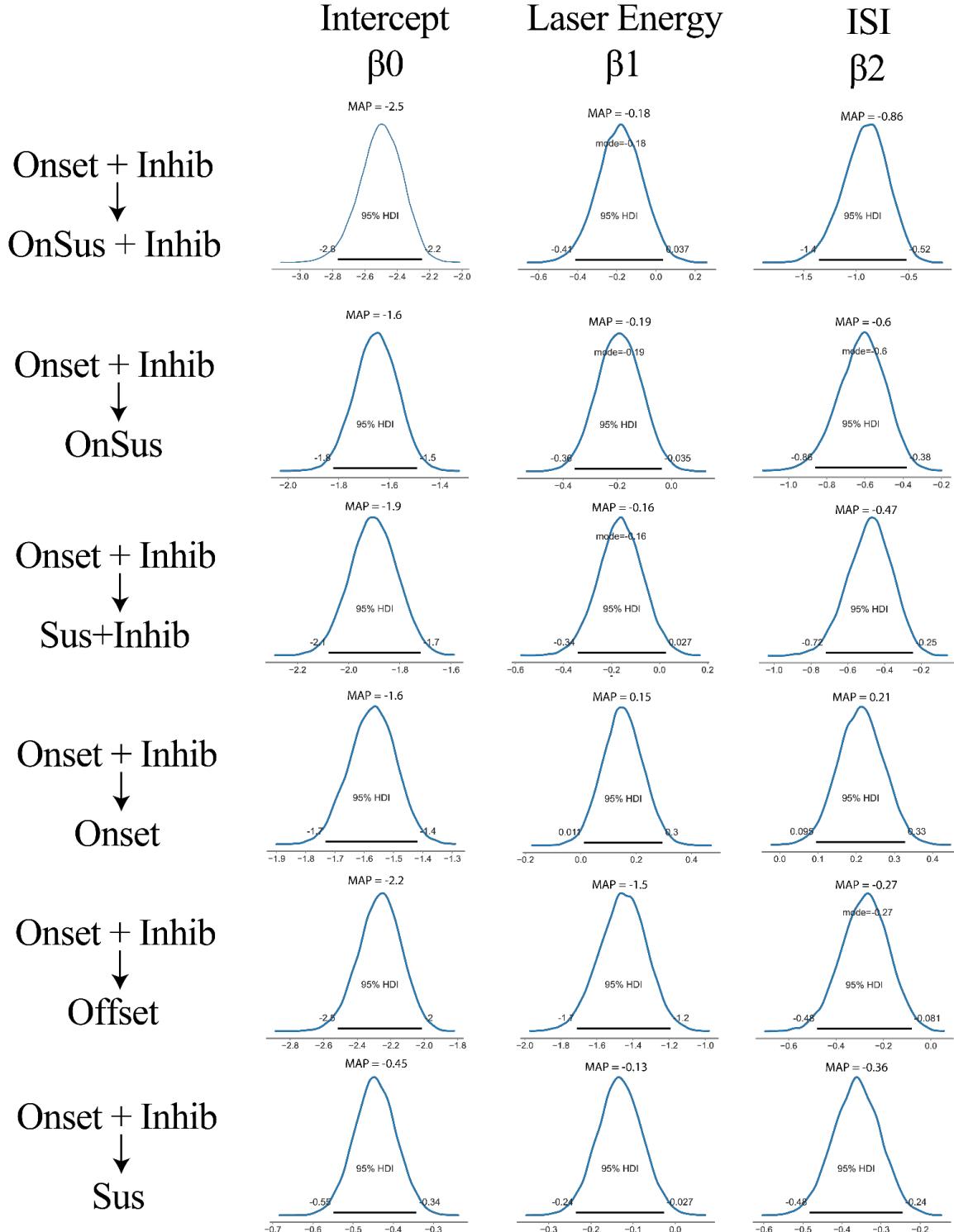


Figure S12: Posterior distributions of multinomial regression parameters suggest that evoked cortical firing classes are partly influenced by stimulation parameters. The most populous class onset+inhib was chosen for the reference class. Class membership changes resulting from changes in laser parameters was considered significant if 95% HDI did not overlap 0. Movement from membership of onset+inhib to onset arose from increasing laser energy and ISI. Movement from onset+inhib to onset-sustained resulted from decreased laser energy and decreased ISIs while movement of onset+inhib to onset-sustained+inhib was due only to decreases in ISI. Likewise, movement from onset+inhib to sustained firing resulted from slight decreases in applied laser energy but larger decreases in ISI while movement towards sustained+inhibition was marked by larger decreases in ISI. Finally movement to offset responses was marked by larger decreases in laser energy and smaller decreases in laser pulse ISI. This data taken together suggests a complex interplay between stimulation parameters and native cellular biophysics.

Fig S13

Sample Trial Evolutions in Spiker-Net

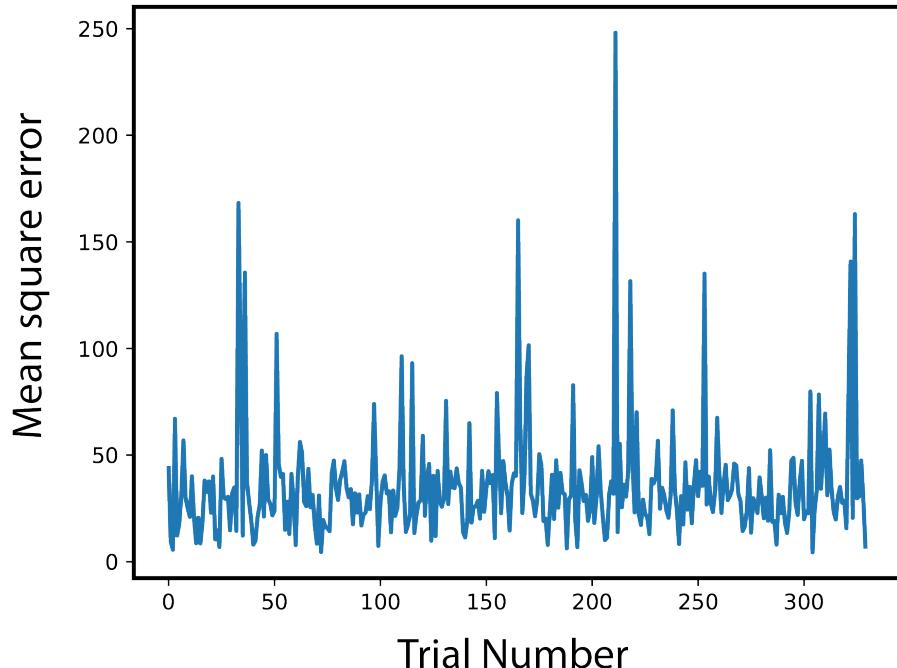
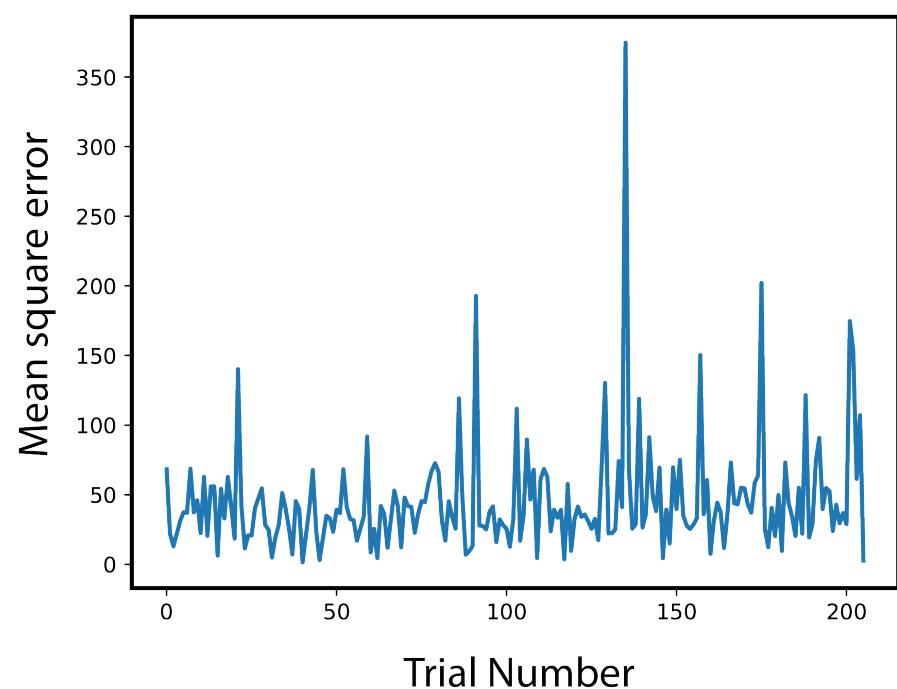


Figure S13: Plotting SpikerNet mean-square error during training reveals searching and targeting behavior, with periods marked by large mean-square errors indicative of algorithmic searching behavior followed by targeting optimal stimuli as evidenced by low mean-square error.

6. Software and Data Repositories

6.1 Dataset S1

Datasets can be found in the following open science framework repository:

https://osf.io/w4ufh/?view_only=7b4a9a0b1669486b81ea7c10139f252b

6.2 Software S1

Analysis programs can be found at the following github repository:

<https://github.com/bscopyntry/OpticalTCNeuromodulation>

INSight design files and software can be found at the following github repository:

<https://github.com/bscopyntry/INSight>

7. SI References

1. J. K. Kruschke, Bayesian Analysis Reporting Guidelines. *Nat Hum Behav* **5**, 1282–1291 (2021).
2. J. Salvatier, T. V. Wiecki, C. Fonnesbeck, Probabilistic programming in Python using PyMC3. *PeerJ Computer Science* **2**, e55 (2016).
3. R. E. Kass, V. rie Ventura, C. Cai, Statistical smoothing of neuronal data. *Network: Comput. Neural Syst.* **14**, 5–15 (2003).
4. E. L. Bartlett, “The Medical Geniculate Body” in *Translational Perspectives in Auditory Neuroscience: Normal Aspects of Hearing*, 1st Ed., (Plural Publishing, 2012).
5. E. L. Bartlett, The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. *Brain and Language* **126**, 29–48 (2013).
6. E. L. Bartlett, X. Wang, Neural Representations of Temporally Modulated Signals in the Auditory Thalamus of Awake Primates. *Journal of Neurophysiology* **97**, 1005–1017 (2007).
7. E. L. Bartlett, X. Wang, Correlation of neural response properties with auditory thalamus subdivisions in the awake marmoset. *J Neurophysiol* **105**, 2647–2667 (2011).
8. Y. Venkataraman, E. L. Bartlett, Postnatal development of auditory central evoked responses and thalamic cellular properties. *Developmental Neurobiology* **74**, 541–555 (2014).
9. R. S. Verner, M. I. Banks, E. L. Bartlett, Global State Changes Induce Non-reciprocal Reduction of Mutual Information in the Thalamocortical Network. *BioRxiv* [Preprint] (2017) <https://doi.org/https://doi.org/10.1101/213272>.
10. X. Wang, T. Lu, D. Bendor, E. Bartlett, Neural coding of temporal information in auditory thalamus and cortex. *Neuroscience* **154**, 294–303 (2008).
11. B. S. Coventry, J. T. Sick, T. M. Talavage, K. M. Stantz, E. L. Bartlett, Short-wave Infrared Neural Stimulation Drives Graded Sciatic Nerve Activation Across A Continuum of Wavelengths in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), (IEEE, 2020) <https://doi.org/10.1109/EMBC44109.2020.9176177>.

12. B. S. Coventry, E. L. Bartlett, Closed-Loop Reinforcement Learning Based Deep Brain Stimulation Using SpikerNet: A Computational Model in 11th International IEEE EMBS Conference on Neural Engineering, (IEEE, 2023).
<https://doi.org/10.1109/NER52421.2023.10123797>
13. A. Gelman, *et al.*, *Bayesian Data Analysis*, 3rd Ed. (Chapman and Hall/CRC, 2021).
14. J. K. Kruschke, Bayesian Assessment of Null Values Via Parameter Estimation and Model Comparison. *Perspectives on Psychological Science* **6**, 299–312 (2011).
15. J. K. Kruschke, *Doing Bayesian Data Analysis: A tutorial with R, JAGS, and stan*, 2nd Ed. (Academic Press, 2014).
16. A. Gelman, J. Hwang, A. Vehtari, Understanding predictive information criteria for Bayesian models. *Stat Comput* **24**, 997–1016 (2014).
17. A. Vehtari, A. Gelman, J. Gabry, Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. *Stat Comput* **27**, 1413–1432 (2017).
18. M. D. Hoffman, A. Gelman, The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. ArXiv (2011) <https://doi.org/10.48550/ARXIV.1111.4246> (July 26, 2023).
19. M. Betancourt, A Conceptual Introduction to Hamiltonian Monte Carlo. ArXiv (2017) <https://doi.org/10.48550/ARXIV.1701.02434> (July 26, 2023).
20. A. Gelman, D. B. Rubin, Inference from Iterative Simulation Using Multiple Sequences. *Statistical Science* **7**, 457–472 (1992).
21. A. Abdo, M. Sahin, NIR light penetration depth in the rat peripheral nerve and brain cortex in *Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings*, (2007), pp. 1723–1725.
22. A. Abdo, A. Ersen, M. Sahin, Near-infrared light penetration profile in the rodent brain. *Journal of biomedical optics* **18**, 075001 (2013).
23. A. D. Izzo, *et al.*, Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth. *Biophysical journal* **94**, 3159–66 (2008).