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Abstract 50 
Deep brain stimulation (DBS) is a powerful clinical tool for the treatment of circuitopathy-related 51 
neurological and psychiatric diseases and disorders such as Parkinson’s disease and obsessive-52 
compulsive disorder. Electrically-mediated DBS, however, is limited by the spread of stimulus 53 
currents into tissue unrelated to disease course and treatment, potentially causing undesirable 54 
patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical 55 
neuromodulation technique that uses near to mid-infrared light to drive graded excitatory and 56 
inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS 57 
paradigm. INS has been shown to provide spatially constrained responses in cortical neurons 58 
and, unlike other optical techniques, does not require genetic modification of the neural target. In 59 
this study, we show that INS produces graded, biophysically relevant single-unit responses with 60 
robust information transfer in thalamocortical circuits. Importantly, we show that cortical spread of 61 
activation from thalamic INS produces more spatially constrained response profiles than 62 
conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep 63 
reinforcement learning for closed-loop control of thalamocortical circuits, creating real-time 64 
representations of stimulus-response dynamics while driving cortical neurons to precise firing 65 
patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm 66 
for both open and closed-loop DBS. 67 
 68 
Significance Statement 69 
Despite initial clinical successes, electrical deep brain stimulation (DBS) is fraught with off-target 70 
current spillover into tissue outside of therapeutic targets, giving rise to patient side effects and 71 
the reduction of therapeutic efficacy. In this study, we validate infrared neural stimulation (INS) as 72 
a spatially constrained optical DBS paradigm by quantifying dose-response profiles and robust 73 
information transfer through INS driven thalamocortical circuits. We show that INS elicits 74 
biophysically relevant responses which are spatially constrained compared to conventional 75 
electrical stimulation, potentially reducing off-target side effects. Leveraging the spatial specificity 76 
of thalamocortical INS, we used deep reinforcement learning to close the loop on thalamocortical 77 
INS and showed the ability to drive subject-specific thalamocortical circuits to target response 78 
states in real time.  79 
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Main Text 80 
 81 
Introduction 82 
Electrical stimulation of the nervous system has emerged as a potent clinical tool for the 83 
treatment of a wide variety of neurological diseases. Neuromodulation technologies also 84 
represent the fastest-growing medical device market(1). The most prominent of these devices are 85 
cochlear implants (CI), which induce sound percepts in individuals with profound hearing loss, 86 
and deep brain stimulation (DBS), which has proven effective in treating movement-related 87 
symptoms associated with Parkinson’s disease and essential tremor. Additionally, diseases 88 
treated by electrical neuromodulation are expanding, with DBS having recently received an FDA 89 
humanitarian device exemption for the treatment of obsessive-compulsive disorder while also in 90 
clinical trial for major depressive disorder(2), Tourette’s syndrome(3), and epilepsy(4). Peripheral 91 
nerve electrical stimulation technologies are also maturing into viable clinical tools, including 92 
vagus nerve stimulation for the treatment of epilepsy(5) and carotid sinus stimulation for the 93 
treatment of heart disease(6). 94 
 95 
Despite initial clinical success, electrical paradigms of neuromodulation are fraught with 96 
undesirable current spillover into off-target neural circuits(7–11) leading to undesirable side 97 
effects and a reduction in therapeutic efficacy(12–14). The development of focal stimulation 98 
strategies is paramount to more effective clinical stimulation and the improvement of patient side-99 
effect profiles. One such tool is infrared neural stimulation (INS), an optical modality which 100 
stimulates nerves and neurons using near to mid infrared wavelength (700-2000 nm) light(15–101 
18). INS has shown spatially specific recruitment of both peripheral nerves(11, 19, 20) and central 102 
neurons(17, 18). Importantly, INS does not require genetic manipulation necessary for other 103 
optical stimulation methods(21), acting purportedly on intrinsic cell biophysics(22). INS also 104 
shows promising safety profiles for translation to human patients(23–25) and has found use in 105 
diagnostic targeting of human nerve roots in surgical resection procedures(26). While INS is a 106 
promising modality for neuromodulation therapies, progress towards optically-based DBS (oDBS) 107 
is hindered by a lack of understanding of INS entrainment of thalamocortical and sub-108 
thalamocortical networks; the understanding of which is necessary for treating “circuitopathies” 109 
associated with diseases treated by DBS(27–32). Specifically, there is a dearth of information 110 
related to dose-response dependencies of INS laser parameters in circuital recruitment and the 111 
resulting spread of activation across neural circuits.  112 
 113 
In this study, we validate INS as a potent oDBS paradigm by quantifying INS dose-response 114 
profiles from varying laser parameters, INS driven information transmission across the 115 
thalamocortical synapse, and spatial specificity of network INS in the rat auditory thalamocortical 116 
model. Our experiments show strong evoked firing rate dependence on applied laser energy with 117 
increases in thalamocortical information transfer with increased laser energy. We further show 118 
that INS evokes cortical activity that maintains typical thalamocortical response profiles with 119 
constrained spread of activation well below the spread of electrical stimulation. Owing to the 120 
targeted neural activation of INS, we engineered a closed-loop control approach called SpikerNet, 121 
a deep reinforcement learning (RL) based reactive DBS system(33, 34). Closed-loop DBS utilizes 122 
feedback from biomarkers of disease to apply stimulation only when needed(35) and has shown 123 
advantageous in therapeutic efficacy and battery life(36). However, the relatively simple control 124 
algorithms of conventional closed-loop DBS limit the ability to capture complex dynamics of 125 
neural activity related to disease which can cause interference with normal activity, such as 126 
interruption of volitional movement(37) which is further exacerbated by large scale activation from 127 
electrical stimulation(38). More complex control methods are advantageous in accounting for 128 
brain wide state changes, such as sleep wake cycles(39). We therefore utilized deep RLs ability 129 
to develop statistical mappings of systems in response to state perturbations in order to drive 130 
cortical activity to desired firing states.  131 
 132 
Results 133 
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 134 
Implanting Stimulation and Recording Devices 135 
The auditory pathway has a rich history of neuromodulation, with electrical stimulation of the 136 
cochlea resulting in cochlear implants, one of the first and most successful clinical 137 
neuromodulation devices(40). Other clinical auditory devices include the auditory brainstem and 138 
midbrain implants(41, 42) with electrical neuromodulation across all auditory nuclei(43–45) are 139 
being investigated for clinical viability. Auditory thalamocortical circuits are particularly suited for 140 
study because the regional architecture of the auditory thalamus permits stimulation of both core 141 
and belt pathways in rodents, primates(46), and humans(47) using a single dorsoventrally 142 
oriented electrode. This enables testing stimulation strategies simultaneously in both tonotopic 143 
core pathways and higher-order belt pathways, along with the ability to rapidly test circuit function 144 
with minimally invasive scalp evoked auditory potentials(48–50) before and after device 145 
implantation. To facilitate understanding of dose-response effects of network function elicited 146 
through INS, rats were implanted with fiber optic optrodes into the medial geniculate body of the 147 
auditory thalamus (MGB). The ventral and dorsal divisions of the MGB have primary excitatory 148 
afferents to layer 3/4 of auditory cortex(51) (Fig 1A,C). Sixteen channel planar arrays were 149 
implanted into layer 3/4 of primary auditory cortex (Fig 1A), and all MGB subdivisions have at 150 
least some projection to primary auditory cortex(52). Postmortem histological analyses confirmed 151 
placement of optrodes into the MGB (Fig 1D). 152 
 153 
Development of INS into a clinically viable neuromodulation system has been limited by a lack of 154 
understanding of underlying stimulation mechanisms and stimulus to response mappings. A 155 
confounding factor is that commercial INS systems are not widely available and are prohibitively 156 
expensive or removed from the market by product recalls (53). To facilitate continued INS 157 
studies, we developed INSight, a low-cost open source INS and optical stimulation system which 158 
uses off the shelf components for ease of building and modification. Importantly, INSight can 159 
integrate into established recording systems. Materials, build instructions, and calibrations are 160 
found in the supplementary material (Fig S10-11) and the INSight Github repository: 161 
https://github.com/bscoventry/INSight. 162 
  163 
Changes in neural activity due to presence of devices in the brain 164 
Implantation of recording and stimulation devices present a critical assault to normal neural 165 
function(54, 55). Therefore, we first considered the effect of the presence of stimulation and 166 
recording devices in brain activity through auditory evoked mid-latency responses (MLRs) in a 167 
subset of rats (n=6). MLRs stimuli consisted of evoked responses to auditory click trains with 168 
recordings taking place 24 hours before and 72 hours after implantation procedures. MLRs report 169 
auditory generators in thalamus and cortex and serve as a read out of neural ensemble 170 
function(56–59). We utilized a 4 positive channel EEG recording configuration to allow for 171 
responses of thalamocortical generators and from rostral brainstem regions(48)(Fig 1A Right) on 172 
each hemisphere and we analyzed ratios of post-pre positive peaks 1 and 2 (P1,P2) 173 
corresponding to brainstem and cortical generators, respectively and negative peak 1 (N1 or N1-174 
P2) corresponding to thalamic generators (Fig 1B). While there was some variability in wave 175 
amplitudes and latencies, comparisons of evoked activity resulting from click-train auditory stimuli 176 
at 65 and 85 dB-SPL (Fig 1E) showed no significant difference in response (p>0.05, Wilcoxon 177 
sign-rank) suggesting that presence of stimulation optrodes and recording electrodes did not 178 
significantly damage or alter thalamic and cortical activity at the onset of INS experiments. It 179 
should be noted that post-surgical recordings were performed 72 hours after surgery, well within 180 
the device heal-in window(60) with further neural reorganization likely to occur throughout the 181 
duration of the study. 182 
 183 
Dose-response relationships of cortical neuron response from thalamic INS 184 
We next examined the interplay of INS laser energy and interstimulus pulse intervals (ISI) on 185 
evoked cortical single unit firing rates. Excitatory peristimulus time histograms (PSTHs) of single 186 
units which were responsive to INS stimuli (Z-score increase ≥ 7.84 from basal firing rate, 끫殺 <187 
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0.00001) were analyzed. Units showing inhibitory responses or no change from basal firing rates 188 
were excluded from the present study. While INS dose-response relationships have been studied 189 
in cortex(17, 18), they remain unstudied across thalamocortical networks. Dose-response profiles 190 
were modeled as a Bayesian linear random effects regression model, allowing us to account for 191 
hierarchical structure of data consisting of variability within and between subjects across 192 
implantation lifetimes. Bayesian inference is particularly powerful for this model as it provides 193 
complete quantification of posterior distributions over all regression parameters and allows for 194 
direct uncertainty quantification of parameters. Inference was performed directly on observed 195 
data posterior distributions. As Bayesian methods require specification of prior probability 196 
distributions for inference, broad, non-informative normal prior distributions were used in 197 
inference models. Prior sensitivity analyses were performed in order to ensure prior distributions 198 
did not unduly influence inference (Fig S5, Table S2). Dose-response regression models took the 199 
form of  200 
 201 

max(끫歲끫歲) =  끫毸끫殬 + 끫毺1,끫殬 ∗ 끫歰 + 끫毺2,끫殬 ∗ 끫歸끫歸끫歸 +  끫毺3,끫殬 ∗ (끫歰 ∗ 끫歸끫歸끫歸) + 끫欬끫殬 202 

 203 
with response variable FR representing the natural log transformed evoked firing rate and 204 
independent variables E and ISI being the natural log transformed energy per pulse and inter-205 
stimulus interval respectively. Natural log transformations of response and independent variables 206 
were chosen as model comparisons and sensitivity analyses dictated that these models best fit 207 
observed data (Fig S5). An error term of 끫欬 was added for uncertainty quantification. Full model 208 
descriptions and sensitivity analyses are provided in SI:Bayesian model description (Fig S1-S9). 209 
Regression parameters were summarized by their maximum a priori estimate (ie most probable 210 
value) with independent variables considered significant contributors to response if the highest 211 
density interval (HDI) of the parameter distribution corresponding to the 95% most probable 212 
parameter values did not overlap 0, following Bayesian inference convention(61). Regression 213 
models (Fig 2B) show that INS responsive units had a basal firing rate greater than 0 (끫毸 MAP =214 
2.2 , 95% HDI exludes 0) with max evoked firing rates depending significantly on applied laser 215 
energy (끫毺1, MAP = 0.58, 95% HDI excludes 0) but not on ISI (끫毺2, MAP = -0.055) or energy-ISI 216 
interactions (끫毺3, MAP = 0.028). However, the relatively wide spread of the ISI parameter 끫毺2 217 
across 0 suggests a potential critical point in ISI timing past which thalamocortical neurons are 218 
unable to entrain to individual pulses and instead integrate INS pulses into a single network 219 
event.  220 
 221 
Cortical encoding of INS stimuli 222 
We next used Shannon mutual information measures [끫歸(끫歲; 끫歸끫毊),끫歰끫歰. 2] to assess and quantify 223 
information carried by evoked spike-trains in response to INS stimulation energy. Mutual 224 
information measures the reduction of uncertainty in neural response given knowledge of the 225 
stimulus. Higher values of information represent more unique and separable encoding of neural 226 
response distributions for each stimulus. Stimulus-information profiles were calculated from 5 ms 227 
binned estimates of response probability mass distributions during INS conditioned on applied 228 
energy. Bias in mutual information resulting from incomplete knowledge of population response 229 
distributions was estimated and corrected using the methods of quadratic extrapolation(62, 63).  230 
We found that increasing INS energy per pulse resulted in increases in information contained in 231 
response spike trains (Fig 2.C). Increases in information are also positively correlated with 232 
increased INS energy per pulse showing strong dependence of evoked PSTHs on laser energy, 233 
particularly > 0.8 mJ/pulse (Fig. 2C). 234 
 235 
Auditory thalamocortical circuits perform complex transformations of inputs at the auditory 236 
thalamocortical synapse(64) with cortical neurons employing differential coding strategies across 237 
local heterogeneous cells and circuits(65, 66). Therefore, it is imperative that any stimulation 238 
modality be able to drive naturalistic response profiles. INS-evoked PSTHs were classified into 239 
onset, sustained, onset-sustained, and offset categories representative of the known range of 240 
possible responses(67) (Fig 3A). PSTHs showing post-stimulation drop of 95% of basal activity 241 
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were assigned an “inhibitory” flag corresponding to presence of post stimulus inhibition. 242 
Classification results are summarized in Table 1. Onset responses were the most represented 243 
class (Onset+Inhibition: 49.93%, Onset: 12.04%) followed by sustained (Sustained: 18.78%, 244 
Sustained+Inhibition:4.51%) and onset-sustained classes (Onset-sustained: 6.05%, Onset-245 
sustained+inhibition: 2.82%). Offset responses were the rarest observed class (5.87%). 246 
Observed distributions of firing classes are supported by studies of auditory evoked cortical unit 247 
responses(67), suggesting that INS drive naturalistic thalamocortical encodings.  248 
 249 
While these response states were categorically divided into possible response classes(67), these 250 
categories are not meant to suggest all responses fit neatly into well-defined clusters. Principal 251 
components analysis (PCA) dimensionality reduction was performed on response profiles to 252 
assess the extent to which responses fall on a continuum. Dimensionality reduction into the top 3 253 
components of largest variance (65.11% variance explained) shows that while responses do form 254 
some identifiable clusters, responses fall on a continuum of responses within a given cluster, with 255 
large overlap between clusters (Fig 3B). Bayesian multinominal regression models 256 
(Supplementary Methods) were utilized to infer whether firing class membership was solely a 257 
function of INS stimulation parameters. Multinominal regression compares log odds of a PSTH 258 
belonging to a given category against a reference category. The most populous onset+inhibition 259 
category was chosen as reference. Models suggest that class membership is a function of INS 260 
energy and ISI with movement from onset+inhibition to onset resulting from increases in energy 261 
and ISI, movement to onset-sustained resulting from decreases in energy and ISI, movement to 262 
onset-sustained+inhibition resulting from slight decreases in energy but large decreases in ISI, 263 
movement to sustained+inhibition resulting from larger decreases in ISI, and movement to offset 264 
class resulting from large decreases in applied energy and smaller decreases in ISI (Fig S12). 265 
These models suggest an interplay between INS stimulation parameters, network dynamics, and 266 
intrinsic cellular biophysics determines response profile class.  267 
 268 
INS induces spatially constrained thalamocortical recruitment 269 
 270 
We next investigated the spatial selectivity of thalamocortical INS using joint peristimulus time 271 
histogram (JPSTH) analyses. JPSTHs allow for the assessment of the time-resolved correlation 272 
between pairs of neurons in response to INS stimuli. We first assessed stimulation induced 273 
correlations of activity related to the initial stimulation event (Fig 4A Left). We next calculated 274 
JPSTHs representing functional connectivity between compared neurons when direct stimulus 275 
effects are removed (Fig 4A Middle). Consistent spatial geometry of planar recording arrays 276 
allowed for assessment of the functional connectivity of responses as a function of distance (Fig 277 
4A right). The maximum spread of correlated activity across all energies was calculated to obtain 278 
an upper bound of lateral stimulation spread. Previous electrical mapping studies in rodent 279 
auditory thalamocortical areas using linear, Michigan style arrays in nearly all cases showed 280 
electrical stimulation spread across the entire extent of recording arrays, up to 1900 끫欎끫欎 (68, 69). 281 
INS correlation analysis shows all responses were constrained to ≤ 1500 끫欎끫欎, with 90% of 282 
responses constrained to ≤ 1000 끫欎끫欎 (Fig 4B, left). We next recalculated maximal spread for 283 
active units at stimulation intensities < 1mJ, corresponding to an inflection point of increased 284 
stimulus transmitted information (Fig 2C), to assess if maximum spatial spread is modulated by 285 
INS intensity. At lower energy stimulation, maximal spatial spread was limited to < 1250 끫欎끫欎, with 286 
90% of responses constrained to ≤ 1000 끫欎끫欎 (Fig 4B, right), including numerous instances of 287 
moderate correlation even ≤ 500 끫欎끫欎. These data suggest maximal spreads of INS-induced 288 
activity is significantly less than electrical stimulation. Spread of activation after accounting for 289 
direct co-stimulation induced by INS shows similar results, with spreads of correlated activity 290 
limited to 1250 끫欎끫欎 across all energy levels and 1000 끫欎끫欎 for energies < 1mJ (Fig 4C). 291 
 292 
Closed-loop control through deep reinforcement learning 293 
After observation of spatial selectivity in thalamocortical INS, we sought to control small neural 294 
populations through closed-loop feedback. Current adaptive DBS systems used in Parkinson’s 295 
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disease use relatively simple control algorithms centered around reducing β band biomarker 296 
correlates of symptomology using single or dual threshold “thermostatic” control(37, 70, 71) which 297 
may interfere with activities such as volitional movement(37) and may potentially occlude 298 
oscillatory neural dynamics unrelated to disease(34). Control of smaller populations of neurons 299 
relevant to disease with control algorithms that encode subject specific firing dynamics may 300 
provide targeted treatment and a reduction in off-target side effects. We utilized deep 301 
reinforcement learning (RL) to learn complex stimulus-response dynamics in real time while 302 
finding stimuli to reach a desired firing states. State, in this study, refers to discrete classes of 303 
dynamical activity with stereotyped spontaneous and stimulus evoked activity(72). RL consists of 304 
a computational agent which takes actions in response to observations of a given neural state 305 
and learns which actions to take to maximize current and future rewards. In our deep RL 306 
paradigm, termed SpikerNet, the RL agent can take actions from an action space consisting of 307 
INS stimulus parameters of laser energy, ISI, and number of pulses which are constrained to 308 
consensus safe energy levels. Stimuli are applied in response to observation of neuron PSTHs 309 
from recording electrodes. A reward was then calculated by quantifying mean-squared error 310 
distance between evoked firing and target PSTHs. Action policies and state response 311 
relationships are then learned using actor-critic deep neural networks, with the actor network 312 
encoding actions to take in each environment and the critic learning present and future rewards of 313 
taking a given action (Fig 5A, S13).  314 
 315 
We have previously shown in computational models that SpikerNet is able to quickly learn 316 
stimulus trajectories to achieve desired firing patterns(34). SpikerNet’s ability to achieve desired 317 
firing patterns in vivo was tested by sampling from distributions of previously evoked responses to 318 
create novel, previously unobserved firing response target states for the recorded unit. We 319 
determined SpikerNet was able to find target firing states precisely (Fig 5B, mean-squared error = 320 
3.872) within a limited number of search iterations (Fig 5C) as predicted in our computational 321 
studies(34). It should be noted that search dynamics are intrinsically stochastic and unique to a 322 
given animal, target response, and algorithm seeding. Search trajectories during training stages 323 
show rapid discovery of target responses indicated by low mean square error followed by 324 
exploratory behavior away from the target(Fig S13), characteristic of RL sampling of action-325 
response distributions(73) and necessary to develop a full stimulus to response mapping. We 326 
also found that SpikerNet exploration generated a wide variety of firing classes during search that 327 
were not identified during our standard intensity and ISI stimulation protocol, including onset-328 
inhibition responses (Fig 5D, trial 0,2), sustained activity followed by burst offset response (Fig 329 
5D, trial 12), and multi-peaked sustained responses (Fig 5D, trial 22). The ability to create and 330 
observe such diverse firing patterns is critical to learning stimuli to generate any firing state as 331 
well as relearn stimulus-neural dynamics as responses change due to age of recording and 332 
stimulation devices and neural adaptation over time. 333 
 334 
Discussion  335 
 336 
In this study, we demonstrated INS as a viable oDBS method for treatment of circuitopathy-337 
related neurological diseases and disorders. We quantified INS dose-response profiles and 338 
stimulus-response information transformations while also showing the ability of INS to drive 339 
biophysically relevant cortical responses at safe energy levels. We further show that INS provides 340 
spatially specific activation in thalamocortical networks with spread well below conventional 341 
electrical stimulation. Finally, we leverage the spatial specificity of INS to derive a deep 342 
reinforcement learning based closed-loop optical control system that can drive neural responses 343 
to target states.  344 
 345 
INS drives physiological thalamocortical responses  346 
 347 
While many previous INS studies have explored the role of wavelength dependence on INS 348 
activation(16, 74, 75), dose-response relationships have largely not been studied. Activation 349 
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profiles are critical for therapeutic dosing of neuromodulation therapies to titrate efficacious 350 
pulses while minimizing patient discomfort from overdriving neurons. Dose-response curves show 351 
exponential increases in maximum firing rates in response to increased laser energy with some 352 
evidence that extremes in interstimulus intervals further shape neural response PSTHs through 353 
integration of INS pulses close in time (Fig 1A,B). One caveat to our study is that only excitatory 354 
responses were considered. It has been observed that continuous pulse-width or high frequency 355 
(≥ 200 끫歶끫歶) INS stimulation can drive selective inhibitory responses in nerve through introduction 356 
of a thermal block(76–78), though this type of stimulation can produce longer lasting mixed 357 
excitatory and inhibitory responses, with a higher proportion of excitatory responses for lower 358 
stimulus energies(79). An understanding of joint excitatory and inhibitory effects of circuital INS 359 
would potentially allow for bidirectional control of local microcircuits and is planned for further 360 
study. 361 
 362 
INS of thalamocortical neurons produced a variety of short-latency peristimulus responses in 363 
auditory cortex neurons, comparable to sound driven auditory cortex responses across 364 
species(67, 80–83). These results suggest that thalamocortical INS stimulation largely preserves 365 
natural network activation, including sustained responses where the response outlasts the 366 
stimulus as well as inhibitory responses. Our INS stimulation parameters differed from previous 367 
INS studies in somatosensory cortex and more closely resemble MGB firing rates(46, 84). There 368 
is evidence that DBS imparts its therapeutic effect partially through activation of motor cortex from 369 
antidromic activation of subthalamic nucleus collaterals(85). While our study can’t strictly rule in 370 
or out similar antidromic activation of thalamocortical targets, given that MGV largely sends 371 
afferent projections to layer III/IV of A1, INS activation in the present study is likely driven by 372 
orthodromic stimulation. 373 
 374 
Spatial selectivity of thalamocortical INS 375 
 376 
A oft-touted advantage of INS for cochlear/peripheral (11, 20, 26) and cortical neuron(18) 377 
stimulation is constrained stimulation. However, there historically has been a dearth in 378 
understanding of network responses and spread of activation through synapses elicited from INS. 379 
Previous studies have often focused on intrinsic optical and calcium imaging recording of cortical 380 
cells from direct INS stimulation(17, 18, 86). Here we show that INS drives spiking responses 381 
across the thalamocortical synapse within a constrained region that is significantly smaller than 382 
the region affected by equivalent electrical stimulation. At low INS stimulation energies, activation 383 
could be ≤ 500 끫欎끫欎, and even at saturating energy levels for firing rates, activation was typically 384 
less than 1500 끫欎끫欎. It is possible that the activation spread at low energies could be even more 385 
restricted, given that we were not able to measure spread of activation in the immediate vicinity of 386 
the implanted optrode and that we did not optimize thalamus/cortex overlap in our implantation. 387 
Both anatomically and electrophysiologically in A1, there are matched reciprocal projections 388 
between the auditory thalamus and cortex(87, 88). Additional mapping during implantation 389 
surgery to identify most effective stimulation sites for a given cortical site may reduce energies 390 
needed or increase informational capacity even further. As hybrid recording electrodes fixed with 391 
optrodes are in use in optogenetic studies, it is feasible to fabricate similar recording arrays with 392 
optics that pass near-infrared stimuli, allowing for the study of joint activation and spread in 393 
thalamus and cortex concurrently. Regardless, our results show finely graded thalamocortical 394 
recruitment, which would potentially reduce off target stimulation side effect profiles in oDBS 395 
applications. Further constrained stimulation could also be set during the programming stage of 396 
an oDBS system, potentially allowing for fine tuning of therapeutic stimulation. 397 
 398 
Clinical viability of INS 399 
 400 
This study lays significant groundwork for the preclinical development of INS for use in a spatially 401 
constrained oDBS system. Furthermore, INS has already shown promise in human nerve 402 
mapping(26) and intracortical microstimulation(89). However, significant hurdles remain for 403 
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translation of INS. Laser parameters necessary for stimulation have high optical energy (1-4 mJ) 404 
requirements, making fully implantable devices technically challenging. Much progress is 405 
currently being made in implantable IR systems that satisfy requirements for stimulation which 406 
could be realizable on implantable pulse generators(90). Safety profiles of INS are also 407 
promising, with tissue ablation thresholds well studied(24–26, 91, 92). While our data suggests 408 
INS drives biophysically relevant responses across a diversity of cell response patterns, disease 409 
models are necessary to fully assess therapeutic potential of INS as a DBS paradigm. The 410 
biophysical mechanisms of INS are still in debate, with transient thermal gradients(93, 94), 411 
transient cellular capacitance changes(95, 96), intracellular calcium cycling(97, 98), intrinsic ion 412 
channel light transduction(22, 99), or combinations thereof suggested as causative mechanisms 413 
of INS. While not directly assessed within this study, observed short-latency, fast-spiking 414 
responses suggest primary ion channel mediation of INS as opposed to slower intracellular 415 
calcium signaling. In vitro whole cell and outside-out patch clamp studies could elucidate the 416 
interplay of the intracellular and membrane bound ion channel sequalae of transient and local 417 
thermodynamic changes. A better understanding of these photon-neuron interactions could give 418 
rise to more efficient stimulation with larger margins of safety for use in clinical settings. 419 
 420 
Closed-loop reinforcement learning based DBS 421 
 422 
Closed-loop DBS provides key advantages over conventional open-loop DBS, including improved 423 
stimulation efficacy, reductions in side-effects, and longer IPG battery life(36, 100). However, 424 
current closed-loop approaches are limited by non-specific activation of neural targets(71) and 425 
relatively simple, threshold-based control algorithms which have difficulty in deciphering 426 
pathologic and non-pathologic neural activity(34, 37). We developed SpikerNet to take advantage 427 
of spatial selectivity found in INS while also allowing for robust learning of complex neural firing 428 
patterns in real-time. An advantage of reinforcement learning over other deep neural network 429 
paradigms is that statistical models of neural firing patterns are learned in situ and are specific to 430 
a subject’s unique neural responses, requiring little training time and not requiring retraining or 431 
recalibration. We show that SpikerNet rapidly finds and fits targeted firing patterns (Fig 5B) with 432 
search behavior that suggests the ability to fit a wide range of possible neural firing patterns (Fig 433 
5C). We have previously shown in computational models that SpikerNet is flexible to drastic 434 
changes in firing patterns(34) suggesting that SpikerNet can adapt to long term changes in neural 435 
environments present in chronic, clinical DBS and can reduce the number of trips to the clinic for 436 
stimulator adjustments. We also observed evidence of SpikerNet finding target responses 437 
through the duration of a subject’s recording period, during which arousal can significantly change 438 
firing responses requiring retuning of stimulus parameters (Fig S13). Taken together, SpikerNet 439 
could serve as a powerful closed-loop DBS paradigm which can learn and adapt to changes in 440 
individual neural responses.  441 
 442 
Deep neural network-based approaches however present a significant challenge for translation, 443 
in that algorithm decisions are typically made through a “black box” and ultimately unobservable 444 
system that may limit guarantees on device efficacy. Reinforcement learning methods however 445 
are advantageous in that the stimulus-response relationships after training can be directly 446 
observed in implanted devices, allowing for better inference on device operation. However, as 447 
stimulation policies are learned using deep neural networks, the salient neural state features 448 
leading to stimulus policy formation is still subject to the blackbox problem. The use of novel small 449 
network RL policy interpretability tools(101) with a posteriori evaluation of trained input/output 450 
responses can allow for a deeper understanding of algorithmic decision making. In this way, we 451 
see SpikerNet as a tool which can be utilized as a “physician in the loop” system, where 452 
SpikerNet can be utilized in concert with a trained DBS technologist to assist in difficulties found 453 
in DBS programming(102) and with physician monitoring during autonomous learning and 454 
stimulation. 455 
 456 
 457 
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Materials and Methods 458 
 459 
All experimental and surgical procedures and protocols were approved by the Institutional Animal 460 
Care and Use Committee (PACUC) of Purdue University (West Lafayette, IN, #120400631) and 461 
in accordance with the guidelines of the American Association for Laboratory Animal Science 462 
(AALAS) and the National Institutes of Health guidelines for animal research. A total of 11 rats 463 
were used in this study. 464 
 465 
Surgical Procedures  466 
Adult Sprague-Dawley rats with weights between 300-400 g (Envigo, Indianapolis IN) were 467 
initially anesthetized in an induction chamber with 5% isoflurane and given a bolus injection of a 468 

ketamine/dexmedetomidine cocktail (70 
끫殴끫殴끫殰끫殴 ,0.2 

끫殴끫殴끫殰끫殴  respectively). Surgical plane of anesthesia was 469 

monitored continuously throughout the procedure by evaluation of toe-pinch reflex. A 470 
preoperative analgesic dose of Buprenorphine (1 mg/kg) was administered 30 minutes prior to 471 
first incision and every 6-12 hours for 72 hours post-surgery. Rats were placed in a stereotaxic 472 
frame secured by hollow ear bars. An initial incision was made down midline with blunt dissection 473 
of periosteum performed to reveal cranial sutures. Three stainless steel bone screws were placed 474 
in the skull to ensure stability of implanted devices and headcap with a fourth titanium bone screw 475 
placed to serve as a ground and reference electrode(103). Right hemisphere temporalis muscle 476 
was gently resected and a 2x2 mm craniectomy was made above auditory cortex (A1) (centered: 477 
-6 AP, -5 ML)(104). Dura was gently resected using a 25G curved needle. A 2mmx2mm 16 478 
channel microwire array (TDT, Alachua FL, electrode spacing given in Fig 1A) was inserted 479 
perpendicular to the surface of the brain. Devices were slowly inserted into A1 during application 480 
of 80 dB gaussian noise stimuli. Devices were placed centered putatively in layer III/IV of A1 after 481 
confirmation of low latency, high amplitude multiunit activity was observed on the array(44, 105). 482 
One animal received a 3mm linear array (NeuroNexus A1-16, 200 끫欎끫欎 between contacts) with 483 
contacts placed in A1 layers 3/4 in place of TDT planar array. A second craniectomy was made 484 
above the medial geniculate body (MGB) (-6 AP, -3.5 ML)(44) and a fiber optrode (Thor Labs, 485 
Newton NJ) was placed -6 mm into tissue (Fig 1A). Recording arrays and fiber optics were sealed 486 
into place by application of UV-curable composite (Pentron, Wallingford, CT). Rats were returned 487 
to their home cage and allowed to recover for 72 hours prior to beginning of the recording regime. 488 
 489 
Electrophysiological Recordings 490 
 491 
All recordings were performed in a 9’x9’ electrically and acoustically isolated chamber (Industrial 492 
Acoustics Corporation, Naperville IL) with laser electronics placed outside of the chamber to 493 
prevent field interactions from high current pulses(106, 107). Prior to recording sessions, rats 494 
were given a bolus intramuscular injection of dexmedetomidine (0.2 mg/kg) for sedation(44, 48, 495 
108). Optical stimuli were delivered via a custom made, open-source INSight system (all plans 496 
available at our Github repository: https://github.com/bscoventry/INSight and included in 497 
supplementary material) with a 1907 nm semiconductor laser (Akela Trio, Jamesburg NJ) fiber 498 
coupled to the optrode with a 200 μm, 0.22 NA fiber (Thor Labs FG200LCC). Laser stimuli were 499 
controlled via a RX-7 stimulator (TDT) and consisted of train stimuli with pulse widths between 500 
0.2-10 ms, interstimulus intervals between 0.2-100 ms and energy per pulse between 0-4 mJ, 501 
below reported thresholds of laser ablation(23, 26).  502 
 503 
Each recording trial was composed of a 200 ms pre-stimulus interval to facilitate spontaneous 504 
rate calculations, application of the train stimuli, and a post-stimulus interval with total trial length 505 
equal to 1 second. Applied laser energies were randomized to limit effects from neural adaptation 506 
with 30-60 repetitions per pulse width/interstimulus interval combinations. Signals from recording 507 
electrodes were amplified via a Medusa 32 channel preamplifier and discretized and sampled at 508 
24.414 kHz with a RZ-2 biosignal processor and visualized using Open-Ex software (TDT). Action 509 
potentials were extracted from raw waveforms via real-time digital band-pass filtering with cutoff 510 
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frequencies of 300-5000 Hz, with LFPs extracted from real-time digital filters with bands 3-500 511 
Hz. Chronic recordings were made through the lifetime of implanted optrodes and electrodes. 512 
 513 
Electroencephalographic Mid-latency Responses 514 
 515 
To assess the impact of unilaterally implanted devices, pre and post-surgery mid-latency 516 
response (MLR) electroencephalography was performed. The experimental setup used has been 517 
described in detail in previous studies(49, 50).  518 
 519 
Briefly, recordings were performed in a double-walled acoustically isolated anechoic chamber. 520 
Rats were given a bolus injection of dexmedetomidine (0.2 mg/kg) and maintained at 37℃ via a 521 
warming pad. Needle electrodes (AMBU, Columbia MD) were placed in a four-channel 522 
configuration (Fig. 2) (channel 1 - Fz to Cz, channel 2 - horizontally P5-P6, channel 3 - 523 
contralateral to speaker, C3-P5, channel 4 - ipsilateral to speaker, C4-P6). The reference 524 
electrode was placed across the mastoid bone, and the ground electrode placed at the base of 525 
the tail. Auditory click stimuli consisting of square pulses of alternating polarity with 0.1 ms in 526 
duration at a presentation rate of 4 Hz with sound levels between 65-85 dBSPL. 200 repetitions 527 
were collected over a 100ms window and averaged. Presurgical recordings were performed 24-528 
48 hours before surgical procedure and postsurgical recordings were performed 72-96 hours 529 
post-surgery. 530 
 531 
Data Processing and Analyses 532 
 533 
Action potentials and MLRs were exported and processed using custom written programs in the 534 
Matlab programming environment (Mathworks, Natick MA). Spikes were sorted into single-units 535 
using superparamagnetic clustering methods in Wave-Clus(109). Peri-stimulus time histograms 536 
(PSTH) were calculated and density estimates of firing rate functions were calculated from 537 
PSTHs using Bayesian adaptive regressive splines (BARS) under a Poisson prior with 끫欌 = 6 538 
(110, 111). Trials containing artifacts due to breathing or volitional movement were detected via 539 
between-channel cross correlation and RMS voltages exceeding 1 mV were removed from 540 
recordings. To facilitate comparisons between electrodes and animals, PSTHs were standardized 541 
using the following equation: 542 
  끫殚 =

끫殆끫歸끫殆끫歶 − 끫欎끫殆끫殆끫殆끫殆끫欜끫殆끫殆끫殆끫殆2  

 

Eq. 1 

 543 
where Z is the standardized PSTH and 끫欎,끫欜끫殆끫殆끫殆끫殆2  are the mean and standard deviation of the 544 
PSTH. Neurons were classified as responsive to INS if a PSTH in the stimulus series showed a z-545 
score firing increase of ≥ 7.84 (4 ∗ 1.96, 1.96 = critical Z-score threshold) above mean 546 
spontaneous firing rate. 547 
 548 
After detection and PSTH calculation, single unit responses were sorted into one of 7 established 549 
firing pattern classes found in rat auditory cortex(67, 112). Responses were first classified into 550 
onset, offset, sustained, or onset-sustained classes, with onset responses exhibiting a rise above 551 
spontaneous activity followed by a drop to spontaneous rates before cessation of the stimulation 552 
and offset responses characterized by an increase in firing rate from baseline after termination of 553 
stimulus plus 7ms to account for maximal response latencies in cortex from thalamic 554 
stimulation(112, 113). Responses showing firing activity above spontaneous activity throughout 555 
the duration of the stimulus were classified as sustained or onset-sustained, with onset-sustained 556 
responses showing a ratio of peak onset response to sustained rates >3. The inhibited response 557 
subclass showed a post-stimulus reduction in basal firing rate to below 95% of mean rate during 558 
the 200 ms prestimulus interval. 559 
 560 
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Information Theoretic Analysis of INS Encoding 561 
Mutual information (MI) measures of thalamocortical encoding of INS stimulation were performed 562 
using direct estimation of response distributions from observed data followed by sampling bias 563 
correction using quadratic extrapolation(63). Stimulus-information relationships were estimated 564 
using the approach of Borst and Theunissen(114): 565 

 끫歸(끫歲; 끫歸끫毊) = �끫殺(끫殾끫殬|끫毀끫毊) log2 �끫殺(끫殾끫殬|끫毀끫毊)끫殺(끫殾끫殬) �끫殬  
 

Eq. 2 

 566 
where 끫歸(끫歲; 끫歸끫毊) is the “plug-in” estimated mutual information of response 끫歲 conditioned on INS 567 
stimulus with stimulus energy 끫毊 (끫歸끫毊) across the duration of the entire stimulus. The values 끫殺(끫殾끫殬) 568 
and 끫殺(끫殾끫殬|끫毀끫毊) are the probability mass estimates of response probabilities across all trials and 569 
stimuli and conditioned on INS stimulus energy respectively. Probability mass functions (PMF) 570 
were estimated using histogram counts of spike responses with 1ms bin sizes for optimal 571 
information precision in A1 neurons(115). Calculations of MI from estimated PMFs was performed 572 
using the MIToolbox(116). Bias resulting from imperfect knowledge of true PMFs was corrected 573 
for using the method of quadratic extrapolation(62) as: 574 끫歸끫殺끫殺끫殺끫殴−끫殬끫殬 = 끫歸끫殆끫殎끫殺끫殤 +

끫殜끫殂 +
끫殞끫殂2 

 

 
Eq. 3 

 575 
where 끫殂 is the observed number of trials and 끫殜, 끫殞 are free parameters dependent on stimulus-576 
response relationships estimated by recalculating 끫歸끫殺끫殺끫殺끫殴−끫殬끫殬(끫歲; 끫歸끫毊) at 50% and 25% of total samples 577 

and then performing least squares fit to the quadratic equation above. Information in spike trains 578 
was measured from onset of the stimulus till offset + 2 ms to account for offset responses. 579 
 580 
Assessment of spatial selectivity through joint-peristimulus time histograms 581 
To assess spread of activation across cortical neurons, joint-peristimulus time histogram (JPSTH) 582 
analysis was performed(117). JPSTHs quantify dynamical, correlated activity between two 583 
neurons in response to a time-locked stimulus and thus represent purported functional 584 
connectivity from a source. JPSTHs were calculated using methods of Aertsen et al(118). 585 
Neurons were compared across each active electrode by first estimating joint densities of neuron 586 
PSTHs as: 587 끫歺끫殆끫歸끫殆끫歶끫殬끫殬(끫毄, 끫毆) =

1끫歼�끫殶끫殬끫殬끫殰 (끫毄, 끫毆) 
 

Eq. 4 
 588 

where 끫殶끫殬끫殬끫殰 (끫毄, 끫毆) represents the spike count in bin 끫毄, 끫毆 locked to stimulus repetition 끫殰 for each 589 

neuron 끫殬, 끫殮 for all stimulus repetitions 끫歼. The joint covariance due to co-stimulation of neurons 590 
from INS stimulation is calculated as the outer product of the PSTHs undertest 591 
 592 끫殠끫殠끫毆끫毀끫毀끫殬끫殴(끫毄, 끫毆) = 끫殆끫歸끫殆끫歶1 ⊗끫殆끫歸끫殆끫歶2 
 

Eq. 5 

 593 
and represent stimulus-induced co-variation. Functional connectivity after stimulation was then 594 
calculated as 595 끫歺끫殆끫歸끫殆끫歶끫殂끫殂끫殎끫殴끫殂끫殺끫殬끫殂끫殤끫殂 =

끫歺끫殆끫歸끫殆끫歶끫殬끫殬(끫毄, 끫毆) − 끫殠끫殠끫毆끫毀끫毀끫殬끫殴(끫毄, 끫毆)끫欜끫殆끫殆끫殆끫殆1끫欜끫殆끫殆끫殆끫殆2  

 

 
Eq. 6 

Distance of spread of activation was then calculated as the Euclidean distance between 596 
correlated neuron responses on each recording electrode given correlation between units. 597 
Animals receiving linear arrays (n=1) were excluded from this analysis as array geometry is not 598 
optimal for analyses assessing spread within cortical layers. 599 
 600 
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Deep Reinforcement Learning Based Closed Loop Control 601 
Closed loop DBS control was achieved through a novel deep reinforcement learning based 602 
paradigm which we termed as SpikerNet(33). SpikerNet was programmed in Python using the 603 
Pytorch deep learning backend(119). A custom made OpenAI Gym environment served as the 604 
interface between TDT data acquisition hardware and Pytorch. Deep reinforcement learning 605 
seeks to maximize a target reward by continually sampling an environment while learning which 606 
actions taken provide highest future rewards through time(120, 121). In SpikerNet, the 607 
environment space was defined as the continuum of evoked cortical neuron firing rate PSTH 608 
densities. The action space as the continuum of stimulation amplitudes, pulse widths, and 609 
number of INS pulses delivered in a trial. The action space of stimulation parameters was limited 610 
in both hardware and software to below ablation thresholds to ensure SpikerNet did not damage 611 
thalamic structures during parameter search. Deep reinforcement learning was performed using 612 
the twin-delayed deep deterministic policy gradients (TD3) algorithm, which is a model agnostic 613 
double Q learning method for continuous environment and action spaces that outperforms other 614 
model-free deep-Q learning methods(122). To assess the ability of SpikerNet to reach arbitrary 615 
spike PSTHs, distributions of all observed PSTHs were formed. From that distribution, a target 616 
PSTH was sampled and represented a non-observed but biophysically plausible target PSTH. 617 
Reward functions were set as  618 

1끫殀끫歸끫歰(끫殆끫歸끫殆끫歶끫毀끫殂끫殎끫殴끫殤끫毀 ,끫殆끫歸끫殆끫歶끫殄끫殄끫毀끫殤끫殎끫殄끫殤끫殂)
 

 

 
Eq. 7 

with mean-squared error (MSE) chosen as it provides asymptotically the maximum likelihood 619 
estimator. Online multi-unit PSTHs were calculated online from 10 repetitions of INS stimuli with 620 
densities estimated using online Bayesian adaptive regression splines. A MSE value below 0.14 621 
denoted an observed result that is sufficiently close to the target response and acts as a signal to 622 
begin a new search episode. It is important to note that SpikerNet performs reward maximization 623 
through all episodes and is not truncated at the threshold of a sufficiently close fit.  624 
 625 
Statistical Methods 626 
 627 
Postsurgical changes in MLRs were assessed using the nonparametric Wilcoxon signed-rank test 628 
with comparisons made between pre and post implant first wave peak positivity (P1) 629 
representative of short latency brain stem responses, and first wave peak negativity (N1) and 630 
second peak positivity (P2) representative of later thalamocortical responses(58) (Fig 2A) with 631 
significance level set to 끫殺 < 0.05. 632 
 633 
To assess dose-response characteristics of thalamocortical recruitment from INS stimulation, a 634 
random effects multilinear regression model was utilized. Random effects repeated measures 635 
regression models were used to account for differences within subjects resulting from differences 636 
in recorded neuron physiology and distance from neuron to electrode as well as differences 637 
between subject responses. The multi-regression model was defined as 638 
 639 

max(끫歲끫歲) =  끫毸끫殬 + 끫毺1,끫殬 ∗ 끫歰 + 끫毺2,끫殬 ∗ 끫歸끫歸끫歸 +  끫毺3,끫殬 ∗ (끫歰 ∗ 끫歸끫歸끫歸) + 끫欬끫殬 Eq. 8 

 640 
where FR is the BARS estimate of evoked firing rate, energy is the applied laser energy, ISI is the 641 
interstimulus interval, 끫殬 is the mapping index codifying a neuron on an electrode of a given 642 
subject, and 끫欬 is estimated model error. The 끫毸 coefficient corresponds to basal firing rate and β 643 
coefficients correspond to slope parameters of applied laser energy, ISI, and energy-ISI 644 
interactions. We chose to perform Bayesian inference to estimate model parameters because 645 
Bayesian methods are particularly powerful in modeling hierarchical random effects models(61, 646 
123) and allow for robust and informative evaluation of regression parameters in posterior 647 
probability distributions. Parameter posterior distributions were summarized by their maximum a 648 
priori estimates (MAP), the most probable value and posterior 95% highest density intervals 649 
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(HDI), quantifying the 95% most likely parameter values. Regression coefficients were considered 650 
significant if the 95% HDI did not overlap 0 in line with Bayesian inference convention(124). 651 
Bayesian formulations require choosing of prior distribution on regression parameters. As little is 652 
known about the effects of INS on thalamocortical firing patterns, normal distributions with a 653 
hyperprior variance of 5 were used. To ensure that prior distributions did not dominate observed 654 
data, prior distribution sensitivity analyses were performed (supplementary information (SI): 655 
Bayesian Model Specification). Analysis of observed data distributions suggested that log 656 
transformation of predictor laser parameters and evoked firing rate predictions provided best fit 657 
models. This was confirmed by post-hoc model comparisons and parameter sensitivity analyses 658 
(SI: Bayesian model specification). 659 
 660 
Significance of stimulation and JPSTH correlations was assessed via shuffled permutation testing 661 
in which a null hypothesis was set such that 끫欘(끫殆끫歸끫殆끫歶1,끫殆끫歸끫殆끫歶2) = 0. For each pairwise correlation, 662 
one PSTH had bin counts shuffled following a uniform distribution and correlations recalculated. A 663 
total of 5000 shuffles for each pairwise comparison were performed. The number of shuffled 664 
correlations which were at least as extreme or greater than non-shuffled correlation was counted. 665 
Empirical p-values were calculated as the number of observed shuffles with correlation values 666 
greater than test correlations divided by number of permutation trials. Correlations were 667 
considered significant if empirical p-values < 0.05. 668 
 669 
Immunohistochemistry 670 
 671 

At the end of experiments, rats were euthanized via a barbiturate overdose (beauthanasia 0.5 
끫殴끫殴끫殰끫殴 ) 672 

and underwent trans-cardiac perfusion of phosphate-buffered saline (PBS) and 0.4% 673 
paraformaldehyde. Brains were sliced into 20-50 끫欎끫欎 slices using a cryotome and stored for 674 
immunohistochemistry. Brain slices containing the MGB were stained with NeuN (Abcam, 675 
Cambridge UK) conjugated to an Alexa-Fluor 488 secondary to label neurons and GFAP (Abcam) 676 
conjugated to an Alexa-Fluor 647 secondary to label reactive astrocytes. Full 677 
immunohistochemistry protocol is provided in the supplementary information. Slices were 678 
mounted and imaged using a Zeiss LSM710 confocal microscope (Zeiss, Jena GE) at 10x 679 
magnification resulting in an effective pixel size of 2.77끫欎끫欎^2. Tile scans across the length and 680 
height of the slice were made and stitched together using Zen10 (Zeiss) imaging suite. The MGB 681 
was identified via anatomical markers in conjunction with a rat stereotaxic atlas(125). 682 
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Figure 1. Implantation and EEG-MLR procedures. A. Left: Rodents were implanted with fiber 1047 
optic optrodes into the medial geniculate body and 16 channel microwire arrays into auditory 1048 
cortex. Placement of microwire array was confirmed by tonic single unit responses evoked from 1049 
80 dB filtered Gaussian noise stimuli during implantation. A. Right: Schematic of the 4-channel 1050 
EEG-MLR recording preparation. B. Left: Schematic of the rodent auditory thalamocortical circuit. 1051 
Stimulation optrodes were placed in the ventral division of the medial geniculate body with 1052 
primary excitatory efferent projections to layer 3-4 of primary auditory cortex. Microwire array 1053 
recording electrodes were placed in layer 3-4 of primary auditory cortex confirmed during surgery 1054 
by low-latency single unit activity. B. Right: Histological images demonstrate placement of 1055 
stimulation optrode was within medial geniculate body. C. EEG-MLR pre-post surgical ratios 1056 
show small changes in wave P1, N1, and P2 correlates of auditory thalamocortical function in 1057 
amplitude and latency due to passive presence of device at 65 or 85 dB-SPL click stimuli. While 1058 
changes in amplitudes and latencies were observed effects, differences did not rise to level of 1059 
significance (p>0.05). Rodent implantation and EEG diagrams were created using BioRender 1060 
under publication license. 1061 
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 1101 
Figure 2. A. Example INS-evoked peristimulus time histograms. BARS estimates of 1.8mJ (solid 1102 
blue line) and 0.92mJ (dotted orange line) show higher energy pulses drive higher firing, lower 1103 
latency responses. B. Bayesian hierarchical linear regression models of cortical dose-response 1104 
profiles elicited from varying INS parameters. Distributions of regression parameters are given for 1105 
applied laser energy, laser pulse width, and laser energy-pulse width interactions. Regressions 1106 
show that increases in applied energy significantly increase maximum cortical firing rates with a 1107 
maximum a priori estimate 0.58 increase in log firing rate in response to increases in log energy 1108 
(95% HDI does not overlap 0). The width of the 95% HDI of the energy parameter (0.27-0.88) 1109 
suggests that while cortical firing rates increase with increases in laser energy, INS dose-1110 
response profiles are dependent on the physiology of the neuron. Slight decreases in firing rate 1111 
with increased laser pulse widths were observed (MAP = -0.055), but not significant (95% HDI 1112 
overlaps 0). Laser energy and pulsewidth interactions also did not significantly change evoked 1113 
cortical firing rates (95% HDI overlaps 0). Basal firing rates of neurons were significantly above 1114 
zero (95% HDI does not overlap 0, MAP estimate = 2.2). C. Evoked single unit spike train 1115 
information increases as INS energy increases. 1116 
 1117 
 1118 
 1119 
 1120 
 1121 
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Figure 3. A. Evoked cortical firing activity was classified into onset, onset-sustained, sustained, 1123 
and offset classes. Any response which showed an offset inhibition resulting in basal firing rate 1124 
<5% prestimulus firing rate was given an inhibition designation (top left, Onset for example). B. 1125 
Decomposition of response classes into the top 3 principal components show that these classes 1126 
exist across a continuum. 1127 
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 1177 
 1178 

 1179 
 1180 
Figure 4: Joint peristimulus time histogram analysis reveals INS thalamocortical recruitment is 1181 
spatially constrained. A. Schematic of JPSTH analysis. Covariance maps were first calculated 1182 
between the two PSTHs under test. Covariance maps represent the joint activity of two neurons 1183 
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due to the INS stimulus directly. Subtracting the covariance map from the joint histogram 1184 
generates the JPSTH, a measurement of correlated activity of the neural network in response to 1185 
the stimulus. Creating a histogram of the main diagonal of the JPSTH creates a coincidence 1186 
histogram of total synchrony of the two neurons. Finally, cross correlograms create a statistic of 1187 
connectivity of the two neurons. Covariance and JPSTH joint histograms were smoothed by a 2D 1188 
gaussian filter for visualization purposes, but full calculations were performed on raw joint 1189 
histograms. B. INS-induced correlations show that lateral spread of activation in cortex from 1190 
thalamic INS were constrained to ≤ 1500 끫欎끫欎, with 90% of responses constrained to ≤ 1000 끫欎끫欎. 1191 
Laser energies < 1mJ limited lateral spread to ≤ 1250 끫欎끫欎. C. Pairwise JPTHs, measuring post-1192 
stimulation induced connectivity show lateral spreads limited to ≤ 1250 끫欎끫欎 across all applied 1193 
energies and ≤ 1000 끫欎끫欎 for stimulus energies < 1 mJ. All correlations and JPSTHs shown were 1194 
statistically significant (끫殺 < 0.05) after permutation testing. 1195 
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 1237 
Figure 5: SpikerNet, a deep reinforcement learning based closed loop control system. A. 1238 
Schematic of SpikerNet operation, which utilizes TD3 reinforcement learning. The state is 1239 
representative of a response as recorded from the electrode environment. The agent is the set of 1240 
all safe stimulation parameters. B. SpikerNet is able to find arbitrary neural firing patterns through 1241 
repeated iterations of stimulation through the environment. C. SpikerNet partakes in search and 1242 
targeting behavior to find target responses and to learn stimulation parameters which best drive 1243 
the neural environment to target state. D. Example evoked responses during SpikerNet search 1244 
and learning show a wide variety of firing classes are evoked during algorithm search. While fits 1245 
were calculated around the window of evoked activity, more complex multi-peaked and offset 1246 
responses were observed (Trial 12, 22, 26). 1247 
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Table 1. Distribution of Cortical Firing Classes (n=3371) 1265 
 1266 

Firing Class % of Responses % of Responses in Class 

Onset 12.04 
61.97 

Onset + Inhibition 49.93 

Sustained 18.78 
23.29 

Sustained + Inhibition 4.51 

Onset-Sustained 6.05  

8.87 Onset-Sustained + 
Inhibition 

2.82 

Offset 5.87 5.87 

 1267 
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1. Bayesian Model Descriptions and Sensitivity Analyses. This report follows the 

guidelines for reporting of Bayesian Analysis (BARG) (1) consisting of: 
 

• Necessary software and source code directory 

• Goals of the analysis 

• Model descriptions and decision criterion 

• Prior and hyperprior descriptions 

• Sensitivity analyses for varying prior distributions 

• Posterior and MCMC diagnostics 
 

1.1 Necessary software and source code directory 
 

BARG: Step 2A, 6 
 

Bayesian modeling was performed using Python 3.6.8 on an MSI GS-66 Laptop with an Intel 
Core i7 processor (6 cores) and an Nvidia RTX2070 GPU. Models were implemented in PyMC3 
version 3.11.5 (2), a probabilistic programming module in the Python environment. All source 
code is available at this paper’s github repository (SI: Software S1). All source data is available at 
this article’s open science framework repository (SI: Dataset D1). 
 
1.2 Goals of the Analyses 
 

BARG: Preamble 
The goal of the utilized regression analyses is to establish a model of the relationship between 
stimulus parameters (applied laser energy and interstimulus intervals) with evoked 
thalamocortical neural responses as quantified by single unit firing rates. While this is normally 
established using frequentist multilinear regression analyses, neuron responses are 
heterogeneous with differences arising from nominal firing patterns arising individual cell types, 
differences in exact placement in receptive fields of stimulation and recording devices, and 
changes in within-animal recordings from glial scaring and skull growth over time leading to 
changes in placement of devices. These nuances are best characterized by hierarchical 
regression models.  
 
Bayesian approaches allow for flexible and explicit hierarchical model descriptions which provide 
rich and descriptive inference and quantification of uncertainty in measurements by inference of 
direct probability measures on posterior distributions as opposed to less intuitive and harder to 
interpret frequentist p-values. Bayesian approaches are data driven and account for previous 
knowledge to be encoded as prior distributions. It can be shown that Bayesian hierarchical 
regression is a regularized frequentist random effects model with uniform distributions on the 
hyperparameters. However, frequentist approaches collapse inference into singular decision 
boundaries (p-values) and do not allow for model constructions which best fit the observed data.  
 
To this end, we utilized Bayesian hierarchical multilinear regression to account for both within and 
between subject differences of evoked responses to INS stimuli as a function of applied laser 
energy, time between laser pulses (interstimulus intervals, ISI), and the interaction between 
applied laser energy and ISI. The general regression model is: 
 끫歲끫歲 =  끫毸끫殬 + 끫毺1 ∗ 끫歰 + 끫毺2 ∗ 끫歸끫歸끫歸 + 끫毺3 ∗ 끫歰 ∗ 끫歸끫歸끫歸 + 끫欬 
 
where FR is the max evoked firing rate. Firing rate functions were calculated from recorded 
peristimulus time histograms with Bayesian adaptive regression splines density estimation(3). 
Parameters 끫毺끫殬 quantify the effect of laser energy(끫毺1), pulse ISI(끫毺2), and laser energy and pulse 
ISI interaction(끫毺3) on evoked firing rates respectively. The 끫毸 parameter describes the model 

intercept and quantifies subthreshold spontaneous activity and the 끫欬 quantifies model error. 
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Hierarchical models perform ‘partial pooling’ of response data which accounts for individual 
differences in parameter estimation. This is done by assuming parameters 끫毸,끫毺1,끫毺2,끫毺3 and 끫欬 are 
not singular values but form distributions that quantify firing rate dependencies from laser 
parameters while accounting for within-subject differences. Prior selection is discussed in section 
1.3. 
 
Partial pooling was performed by adding an implicit class definition 끫殤끫殬,끫殮 in PyMC (see code) which 

encodes the response arising from the 끫殬끫毂ℎ electrode in the 끫殮끫毂ℎ subject.  
 
We also utilized Bayesian formulations of multinominal regression (aka Softmax regression) to 
understand the dependency of neural firing class on the laser parameters of applied energy and 
interstimulus interval. The multinominal regression model is as follows: 
 끫毼끫殬 = 끫毺0,끫殬 + 끫毺1,끫殬 ∗ 끫歰끫歰끫殤끫歰끫歰끫歰 + 끫毺2,끫殬 ∗ 끫歸끫歸끫歸 
 

where 끫毼끫殬 is defined as the 끫殬끫毂ℎ firing class. Firing classes included onset, onset-sustained, 
sustained, onset+inhibition, onset-sustained+inhibition, sustained+inhibition, and offset with class 
inclusion criteria defined in the materials and methods portion of the main text. The probability of 
class 끫毼끫殬 is calculated via the softmax link function: 끫欆끫殰(끫毼끫殬) =  

끫殤끫毼끫殬∑ 끫殤끫毼끫殰끫殰∈끫殌  

 
which creates a mapping of outcome 끫毼끫殬 against all 끫殰 outcomes in the set of possible classes 끫歸. 
For efficient computation, 끫毺1 and 끫毺2 were recast as a singular tensor optimized for sampling. The 
multinominal regression model then takes the following form: 끫毼 = 끫欆 �끫毺0 + �끫毺 ∙ 끫殖끫歰끫歰끫歰끫歰끫歰끫歰,끫歸끫殌끫歸�� 
where the ∙ operator is the tensor inner product. 
 
1.3 Prior Selection 
 
As single unit thalamocortical recordings elicited from INS have largely been unexplored, 
previous knowledge cannot be adequately constructed into a highly informative prior. However, 
our previous experience in thalamus and cortical recordings(4–10) and in INS parameter 
selection(11, 12) gives prior information on potential variances of firing rate in cortex from 
thalamic stimulation. As such, we chose moderately informative distributions (see section 3) so as 
to not unduly influence the posterior and let the observed data fully inform the posterior. Normal 
distributions were chosen over uniform distributions to allow for unforeseen high variance, low 
probability events to inform the posterior if evidence is sufficiently strong. A choice of uniform 
distribution would drive such events to probability zero, missing potentially notable neural 
recruitment. To ensure the prior distribution did not unduly inform posterior distributions away 
from observed data, sensitivity analyses to prior parameters was performed (Section 3).  
 
Observation of evoked INS responses tended towards normal distributions, dictating a normal 
likelihood distribution. Previous studies in regression suggest the use of a Student T distribution, 
which incorporates an added hyperprior for degrees of freedom (끫欐), performs a robust regression 

against potential outliers(13). Importantly, as  끫欐 → ∞, the Student T distribution becomes a normal 

distribution and relative tail spread of the Student T distribution is learned online through 끫欐 
hyperpriors. 
 
An interaction term, 끫毺3 ∗ 끫歰 ∗ 끫歸끫歸끫歸 was included in the analysis as it was hypothesized that 
extremely short ISIs could cause neuron interactions between pulses potentially leading to 
temporal integration of laser energy. 
 
1.4 Posterior Decision Rules 
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Inference was performed on posterior distributions with credible regions (analogous to frequentist 
confidence intervals) defined as a highest density interval (HDI) of 95% of parameter maximal a 
posteriori density (MAP) parameter estimates which represent the most probable value of the 
coefficient. MAP estimates are analogous to maximum likelihood estimation found in frequentist 
approaches. This allows for the quantification of parameter uncertainty as variance observed in 
posterior parameter distributions, with narrow HDIs representing more certain estimates. It is 
customary to define a region of practical equivalence (ROPE) if prior information dictates that 
incremental parameter changes are effectively the same. As we lack prior knowledge to inform 
the choice of a prior rope, we take an agnostic approach that any change seen is worth 
investigating and thus ROPEs are not presented. An effect was deemed significant if it’s 95% HDI 
did not overlap with 0, in line with proposed decision rules typical of Bayesian inference(14, 15).  
 
1.5 Final Model 
Posterior predictive checks and sensitivity analysis were performed to titrate the best performing 
models as measured against observed data (Section 3). The final hierarchical regression model 
is schematized in figure S1 and for the multinominal regression model in figure S2. Final models 
included deterministic nodes at outputs of prior nodes to prevent NUTS from becoming stuck in 
regions of the sampling space which are difficult to explore  1. 
 
1.6 Model Sensitivity analyses  
 

BARG: Step 3A,C 
 

Individual To evaluate the dependance of hyperprior parameters on model fitting, we used leave 
one out (LOO) cross validation(16). Three separate models were evaluated with model variances 
varied to test sensitivity of each model. Initial model construction suggested that natural-log 
transformations of the dependent variable (firing rate) produced distributions which are better 
modeled as normal distributions. To this end, hierarchical models under test were as follows: 
 

MODEL NAME MODEL 

REGRESSION 끫歲끫歲 =  끫毸 + 끫毺1 ∗ 끫歰끫歰끫殤끫歰끫歰끫歰 + 끫毺2 ∗ 끫歸끫歸끫歸 + 끫毺3 ∗ 끫歰끫歰끫殤끫歰끫歰끫歰 ∗ 끫歸끫歸끫歸 + 끫欬 

SEMILOG 

REGRESSION 
끫殲끫歰(끫歲끫歲) =  끫毸 + 끫毺1 ∗ 끫歰끫歰끫殤끫歰끫歰끫歰 + 끫毺2 ∗ 끫歸끫歸끫歸 + 끫毺3 ∗ 끫歰끫歰끫殤끫歰끫歰끫歰 ∗ 끫歸끫歸끫歸 + 끫欬 

NATURAL LOG 

REGRESSION 
끫殲끫歰(끫歲끫歲) =  끫毸 + 끫毺1 ∗ 끫殲끫歰(끫歰끫歰끫殤끫歰끫歰끫歰) + 끫毺2 ∗ 끫殲끫歰(끫歸끫歸끫歸) + 끫毺3 ∗ 끫殲끫歰(끫歰끫歰끫殤끫歰끫歰끫歰) ∗ 끫殲끫歰(끫歸끫歸끫歸) + 끫欬 

Table S1: Regression models under test 
 
For each model, the variance hyperprior was varied to assess the impact of prior parameters on 
posterior predictions. Prior classes were defined as: informative (variance ≤ 1), moderately 
informative (variance = 5), and weakly informative (variance ≥ 10). Primary metrics for model 
comparison were expected log pointwise predictive density (ELPD), defined as(17): 끫殤끫殲끫殤끫殤 =  ��끫殤끫歰끫殬끫殤끫毂끫歰끫歈� log �끫殤(끫歰끫歈�|끫歰)�끫殰

끫殬=1  

where 끫殤끫毂 , 끫歰끫殬 are unknown distributions representing the true data generating function for 

estimates of true posterior predictive function (끫歰 �|끫歰) from observed data y. Estimated 끫殤끫毂 , 끫歰끫殬 
distributions are obtained via cross validation during LOO analysis. In general, higher values of 
ELPD are a result of higher out of sample predictive fit indicative of a better model. Weight values 
generated by LOO cross validation were also analyzed and predict the probability of each model 
given observed data. Finally, we observed the standard error of the ELPD estimate (SE), and the 
difference between the model with highest ELPD and every other model (dSE) with dSE of the 
top model set to 0.00 by definition. All LOO calculations were performed post hoc with the python 
package arviz, a plugin for PyMC. 
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Table S2: LOO model comparison results for the Bayesian hierarchical regression models. Var: 
Prior variance parameter, log: log predictor and predicted variable model. semilog: semilog  
predictor model. ST: Student T Likelihood models. N: Normal likelihood models 

MODEL R ELPD WEIGHT SE DSE 

ST LOG VAR 5 1 -5337.48 2.046623e-01 46.220458 0.00 

ST LOG VAR 100 2 -5337.62 1.763745e-01 46.227682 0.420867 

ST LOG VAR 0.5 3 -5337.76 1.552051e-01 49.173347 0.409773 

ST LOG VAR 25 4 -5338.15 1.058393e-01 46.358847 0.492297 

ST LOG VAR 10 5 -5338.18 9.996540e-02 46.141502 0.300197 

ST LOG VAR 1 6 -5338.26 9.238175e-02 49.030330 0.331152 

N  LOG VAR 10 7 -5340.60 7.103823e-02 49.024680 3.308668 

N LOG VAR 1 8 -5341.09 4.291607e-02 48.985814 3.293779 

N LOG VAR 5 9 -5341.16 3.978488e-02 89.737613 3.296273 

N LOG VAR 0.5 10 -5342.46 1.183257e-02 89.930943 3.300550 

ST SEMILOG VAR 1 11 -5466.76 4.359604e-37 84.933022 15.845916 

ST SEMILOG VAR 5 12 -5467.12 3.535240e-37 89.043113 15.856552 

ST SEMILOG VAR 10 13 -5467.15 5.622764e-37 85.266895 15.895646 

ST SEMILOG VAR 0.5 14 -5467.18 3.483572e-37 85.266895 15.866405 

ST VAR 1 15 -15336.31 0.000000e+00 49.465018 79.406629 

ST VAR 0.5 16 -15355.67 0.000000e+00 49.509352 80.415787 

ST VAR 5 17 -15355.67 0.000000e+00 49.487001 80.415787 

N VAR 10 18 -16119.11 0.000000e+00 49.510419 82.384329 

N VAR 1 19 -16132.23 0.000000e+00 49.524316 83.549811 

N VAR 0.5 20 -16154.55 0.000000e+00 49.514661 84.262219 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560859doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560859
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

 

Sensitivity analyses were also performed for the Bayesian multinominal regression models, also 
with informative (variance = 1), moderately informative (variance = 5) and weakly informative 
(variance = 10) prior parameters. Table S3 outlines LOO model comparisons for the Bayesian 
multinominal regression model. Comparisons suggest that the standard models perform better 
than semilog based models, with only minimal changes in model performance with varying prior 
variances, suggesting that the posterior distribution is largely driven by observed data. 

Table S3: LOO model comparison results for the Bayesian multinominal regression models. Var: 
Prior variance parameter, semilog: semilog predictor model. 

MODEL R ELPD WEIGHT SE DSE 

VAR 1 1 -3861.38 0.400151 38.15 0.00 

VAR 10 2 -3861.76 0.261702 38.79 0.84 

VAR 5 3 -3861.85 0.239520 38.82 0.88 

SEMILOG 

VAR 1 
4 -3871.25 0.037136 37.59 7.28 

SEMILOG 

VAR 10 
5 -3871.38 0.032181 38.12 7.36 

SEMILOG 

VAR 5 
6 -3871.46 0.029310 38.12 7.36 

1.7 Posterior and MCMC Diagnostics 

BARG: Step 1E, 2A-D, 3A,C 

1.7.1 Choice of MCMC method 

For sampling, the Hamiltonian-based MCMC method no U-turn sampling (NUTS)(18) was used. 
NUTS presents a modification of general Hamiltonian Monte Carlo samplers and presents an 
efficient sampler for hierarchical and high-dimensional models at the cost of slower sampling 
times. Hierarchical regression models ran 4 simultaneous chains with 4000 burn in samples and 
5000 iterations with a 95% target inclusion probability. Multinominal regression models also ran 4 
simultaneous chains with 5000 burn in samples and 5000 iterations with a target inclusion 
probability of 99.95% inclusion probability owing to a more difficult posterior to sample.  

MCMC Diagnostics 

Energy transition plots were used to assess how well NUTS explored the target posterior 
distribution of the best performing model as assessed by PSIS-LOO comparisons between 
models(19). As NUTS sampling is based off dynamical systems modeling (Hamiltonian Monte 
Carlo), movement through the typical set towards a target distribution has associated momentum 
and thus potential and kinetic energy associated with movement through probability space. 
Efficiency in movement through the target distribution can then be assessed by comparing energy 
associated with the marginal energy distribution, quantifying the geometry of the underlying target 
distribution with the energy associated with the distribution of Markov state transitions. The 
hierarchical regression model displayed overlapping marginal energy and energy transition 
distributions (Fig S3) suggesting that sample to sample movement was nearly independent and 
indicative of efficient sampling of the target posterior distribution. 

Furthermore, traces of sampled prior and hyper-prior parameters in hierarchical and multinominal 
regression models suggest effective sampling of the posterior distribution (Fig S4). Furthermore, 
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the Gelman-Rubin statistic, quantifying within and between chain estimates and correlation was 
 끫欦�  < 끫殞.끫殜끫殜, indicative of convergence of marginal posterior parameter values(20). 

1.7.2 Posterior Predictive Checks 

An advantage of using Bayesian-based inference approaches is the ability to directly and 
explicitly compare model fits to observed data, a process often not available in frequentist-based 
software packages or left out of final analysis. During inference model development, posterior 
predictive checks were performed by sampling from the posterior distribution (20,000 draws). 
Kernel density estimates of posterior predictive distributions were compared to kernel densities of 
observed data. Goodness of fit was quantified using the Bayesian formulation of the p-value(13). 
Similar to the frequentist p-value, the Bayesian p-value is also a measure of discrepancy, 
quantifying the probability that posterior predictive-based draws are more extreme than observed 
data. The Bayesian p-value is defined as: 끫殤끫歪 = �끫殤끫歰끫歰끫殤끫欆 끫歸끫殎(끫歰끫殾,끫欆)≥끫殎(끫歰끫殾,끫欆)끫殤(끫歰끫歰|끫欆)끫殤(끫欆|끫歰) 

where I is the indicator function, 끫欴끫欦 is the posterior predictive distribution and y is the posterior 
distribution. Similar to the posterior distribution, posterior predictive distribution and Bayesian p-
values were estimated using NUTS. The closer the Bayesian p-value is to 0.5, the better the data 
sampled from the posterior distribute around the observed data. 

Figures S5 and S6 display posterior predictive fits and Bayesian p-values for the hierarchical 
linear and multinominal regression models respectively. Both models suggest excellent posterior 
predictive fits with 끫欢�  =  끫殜.끫殜끫殞 for the hierarchical linear regression model (Fig S5)  and 끫欢�  =  끫殜.끫殜끫殜 
for the multinominal regression model (Fig S6). 

1.8 Prior and Posterior Trace plots 

BARG: Step 2B,C 

Critical to the performance of HMC based Bayesian sampling is the convergence of sampling 
traces. Output trace plots display the chain of sampled values and the resulting kernel density 
estimates of sampled distributions. All sampled traces showed no divergences in sampling, 
suggesting that sampled traces were well behaved in sampling the space of the distribution. 
Furthermore, the Gelman-Rubin statistic, quantifying within and between chain estimates and 
correlation was 끫欦�  < 끫殞.끫殜 for all sampled traces suggesting good convergence and effective 
sampling of target distributions. For clarity and transparency, traces are available on open 
science framework, with traces for all hyperpriors and posteriors presented here (Figures S7-S9). 
Traces were checked for characteristic sampling behavior(18) with no pathological traces found in 
models. 
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2. Design of the INSight System 

2.1 System Description 

The goal of INSight was to develop an low cost INS system that was in reach for neuroscience 

and neuroengineering laboratories who don’t already have access significant optical. To this end, 

designs were made using off the shelf components with a stimulation interface which could easily 

connect to recording hardware with DACs or digital trigger outputs.  

The INS lasing system consists of 3 subsystem realizations (Figure S10 A); the laser diode, laser 

diode driver, and driver control system, with two optional but recommended support systems: the 

thermal electric cooler (TEC) system and the power monitoring system. The laser diode system 

consists of an Akela Laser (Jamesburg, NJ) Trio diode mounted via pogo pins to a custom 

interface printed circuit board (Figure S11). The Trio diodes have small form factors, low cost, 

and are modular, allowing for the rapid switching between different wavelength modules to vary 

optical penetration depths(21, 22) or to leverage the same system for optogenetic applications. 

For this study, a 1907 nm, 1W diode was used in accordance with commonly used wavelengths 

in INS(23). The laser diode is driven through high current, single strand 18-gauge wire using a 

PLD1000 pulser (Wavelength Electronics, Bozeman MT) with output current controllable by 

voltage pulses from a control source such as neural recording hardware or the Arduino control 

module provided. Pulse shapes and waveforms can be implemented using a computer controlled 

arbitrary function generator connected to the driver analog input. In this study, a RX-7 stimulation 

isolator (Tucker-Davis Technologies, Alachua FL) was used. In settings where a triggerable 

voltage source is unavailable, we developed an open source, Arduino based stimulation system 

which is included in our online build materials. Power to the system was provided by a high 

current fixed voltage PCB mount supply (LS50-5, TDK-Lambda). The diode laser was fiber 

coupled to implanted devices using an SMA to FC/PC 400-2400 nm wavelength multimode fiber 

(Thor Labs, Newton NJ) which can be commutated using a rotary patch cable (Thor Labs). Laser 

output power was measured using a S305C power sensor (Thor Labs) to validate applied energy. 

The akela trio substrate displayed strong linearity through periodic open loop tests over the span 

of a year (Figure S10.B). It should be noted that if the system is operated in open loop, routine 

power calibrations should be performed to account for laser power drift due to age of the device, 

ambient temperature, or recent thermal contraction/expansion of the laser substrate. 

Modularity was designed into INSight, making it suitable for INS, optogenetics, and as a laser 

activation source for calcium imaging and other optical techniques. Furthermore, the trio module 

can be substituted for multiwavelength modules for more expansive applications. INSight can 

also be modified to accommodate other commercially available laser diode modules. 

2.2 Laser Board Layout and Interfacing 

In order to create an interface allowing for quick laser diode substitutions, a customized printed 

circuit board (Figure S11) was created. The pads corresponding to the laser diode should be 

populated with pogo pins (Adafruit Industries, New York, NY). The laser is place on the pogo pins 

and secured by screwing the laser diode into the board via through holes on the Trio enclosure, 

facilitating a quick and easy laser diode replacement system. Traces between the diode laser 

anode and cathode and laser driver should be as wide as possible with a minimal connection 

path to ensure proper current handling with minimized trace heating. If wires are used, wire of 

gauges 18 or less or high current capacity wire should be used with the shortest wire length 

possible.  

2.3 INSight electrical properties 

Relevant electrical properties of the proposed system are found in table S.4. 
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Table S.4: Laser System Electrical Properties 

 
 
 
 
 
 
 
 
 
 
 
 

Parameter Value Unit 

Maximum Laser Output Power 1 W 

Laser Diode Forward Voltage < 2.5 V 

Laser Driver Analog Input Rise 

Time 

7 µs 

Max Laser Driver Supply 

Voltage 

5.5 V 

Laser Driver Analog Input 

Maximum Voltage 

Supply Voltage + 0.5 V 

Laser Driver Current to 

Voltage Transfer Function 

4.6 A / V 
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3. Supplementary Methods 

3.1 Bayesian Multinominal Regression 

 

Bayesian formulations of multinominal regressions were utilized to assess cortical neuron firing 

class dependence on stimulation parameters. Multinominal regression models were of the form 끫毼끫殬 = 끫欆�끫毺0,끫殬 + 끫毺1,끫殬 ∗ 끫歰끫歰끫殤끫歰끫歰끫歰 + 끫毺2,끫殬 ∗ 끫歸끫歸끫歸� 
where 끫毺0 is the regression intercept term, 끫毺1,2 are the energy and ISI regression slope 

coefficients respectively, and 끫欆 is the softmax operator mapping regression to probability 

space corresponding to highest probability of class membership in class 끫毼끫殬. Due to 

indeterminacy of regression coefficients inherent to nominal models, predictions of class 

membership can only be made in reference to a reference category. To this end, we 

chose the reference category to be onset+inhibition which is the data category with the 

largest number of members in our dataset. Therefore, multinominal regressions are 

interpreted as the log odds of moving from the most populous class to a different firing 

class contingent upon INS parameters. Bayesian methods were used for parameter 

estimation and inference. Models were built in Python using PyMC v4. Prior distributions 

on 끫毺 coefficients were chosen to be zero mean, variance 1 normal distributions which 

showed best fit to our observed data. Prior sensitivity analysis were performed and 

quantified in SI:Bayesian Model Description. Parameter posterior distributions were 

summarized by their maximum a priori estimates (MAP), the most probable value and 

posterior 95% highest density intervals (HDI), quantifying the 95% most likely parameter 

values. Regression coefficients were considered significant if the 95% HDI did not 

overlap 0 in line with Bayesian inference convention. 

3.2 PSTH classification via principle components analysis 

Whether observed PSTHs formed distinct clusters of responses or exist across a 

continuum of the response space was assessed using principle components analysis. 

Individual PSTHs were represented as row vectors 끫歰(끫殬) = 끫殆끫歸끫殆끫歶끫殬 in a response matrix 끫歰 = 끫殂 × 끫殞 where N is the total number of evoked PSTHs and b is the total number of 

bins. PSTHs were constructed from 5 ms bins. Response matrix r was then decomposed 

into a vector of principle components 끫欞 with weights 끫毈 끫欬{0,1}. Finding components of 

maximal variance was found by ensuring the first weight component 끫毈(1) satisfies 끫毈(1) = 끫殜끫歰끫歰끫殜끫殜끫毊�|끫毈|�=1끫毈끫殎끫歰끫殎끫歰끫毈 

The remaining 끫殰 − 1 components and weights are then estimated as 

끫欞(끫殰) = 끫歰 −� 끫歰끫毈(끫毀)끫毈끫殎(끫毀)

끫殰−1
끫毀=1  

끫毈(끫殰) = 끫殜끫歰끫歰끫殜끫殜끫毊 �끫毈끫殎끫欞(끫殰)끫殎끫欞(끫殰)끫毈끫毈끫殎끫毈 � 
The first 3 components representing 65.11% of explained variance were extracted for 

clustering. Components were then mapped to response classes for visualization. 
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4. Immunohistochemsitry 

4.1 

Solutions for HCN immunohistochemistry 

 
10% bovine serum albumin (BSA) 
 1 g  BSA 
 10 mL  1XPBS 
 
10% sodium azide  
 1 g  sodium azide 
 10 mL  1XPBS 
 
1XPBS-0.1% Triton (0.1% PBST)  
 100 µL triton X-100  
 100 mL 1XPBS 
 
1XPBS-0.3% Triton (0.3% PBST) 
 300 µL triton X-100  
 100 mL 1XPBS  
 
Immuno buffer 
 1 mL  100% goat serum 
 0.6 mL 10% BSA 
 200 µL 10% sodium azide 
 Fill up to 20 mL with 0.3% PBST 
 
Antibody dilutions 1:200, 1:2000 titrate to slice thickness 
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4.2 IHC Protocol 

 

 

 

 

 

 

 

 

 

 

 

Name:     _________________________________ Date:    ______________________________  
 
Animal ID: ____________________ 
Thickness: ____________________ 
 

Serum  

Primary Host Concentration Secondary Concentration 

     

     

     

     

 

Protocol:  

1. 2x 5-min wash in 1XPBS-0.1% Triton (0.1% PBST) at room temperature.    

2. 30-min incubation in 1XPBS-3% Triton (0.3% PBST) at room temperature. 

3. 1-hour incubation in immuno buffer. 

4. 48-hour incubation in 1° antibody diluted with immuno buffer at 4°C.  

5. 3x 10-min washes in 0.1% PBST.  

PROTECT FROM LIGHT FROM THIS STEP FORWARD 

6. 24-hour incubation in 2° antibody diluted with immuno buffer at 4°C.  

7. 3x 10-min washes in 0.1% PBST. 

8. Mount sections in slides using 1XPBS (no detergent). DO NOT LET DRY FOR TOO LONG! 

9. Coverslip using mounting medium (40µL is sufficient) and seal with clear nail polish.  

10. Let slides sit overnight in the dark.  

 

Notes:  
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5. Supplementary Figures 

Fig S1: 

 

Figure S1: Schematic of Bayesian hierarchical Multilinear regression utilized in this study. 
Deterministic nodes were included in the model to prevent MCMC sampling from entering regions 
of solution space which are difficult to move away from. 
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Fig S2: 

 

Figure S2: Schematic of Bayesian multinominal regression utilized in this study. Deterministic 
nodes were included in the model to prevent MCMC sampling from entering regions of solution 
space which are difficult to move away from. 
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Fig S3: 

 

Figure S3: Energy trace of NUTS trace for the Bayesian hierarchical regression model. 
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Fig S4: 

 

Figure S4: Energy trace of NUTS trace for the Bayesian multinominal regression model. 
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Fig S5 

 

Figure S5: Posterior predictive checks for the Bayesian hierarchical multilinear regression 
models. Strong overlap of posterior predictive distribution with observed density estimates and p-
values near 0.50 indicate model was well fit to observed data. 
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Fig S6 

 

Figure S6: Posterior predictive checks for the Bayesian multinominal regression models. Strong 
overlap of posterior predictive distribution with observed probability mass estimates and p-values 
near 0.50 indicate model was well fit to observed data. 
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Fig S7 

 

Figure S7: Traceplots and kernel density estimates for hyperpriors of the Bayesian hierarchical 
multilinear regression model. 
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Fig S8 

 

Figure S8: Traceplots and kernel density estimates for posteriors of the Bayesian hierarchical 
multilinear regression model. Model is partially pooled, with each color representing estimation of 
the parameter for a given neuron on a given site. 
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Fig S9 

 

Figure S9: Traceplots and kernel density estimates for posteriors of the Bayesian multinominal 
regression model. Each color represents estimation of the parameter for a given firing class. As 끫毺 
was cast to encapsulate regression coefficients for both laser energy and ISI (see model 
description), both coefficients are presented on the same kernel density and trace plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560859doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560859
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

23 

 

 

 

Fig S10 

 
 
Figure S10: INS laser system description and validation. A.) Block diagram detailing system 
composition. Boxes colored gold consist of required hardware necessary for laser operation. 
Boxes colored pink with dotted lines are optional, but strongly suggested control modules to 
accompany primary system design. B.) Measured output optical power in response to open loop 
application of voltage pulses to the laser driver shows strong output linearity with respect to 
applied modulation voltage. Four calibration curves taken over the span of a year show the need 
for routine calibration and/or the use of a power control system in closed loop operation. N.B. 
Applied voltage refers to the voltage applied from laser control hardware, not the voltage at the 
laser diode. In our case, control voltages were generated from a TDT RZ-2 analog output. 
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Fig S11 

 
 
Figure S11: Example laser driver and diode printed circuit board interface. Ground layers have 
been removed for image clarity. Pads associated with the Akela Trio laser diode should be 
populated with pogo pins and secured by screwing in the diode through the predrilled screw 
holes. All Gerber files are available at https://github.com/bscoventry/INSight. 
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Fig S12 
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Figure S12: Posterior distributions of multinominal regression parameters suggest that evoked 
cortical firing classes are partly influenced by stimulation parameters. The most populous class 
onset+inhib was chosen for the reference class. Class membership changes resulting from 
changes in laser parameters was considered significant if 95% HDI did not overlap 0. Movement 
from membership of onset+inhib to onset arose from increasing laser energy and ISI. Movement 
from onset+inhib to onset-sustained resulted from decreased laser energy and decreased ISIs 
while movement of onset-inhib to onset-sustained+inhib was due only to decreases in ISI. 
Likewise, movement from onset+inhib to sustained firing resulted from slight decreases in applied 
laser energy but larger decreases in ISI while movement towards sustained+inhibition was 
marked by larger decreases in ISI. Finally movement to offset responses was marked by larger 
decreases in laser energy and smaller decreases in laser pulse ISI. This data taken together 
suggests a complex interplay between stimulation parameters and native cellular biophysics. 
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Fig S13 
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Figure S13: Plotting SpikerNet mean-square error during training reveals searching and targeting 
behavior, with periods marked by large mean-square errors indicative of algorithmic searching 
behavior followed by targeting optimal stimuli as evidenced by low mean-square error. 
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6. Software and Data Repositories 

6.1 Dataset S1 

Datasets can be found in the following open science framework repository: 
https://osf.io/w4ufh/?view_only=7b4a9a0b1669486b81ea7c10139f252b  

6.2 Software S1  

Analysis programs can be found at the following github repository: 
https://github.com/bscoventry/OpticalTCNeuromodulation  

INSight design files and software can be found at the following github repository: 
https://github.com/bscoventry/INSight  
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