

1 **Peptidoglycan-Chi3l1 interaction shapes gut microbiota in intestinal mucus layer**

2 Yan Chen^{1#}, Ruizhi Yang^{1#}, Bin Qi^{1*}, Zhao Shan^{1*}

3 1. Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and
4 Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China,
5 650500*Corresponding author

6 *email: Bin Qi: qb@ynu.edu.cn and Zhao Shan: shanzhao@ynu.edu.cn

7 # Equally contributed

8 **9 Abstract**

10 The balanced gut microbiota in intestinal mucus layer plays an instrumental role in the health of the
11 host. However, the mechanisms by which the host regulates microbial communities in the mucus
12 layer remain largely unknown. Here, we discovered that the host regulates bacterial colonization in
13 the gut mucus layer by producing a protein called Chitinase 3-like protein 1 (Chi3l1). Intestinal
14 epithelial cells are stimulated by the gut microbiota to express Chi3l1. Once expressed, Chi3l1 is
15 secreted into the mucus layer where it interacts with the gut microbiota, specifically through a
16 component of bacterial cell walls called peptidoglycan. This interaction between Chi3l1 and bacteria
17 is beneficial for the colonization of bacteria in the mucus, particularly for gram-positive bacteria
18 like *Lactobacillus*. Moreover, a deficiency of Chi3l1 leads to an imbalance in the gut microbiota,
19 which exacerbates colitis induced by dextran sodium sulfate (DSS). By performing fecal microbiota
20 transplantation from Villin-cre mice or replenishing *Lactobacillus* in IEC^{ΔChi3l1} mice, we were able
21 to restore their colitis to the same level as that of Villin-cre mice. In summary, this study shows a
22 “scaffold model” for microbiota homeostasis by interaction between intestinal Chi3l1 and bacteria
23 cell wall interaction, and it also highlights that an unbalanced gut microbiota in the intestinal mucus
24 contributes to the development of colitis.

25
26
27 **28 Key words:** Chi3l1, intestinal homeostasis, gut microbiota, peptidoglycan,

29 **30 Introduction**

31 Intestinal homeostasis is crucial for maintaining human health[1]. Alterations in gut microbiota
32 composition have been linked to various diseases including cancer, obesity, and neurological
33 disorders[2-6]. Dysbiosis, which refers to an imbalance in gut microbiota, is characterized by
34 decreased microbial diversity, the presence of harmful microbes, or absence of beneficial ones [7].
35 Studies in mice models lacking key components of mucus have shown increased susceptibility to
36 colitis and dysbiosis in the mucosal layer[8]. Therefore, understanding the factors that influence gut
37 microbiota is a fundamental goal in microbiome research[9]. Growing evidence suggests that
38 colonization of the gut mucosal layer can affect the susceptibility and progression of intestinal
39 diseases like inflammatory bowel disease (IBD), irritable bowel syndrome, and celiac disease[10].
40 Inflammatory bowel diseases, such as Crohn's disease (CD) and Ulcerative Colitis (UC), are
41 characterized by chronic inflammation of the intestinal mucosa. Although the cause of the
42 inflammatory bowel disease is unclear, mouse models lacking the key components of the mucus are
43 predisposed to colitis, accompanied by dysbiosis in mucosa[11, 12], which is in accordance with

45 increased epithelial-adherent microbial communities in biopsies from patients with IBD [13, 14].
46 Furthermore, there were significant differences in the gut microbiota of CD patients compared with
47 healthy controls, and these differences were only present in mucosal samples (not stool samples),
48 suggesting that bacteria in the mucosal layer may be more important for the development of IBD[15].
49 Donaldson et al. discovered that the intestinal flora utilizes host immunoglobulin A (IgA) for
50 mucosal colonization, indicating that the host may secrete certain factors to maintain intestinal flora
51 homeostasis in the mucus[16]. However, the mechanisms regulating gut microbiota colonization in
52 the mucosal layer remain largely unknown. We aim to investigate the regulation of microbial
53 communities in gut mucus and its implications in intestinal diseases.

54
55 Chitinase 3-like protein 1 (Chi3l1, also known as YKL-40 in humans) is a secreted protein that
56 belongs to the glycosylhydrolase 18 family[17]. Despite its name, Chi3l1 can bind to chitin but does
57 not have chitinase activity[18]. In our investigation, we noticed that chitin and peptidoglycan, a
58 major component of bacterial cell walls, have similar structures [19]. Based on this information, we
59 speculate that Chi3l1 might also interact with peptidoglycan and, therefore, interact with bacteria.
60 Interestingly, Chi3l1 is expressed in intestinal epithelial cells and the lamina propria. We
61 hypothesize that Chi3l1 may be secreted by intestinal epithelial cells and regulate the gut microbiota
62 through its interaction with peptidoglycan in the mucous layer. In our study, we discovered that gut
63 microbiota induce the expression of Chi3l1 in epithelial cells. Once expressed, Chi3l1 is secreted
64 into the mucosa and interacts with bacteria, particularly with the bacterial cell wall component
65 peptidoglycan. This interaction promotes bacterial colonization, especially of beneficial bacteria
66 such as *Lactobacillus*. As a result, mice with higher levels of Chi3l1 are less susceptible to colitis.
67

68 Results

70 **Intestinal epithelial cells express Chi3l1 induced by gut microbiota.**

71
72 The gut microbiota's composition is shaped by host factors, including IgA [16], RegIIIy [20], and
73 TLR-5 [19]. Yet, specific host factors which maintain the homeostasis of the microbiota remain
74 largely undefined. Drawing on the theory of co-evolution between the host and microbiota [21], we
75 propose that host factors, which are induced by bacteria in the gut, could play a pivotal role in
76 regulating bacterial colonization and composition. In a previous study, it was observed that both live
77 *E.coli* and heat-killed *E.coli* treatment resulted in a significant increase in the expression of the gene
78 encoding Chi3l1 in human intestinal organoids[22]. To verify this finding, we conducted
79 immunohistochemical staining on intestinal tissue sections of germ-free and specific pathogen free
80 (SPF) C57BL/6J wildtype mice. We observed a substantial increase of Chi3l1 expression in SPF
81 mice compared to germ-free mice (Fig. 1A). The intestinal epithelium comprises various cell types,
82 including intestinal cells, goblet cells, endocrine cells, Tuft cells, Paneth cells, M cells, and
83 others [21]. To identify the cellular sources of Chi3l1, we performed co-staining with markers for
84 specific cell types, including Chromogranin A (ChgA) for enteroendocrine cells, Ulex Europaeus
85 Agglutinin I (UEA-1) for goblet cells and Paneth cells, and Double cortin-like kinase 1 (DCLK1)
86 for tuft cells. Our results revealed that Chi3l1 is primarily expressed in enteroendocrine cells in the
87 ileum and goblet or Paneth cells in the colon (Fig. 1B). However, Chi3l1 expression was not
88 observed in tuft cells (Supplementary Figure 1).

89
90 Furthermore, we isolated total bacteria from wildtype mouse feces and treated DLD-1 cells (a
91 colorectal adenocarcinoma cell line) with the bacterial extract for 12 hours. We found that the
92 bacterial extract directly induced Chi3l1 expression in DLD-1 cells (Fig. 1C). To examine whether
93 the induction of Chi3l1 expression require a specific bacteria strain, we further identified the
94 bacterial extract using 16S rRNA sequencing. Our results revealed that *E.coli* specifically stimulated
95 Chi3l1 expression in DLD-1 cells, while *Staphylococcus Sciuri* did not have the same effect (Fig.
96 1D). Next, we wondered what component of bacteria can induce Chi3l1 expression. We tried heat-
97 killed *E.coli*, which maintains bacterial cell wall integrity. We found that treatment of DLD-1 cells
98 with heat-killed *E.coli* also led to an induction of Chi3l1 expression (Fig. 1E). These findings
99 suggest that the induction of Chi3l1 expression does not necessarily require live bacteria and that
100 bacterial components alone are sufficient to induce this response. To further investigate the specific
101 bacterial component responsible for Chi3l1 induction, we tested lipopolysaccharides (LPS), a
102 classical component of *E.coli*. Our results showed that LPS treatment of DLD-1 cells can induce
103 Chi3l1 expression (Fig. 1F&G). Collectively, these findings provide evidence that the gut
104 microbiota can induce Chi3l1 expression in intestinal epithelial cells.

105
106 **Chi3l1 interact with bacteria via peptidoglycan.**

107
108 Chi3l1 belongs to a group of proteins called non-enzymatic chitinase-like proteins, which are known
109 to bind chitin. Chitin is a polysaccharide present in the exoskeleton of arthropods and the cell walls
110 of fungi[23]. By comparing the structure of chitin with that of peptidoglycan (PGN), a component
111 of bacterial cell walls, we observed that they have similar structures (Fig. 2A). Based on this
112 observation, we hypothesized that Chi3l1 may interact with gut bacteria through PGN. To test our
113 hypothesis, we conducted co-incubation experiments where we mixed recombinant mouse Chi3l1
114 (rmChi3l1) with either Gram-positive or Gram-negative bacteria and then precipitated the bacteria
115 through centrifugation. We found that rmChi3l1 was present in the pellet obtained from both Gram-
116 positive and Gram-negative bacteria (Fig. 2B), suggesting that Chi3l1 can directly interact with
117 bacteria.

118
119 To further investigate the interaction between Chi3l1 and PGN, we also co-incubated PGN with
120 rmChi3l1 and precipitated the PGN through centrifugation. PGN is an insoluble substance and
121 hence can be precipitated by centrifugation. Consistent with our previous results, we observed that
122 rmChi3l1 was present in the pellet obtained from PGN but not in the pellet obtained from bovine
123 serum albumin (BSA), which served as a negative control (Fig. 2C). Furthermore, we also examined
124 the interaction between PGN and recombinant human Chi3l1 (rhChi3l1) and obtained similar results
125 (Fig. 2D). These findings indicate that Chi3l1 interacts with bacteria through PGN.

126
127 **Intestinal bacteria are disordered in IEC^{ΔChi3l1} mice, especially Gram-positive bacteria.**

128
129 To gain initial insights into how the expression of Chi3l1 in intestinal epithelial cells (IECs) affects
130 the colonization of gut microbiota, we created mice with a specific deficiency of Chi3l1 in IECs
131 (referred to as IEC^{ΔChi3l1} mice) (Supplementary Figure 2). We then conducted bacterial 16S rRNA
132 sequencing analysis of the colon contents of both Villin-cre and IEC^{ΔChi3l1} littermates. Our analysis

133 of alpha diversity revealed that the bacterial population was relatively lower in IEC^{ΔChi11} littermates
134 compared to Villin-cre littermates (Figure 3A). This finding was further confirmed by conducting
135 universal bacterial 16S rRNA qPCR analysis of the feces and ileum contents of IEC^{ΔChi11} and Villin-
136 cre littermates, which also showed lower bacterial enrichment in IEC^{ΔChi11} mice (Figure 3B).
137 Furthermore, principal component analysis demonstrated significant differences in bacterial
138 diversity between Villin-cre and IEC^{ΔChi11} littermates (Figure 3C).

139

140 When we examined the relative abundance of Gram-positive and Gram-negative bacteria between
141 Villin-cre and IEC^{ΔChi11} littermates, we observed that Gram-positive bacteria were significantly
142 reduced in IEC^{ΔChi11} mice, while there was no notable difference in Gram-negative bacteria (Figure
143 3D). This result was further validated by staining lipoteichoic acid (LTA), a component present on
144 Gram-positive bacteria, which revealed a lower abundance of Gram-positive bacteria in IEC^{ΔChi11}
145 compared to Villin-cre littermates (Figure 3E). Moreover, visualization of *Firmicutes* by bacteria
146 FISH staining, a dominant group of Gram-positive bacteria in the gut, also showed reduced levels
147 of *Firmicutes* in the colon lumen of IEC^{ΔChi11} mice compared to Villin-cre mice (Figure 3F). Analysis
148 of the relative abundance of specific Gram-positive bacterial species demonstrated a significant
149 reduction in *Lactobacillus* in IEC^{ΔChi11} mice compared to Villin-cre mice (Figure 3G). Similar results
150 were observed in Chi11^{-/-} mice compared to wildtype mice (Figure 3H). These findings suggest that
151 Chi3l1 plays a role in regulating the colonization of Gram-positive bacteria, particularly
152 *Lactobacillus*, in the murine gut.

153

154 **Chi3l1 promotes the colonization of Gram-positive bacteria in intestinal mucus.**

155

156 Chi3l1 was found in secretory cells like goblet cells and Paneth cells, suggesting that it may be
157 secreted into the intestinal lumen (Fig. 1B). Immunohistochemistry staining of Chi3l1 in the colon
158 revealed a large amount of Chi3l1 signals in the mucus layer (Fig. 4A). Immunofluorescence co-
159 staining of Chi3l1 with UEA-1 in the colon yielded similar results (Fig. 4B). Furthermore, Chi3l1
160 was also detected in the ileum and colonic tissues and mucus layer (Fig. 4C&D). These findings
161 indicate that mouse Chi3l1 is specifically expressed in intestinal secretory epithelial cells and
162 secreted into the intestinal lumen. Since large amounts of Chi3l1 is secreted into the mucus and
163 Chi3l1 interact with bacteria, we hypothesize that Chi3l1 may regulate the colonization of Gram-
164 positive bacteria in the mucus layer. To test this hypothesis, we isolated bacterial DNA from the
165 ileum and colon mucus of both wildtype and Chi11^{-/-} mice. Quantification of Gram-positive bacteria
166 and *Lactobacillus* using qPCR revealed that both the ileum and colon mucus of Chi11^{-/-} mice had
167 significantly lower levels of Gram-positive bacteria and *Lactobacillus* compared to that of wildtype
168 mice (Fig. 4E&F).

169

170 To further validate these results, we labeled a Gram-positive bacteria strain, *E. faecalis*, with
171 fluorescent D-amino acids (FDAA), which can metabolically label bacterial peptidoglycans[24].
172 We then performed rectal injection of both wildtype and Chi11^{-/-} mice with FDAA-labeled *E.*
173 *faecalis*. The data demonstrated that Chi11^{-/-} mice had much lower colonization of *E. faecalis*
174 compared to wildtype mice (Fig. 4G). Based on these findings, we conclude that Chi3l1 promotes
175 the colonization of Gram-positive bacteria, particularly *Lactobacillus*, in the intestinal mucus.
176 Additionally, we also observed that the deletion of Chi3l1 significantly reduced mucus layer

177 thickness, which may be attributed to the disrupted colonization of Gram-positive bacteria in the
178 intestinal mucus layer (Supplementary Figure 3 A&B).

179

180 **Disordered intestinal bacteria in IEC^{ΔChi3l1} mice contribute to colitis.**

181

182 From the above data, it is evident that Chi3l1 is secreted into the intestinal mucus to influence the
183 colonization of Gram-positive bacteria, particularly *Lactobacillus*. We are now interested in
184 understanding the role of Chi3l1-regulated microbiota in a pathological condition. We observed a
185 significant increase in *Chi3l1* mRNA expression in the colon tissues of patients with either Crohn's
186 disease (CD) or Ulcerative colitis (UC) compared to normal tissues (Fig. 5A). To investigate further,
187 we created a colitis mouse model by subjecting Villin-cre and IEC^{ΔChi3l1} mice to a 2% dextran
188 sulfate sodium (DSS) diet for 7 days (Fig. 5B). The severity of colitis was assessed based on weight
189 loss, colon length, and tissue damage. Without the DSS challenge, the colon length and structure
190 were similar between Villin-cre and IEC^{ΔChi3l1} mice (Fig. 5D&E). However, upon DSS challenge,
191 the IEC^{ΔChi3l1} mice showed significantly shorter colon length, faster body weight loss, and more
192 severe inflammation compared to the Villin-cre mice (Fig. 5C-E).

193

194 To rule out the effects of Chi3l1 on the host contributed to colitis, we pretreated the mice with
195 antibiotics to eliminate gut microbiota before inducing colitis (Supplementary Figure 4A). The
196 Universal bacterial 16S rRNA qPCR data indicated that the majority of gut microbiota were
197 eliminated after antibiotics treatment (Supplementary Figure 4B). However, the IEC^{ΔChi3l1} mice
198 exhibited a milder colitis phenotype, including slower body weight loss, longer colon length, and
199 less inflammation compared to the Villin-cre mice (Supplementary Figure 4C-E). We believe that
200 this could be due to the relationship between Chi3l1 and inflammation. Based on these findings, it
201 is apparent that Chi3l1's effects on gut microbiota play a more significant role in colitis.

202

203 To further elucidate the role of Chi3l1-regulated gut microbiota in colitis, we conducted fecal
204 microbiota transplantation (FMT) and *Lactobacillus reuteri* transplantation experiments. We first
205 eliminated gut microbiota through a 10-day course of antibiotics and then performed FMT from
206 Villin-cre mice or administered oral gavage of *Lactobacillus reuteri* to IEC^{ΔChi3l1} mice for 2 weeks,
207 followed by a 7-day period of 2% DSS feeding (Fig 5F). FMT partially restored the colon length of
208 IEC^{ΔChi3l1} mice to that of Villin-cre mice after the DSS challenge, but did not have an impact on body
209 weight loss or the level of inflammation in the gut (Fig. 5G-I). IEC^{ΔChi3l1} mice transplanted with
210 *Lactobacillus* displayed a similar colitis phenotype as Villin-cre mice, characterized by similar
211 weight loss, colon length reduction, and gut inflammation (Fig. 5G-I). These findings further
212 validate the notion that Chi3l1-regulated gut microbiota, especially *Lactobacillus*, offers protection
213 against colitis.

214

215 **Discussion**

216 The intricate relationship between gut bacteria and their host organisms plays a crucial role in
217 maintaining health. Key to this relationship are the processes of co-evolution and co-speciation,
218 which help maintain balance within the gut microbiota community. Understanding how the host
219 influences these bacterial communities is critical to comprehend the complex interplay between host
220 and gut bacteria. In this study, we uncovered the direct interaction between Chi3l1 and gut

221 microbiota via bacterial cell wall component-peptidoglycan, thereby helping mucous colonization
222 of gut microbiota, especially *Lactobacillus*, which is beneficial for host against colitis (Fig. 6).
223 Furthermore, the “scaffold model” of host Chi3l1 directly interacting with microbial PGN, as
224 reported in our study, could significantly enhance our understanding of the mechanisms through
225 which other bacteria colonize the gut.

226
227 Several studies have suggested a potential correlation between Chi3l1 and bacteria. For instance, it
228 has been demonstrated that Chi3l1 is produced by intestinal epithelial cells in enteritis disease and
229 aids in the elimination of pathogenic bacteria in the gut by neutrophils[25]. Another study observed
230 an increase in Chi3l1 expression in mammary tissues of dairy cows infected with pathogenic *E. coli*,
231 which promoted the recruitment of neutrophils[26]. Furthermore, Chi3l1 was found to be induced
232 during *Streptococcus pneumoniae* infection, where it enhanced bacterial elimination by preventing
233 the death of lung macrophages and improving host tolerance[27]. Additionally, a study in mouse
234 colonic epithelial cells showed that Chi3l1 enhances bacterial infection and adhesion[28]. However,
235 the specific mechanism underlying the relationship between Chi3l1 and the gut microbiota has not
236 been fully explored, likely due to a lack of Chi3l1-specific knockout mice. Here, by using intestinal
237 Chi3l1-specific knockout mice, we demonstrated a new function of Chi3l1 in gut, which shapes
238 bacterial colonization through direct interaction with bacterial cell wall component, PGN.
239 Moreover, Chi3l1-regulated gut microbiota, especially *Lactobacillus*, offers protection against
240 colitis.

241
242
243 In our study, we demonstrated that heat-killed bacteria can induce the expression of Chi3l1 in
244 intestinal epithelial cells (Fig. 1E). This suggests that the component of the bacterial cell wall is
245 sufficient to induce Chi3l1 expression. The bacterial cell wall is a complex structure mainly
246 composed of peptidoglycan, but it may also contain other components such as teichoic acids and
247 lipoteichoic acid in gram-positive bacteria, or an outer membrane containing various
248 polysaccharides, lipids, and proteins in gram-negative bacteria[29]. Our findings indicated that
249 lipopolysaccharide (LPS), a component of the bacterial cell wall, can slightly increase Chi3l1
250 expression (Fig. 1F&G), but higher levels of LPS do not further enhance Chi3l1 expression (data
251 not shown). This suggests that there might be other components of the cell wall that can induce
252 Chi3l1 expression in intestinal epithelial cells.

253
254 Peptidoglycan, which is a major component of the bacterial cell wall, is composed of polysaccharide
255 chains alternating with N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). These
256 chains are crosslinked through a tetrapeptide[29]. We showed that Chi3l1 can directly interact with
257 peptidoglycan (Fig. 2C&D). Given the structural similarity between chitin and peptidoglycan (Fig.
258 2A), it is likely that Chi3l1 binds to the polysaccharide chains rather than the tetrapeptide in
259 peptidoglycan. Previous studies have investigated the crystal structure of human Chi3l1 in complex
260 with chitin, revealing a binding groove with different subsites for chitin fragments[30]. Other studies
261 have also identified specific amino acids in chitinases that play a key role in the interaction with
262 chitin[31, 32]. Nevertheless, further investigation is necessary to better understand the binding sites
263 in Chi3l1 for peptidoglycan.

264

265 In the colon, there are two distinct parts of the mucus layer. The inner layer is attached and has a
266 low number of microbes, while the outer layer is looser and densely populated by microorganisms.
267 [33]. The diversity of bacteria in the mucus layer is similar to that found in the gut lumen[34]. Our
268 study found that mice lacking the Chi3l1 gene had fewer Gram-positive bacteria, particularly
269 *Firmicutes* and *Lactobacillus*, compared to normal mice (Fig. 3F-H). This was confirmed by qPCR
270 data (Fig. 4E&F). However, not all Gram-positive bacteria were reduced in these mice, as we found
271 an increase in *Turicibacter* in the colon (Fig. 3G) and feces (data not shown). We believe this may
272 be due to a combined effect of the host and gut microbiota. Another important factor for microbial
273 growth in the colon is the integrity of the mucus barrier[12]. We noticed a thinning of the mucus
274 barrier in the mice lacking Chi3l1 compared to normal mice (Supplementary Figure 3 A&B).
275 However, we did not observe an increase in mucin-degrading bacteria such as *Bacteroides* or
276 *Allobaculum*[35, 36] or a decrease in mucin-producing cells in these mice. We think that there may
277 be bacteria that aid in the formation of the gut mucus, and these bacteria are decreased in mice
278 lacking Chi3l1.

279

280 In patients with inflammatory bowel disease (IBD), the density and diversity of the microbial
281 community in the intestines are reduced. Specifically, there is a decrease in *Firmicutes* and an
282 increase in *Bacteroides* and facultative anaerobic bacteria like *Enterobacteriaceae*[37]. However,
283 the cause of colitis in IBD is still a subject of debate. Our data shows that a deficiency of Chi3l1 in
284 intestinal epithelial cells leads to dysbiosis (Fig. 3). Mice without Chi3l1 are more susceptible to
285 colitis induced by dextran sulfate sodium (DSS) compared to normal mice (Fig. 5B-E). However,
286 when we transplanted fecal microbiota from normal mice or supplemented with *Lactobacillus*
287 *reuteri* in mice without Chi3l1, DSS-induced colitis was significantly reduced (Fig. 5F-I). These
288 results suggest that disruptions in the gut microbiota contribute to colitis. In summary, our study
289 demonstrates that bacterial challenge induces the expression of Chi3l1 in intestinal epithelial cells.
290 Once produced, Chi3l1 is released into the mucus layer where it interacts with the gut microbiota,
291 particularly through peptidoglycan, a primary component of bacterial cell walls. This interaction is
292 beneficial for the colonization of bacteria, especially gram-positive bacteria like *Lactobacillus*, in
293 the mucus layer. Dysbiosis resulting from a lack of Chi3l1 exacerbates DSS-induced colitis,
294 highlighting the role of dysbiosis as a contributing factor to colitis.

295

296

297 **Methods**

298

299 **Animal experiments and procedures.**

300 C57BL/6J (Strain No. N000013), Germ-free (Strain No. N000295), Chi1^{fl/fl} (Strain No. T013652),
301 Chi1^{-/-} (Strain No. T014402) mice were purchased from GemPharmatech. Villin-cre mice were
302 provided by Dr. Qun Lu (Yunnan University, China,). All mouse colonies were maintained at the
303 animal core facility of Yunnan University. C57BL/6J was used as wildtype control since Chi1^{-/-}
304 mice are on the C57BL/6J background, as determined by PCR (data not shown). The animal studies
305 described have been approved by the Yunnan University Institutional Animal Care and Use
306 Committee (IACUC, Approval No. YNU20220256). Female mice aged 8-10 weeks old were used
307 in most studies.

308

309 *Genotyping* First, place the tail clippings into 1.5ml tubes. Then, transfer 75uL of the master mix
 310 solution (composed of 60uL H2O, 7.5uL 250mM NaOH, and 7.5uL 2mM EDTA) into the tubes
 311 with the tail clippings. Next, place the tubes in a thermocycler and incubate them at 98°C for 1 hour.
 312 After that, lower the temperature to 15°C and add 75uL of neutralization buffer (consisting of 40mM
 313 Tris HCl, pH=5.5). Following the addition of Tris HCl, centrifuge the tubes at 4000rpm for 3
 314 minutes. Then, create a 1:10 dilution by transferring 2uL of the supernatant to a new 0.2mL tube and
 315 adding 18uL of water. This diluted solution can be utilized in the genotyping PCR reaction. Prepare
 316 a total of 25uL PCR reaction mix, composed of 12.5 uL 2x Taq Master Mix, Dye plus (Vazyme P112-
 317 03), 1uL of each primer, 2 uL of template, and add H2O to reach a total volume of 25uL. Conduct the
 318 PCR reaction on a Biorad PCR machine, following the programmed steps: 1. 95°C for 5 minutes, 2.
 319 98°C for 30 seconds, 3. 65°C with a decrement of 0.5°C per cycle for 30 seconds, 4. 72°C for 45
 320 seconds, repeat steps 2-4 for a total of 20 cycles, 5. 98°C for 30 seconds, 6. 55°C for 30 seconds, 7.
 321 72°C for 45 seconds, repeat steps 5-7 for a total of 20 cycles, 8. 72°C for 5 minutes, and finally, 9.
 322 hold at 10°C. Primer sequences are provided in table S1.
 323

324 **Table S1**

Aim genes	PCR No.	Primer No.	Sequence	Band Size
flox	① 5'arm (flox)	F1(JS05000-Chil1-5wt-tF1)	CTTGTTCAGCCAAG GTGATGGGTA	WT:270bp targeted:375bp
		R1(JS05000-Chil1-5wt-tR1)	CTACCTGATTGCTG GGGCTCATTA	
	② 3'arm	F2(JS15000-Chil1-3wt-F1)	CCAGTATTAGAGG CAGAGAGATGGT	WT:283bp targeted:384bp
		R2(JS15000-Chil1-3wt-R1)	CTCGAATTCAAGAAA TCTGCCTGCCT	
Chil1 ^{-/-}	①	F1(JS05000-Chil1-5wt-tF1)	CTTGTTCAGCCAAG GTGATGGGTA	WT: 2960 bp Targeted: ~256 bp
		R1(JS05000-Chil1-3wt-tR1)	CTCGAATTCAAGAAA TCTGCCTGCCT	
	②	F2(JS15000-Chil1-wt-F1)	CTGTTAGTTGCACC TTGGAGCAGTCA	WT: 309 bp Targeted:0 bp
		R2(JS15000-Chil1-wt-R1)	CAGATATAGGAGA ACATCCAGTCTGGG	
Chil1-reporter	①	EGE-YQH-063-A-WT-F	CAGTTCCCAACCC CTCACCTC	Targeted:485 ~bp
		EGE-YQH-063-A-Mut-R	AAGAAGTCGTGCTG CTTCATGTGGT	
	②	EGE-YQH-063-A-WT-F	CAGTTCCCAACCC CTCACCTC	WT:323 Targeted:1106~ bp
		EGE-YQH-063-A-WT-R	CTACCCTAGTTCCCT GTTCTCCA	
Cre	Cre①	Cre1	AGGTTCGTTCACTC ATGGA	Cre:250bp Internal Control (Fabpi)=480bp
		Cre2	TTCGACCAGTTAG TTACCC	
	IntC500②	IntC500F	CCTCCGGAGAGCAG CGATTAAGTGTC AG	

		IntC500R	TAGAGCTTGCCAC ATCACAGGTCATT AG	
--	--	----------	--------------------------------------	--

325

326 *Rectal administration of FDAA-labeled E. faecalis* For FDAA-labeled *E. faecalis*, *E. faecalis*
327 were grown in LB media until reaching mid-exponential phase, approximately 4 hours. FDAA was
328 then added to the culture media to a final concentration of about 17 μ M. The *E. faecalis* continued
329 to grow for 4 hours and were then harvested by centrifugation (5000 x g for 10 min), washed, and
330 resuspended in PBS at a density of 5×10^9 CFU/ml. For rectal administration, wildtype and *Chil1*^{-/-}
331 mice were fasted overnight (5:00pm to 9:00am) before intraperitoneally (i.p.) injecting them with
332 400mg/kg tribromoethanol (Nanjing AIBI BioTechnology, M2910), followed by rectal injection of
333 1×10^9 FDAA-labeled *E. faecalis* in 200 μ l PBS via a flexible catheter. The catheter was inserted into
334 the anus to a depth of 4.5 cm, and the *E. faecalis* were injected slowly to avoid overflow. The mice
335 were then kept upside down for approximately 2 minutes. After 4 hours of rectal injection, the mice's
336 colons were collected and immediately embedded in OTC embedding medium for observation on
337 5 μ m thick frozen sections.

338

339 *DSS-induced mouse colitis* Villin-cre and *IEC* ^{Δ *Chil1*} mice were fed a 2% dextran sodium sulfate
340 (DSS, MP, 9011-18-1) solution in their drinking water for 7 days. The mice's body weight was
341 monitored daily during the feeding period. After the 7-day DSS treatment, the mice were sacrificed.
342 Colons were collected, and their length was measured from the cecum to the rectum. Colon paraffin
343 sections were harvested, and H&E staining was performed to examine gut inflammation.

344

345 *Antibiotics treatment* *IEC* ^{Δ *Chil1*} mice were fed an antibiotics mixture containing 0.5 mg/ml of
346 Metronidazole (Solarbio, M8060), 1 mg/ml of vancomycin (Solarbio, V8050), 1 mg/ml of
347 Ampicillin (Solarbio, A8180), and 0.5 mg/ml of Neomycin Sulfate (Solarbio, N8090) in their
348 drinking water for 7 days (approximately 5ml per mouse per day). After the 7-day antibiotics
349 treatment, the mice were orally gavaged with 200 μ l of the antibiotics mixture for another 3 days.
350 Microbiota depletion was examined in feces using 16S rRNA qPCR on the 10th day of antibiotics
351 feeding.

352

353 *Fecal microbiota transplantation (FMT)* Fresh feces were collected from 8-10 weeks old Villin-
354 cre mice and immediately snap-frozen in liquid nitrogen. On the experimental day, feces were
355 dissolved in PBS to a concentration of 200 mg/ml and centrifuged at 350g for 5 minutes to collect
356 the supernatant. Antibiotics pre-treated *IEC* ^{Δ *Chil1*} mice were orally gavaged with 10 μ l of the
357 dissolved feces per gram of mouse weight for 14 days.

358

359 *Oral gavage of Lactobacillus reuteri* *Lactobacillus reuteri* was grown in MRS broth at 37°C for
360 48 hours under anaerobic conditions. The bacteria were harvested by centrifugation (5000 x g for
361 10 min), washed, and resuspended in PBS at a density of $OD_{605}=1.2-1.3$ /ml. Antibiotics pre-treated
362 *IEC* ^{Δ *Chil1*} mice were orally gavaged with 200 μ l of the dissolved *Lactobacillus reuteri* per mouse for
363 14 days.

364

365 **Bacterial colony identification**

366 Fresh feces were collected from 8-week-old wild-type mice and dissolved in LB culture medium.

367 The dissolved feces were then cultured at 37°C for 12 hours and plated onto LB agar plates. The
368 grown colonies were picked using sterile pipette tips and resuspended in 20 µl of sterile water. A
369 PCR reaction was performed using 2 µl of the bacterial suspension as template DNA and universal
370 bacterial 16S rRNA primers (27F, 5'-AGAGTTGATCCTGGCTCAG-3' and 1492R, 5'-
371 GGTTACCTTGTACGACTT-3') with reaction conditions: 95°C for 5 min followed by 35 cycles
372 of 95°C for 30sec, 55°C for 30sec, 72°C for 2min and then 72°C for 20min. The amplicons were
373 then sequenced, and the resulting sequences were analyzed using BLASTN and the NCBI database
374 for species identification.

375

376 **Treatment of DLD-1 cells with live, heat-killed bacteria or LPS**

377 Bacteria harvested from mouse feces or specific strains were grown in LB medium at 37°C for 12
378 hours under aerobic conditions. The bacteria were then collected by centrifugation (5000 x g for 10
379 min), washed, and resuspended in PBS at a density of 1.2×10^{10} CFU/ml. Live bacteria were used
380 directly, while heat-killed bacteria required further heating at 80°C for 30 minutes. DLD-1 cells
381 were grown in DMEM medium supplemented with 10% FBS. Prior to treatment, the cells were
382 replated and allowed to reach 80% confluence. Either live or heat-killed bacteria were added to the
383 cells at a multiplicity of infection of 20 each well, and 100 pg/ml LPS treatment(Sigma, L4392;
384 diluted in PBS) was also performed. After 12-hour incubation, cellular proteins were extracted for
385 western blot analysis or the cells were subjected to immunofluorescent staining.

386

387 **Bacterial or peptidoglycan binding assay**

388 Different bacteria strains were grown in LB medium at 37°C for 12 hours under aerobic conditions.
389 The bacteria were collected by centrifugation (5000 x g for 10 min), washed, and resuspended in
390 MES buffer (25mM MES, 25mM NaCl, Ph=6.0) at a density of 5×10^9 CFU/ml. 1µg Recombinant
391 mouse Chi3l1 (rmChi3l1) was added to the bacterial suspension and incubated at 4°C under rotation
392 overnight. Supernatant, wash fractions, and bacterial-bound fractions were collected and analyzed
393 using western blot analysis. For the peptidoglycan binding assay, 1µg rmChi3l1 or recombinant
394 human Chi3l1 (rhChi3l1) and bovine serum albumin (BSA) was incubated with 100µg
395 peptidoglycan (PGN). The incubation and wash procedure were similar to the bacterial binding
396 assay, and the proteins in each fraction were analyzed using silver staining or western blot.

397

398 **Hematoxylin/eosin(H&E) and Periodic acid-Schiff and Alcian blue (AB-PAS) staining**

399 Tissues were fixed with buffered 10% paraformaldehyde (BI, E672001-0500) overnight at 4°C and
400 embedded in paraffin. Ultra-thin tissue slices (5µm) were prepared and deparaffinized. H&E
401 staining was performed on the tissue sections, and slides were examined under a microscope (Leica).
402 For AB-PAS staining, tissues were fixed in Carnoy's solution (60% Ethanol, 30% Chloroform,
403 10% Acetic Acid) for 24 hour at 4°C and embedded in paraffin. AB-PAS staining (Solarbio, G1285)
404 was performed according to the manufacturer's protocol. The staining was visualized under the
405 microscope (Leica).

406

407 **Immunohistochemical (IHC) and immunofluorescent (IF) staining**

408 Tissue paraffin sections were prepared as previously described for H&E staining. Antigen retrieval
409 was performed by treating the sections with citric acid (pH 6.0) at 95°C for 15 minutes, followed
410 by cooling to room temperature. The sections were then washed with PBS and ddH2O. To block

411 any nonspecific binding, a blocking buffer containing 5% goat serum, 3% BSA, and 0.1% Triton X-
412 100 in PBS was applied to the sections for 1 hour at room temperature in a humidity chamber. The
413 sections were then incubated with anti-Chi311 primary antibodies (Invitrogen, PA5-95897, 1:200),
414 followed by staining with Goat anti-Rabbit IgG (H+L) Secondary Antibody-Biotin (Invitrogen, 65-
415 614, 1:2000). Finally, the sections were stained with Horseradish Peroxidase conjugate antibody
416 (Invitrogen, A2664, 1:2000) and developed with DAB for 10 minutes. The slides were examined
417 under a microscope (Leica).

418
419 Immunofluorescent staining was also performed on paraffin sections using specific primary
420 antibodies. These included anti-MUC2 (Invitrogen, PA5-103083, 1:50), anti-Chi311 (Abcam,
421 ab180569, 1:400; antigen retrieval with Tris-EDTA at pH 9.0), anti-ChgA (Santa Cruz, sc-393941,
422 1:200; antigen retrieval with citrate at pH 6.0), anti-UEA-1-FITC (GeneTeX, GTX0151, 1:200;
423 antigen retrieval with citrate at pH 6.0), and anti-LTA (Invitrogen, MA1-7402, 1:50). The secondary
424 antibodies used were 488-conjugated Affinipure Goat Anti-Rabbit IgG(H+L) (Jackson
425 ImmunoResearch, 111-545-003, 1:1000) and 594-conjugated Goat Anti-Mouse IgG (H+L) (Jackson
426 ImmunoResearch, 115-585-003, 1:1000). Slides were washed and mounted with antifade medium
427 (Vectashield, H-1000-10). Nuclei were stained with DAPI (Beyotime, c1006, prediluted). Images
428 were captured using a fluorescence microscope (Leica, 2084 DP-80).

429
430 Immunofluorescent staining on DLD-1 cells, cells were seeded on coverslips in 12-well plate and
431 challenged with 100 pg/ml LPS (Sigma, L4391; diluted in PBS) for 12 hours. Cells were washed
432 with cold-PBS twice gently, then fixed with 2% paraformaldehyde in PBS at room temperature for
433 10 min. After removal of fixation buffer and wash twice with cold-PBS, cells were blocked with
434 blocking buffer (3% BSA, 0.5% Triton-X-100 in PBS) for 1 hour in humidity chamber at room
435 temperature. Rabbit anti-Chi311 antibody (Proteintech, 12036-1-AP; 1:200) was applied at room
436 temperature for 1 hour. After wash with 1 x TBST three times, secondary antibody AlexaFluor 488
437 (Jackson ImmunoResearch, 111-545-003, 1:1000) was applied for another 1 hour at room
438 temperature in a humidified chamber under darkness. Finally, cells were counterstained with DAPI
439 (beyotime, C1006) and mounted onto slides. Images were captured using an Olympus BX53F2
440 microscope.

441

442 **Fluorescence in situ hybridization (FISH)**

443 Murine intestinal paraffin sections were prepared according to the previously described method for
444 H&E staining. The tissues sections were rehydrated using a graded ethanol series and then washed
445 with distilled water. The gram-positive bacterial probe, consisting of three different sequences
446 (/5Alex550N/TGGAAGATTCCCTACTGC/3AlexF550N/,
447 /5Alex550N/CGGAAGATTCCCTACTGC/3AlexF550N/,
448 /5Alex550N/CCGAAGATTCCCTACTGC/3AlexF550N/), or the control nonspecific probe
449 (/5Alex550N/ACTCCTACGGGAGGCAGC/3AlexF550N/), was diluted to a concentration of 100
450 nM in FISH hybridization buffer (containing 20 mM Tris pH 7.2, 0.9 M NaCl, and 0.1% SDS) and
451 applied to the slides. The slides were then incubated overnight at 56°C in a humidified chamber.
452 Following incubation, the slides were washed and the nuclei were counterstained with DAPI. The
453 images were captured using a fluorescence microscope (Leica, 2084 DP-80).

454

455 **Immunoblot and silver staining**

456 Protein extraction from cultured cells involved lysing the cells in 2% SDS lysis buffer, which is
457 prepared by dissolving 2g of SDS powder in 100ml of sterilized ddH₂O. Bacteria or peptidoglycan
458 precipitates were resuspended in MES buffer, which contained 25mM MES, 25mM NaCl, and had
459 a pH of 6.0. For protein extraction from mice ileum and colon tissues, 30mg of snap-frozen tissues
460 were homogenized in 1ml of RIPA buffer, which contained 10mM Tris-HCl (pH 8.0), 1mM EDTA,
461 0.5mM EGTA, 1% TritonX-100, 0.1% sodium deoxycholate, 0.1% SDS, 140mM NaCl, 1mM PMSF,
462 and a proteinase inhibitor. The lysates were then supplemented with 5x SDS loading buffer to a final
463 concentration of 1x. The resulting mixture was subsequently boiled at 100°C for 10 minutes and
464 centrifuged at 4°C and 12,000 rpm for 10 minutes. The supernatants were collected for western blot
465 analysis. The supernatants were separated using a 10% SDS-PAGE gel and then transferred to a
466 polyvinylidene fluoride membrane. The membranes were blocked with 5% nonfat milk in TBST
467 buffer (containing 0.1% Tween-20 in tris-buffered saline) and sequentially incubated with primary
468 antibodies and appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies. Protein
469 bands were detected using enhanced chemiluminescence (ECL) reagent with a Minichemi
470 Chemiluminescence Imaging System. The primary antibodies used included anti-Chi3l1 (RD,
471 MAB2649, 1:2000) and anti-alpha-Actinin (Cell Signaling, 69758S, 1:1000). The secondary
472 antibodies used were goat anti-Rat-IgG (Cell Signaling, 7077s, 1:1000) and goat anti-mouse
473 (Invitrogen, 62-6520, 1:1000). For silver staining, the PAGE gel was subjected to silver staining
474 using a fast-silver staining kit (Beyotime, P0017S) following the manufacturer's instructions.

475

476 **DNA extraction for 16S rRNA analysis**

477 For isolation of luminal contents from murine ileum and colon, a 9 cm section of ileum and 3 cm
478 section of colon were cut open longitudinally, and luminal contents were scratched off into a pre-
479 weighed 2-ml sterile freezing vial. The weight of the contents was recorded for further processing.
480 For isolation of mucus from murine ileum and colon, tissues were flushed with 2 ml of ice-cold PBS
481 into a pre-weighed 2-ml sterile freezing vial after removal of the liminal contents. The mucus was
482 then pelleted by centrifugation at 10,000g for 10 minutes, and the supernatant was removed. For
483 feces isolation, fresh murine feces were collected into a sterile freezing vial weighing 2 ml, and
484 immediately snap-frozen in liquid nitrogen. For bacterial DNA extraction, DNA was extracted and
485 purified following the manufacturer's protocol using the EIANamp stool DNA kit (TIANGEN,
486 DP328-02).

487

488 **Microbiota 16S rRNA gene sequencing**

489 Fecal samples, ileum contents, and colon contents were collected from wildtype, *Chil1*^{-/-} littermates,
490 or *Villin*-cre, *IEC*^{Δ*Chil1*} littermates and immediately frozen in liquid nitrogen. The microbial genomic
491 DNA was extracted and 16S rRNA sequencing was performed by Biomarker Technologies. The
492 hypervariable regions V3 and V4 of the bacterial 16S rRNA gene were sequenced using universal
493 primers that flank these regions V3 (338F 5'-ACTCCTACGGGAGGCAGCA-3') and V4 (806R 5'-
494 GGAATCAGVGGGTWTCTAAT-3'). The sequencing was done using the Illumina Sequencing
495 platform. The resulting 16S rRNA gene sequences were analyzed using scripts from the BMK Cloud
496 platform (www.biocloud.net). The microbial classification was performed using the SILVA138 and
497 hierarchical clustering algorithms. The OTUs were determined by clustering the sequences with 97%
498 similarity and were classified into different taxonomic ranks. The relative abundance of each

499 bacterial species was visualized using R software. The raw 16S rRNA gene sequencing data can be
500 accessed on the BMKCloud platform under the project ID
501 Microbial_updateReport_20211221092022313.

502

503 **16S qPCR analysis**

504 Quantitative PCR was performed using SYBR green master mix (Thermo Fisher, A25742) in
505 triplicates. This was done on a Real-Time PCR QuatStudio1 with accompanying software, following
506 the instructions provided by the manufacturer (Life Technologies, Grand Island, NY, USA). The
507 abundance of specific bacterial groups in the intestine was determined using qPCR with either
508 universal or bacteria-specific 16S rRNA gene primers. Standard curves were constructed with
509 *E.Coli OP50* 16S rRNA gene, which was amplified using conserved 16S rRNA primers. It should
510 be noted that qPCR measures the number of 16S gene copies per sample, not the actual bacterial
511 numbers or colony forming units. Primer sequences are provided in table S2.

512

513 **Table S2**

514 **qPCR primers**

Targeted bacteria	Primer No.	Sequence
Universal	27F	AGAGTTGATCCTGGCTCAG
	1492R	GGTTACCTGTTACGACTT
Gram-positive	928F-firm	TGAAACTYAAAGGAATTGACG
	1040-firmR	ACCATGCACCACCTGTC
Lactobacillus	F	TGGAAACAGGTGCTAATACCG
	R	GTCCATTGTGGAAGATTCCC

515

516 **Key source tables**

517

518 **Antibodies and chemicals**

Reagent or Antibodies	Source	Identifier
Dextran Sulfate Sodium Salt	MP	CAS:9011-18-1
AB-PAS staining kit	Solarbio	G1285
EIANamp stool DNA kit	TIANGEN	DP328-02
PAGE Gel Fast Preparation Kit	Shanghai Epizyme biotechnology	PG113
gel extraction kit	Omega--	D2500-02
SYBR Green kit	Thermo Fisher	A25742
hematoxylin	Servicebio	G1004
eosin	Biosharp	BL703b
DAB Substrate Kit	ZSGB-BIO	zli-9018
Tris	Solarbio	77-86-1
Sodium chloride	Solarbio	7647-14-5
disodium salt dihydrate (EDTA)	Sangon Biotech	6381-92-6
Sodium dodecyl sulfate (SDS)	BBI	A601336-0500
egta-zinc chelating agent, Glycol ether diamine tetraacetic acid (EGTA)	BBI	67-42-5
TritonX-100	BBI	9002-93-1
Citric acid	Sangon Biotech	77-92-9
Vancomycin	Solarbio	V8050
Ampicillin- Sodium salt	Solarbio	A8180
Metronidazole	Solarbio	M8060
Neomycin Sulfate	Solarbio	N8090
MRS broth	Solarbio	M8540

Goat serum	Solarbio	
Anti-Chi311 Polyclonal Antibody	Invitrogen	PA5-95897
Cha-A antibody	Santa Cruz	sc-393941
anti-mouse Chi311 Purified Rat Monoclonal IgG	R&D	MAB2649
MUC2 Polyclonal Antibody	Invitrogen	PA5-103083
Gram Positive Bacteria LTA Monoclonal Antibody (G43J)	Invitrogen	MA1-7402
488-conjugated Affinipure Goat Anti-Rabbit immunoresearch Alexa Fluor 594 AffiniPure Goat Anti-Mouse IgG (H+L)	Jackson	111-545-003
Goat anti-Rabbit IgG (H+L) Secondary Antibody-Biotin	Jackson	115-585-003
Horseradish Peroxidase conjugate antibody	Invitrogen	A2664
Rabbit anti-Chi311 antibody	Proteintech	12036-1-AP
Goat anti-Rabbit IgG	Jackson ImmunoResearch	111-035-0030
Mouse anti- α -tubulin antibody	sigma	T5168
Goat anti-mouse IgG	Jackson ImmunoResearch	115-035-003
Goat anti-Rat IgG	Jackson ImmunoResearch	112-035-003
DAPI	Beyotime	c1006
Antifade mounting medium	Vectashield	H-1000-10
FDAA	5TAMRA; CHINESE PEPTIDE	CS-11-00433
gram-positive bacteria 16S rRNA probe	Guangzhou Exon Biotech	

519

520

Cell lines/ Bacteria strains

DLD-1 cells	a gift from Dr. Sun Jianwei at Yunnan University	
<i>Staphylococcus saprophyticus</i>	ATCC	15305
<i>E. faecalis</i>	ATCC	33186
<i>Lactobacillus reuteri</i>	ATCC	23272
<i>E. coli</i> strain <i>K12</i>	Dharmacon	Cat #OEC5042
<i>E. coli</i> strain <i>OP50</i>	CGC	RRID:WB_STRAIN:OP50
<i>Staphylococcus Sciuri</i>	identified from C57BL/6J wild-type mice stools	citation: Kirienko NV, Cezairliyan BO, Ausubel FM, Powell JR. <i>Pseudomonas aeruginosa</i> PA14 pathogenesis in <i>Caenorhabditis elegans</i> . <i>Methods Mol Biol.</i> 2014;1149:653-669. doi:10.1007/978-1-4939-0473-0_50
<i>E. coli</i>	identified from C57BL/6J wild-type mice stools	

521

522

Statistical analysis

523 Data were presented as mean \pm SEM. Statistical analyses were carried out using GraphPad Prism (GraphPad Software). Comparisons between two groups were carried out using unpaired Student t test. Comparisons among multiple groups ($n \geq 3$) were carried out using one-way ANOVA. P values

526 are as labeled and less than 0.05 was considered not significant. Patient data were analyzed by
527 Mann-Whitney test.

528

529 **Author Contributions**

530 Y.C. and R.Z.Y. performed experiments, analyzed data, and wrote the manuscript. B.Q. organized
531 and designed the study. Z.S. initiated, organized, designed the study and wrote the manuscript.

532

533 **Acknowledgements**

534 We thank Qun Lu (Yunnan University) for providing Villin-cre mice. We thank Wenxiang Fu
535 (Yunnan University) for imaging technical support. We thank Jianwei Sun (Yunnan University) for
536 providing DLD-1 cell line. We thank Zehan Hu (Shanghai Jiao Tong University) for methods of
537 bacteria 16S FISH staining. This work was supported by National Natural Science Foundation of
538 China (32071129 to Z.S., 32170794 to B.Q.), Yunnan Fundamental Research Projects
539 (202101AT070022, 202001AW070006 to Z.S., 2019FY003022, 202001AV070011,
540 202001AW070006, 202201AT070196 to B.Q.), Ministry of Science and Technology of China
541 (2019YFA0803100, 2019YFA0802100 to B.Q.).

542

543 **Declaration of interests**

544 The authors declare no competing interests.

545

546

547

548

549 **Reference**

550

- 551 1. Lozupone, C.A., et al., *Diversity, stability and resilience of the human gut microbiota*.
552 Nature, 2012. **489**(7415): p. 220-230.
- 553 2. Charbonneau, M.R., et al., *A microbial perspective of human developmental biology*.
554 Nature, 2016. **535**(7610): p. 48-55.
- 555 3. Sonnenburg, J.L. and F. Backhed, *Diet-microbiota interactions as moderators of human*
556 *metabolism*. Nature, 2016. **535**(7610): p. 56-64.
- 557 4. Thaiss, C.A., et al., *The microbiome and innate immunity*. Nature, 2016. **535**(7610): p. 65-
558 74.
- 559 5. Honda, K. and D.R. Littman, *The microbiota in adaptive immune homeostasis and disease*.
560 Nature, 2016. **535**(7610): p. 75-84.
- 561 6. Baumler, A.J. and V. Sperandio, *Interactions between the microbiota and pathogenic*
562 *bacteria in the gut*. Nature, 2016. **535**(7610): p. 85-93.
- 563 7. Petersen, C. and J.L. Round, *Defining dysbiosis and its influence on host immunity and*
564 *disease*. Cellular Microbiology, 2014. **16**(7): p. 1024-1033.
- 565 8. Lee, J.Y., R.M. Tsolis, and A.J. Baumler, *GUT PHYSIOLOGY The microbiome and gut*
566 *homeostasis*. Science, 2022. **377**(6601): p. 44-+.
- 567 9. McDonald, J.E., J.R. Marchesi, and B. Koskella, *Application of ecological and evolutionary*
568 *theory to microbiome community dynamics across systems*. Proceedings of the Royal
569 Society B-Biological Sciences, 2020. **287**(1941).
- 570 10. Gordon, J.I., *Honor Thy Gut Symbionts Redux*. Science, 2012. **336**(6086): p. 1251-1253.

571 11. Fu, J.X., et al., *Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in*
572 *mice*. *Journal of Clinical Investigation*, 2011. **121**(4): p. 1657-1666.

573 12. Johansson, M.E.V., et al., *The inner of the two Muc2 mucin-dependent mucus layers in*
574 *colon is devoid of bacteria*. *Proceedings of the National Academy of Sciences of the*
575 *United States of America*, 2008. **105**(39): p. 15064-15069.

576 13. Swidsinski, A., et al., *Spatial organization and composition of the mucosal flora in patients*
577 *with inflammatory bowel disease*. *Journal of Clinical Microbiology*, 2005. **43**(7): p. 3380-
578 3389.

579 14. Johansson, M.E.V., et al., *Bacteria penetrate the normally impenetrable inner colon mucus*
580 *layer in both murine colitis models and patients with ulcerative colitis*. *Gut*, 2014. **63**(2): p.
581 281-291.

582 15. Gevers, D., et al., *The Treatment-Naive Microbiome in New-Onset Crohn's Disease*. *Cell*
583 *Host & Microbe*, 2014. **15**(3): p. 382-392.

584 16. Donaldson, G.P., et al., *Gut microbiota utilize immunoglobulin A for mucosal colonization*.
585 *Science*, 2018. **360**(6390): p. 795-800.

586 17. Lee, C.G., et al., *Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue*
587 *remodeling, and injury*. *Annu Rev Physiol*, 2011. **73**: p. 479-501.

588 18. Houston, D.R., et al., *Structure and ligand-induced conformational change of the 39-kDa*
589 *glycoprotein from human articular chondrocytes*. *Journal of Biological Chemistry*, 2003.
590 **278**(32): p. 30206-30212.

591 19. Fulde, M., et al., *Neonatal selection by Toll-like receptor 5 influences long-term gut*
592 *microbiota composition*. *Nature*, 2018. **560**(7719): p. 489-493.

593 20. Vaishnava, S., et al., *The antibacterial lectin RegIIIgamma promotes the spatial segregation*
594 *of microbiota and host in the intestine*. *Science*, 2011. **334**(6053): p. 255-8.

595 21. Groussin, M., F. Mazel, and E.J. Alm, *Co-evolution and Co-speciation of Host-Gut Bacteria*
596 *Systems*. *Cell Host Microbe*, 2020. **28**(1): p. 12-22.

597 22. Hill, D.R., et al., *Bacterial Colonization Stimulates a Complex Physiological Response in the*
598 *Immature Human Intestinal Epithelium*. *In Vitro Cellular & Developmental Biology-Animal*,
599 2018. **54**: p. S6-S6.

600 23. Zhao, T., et al., *Chitinase-3 like-protein-1 function and its role in diseases*. *Signal*
601 *Transduct Target Ther*, 2020. **5**(1): p. 201.

602 24. Wang, W., et al., *Assessing the viability of transplanted gut microbiota by sequential*
603 *tagging with D-amino acid-based metabolic probes*. *Nat Commun*, 2019. **10**(1): p. 1317.

604 25. Deutschmann, C., et al., *Identification of Chitinase-3-Like Protein 1 as a Novel Neutrophil*
605 *Antigenic Target in Crohn's Disease*. *Journal of Crohns & Colitis*, 2019. **13**(7): p. 894-904.

606 26. Breyne, K., et al., *Immunomodulation of Host Chitinase 3-Like 1 During a Mammary*
607 *Pathogenic Escherichia coli Infection*. *Frontiers in Immunology*, 2018. **9**.

608 27. Dela Cruz, C.S., et al., *Chitinase 3-like-1 promotes Streptococcus pneumoniae killing and*
609 *augments host tolerance to lung antibacterial responses*. *Cell Host Microbe*, 2012. **12**(1):
610 p. 34-46.

611 28. Mizoguchi, E., *Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing*
612 *bacterial adhesion and invasion in colonic epithelial cells*. *Gastroenterology*, 2006. **130**(2):
613 p. 398-411.

614 29. Zhou, J.X., et al., *Breaking down the cell wall: Still an attractive antibacterial strategy*.

Frontiers in Microbiology, 2022. **13**.

30. Fusetti, F., et al., *Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39*. Journal of Biological Chemistry, 2003. **278**(39): p. 37753-37760.

31. Ferrandon, S., et al., *A single surface tryptophan in the chitin-binding domain from *Bacillus circulans* chitinase A1 plays a pivotal role in binding chitin and can be modified to create an elutable affinity tag*. Biochimica Et Biophysica Acta-General Subjects, 2003. **1621**(1): p. 31-40.

32. Ranok, A., et al., *Structural and Thermodynamic Insights into Chitooligosaccharide Binding to Human Cartilage Chitinase 3-like Protein 2 (CHI3L2 or YKL-39)*. Journal of Biological Chemistry, 2015. **290**(5): p. 2617-2629.

33. Johansson, M.E.V., J.M.H. Larsson, and G.C. Hansson, *The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions*. Proceedings of the National Academy of Sciences of the United States of America, 2011. **108**: p. 4659-4665.

34. Hu, Z.H., et al., *Small proline-rich protein 2A is a gut bactericidal protein deployed during helminth infection*. Science, 2021. **374**(6568).

35. Raimondi, S., et al., *Identification of mucin degraders of the human gut microbiota*. Scientific Reports, 2021. **11**(1).

36. Glover, J.S., T.D. Ticer, and M.A. Engevik, *Characterizing the mucin-degrading capacity of the human gut microbiota*. Scientific Reports, 2022. **12**(1).

37. Qin, J.J., et al., *A human gut microbial gene catalogue established by metagenomic sequencing*. Nature, 2010. **464**(7285): p. 59-U70.

637

638

639

640

641

642

643

644

645

646

647

648

649

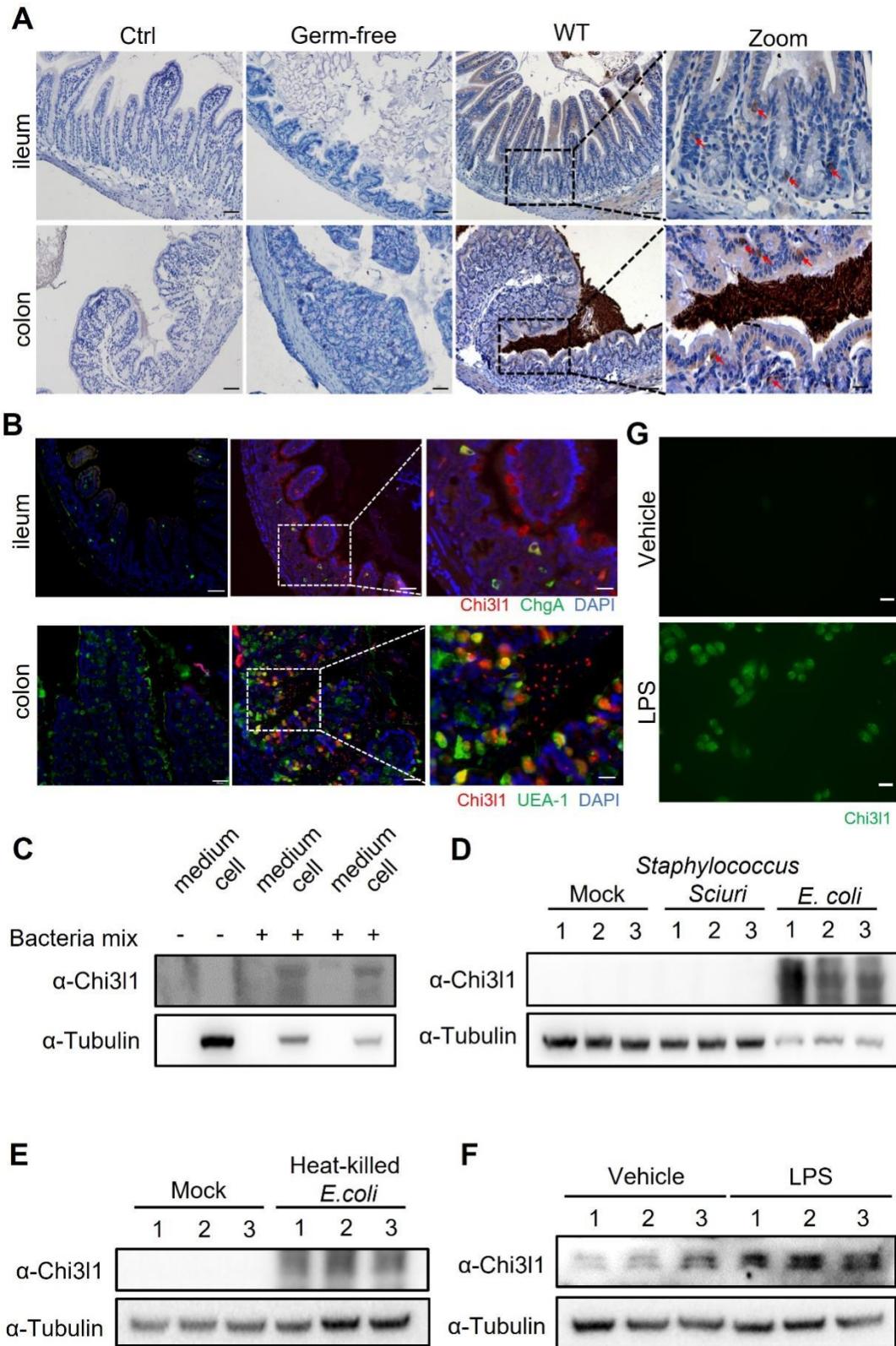
650

651

652

653

654

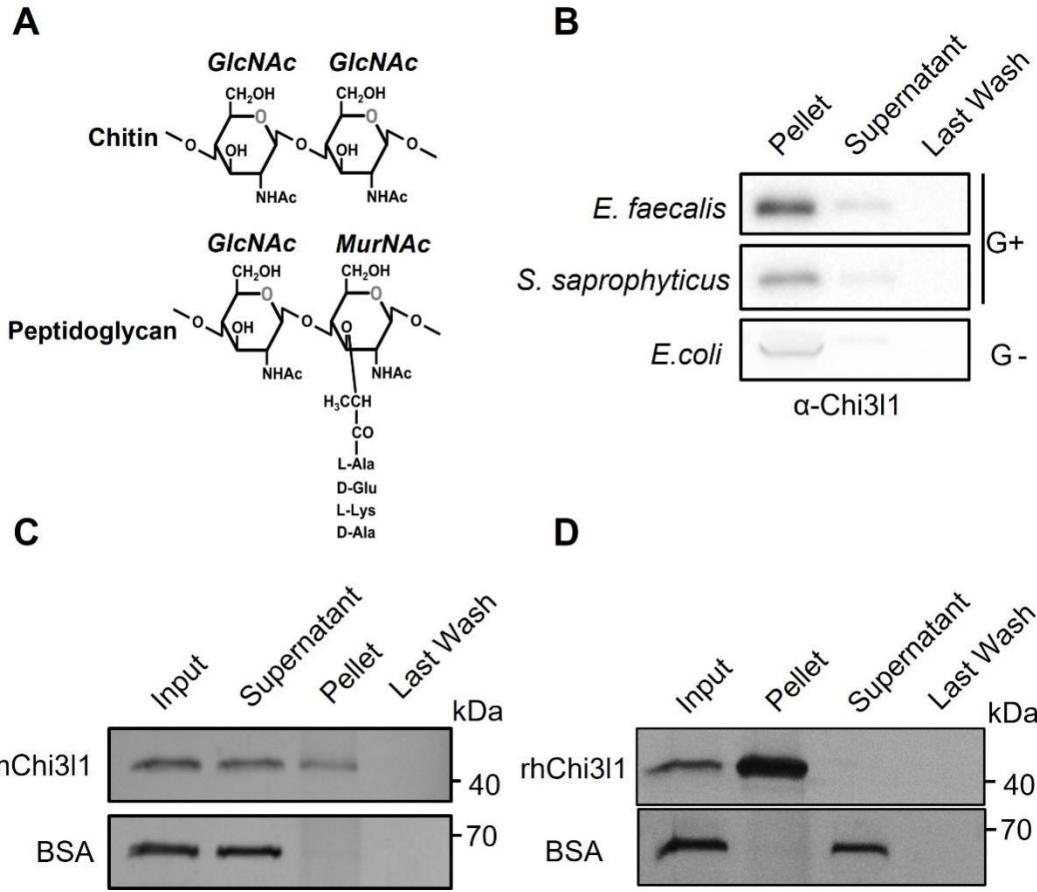

655

656

657

658

659 **Figure 1**

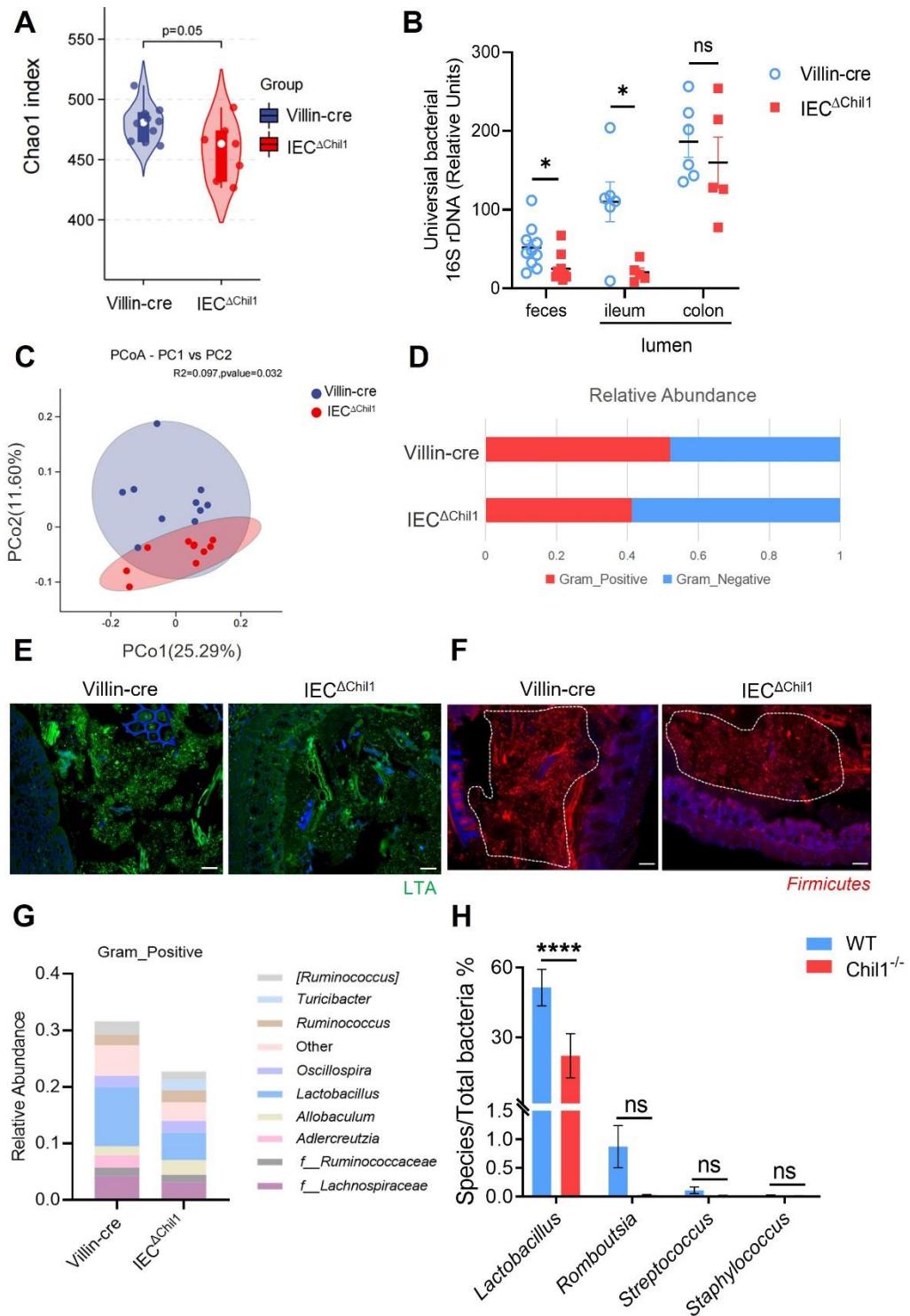

660
661

662 **Figure 1. Intestinal epithelial cells express Chi3l1 induced by gut microbiota.**

663 (A) IHC staining to detect Chi3l1 in both ileum and colon from germ-free and wildtype mice. Ctrl
664 (wildtype mice without application of first antibody), WT (wildtype C57B/6J mice). Red arrows

665 indicate Chi311-expressing cells. Scale bar, 50 μ m (Ctrl, Germ-free, WT) and 20 μ m(zoom).
666 **(B)** Ileum and colon were collected from wildtype mice and stained with ChgA (green), Chi311(red),
667 and nuclear DAPI (blue) in ileum and UEA-1 (green), Chi311(red), and nuclear DAPI (blue) in
668 colon. Scale bar, 20 μ m. Ctrl (without application of first antibody), WT (wildtype C57B/6J mice).
669 **(C)** Western blot to detect Chi311 protein expression in DLD-1 cells after bacteria mix infection for
670 12 hour. Bacteria mix are total bacteria extracted from feces of wildtype mice. **(D)** Western blot to
671 detect Chi311 protein expression in DLD-1 cells after *Staphylococcus Sciuri* and *E. coli* infection
672 for 12 hour. *Staphylococcus Sciuri* and *E. coli* are isolated from bacteria mix and verified by 16S
673 rRNA sequencing. Three independent experimental results are showed. **(E)** Western blot to detect
674 Chi311 protein expression in DLD-1 cells after treatment with heat-killed *E. coli* for 12 hour. Three
675 independent experimental results are showed. **(F)** Western blot to detect Chi311 protein expression
676 in DLD-1 cells after treatment with 100 pg/ml LPS for 12 hour. Three independent experimental
677 results are showed. **(G)** Immunofluorescence to detect Chi311 protein expression in DLD-1 cells
678 after treatment with 100pg/ml LPS for 12 hour. Scale bar, 20 μ m. All data above represent at least
679 three independent experiments. Representative images are shown in A,B, n=3-4 mice/group.
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708

709 **Figure 2**


710
711

712 **Figure 2. Chi3l1 interact with bacteria via peptidoglycan.**

713 (A) Structural comparison between Chitin and peptidoglycan. (B) Gram-positive bacteria
714 (*E.faecalis*, *S.saprophyticus*) and Gram-negative bacteria (*E.coli*) were incubated with 1 μ g of
715 recombinant mouse Chi3l1 protein(rmChi3l1), respectively. Proteins bound to indicated bacteria
716 were precipitated by centrifugation. Western blot was used to detect rmChi3l1 in Pellet, Supernatant
717 (unbound proteins) and Last Wash (last wash unbound proteins). (C) Insoluble Peptidoglycan (PGN)
718 were incubated with either recombinant mouse Chi3l1 protein (rmChi3l1) or Bovine serum albumin
719 (BSA). Proteins bound to PGN were precipitated by centrifugation. Silver staining was used to
720 detect rmChi3l1 in Input, Supernatant (unbound proteins), Pellet and Last Wash (last wash unbound
721 proteins). (D) Insoluble Peptidoglycan (PGN) were incubated with recombinant human Chi3l1
722 protein (rhChi3l1). Proteins bound to PGN were precipitated by centrifugation. Silver staining was
723 used to detect rhChi3l1 in Input, Supernatant (unbound proteins), Pellet and Last Wash (last wash
724 unbound proteins). All data above represent at least three independent experiments.

725
726
727
728
729
730
731

732 **Figure 3**

733

734 **Figure 3. Intestinal bacteria are disordered in IEC $^{\Delta\text{Chil1}}$ mice, especially Gram-positive**
735 **bacteria.**

736 (A, C, D, G) Female Villin-cre and IEC $^{\Delta\text{Chil1}}$ littermates continue to cage together after weaning for
737 8 weeks. Microbial communities in feces and intestinal lumen were characterized by 16S rRNA
738 sequencing. n=7 or 10/group. (B) qPCR analysis of total bacteria in the feces and ileum, colon luminal
739 microbial communities of Villin-cre and IEC $^{\Delta\text{Chil1}}$ littermates. Values for each bacterial group are
740

741 expressed relative to total 16S rRNA levels. Mean \pm SEM is displayed. Two-tailed, unpaired student
742 t-test was performed. *P<0.05, ns, not significant. n=5-10/group. **(C)** Principal Component Analysis
743 of weighed UniFrac distances of 16S community profiles of Villin-cre and IEC^{ΔChil1} littermates feces
744 (binary-jaccard). **(D)** Relative abundance of Gram-positive and Gram-negative bacteria in colon
745 contents of Villin-cre and IEC^{ΔChil1} littermates are shown. **(E)** LTA (green) was detected by
746 immunofluorescence in colon sections of Villin-cre and IEC^{ΔChil1} littermates. Nuclei were detected
747 with DAPI. Scale bar, 50 μ m. **(F)** Fluorescence in situ hybridization (FISH) detection of gram-
748 positive bacteria (red) in the colon of Villin-cre and IEC^{ΔChil1} littermates, nuclei were detected with
749 DAPI (blue). Scale bars, 50 μ m. **(G)** Relative abundance of Gram-positive bacteria genera in colon
750 lumen of Villin-cre and IEC^{ΔChil1} littermates. **(H)** Female wildtype and Chil1^{-/-} littermates continue
751 to cage together after weaning for 8 weeks. Microbial communities in feces were characterized by
752 16S rRNA sequencing. Mean \pm SEM is displayed. Two-tailed, unpaired student t-test was performed.
753 ****P<0.0001, ns, not significant. n=4 or 6/group. Representative images are shown in E, F, n= 3/4
754 mice/group.

755

756

757

758

759

760

761

762

763

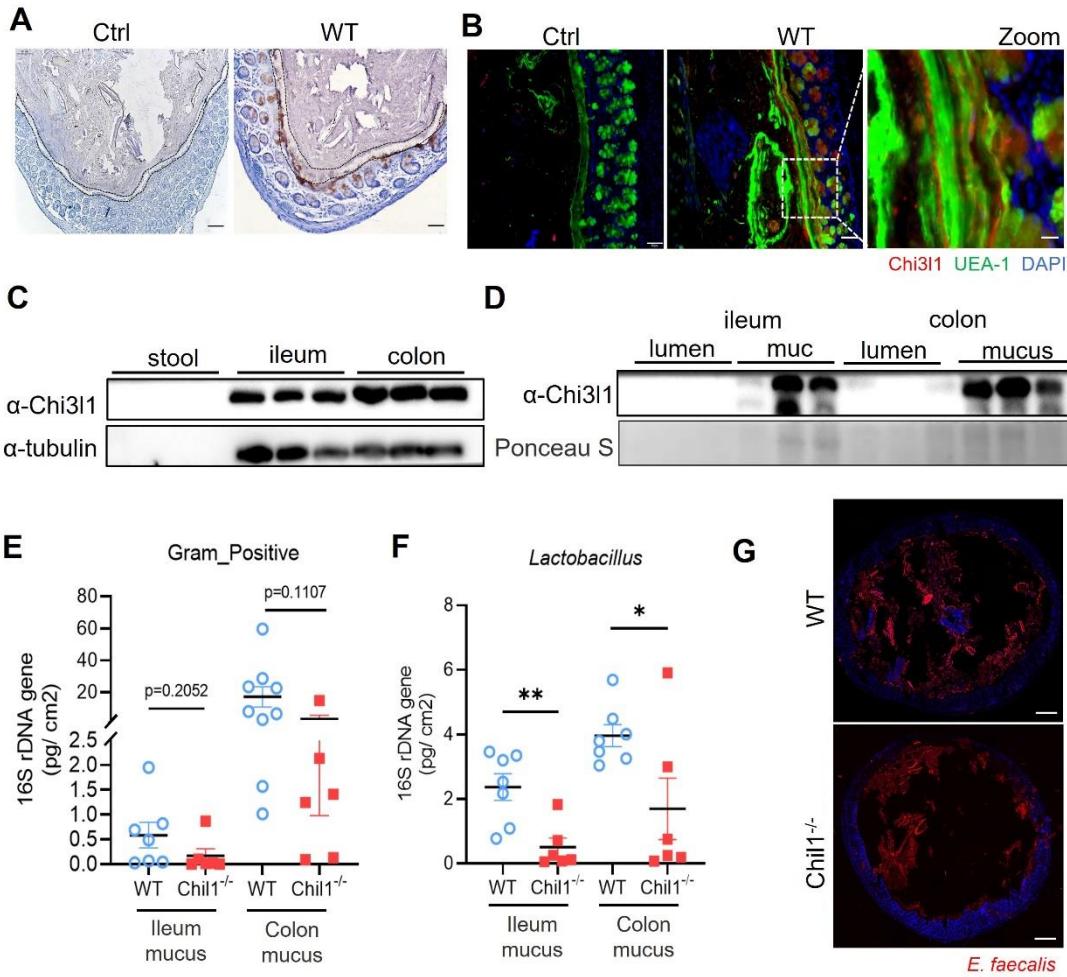
764

765

766

767

768

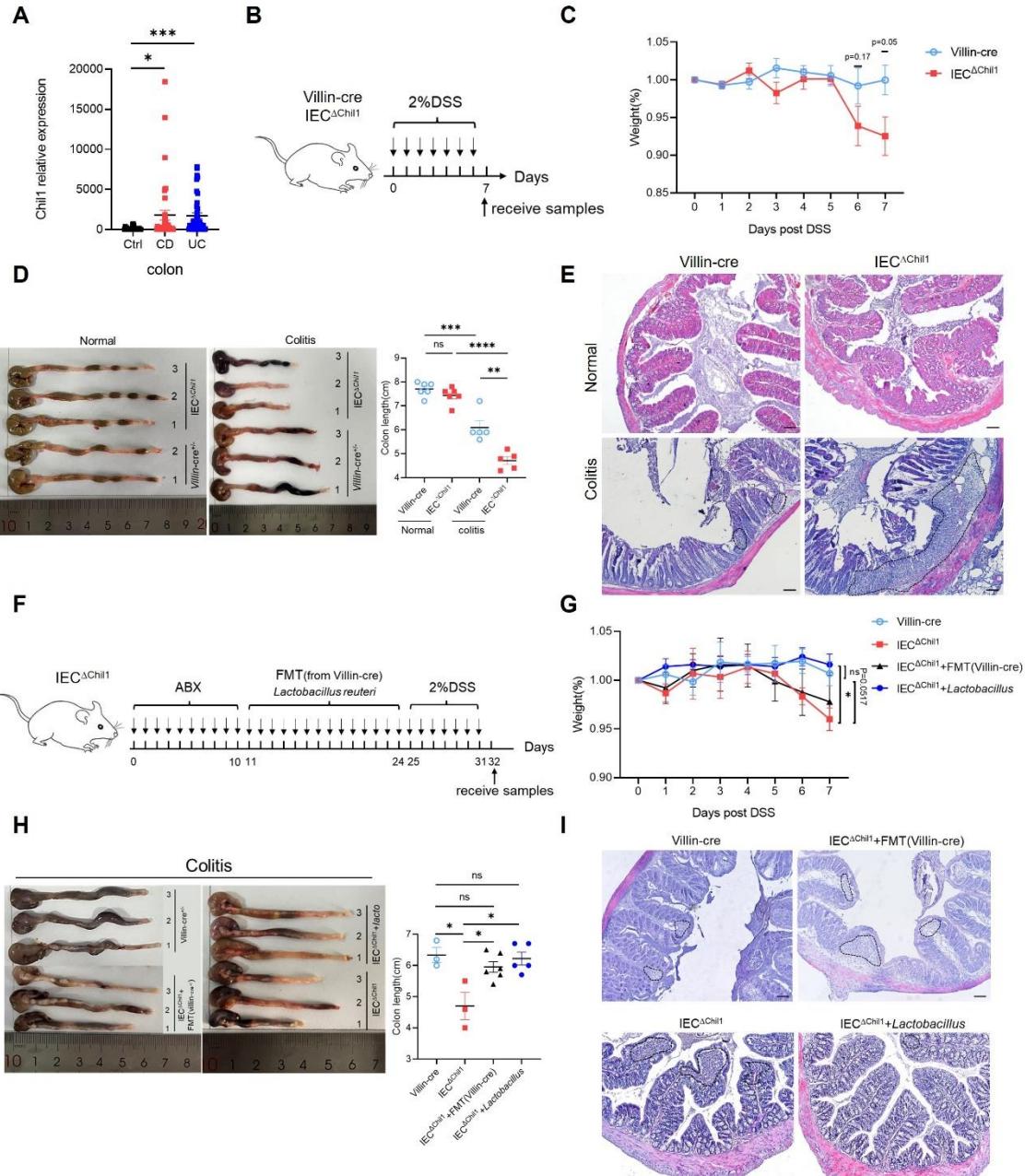

769

770

771

772

773 **Figure 4**



774

775 **Figure 4. Chi3l1 promotes the colonization of Gram-positive bacteria in intestinal mucus layer.**

776 (A) IHC staining to detect Chi3l1 in colon mucus layer from wildtype mice. Ctrl (without
777 application of ant-Chi3l1 antibody), WT (wildtype C57B/6J mice). Black dotted line outlines mucus
778 layer. Scale bar, 50 μ m (Ctrl, WT). (B) Colons were collected from wildtype mice and stained with
779 UEA-1 (green), Chi3l1(red), and nuclear DAPI (blue). Ctrl (without application of first antibody),
780 WT (wildtype C57B/6J mice). Scale bars, 50 μ m (Ctrl, WT) and 20 μ m(zoom). (C) Stool, ileum and
781 colon tissues were collected from wildtype mice. Western blot was used to detect Chi3l1 expression
782 in these samples. n=3 mice/sample. (D) Both luminal and mucus-associated proteins of either ileum
783 or colon were extracted. Western blot was used to detect Chi3l1 expression in these samples. lumen
784 (luminal proteins), mucus (mucus-associated proteins). n=3 mice/sample. (E&F) qPCR analysis of
785 specific bacteria in the ileum and colon mucus microbial communities of wildtype and Chi1^{-/-}
786 littermates. (E) qPCR analysis of Gram-positive bacteria is shown. (F) qPCR analysis of Gram-
787 positive bacteria is shown. Values for each bacterial group are expressed relative to total 16S rRNA
788 levels. WT (wildtype C57B/6J mice). Mean \pm SEM is displayed. Two-tailed, unpaired student t-test
789 was performed. P value is as indicated in E. *P<0.05, **P<0.01, n=6-9/group. (G) Rectal injection
790 of both wildtype and Chi1^{-/-} mice with FDAA-labeled *E. faecalis* (a Gram-positive bacteria strain)
791 for 4 hour. Colon sections were collected and colonization of *E. faecalis* was examined under
792 microscope. Nuclei were stained with DAPI. Representative images are shown in A, B, G, n=3-4
793 mice/group.

794 **Figure 5**

795

796 **Figure 5. Disordered intestinal bacteria in IEC $^{\Delta\text{Chil1}}$ mice contribute to IBD.**

797 (A) *Chil1* mRNA relative expression in colon tissues of patients without gut disease (controls, n=35)
798 or with Crohn's disease (CD, n=40), ulcerative colitis (UC, n=40), (GEO Datasets: SRP303290),
799 Mann-Whitney test was performed. *P < 0.05; ***P < 0.001. (B) Schematic model of the
800 experimental design. Both Villin-cre and IEC $^{\Delta\text{Chil1}}$ littermates were fed with 2% DSS in drinking
801 water to induce colitis. (C) Weight change of Villin-cre and IEC $^{\Delta\text{Chil1}}$ littermates during DSS feeding.
802 Weight (%) = Current weight/Initial weight. P values are as indicated. (D) Representative colonic
803 length from Normal and DSS-treated Villin-cre and IEC $^{\Delta\text{Chil1}}$ littermates (left) and the statistics of
804 colonic length (right) (**P < 0.01; ***P < 0.001; ****P < 0.0001, ns, not significant). (E) H&E
805 staining of mice colon from Normal and DSS-treated Villin-cre and IEC $^{\Delta\text{Chil1}}$ littermates. The
806 inflamed areas are outlined by white dotted line, Scale bars=100um. (F) Schematic of the

807 experimental design. First, antibiotics were used to eliminate gut microbiota for 10 days, and then
808 either fecal microbiota from Villin-cre mice (FMT) or *Lactobacillus reuteri* were transplanted back
809 to IEC^{ΔChil1} mice orally every day for 2 weeks. Finally, colitis mouse model was constructed by 2%
810 DSS feeding in drinking water for another 7 days. **(G-I)** Villin-cre and IEC^{ΔChil1} were only fed with
811 2% DSS in drinking water for 7 days. IEC^{ΔChil1}+FMT(Villin-cre), and IEC^{ΔChil1}+*Lactobacillus* were
812 constructed as described in F. **(G)** Weight change of Villin-cre, IEC^{ΔChil1}, IEC^{ΔChil1}+FMT(Villin-cre),
813 and IEC^{ΔChil1}+*Lactobacillus* mice during DSS feeding. **(H)** Representative colonic length from
814 Villin-cre, IEC^{ΔChil1}, IEC^{ΔChil1}+FMT(Villin-cre), and IEC^{ΔChil1}+*Lactobacillus* mice (left) and the
815 statistics of colonic length (right). Mean ± SEM is displayed in G, H. one-way ANOVA was
816 performed. P value is as indicated. *P<0.05, ns, not significant, n=3-6/group. **(I)** H&E staining of
817 mice colon from Villin-cre, IEC^{ΔChil1}, IEC^{ΔChil1}+FMT(Villin-cre), and IEC^{ΔChil1}+*Lactobacillus* mice
818 after DSS treatment. The inflamed area is outlined by black dotted line, Scale bars=100um.
819 Representative images are shown in C, E, H, I, n=3-6 mice/group.

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

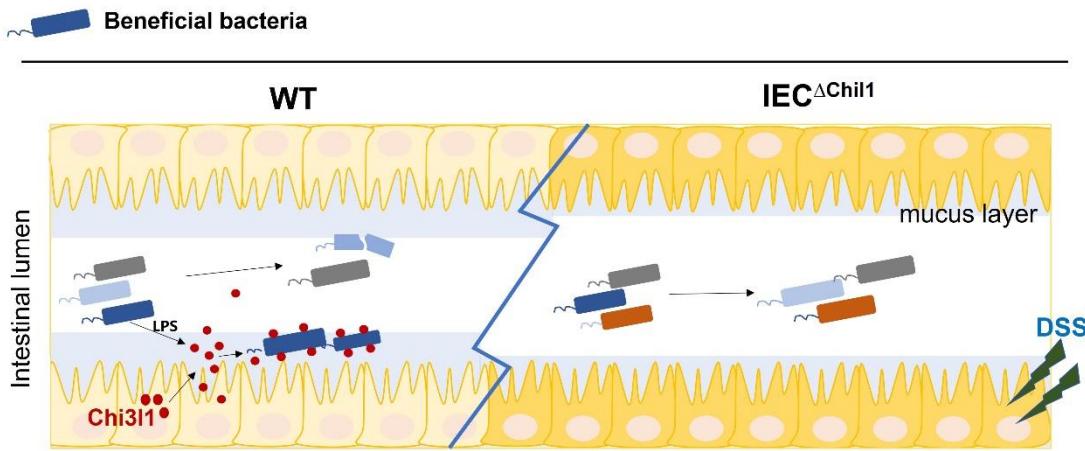
842

843

844

845

846


847

848

849

850

851 **Figure 6**

852

853 **Figure 6. A schematic working model.** Intestinal epithelial cells are stimulated by the gut
854 microbiota to express Chi3l1. Once expressed, Chi3l1 is secreted into the mucus layer where it
855 interacts with the gut microbiota, specifically through a component of bacterial cell walls called
856 peptidoglycan. This interaction between Chi3l1 and bacteria is beneficial for the colonization of
857 bacteria in the mucus, particularly for gram-positive bacteria like *Lactobacillus*. Moreover, a
858 deficiency of Chi3l1 leads to an imbalance in the gut microbiota, which exacerbates colitis induced
859 by dextran sodium sulfate (DSS).

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

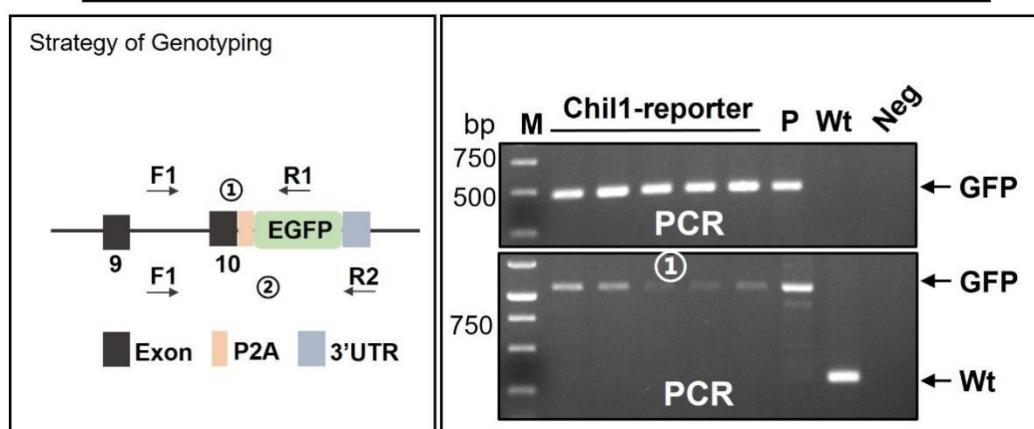
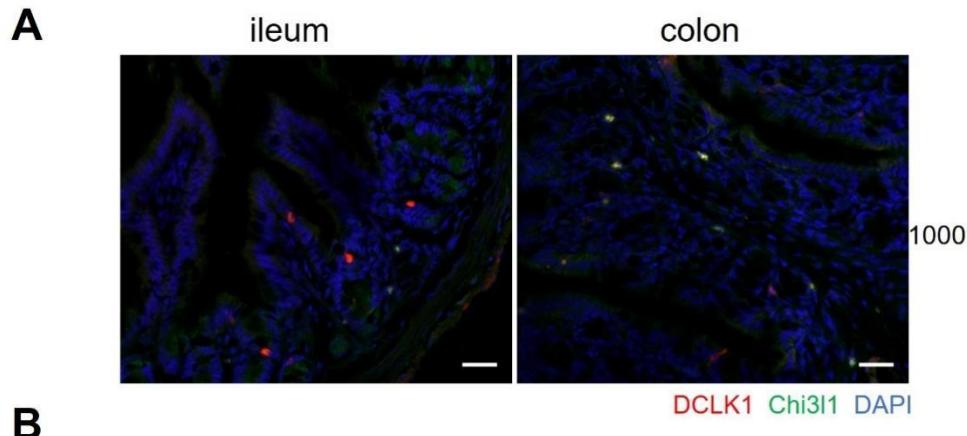
875

876

877

878

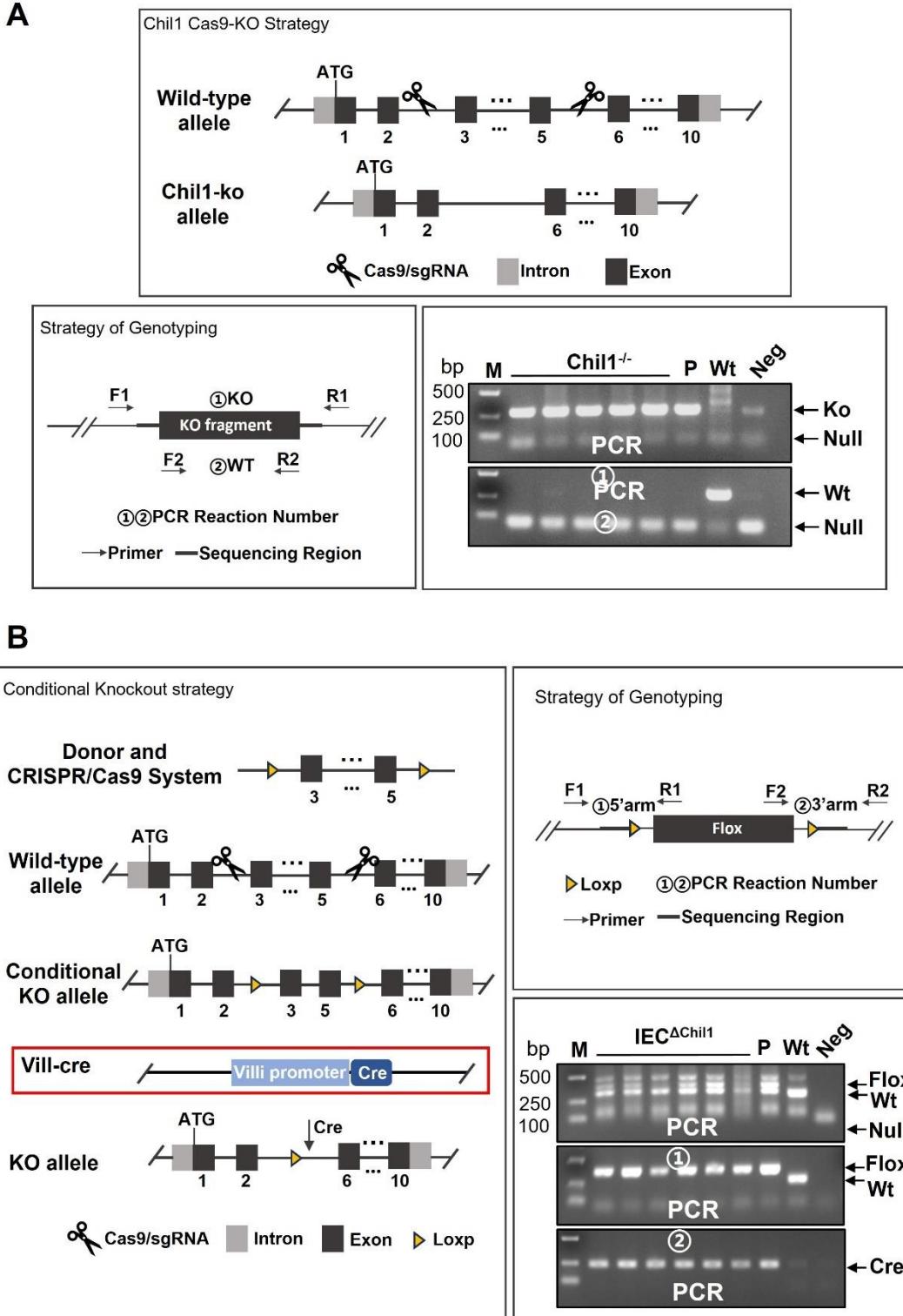
879



880

881

882

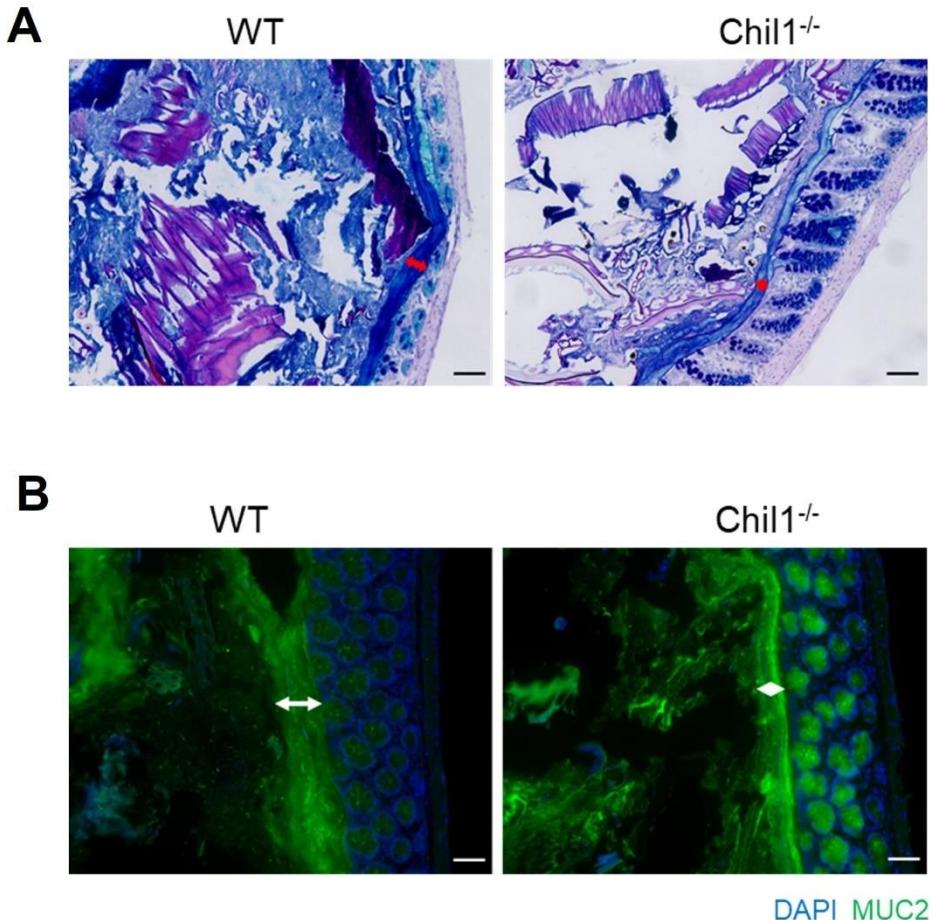
883


884 **Supplemental figures**

885

886 **Supplementary Fig. 1 Chil1 don't express in tuft cells.**

887 (A) Ileum and colon were collected from Chil1-EGFP reporter mice and stained with DCLK1 (red),
888 Chi3l1(green), and nuclear DAPI (blue). Scale bar, 20 μ m. Representative images are shown, n=3
889 mice/group. (B) The construction, genotyping strategy, and genotyping results of Chil1-EGFP
890 reporter mice. P: positive control; Wt: Wild-type control; Neg: Blank control(ddH₂O); M: DNA
891 Ladder.



892

893 **Supplementary Fig. 2 The construction and genotype of Chil1^{-/-} and IEC^{ΔChil1} mice.**

894 (A) The construction, genotyping strategy and genotyping results of Chil1^{-/-} mice. P: positive control;
895 Wt: Wild-type control; Neg: Blank control(ddH₂O); M: DNA Ladder.

896 (B) The construction, genotyping strategy and genotyping results of IEC^{ΔChil1} mice. P:positive
897 control; Wt: Wild-type control; Neg: Blank control(ddH₂O); M: DNA Ladder. PCR① and ②^③implied flox, ③implicated cre.

899

900 **Supplementary Fig. 3 Chil1^{-/-} mice possess shortening mucus layer.**

901 (A) Periodic acid-Schiff and Alcian blue (AB-PAS) staining in the colons of WT and Chil1^{-/-}
902 littermates. Scale bars, 100 μ m. (B) Immunofluorescence staining to detect Mucin 2 (green) and
903 nuclear DAPI (blue) in colon from WT and Chil1^{-/-} littermates. Scale bar, 50 μ m. Representative
904 images are shown in A, B, n=6 mice/group.

905

906

907

908

909

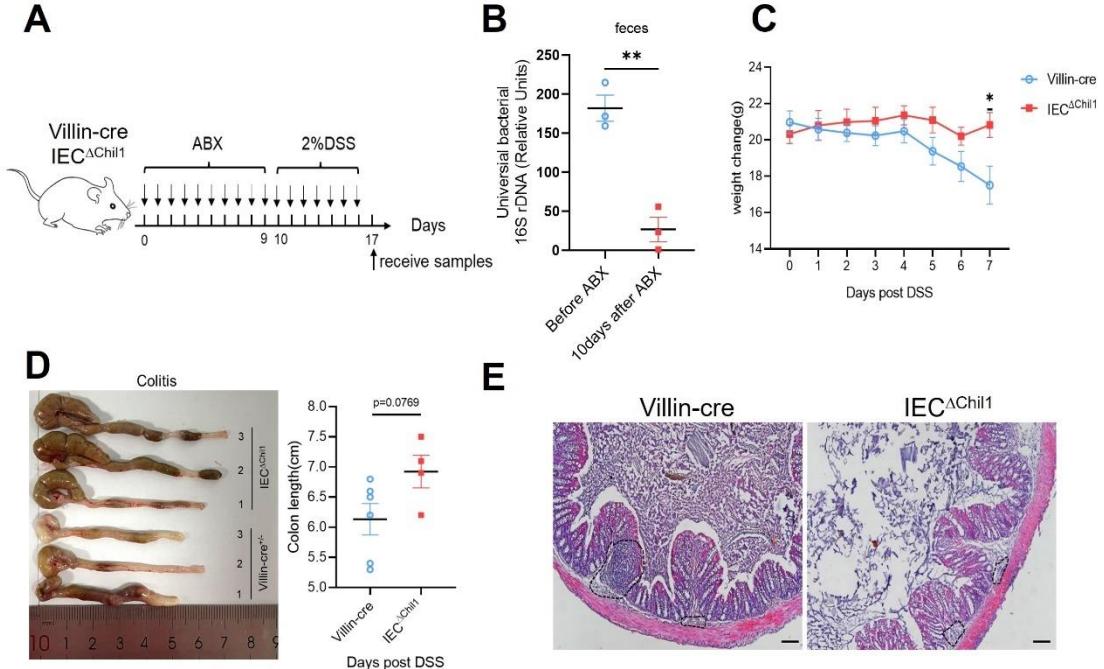
910

911

912

913

914


915

916

917

918

919

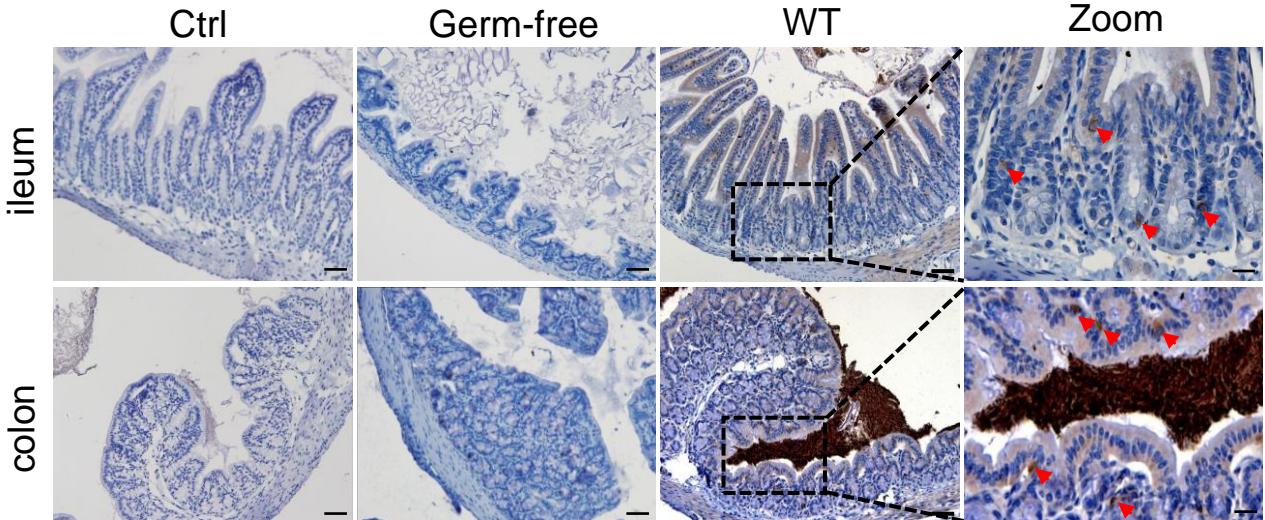
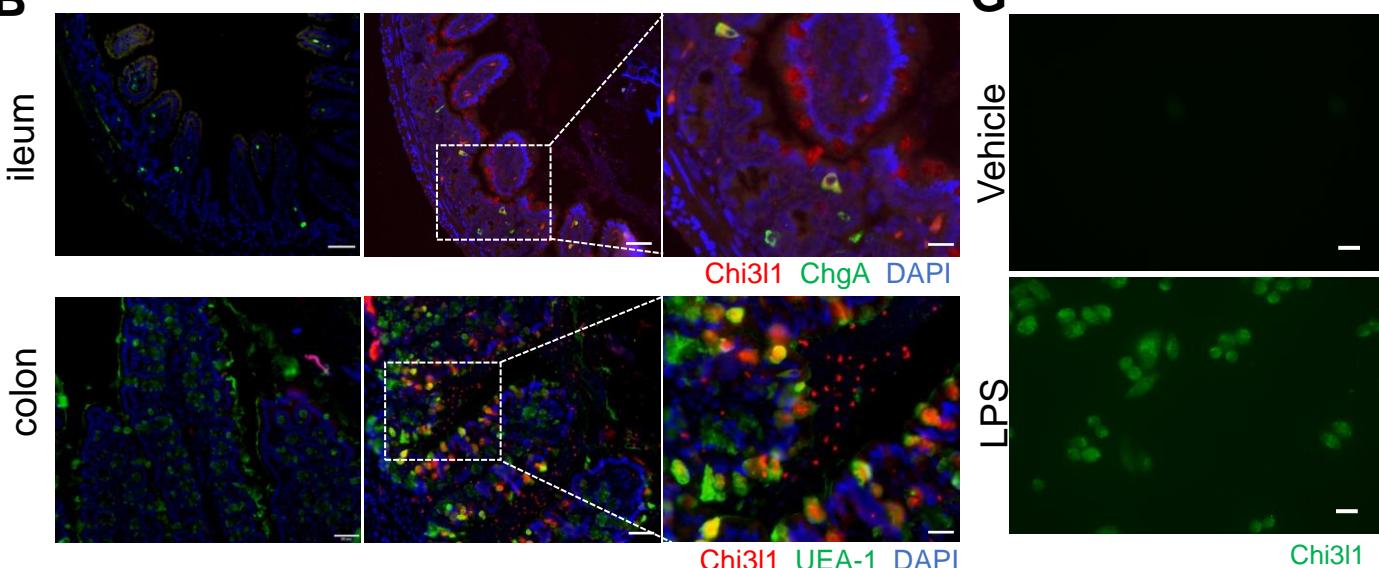
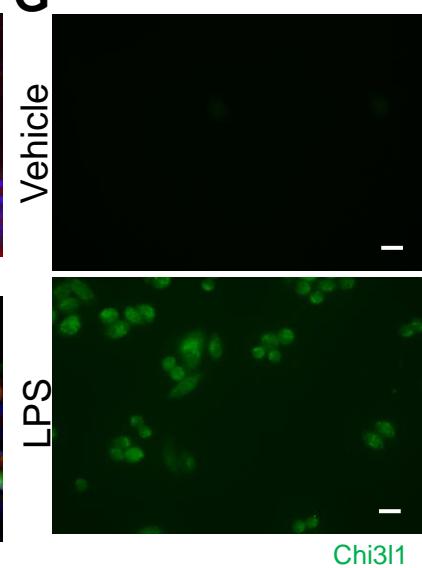
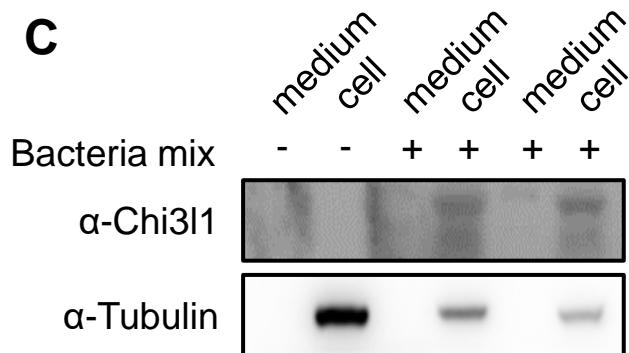
920

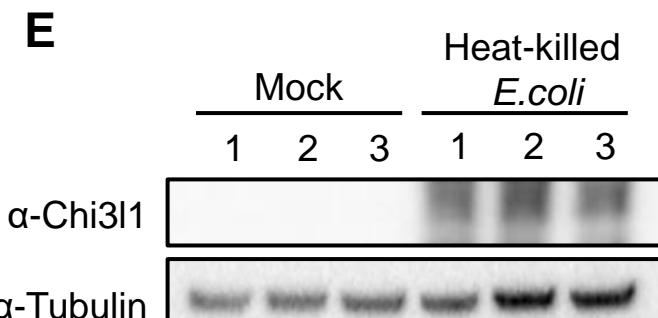
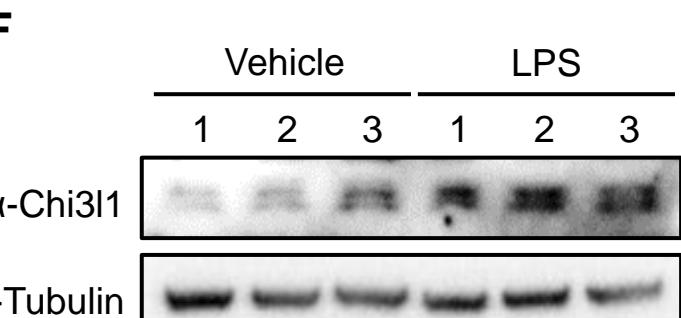
921 **Supplementary Fig. 4 Chi3l1-mediated bacteria, but not Chi3l1 itself affect more upon the**
922 **development of colitis.**

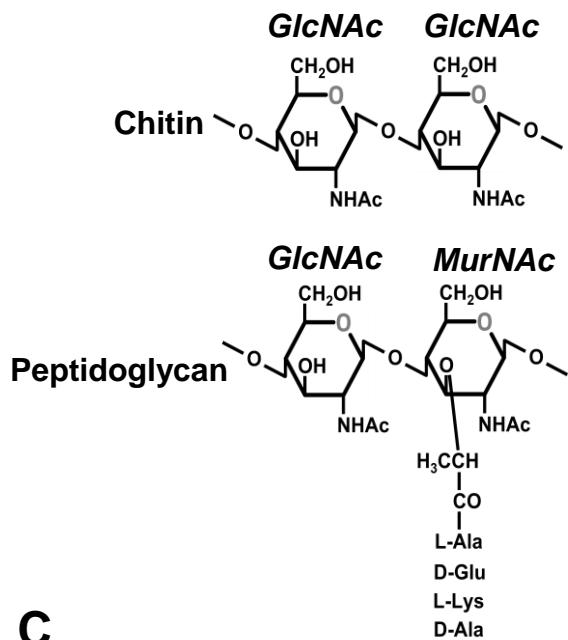
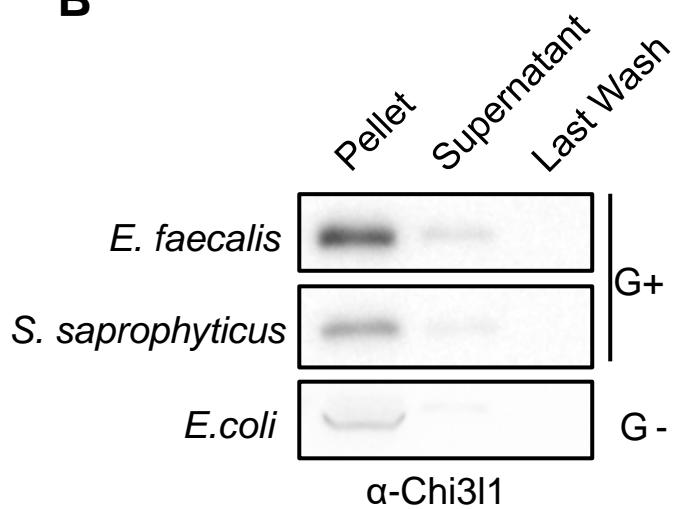
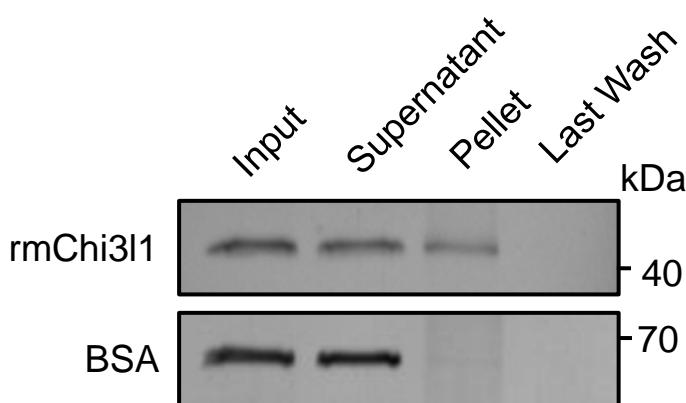
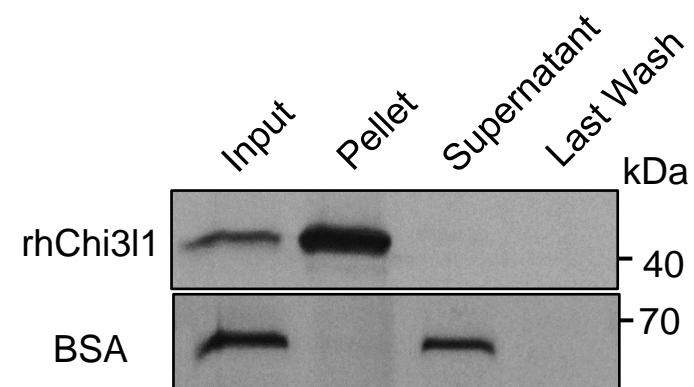
923 (A) Schematic model of the experimental design. Both Villin-cre and IEC $^{\Delta\text{Chi11}}$ littermates were fed
924 with 2% DSS in drinking water to induce colitis after elimination of gut microbiota by antibiotics
925 for 10 days. (B) qPCR analysis of total bacteria in the feces of Villin-cre and IEC $^{\Delta\text{Chi11}}$ littermates.
926 Values for each bacterial group are expressed relative to total 16S rRNA levels. Mean \pm SEM is
927 displayed. Two-tailed, unpaired student t-test was performed. **P<0.01, n=3/group. (C) Weight
928 change of Villin-cre and IEC $^{\Delta\text{Chi11}}$ mice during DSS feeding. (D) Representative colonic length from
929 Colitis Villin-cre and IEC $^{\Delta\text{Chi11}}$ mice (left) and the statistics of colonic length (right). Mean \pm SEM
930 is displayed. Two-tailed, unpaired student t-test was performed. P value is as indicated. (E) H&E
931 staining of colitis mice colon from Villin-cre and IEC $^{\Delta\text{Chi11}}$. The inflamed area is outlined by black
932 dotted lines, Scale bars=100 μm . n=4-6 mice/group.

933

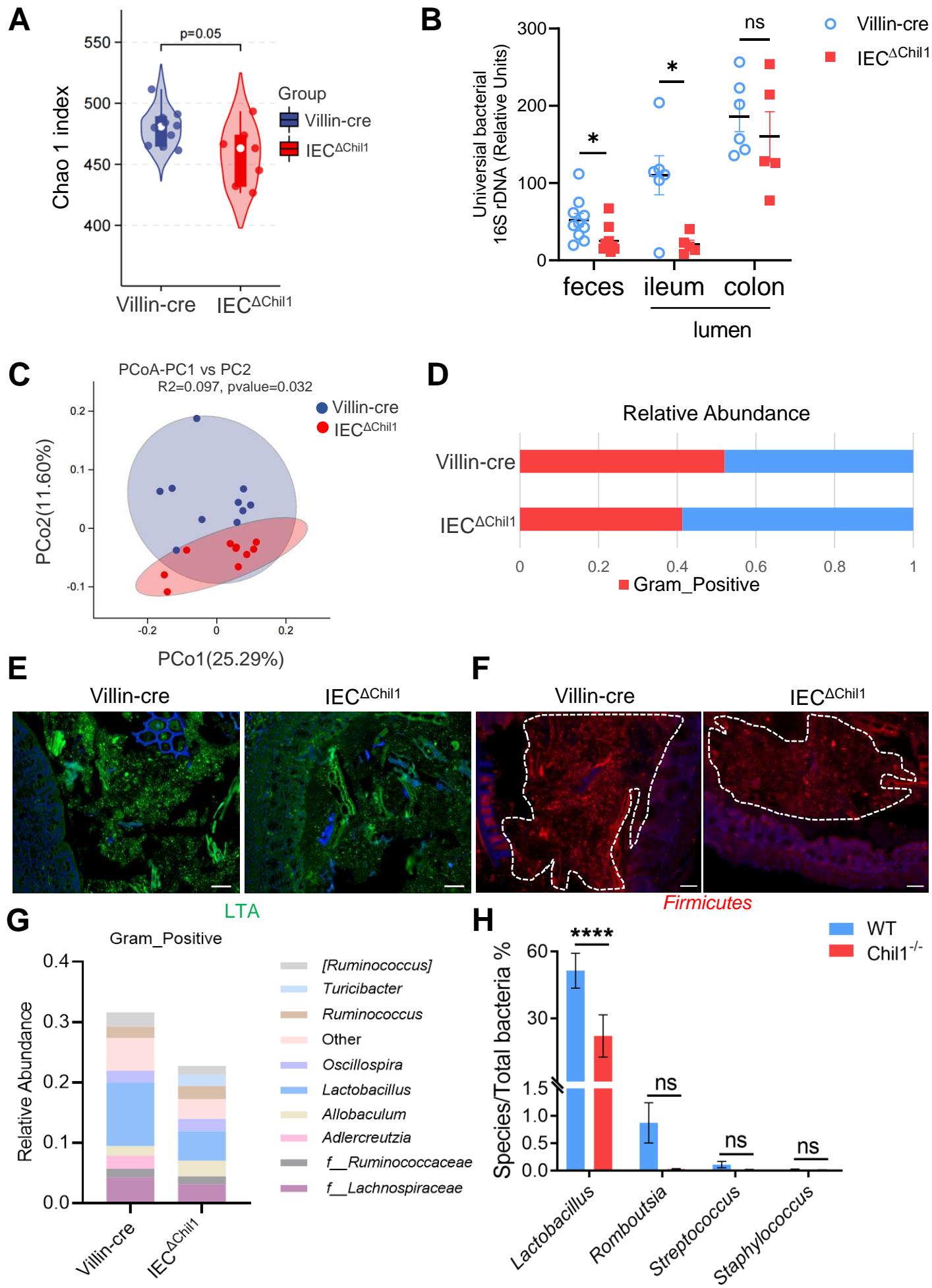
934



935





936

937


938

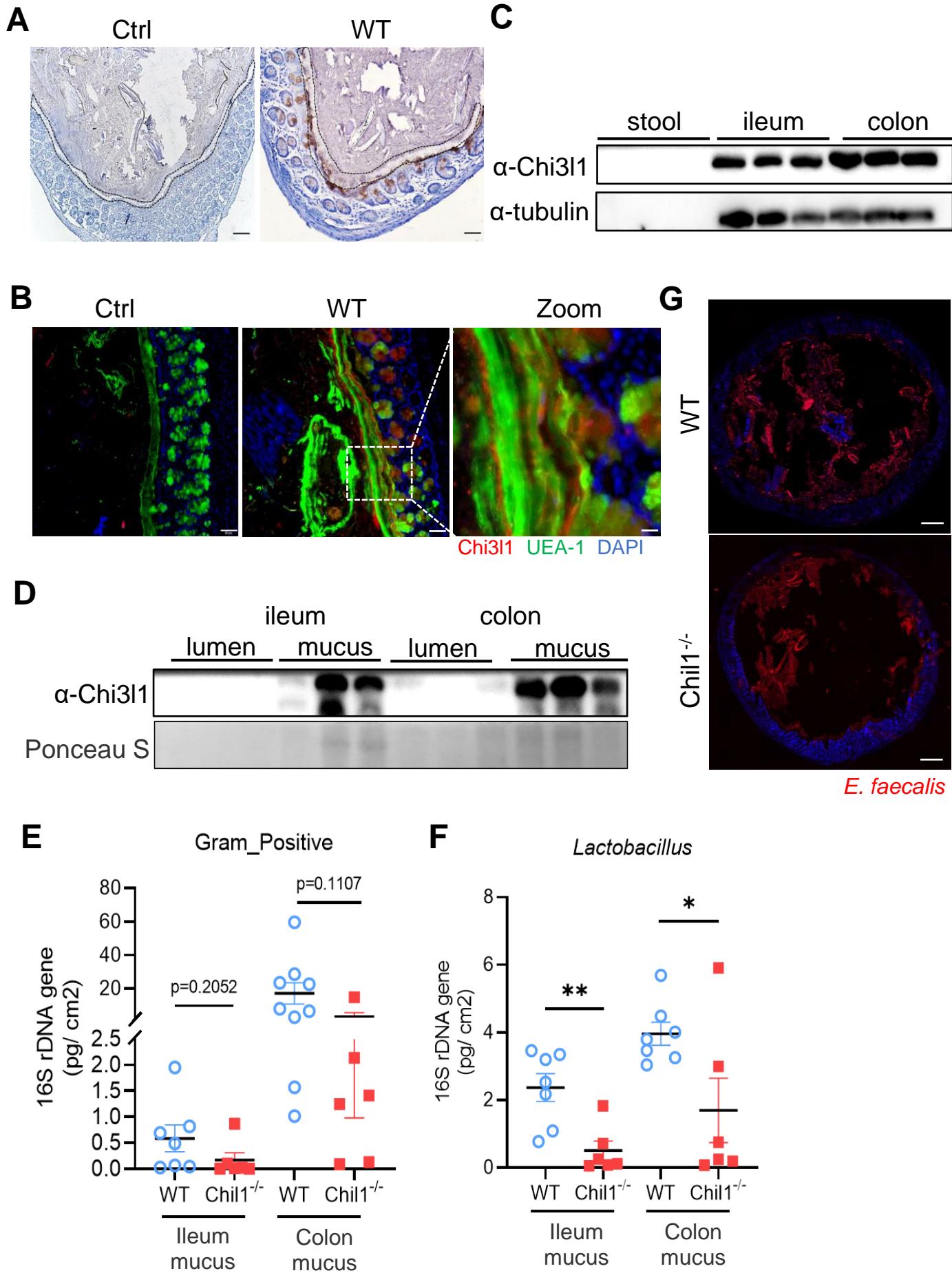

939

Figure 1**A****B****G****C****D****E****F**

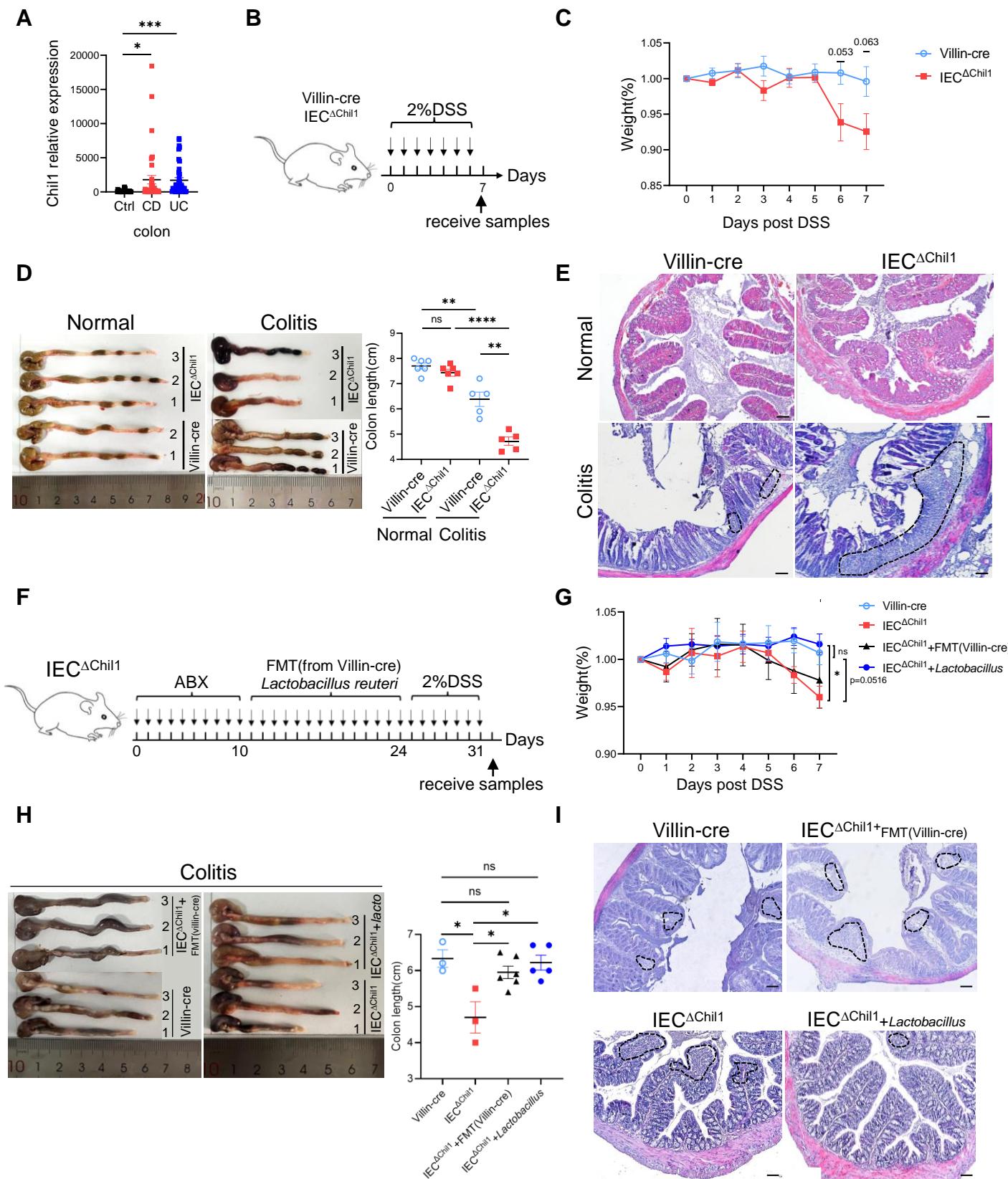

Figure 2**A****B****C****D**

Figure 3

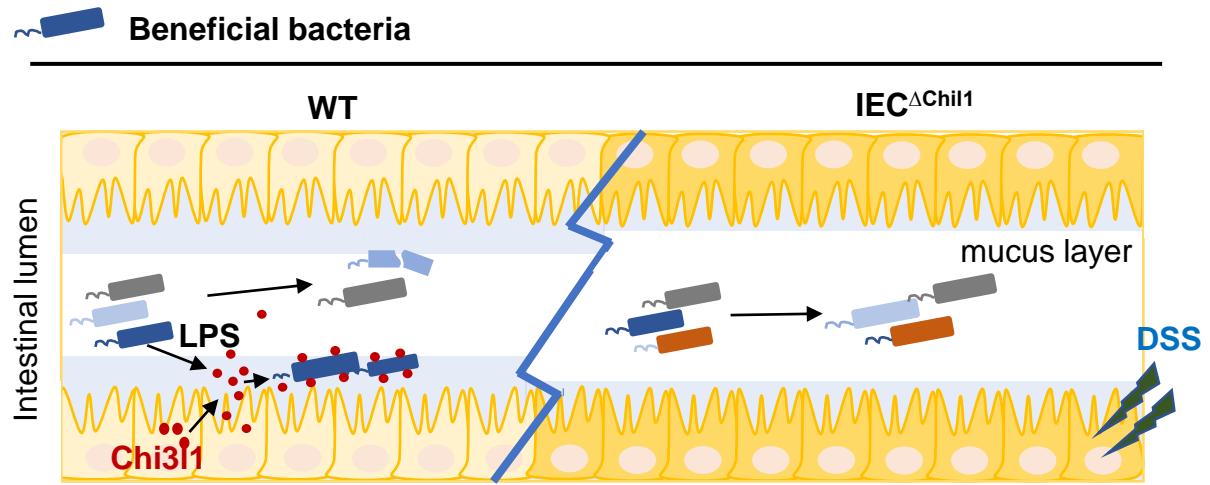
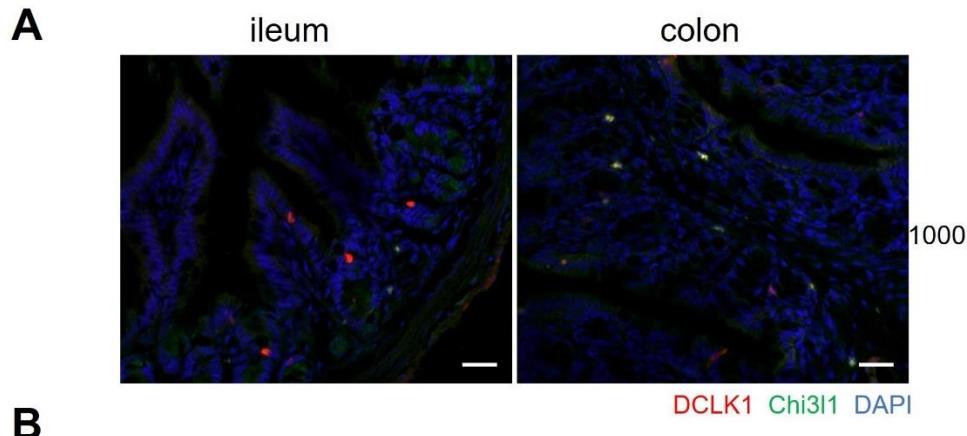
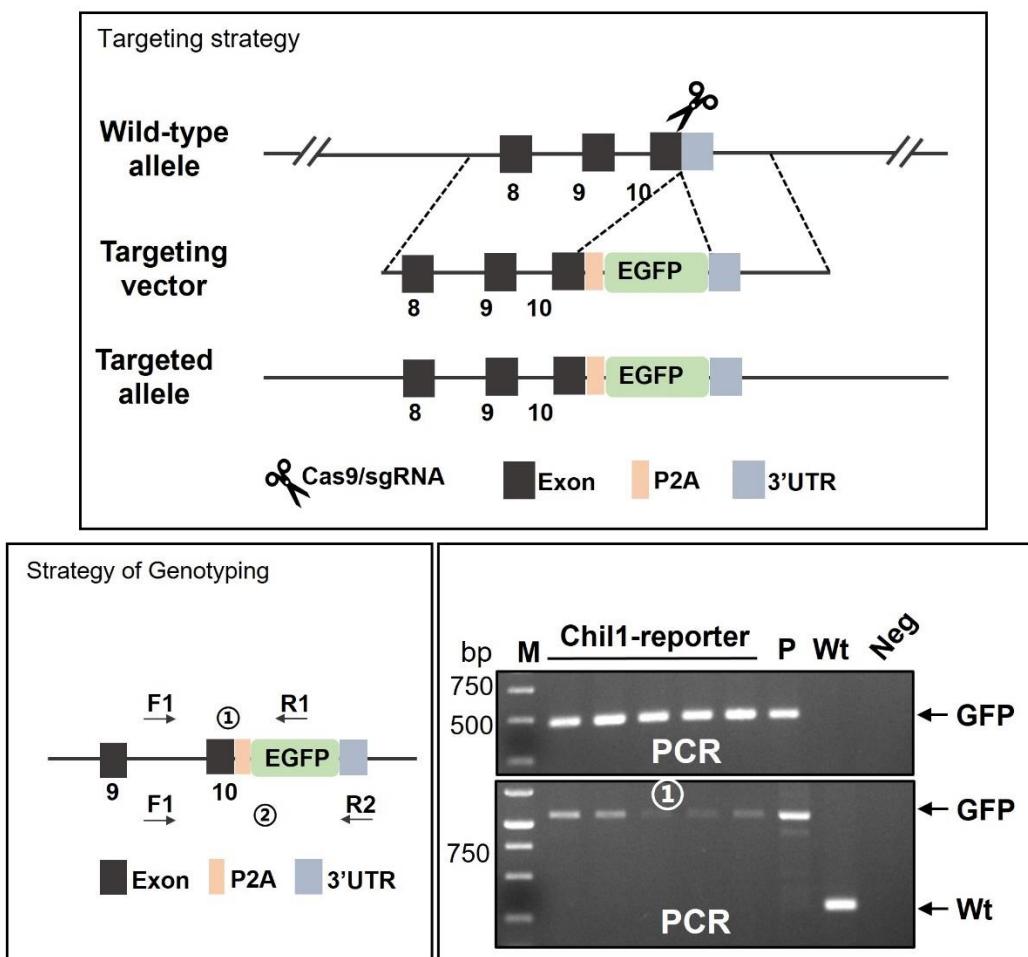
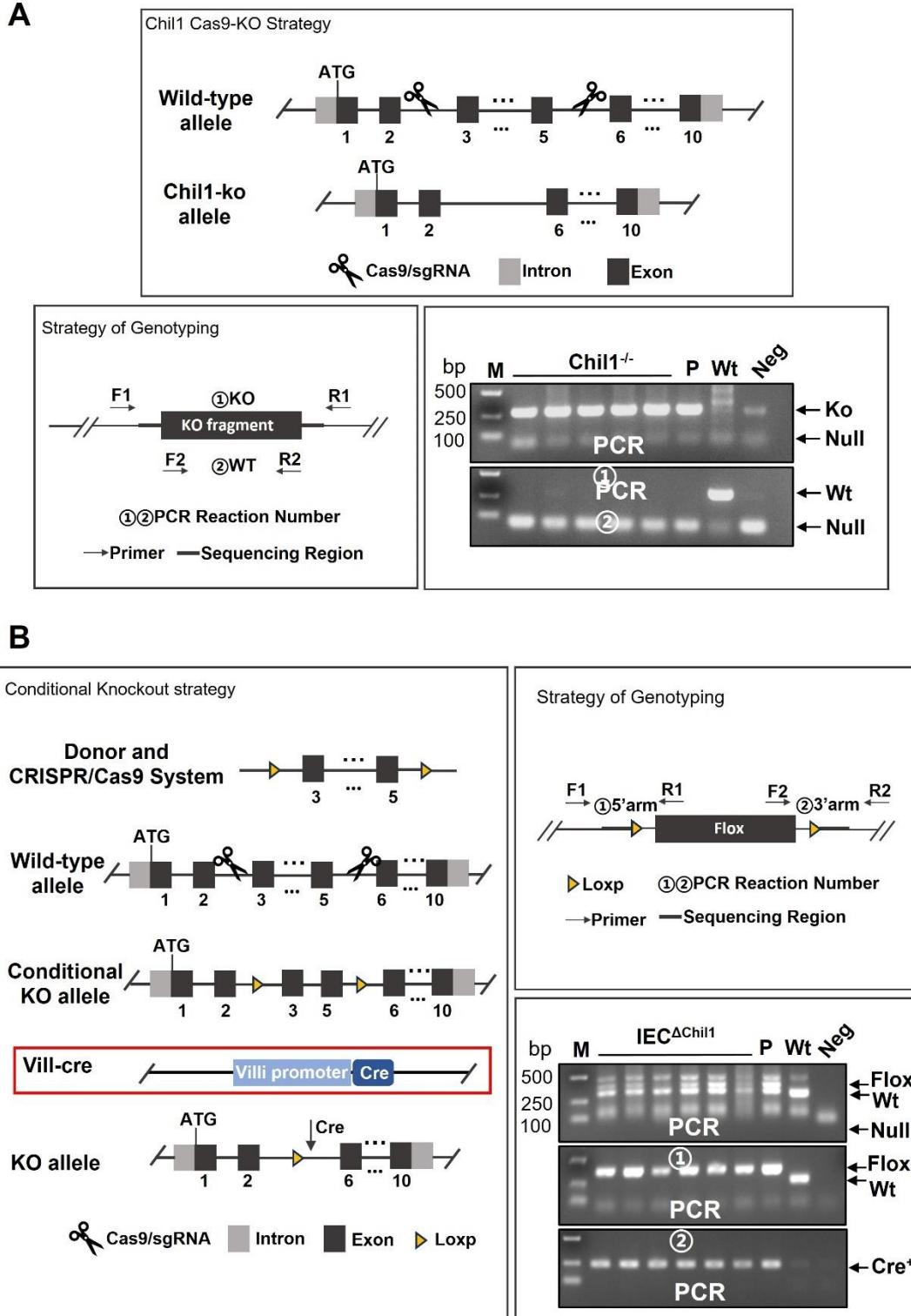


Figure 4


Figure 5


Figure 6

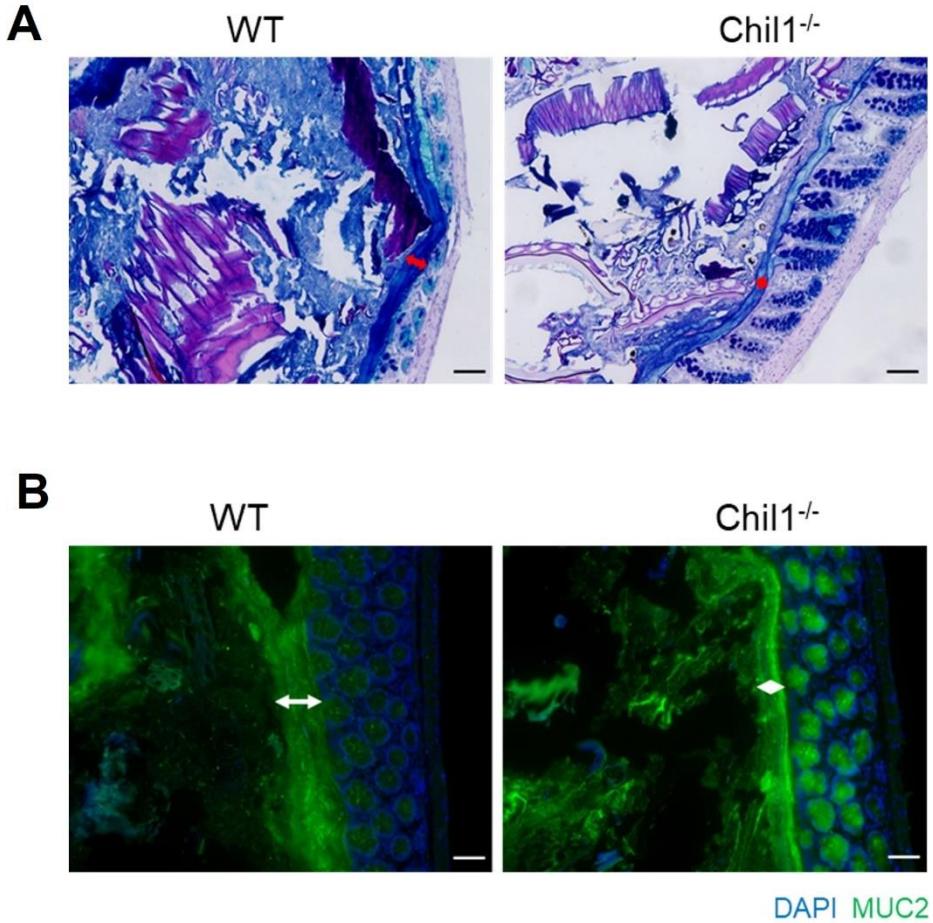
1 **Supplemental Figures**


B

2

3 **Supplementary Fig. 1 Chi3l1 don't express in tuft cells.**

4 (A) Ileum and colon were collected from *Chil1*-EGFP reporter mice and stained with DCLK1 (red),
5 Chi3l1(green), and nuclear DAPI (blue). Scale bar, 20 μ m. Representative images are shown, n=3
6 mice/group. (B) The construction, genotyping strategy, and genotyping results of *Chil1*-EGFP
7 reporter mice. P: positive control; Wt: Wild-type control; Neg: Blank control(ddH₂O); M: DNA
8 Ladder.



9

10 **Supplementary Fig. 2 The construction and genotype of $\text{Chi3l1}^{-/-}$ and $\text{IEC}^{\Delta\text{Chil1}}$ mice.**

11 (A) The construction, genotyping strategy and genotyping results of $\text{Chil1}^{-/-}$ mice. P: positive control;
 12 Wt: Wild-type control; Neg: Blank control(ddH₂O); M: DNA Ladder.

13 (B) The construction, genotyping strategy and genotyping results of $\text{IEC}^{\Delta\text{Chil1}}$ mice. P:positive
 14 control; Wt: Wild-type control; Neg: Blank control(ddH₂O); M: DNA Ladder. PCR① and ②
 15 implicated flox, ③implicated cre.

16

17 **Supplementary Fig. 3 Chil1^{-/-} mice possess shortening mucus layer.**

18 (A) Periodic acid-Schiff and Alcian blue (AB-PAS) staining in the colons of WT and Chil1^{-/-}
19 littermates. Scale bars, 100 μ m. (B) Immunofluorescence staining to detect Mucin 2 (green) and
20 nuclear DAPI (blue) in colon from WT and Chil1^{-/-} littermates. Scale bar, 50 μ m. Representative
21 images are shown in A, B, n=6 mice/group.

22

23

24

25

26

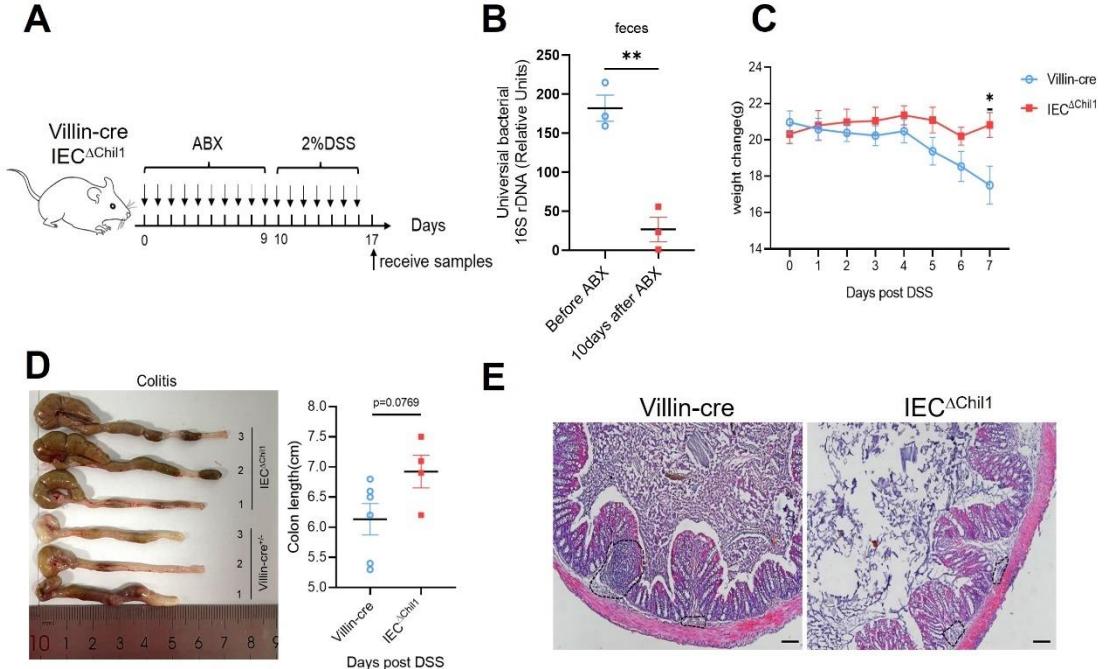
27

28

29

30

31


32

33

34

35

36

37

38 **Supplementary Fig. 4 Chi3l1-mediated bacteria, but not Chi3l1 itself affect more upon the**
39 **development of colitis.**

40 (A) Schematic model of the experimental design. Both Villin-cre and IEC^{ΔChi1} littermates were fed
41 with 2% DSS in drinking water to induce colitis after elimination of gut microbiota by antibiotics
42 for 10 days. (B) qPCR analysis of total bacteria in the feces of Villin-cre and IEC^{ΔChi1} littermates.
43 Values for each bacterial group are expressed relative to total 16S rRNA levels. Mean \pm SEM is
44 displayed. Two-tailed, unpaired student t-test was performed. **P<0.01, n=3/group. (C) Weight
45 change of Villin-cre and IEC^{ΔChi1} mice during DSS feeding. (D) Representative colonic length from
46 Colitis Villin-cre and IEC^{ΔChi1} mice (left) and the statistics of colonic length (right). Mean \pm SEM
47 is displayed. Two-tailed, unpaired student t-test was performed. P value is as indicated. (E) H&E
48 staining of colitis mice colon from Villin-cre and IEC^{ΔChi1}. The inflamed area is outlined by black
49 dotted lines, Scale bars=100 μ m. n=4-6 mice/group.

50

51

52

53

54

55

56

57